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Copyright Statement

This document does not contain copyright material.

The author of this document

1. holds the copyright for all lecture and course materials in this module;

2. holds the copyright for students notes, summaries, or recordings that
substantially reflect the lecture content or materials;

3. makes these materials available only for personal use by students studying this
module;

4. reserves the right that no part of the notes, tutorials, solutions, or other course
materials may be distributed or reproduced for commercial purposes without
express written consent from the author; this does not prevent students from
sharing notes on an individual basis for personal use.

These lecture notes consist of entirely original work, where all material has been
written and typeset by the author. No figures or substantial pieces of text has been
reproduced verbatim from other texts.

However, there is some material that has been based on work in a number of previous
textbooks, and therefore some sections and paragraphs have strong similarities in
structure and wording. These texts have been referenced and include, amongst a
number of others, in order of contributions:

• Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal
Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array
Processing, McGraw Hill, Inc., 2000.

IDENTIFIERS – Paperback, ISBN10: 0070400512, ISBN13: 9780070400511

• Therrien C. W., Discrete Random Signals and Statistical Signal Processing,
Prentice-Hall, Inc., 1992.

IDENTIFIERS – Paperback, ISBN10: 0130225452, ISBN13: 9780130225450

Hardback, ISBN10: 0138521123, ISBN13: 9780138521127
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• Kay S. M., Fundamentals of Statistical Signal Processing: Estimation Theory,
Prentice-Hall, Inc., 1993.

IDENTIFIERS – Hardback, ISBN10: 0133457117, ISBN13: 9780133457117

Paperback, ISBN10: 0130422681, ISBN13: 9780130422682

• Papoulis A. and S. Pillai, Probability, Random Variables, and Stochastic
Processes, Fourth edition, McGraw Hill, Inc., 2002.

IDENTIFIERS – Paperback, ISBN10: 0071226613, ISBN13: 9780071226615

Hardback, ISBN10: 0072817259, ISBN13: 9780072817256

• Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Pearson New International Edition, Fourth
edition, Pearson Education, 2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

• Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing:
Concepts and Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.see.ed.ac.uk/˜{}pmg/SIGPRO

• Therrien C. W. and M. Tummala, Probability and Random Processes for
Electrical and Computer Engineers, Second edition, CRC Press, 2011.

IDENTIFIERS – Hardback, ISBN10: 1439826986, ISBN13: 978-1439826980

• Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Receipes in C: The Art of Scientific Computing, Second edition, Cambridge
University Press, 1992.

IDENTIFIERS – Paperback, ISBN10: 0521437202, ISBN13: 9780521437202

Hardback, ISBN10: 0521431085, ISBN13: 9780521431088

The material in [Kay:1993] and [Papoulis:1991] is covered throughout the course;
material in [Therrien:1992] and is covered primarily in the handouts on random
processes. The following labelling convention is used for numbering equations that
are taken from the various recommended texts. Equations labelled as:

M:v.w.xyz are similar to those in [Manolakis:2001] with the corresponding label;

T:w.xyz are similar to those in [Therrien:1992] with the corresponding label;

K:w.xyz are similar to those in [Kay:1993] with the corresponding label;

P:v.w.xyz are used in chapters referring to basic digital signal processing (DSP),
and are references made to [Proakis:1996].
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1
Review of Fourier Transforms and

Discrete-Time Systems

This handout will review complex Fourier series and Fourier transforms, followed by a
review of discrete-time systems. It covers complex Fourier series, Fourier transforms,
Discrete-time Fourier transforms, Discrete Fourier Transforms, Parseval’s Theorem,
the bilaterial Z-transform, frequency response, and rational transfer functions.

1.1 Obtaining the Latest Version of these Handouts

New slide

• This research tutorial is intended to cover a wide range of aspects which
cover the fundamentals of statistical signal processing. It is written at a level
which assumes knowledge of undergraduate mathematics and signal processing
nomenclature, but otherwise should be accessible to most technical graduates.

1



2 Linear Systems Review

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛

☞ ✌ ✄ ✍ ✁
✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Figure 1.1: Source localisation and BSS. An example of topics using statistical signal
processing.

