University Defence Research Collaboration (UDRC) Signal Processing in a Networked Battlespace L WP3: Signal Separation & Broadband Distributed Beamforming

WP Leaders: Wenwu Wang, University of Surrey; John McWhirter, Cardiff University Researcher: Swati Chandna, University of Surrey

Introduction

Extracting signals of interest and suppression of interference from corrupted sensor measurements remain fundamental challenges in many networked battlespace applications. Mathematically,

 $\mathbf{x}(t) = \mathbf{A}(t) \star \mathbf{s}(t) + \mathbf{n}(t),$

where \star denotes the convolution operator, s denotes the signal of interest, x denotes the recorded mixture measurements, A denotes the mixing matrix, and n denotes the noise vector.

Objectives

The objective of this work package is to develop robust and lowcomplexity algorithms for source separation (SS) and broadband distributed beamforming. We aim to achieve the above by developing --

 algorithms based on Polynomial Matrix Eigenvalue Decomposition (PEVD) techniques – this has the advantage of only requiring secondorder statistics thereby reducing the computational load associated with higher order statistics

• Sparse representations and T-F masking techniques robust to noise/incomplete measurements for underdetermined SS.

Current Focus

Let N_m denote the number of mixtures, and, N_s denote the number of sources. The case $N_s > N_m$ characterizes the underdetermined SS problem.

Since the mixing matrix is an $N_{\rm m}$ x $N_{\rm s}$ matrix, traditional matrix inversion demixing techniques are not applicable in the underdetermined case.

Techniques for underdetermined CBSS are based on the fact that speech signals satisfy the W-disjoint orthogonality (WDO) condition i.e., given speech signals $s_1(t)$ and $s_2(t)$

 $s_1(\omega, \tau)s_2(\omega, \tau) = 0$ for all (ω, τ) ,

i.e. signals have a disjoint support in the time-frequency domain.

Techniques relying on the sparsity of speech signals in the timefrequency domain proceed by assigning either a binary or probabilistic weight to the dominant source at each time-frequency point. The matrix of such weights at each T-F point is known as the T-F mask.

Our Aim: To improve the performance of model based expectationmaximization SS methods utilizing interaural and mixing vector cues, e.g. [Mandel et. al. 2010], [Sawada et. al. 2007], and the combined method [Atiyeh et. al. 2011] for highly reverberant mixtures

Proposed Method

• Given $\underline{x}(t) = [x_1(t), x_2(t)]$, the ratio $X_1(\omega, \tau)/X_2(\omega, \tau)$ is the Interaural Spectrogram denoted by $|S(\omega, \tau)$.

• $IS(\omega,\tau)$ is expressible in terms of the ILD and IPD.

• A probabilistic T-F mask is obtained as a by product of the EM algorithm that is used to obtain max likelihood estimates of unknown parameters of the assumed ILD and IPD models.

• We propose the idea of bootstrap averaging to improve parameter estimates which in turn determine the T-F mask –

- Generate <u>x₁(t),...., x_B(t)</u> using an appropriate simulation methodology.
- Obtain the ILD parameter estimates $\alpha_j(\omega,\tau)$ and IPD parameter estimates $\phi_j(\omega,\tau)$ for each of the $\underline{x}_j(t)$ using Mandel's algorithm.
- Use the averaged parameter estimates, i.e.

Results

A comparison of the averaged ILD mean estimates (green) with the ground-truth direct response estimates (red) as well as the original estimates (blue) from Mandel's algorithm is shown below:

Clearly, the above plots suggest that the averaged parameter estimates may lead to better separation performance.

Our aim is to incorporate the smoothed parameter estimates of the ILD, IPD and/or mixing vector cue models appropriately in the model based SS algorithms.

Signal-distortion-ratio (SDR) and Perceptual Evaluation of Speech Quality (PESQ) will be used as measures to compare the performance of our proposed method with the hybrid method of [Atiyeh et. al.11] which combines interaural cues of [Mandel et al.] with the mixing vector cue of [Sawada et al.].

Conclusion

- a) The idea of bootstrap averaging (bagging) is used to improve T-F mask estimates obtained from model based EM SS methods.
 - The performance of bootstrap averaging heavily relies on:
 - I. The simulation technique used to obtain copies of the mixture vector, and
 - II. Variance of the parameter estimates with respect to different input mixture vectors <u>x(t)</u>.
- c) Since $\underline{x}(t)$ is a bivariate time series vector, with components $x_1(t)$ and $x_2(t)$ possibly correlated, it is important to recreate samples of $\underline{x}(t)$ with the correct second-order statistical structure. This is achieved using the estimated power spectral density of $\underline{x}(t)$.

References

M.I. Mandel et. al., "Modelbased expectation-maximization source separation and localization," *IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, pp.* 382–394, 2010.

H. Sawada et. al., "A two-stage frequency-domain blind source separation method for underdetermined convolutive mixtures," in *IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2007, pp. 139–142.*

A. Alinaghi, W. Wang, and P.J.B Jackson, "Integrating binaural cues and blind source separation method for separating reverberant speech mixtures," in *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.*

S. Chandna and A. Walden, "Simulation methodology for inference on physical parameters of complex vector-valued signals," *IEEE Transactions on Signal Processing*, vol. 61, pp. 5260–5269, 2013.