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Figure 1.2: Humans turn their head in the direction of interest in order to reduce
inteference from other directions; joint detection, localisation, and enhancement. An
application of probability and estimation theory, and statistical signal processing.



1.2. Introduction 3

KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The
documents published on the USB stick may differ to the slides presented on
the day. In particular, there are likely to be a few typos in the document, so if
there is something that isn’t clear, please feel free to email me so I can correct it
(or make it clearer).

• The latest version of this document can be found online and downloaded at:

http://www.mod-udrc.org/events/2015-summer-school

• Extended thanks are given to the many MSc students over the past 11 years who
have helped proof-read and improve these documents.

1.2 Introduction

This handout will review complex Fourier series and Fourier transforms, followed
by a review of discrete-time systems. The reader is expected to have previously
covered most of the concepts in this handout, although it is likely that the reader might
need to revise the material if it’s been a while since it’s been studied. Nevertheless, this
revision material is included in the module as review material purely for completeness
and reference. It is not intended as a full introduction, although some parts of the
review cover the subject in detail.

As discussed in the first handout, if the reader wishes to revise these topics in more
detail, the following book comes highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Pearson New International Edition, Fourth
edition, Pearson Education, 2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

For undergraduate level text books covering signals and systems theory, which it is
assumed you have covered, the following book is recommmended:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing:
Concepts and Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.see.ed.ac.uk/˜{}pmg/SIGPRO

The latest edition was printed in 2002, but any edition will do. An alternative
presentation of roughly the same material is provided by the following book:

July 16, 2015 – 09 : 31
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4 Linear Systems Review

t0 Period T

x t( )

Figure 1.3: An example of a periodic signal with period T .

Balmer L., Signals and Systems: An Introduction, Second edition,
Prentice-Hall, Inc., 1997.

IDENTIFIERS – Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

In particular, the appendix on complex numbers may prove useful.

1.3 Signal Classification

New slide Before considering the analysis of signals and systems, it is necessary to be aware
of the general classifications to which signals can belong, and to be aware of the
significance of some subtle characteristics that determine how a signal can be analysed.
Not all signals can be analysed using a particular technique.

1.3.1 Types of signal

New slide In general, there are four distinct types of signals that must be analysed:

Continuous-time periodic Such signals repeat themselves after a fixed length of time
known as the period, usually denoted by T . This repetition continues
ad-infinitum (i.e. forever).
Formally, a signal, x(t), is periodic if

x(t) = x(t+mT ) , ∀m ∈ Z (1.1)

where the notation ∀m ∈ Z means that m takes on all integer
values: in other-words, m = −∞, . . . , −2, −1, 0, 1, 2, . . . , ∞. The
smallest positive value of T which satisfies this condition is the defined
as the fundamental period.



1.3. Signal Classification 5

Summary Slide 1 Signal Representation and Analysis

Signal Categories
• Signals and either continuous-time or discrete-time, and then

either periodic or aperiodic (or non-periodic to avoid any
confusion).

• For each of the four possible types of signals, there is a particular
frequency-domain method that should be used in its analysis.

Continuous-time Discrete-time
Periodic

Non-periodic

KEYPOINT! (Length of signals). These four classes of signals are
assumed to be of infinite-duration, in that they last for all time,
whether in continuous-time or discrete-time. It is also possible
to consider finite-duration signals, signals that last only for a
known time-frame, and for which their characteristics outside that
time-frame are unknown.

July 16, 2015 – 09 : 31



6 Linear Systems Review

t0

x t( )

Figure 1.4: An example of an aperiodic signal.

These signals will be analysed using the Fourier Series, and are used
to represent real-world waveforms that are near to being periodic over
a sufficiently long period of time.
An example of a periodic signal is shown in Figure 1.3. This kind of
signal vaguely represents a line signal in analogue television, where
the rectangular pulses represent line synchronisation signals.

Continuous-time aperiodic Continuous-time aperiodic signals are not periodic over
all time, although they might be locally periodic over a short
time-scale.
These signals can be analysed using the Fourier transform for most
cases, and more often using the Laplace transform. Aperiodic signals
are more representative of many real-world signals. Again, real signals
don’t last for all time, although can last for a considerably long time.
An example of an aperiodic signal is shown in Figure 1.4.

Discrete-time periodic A discrete-time periodic signal is shown in Figure 1.5, which
is essentially a sampled version of the signal shown in Figure 1.3. Note
in this case, the period is often denoted by N , primarily to reflect the
fact the time-index is now n.
A discrete-time signal, x[n], is periodic if:

x[n] = x[n+mN ] , ∀m ∈ Z (1.2)

This is, of course, similar to Equation 1.1.

Discrete-time aperiodic Analogous to the continuous-time aperiodic signal in
Figure 1.4, a discrete-time aperiodic signal is shown in Figure 1.6.
Aperiodic discrete-time signals will be analysed using the z-transform
and also the discrete-time Fourier transform (DTFT).

Finite-length discrete-time signals Discrete-time signals can also be classified as
being finite in length. In other words, they are not assumed to exist
for all-time, and what happens outside the window of data is assumed
unknown. These signals can be modelled using the so-called discrete
Fourier transform (DFT).
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n0 Period N

x n[ ]

5 10

Figure 1.5: A discrete-time periodic signal.

n0

x n[ ]

Figure 1.6: An example of a discrete-time aperiodic signal.

n0

x n[ ]

N-1

Figure 1.7: An example of a finite-duration signal.
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8 Linear Systems Review

Sidebar 1 Size of a Human Being

Suppose we wish to devise a signal number V as a measure of the size of a human
being. Then clearly, the width (or girth) must also be taken into account as well as
the height. One could make the simplifying assumption that the shape of a person is
a cylinder of variable radius r (which varies with the height h). Then one possible
measure of the size of a person of height H is the person’s volume, given by:

V = π

∫ H

0

r2(h) dh (1.3)

This can be found by dividing the object into circular discs (which is an
approximation), where each disc has a volume δV ≈ πr2(h) δh. Then the total volume
is given by V =

∫
dV .

1.3.2 Energy and Power Signals

New slide As stated in Section 1.3.1, signals can be analysed using a variety of frequency-domain
transform methods, such as the Fourier series, Fourier transform, Laplace
transform, and for discrete-time, the z-transform. For example, the Fourier transform
is used to analyse aperiodic continuous-time signals.

However, not all aperiodic signals can be analysed using the Fourier transform, and the
reason for this can be directly related to a fundamental property of a signal: a measure
of how much signal there is.

Therefore it is relevant to consider the energy or power as a means for characterising
a signal. The concepts of power and energy intuitively follow from their use in other
aspects of the physical sciences. However, the concept of signals which exist for all
time requires careful definitions, in order to determine when it has energy and when it
has power.

Intuitively, energy and power measure how big a signal is. A motivating example of
measuring the size of something is given in Sidebar 1.

1.3.2.1 Motivation for Energy and Power Expressions

New slide Considering power from an electrical perspective, if a voltage x(t) is connected across
a resistance R, the dissipated power at time τ is given by:

P (τ) =
x2(τ)

R
∝ x2(τ) (1.4)

where ∝ denotes proportional to. Since energy and power are related through the
expression

Energy = Power × Time, (1.5)

the energy dissipated between times τ and τ + δτ , as indicated in Figure 1.8, is:

δE(τ) ∝ P (τ) δτ ∝ x2(τ)δτ (1.6)
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Summary Slide 2 Power and Energy

Size of an Object
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10 Linear Systems Review

Summary Slide 3 Power and Energy

Strength of a Signal

t0

x t( )

What is the strength of a signal, or how large is it?

t0

|x t( )|

Magnitude of the waveform?

t0

x t
2
( )

KEYPOINT! (Size of a signal). A measure of signal strength must
consider not only the signal amplitude, but also its duration.
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t0

x t
2
( )

dt

t+dtt

Figure 1.8: Energy Density.

The total energy over all time can thus be found by integrating over all time:

E ∝
∫ ∞
−∞

x2(τ) dτ (1.7)

This leads to the formal definitions of energy and power.

1.3.2.2 Formal Definitions for Energy and Power

New slideBased on the justification in Section 1.3.2.1, the formal abstract definitions for energy
and power that are independent of how the energy or power is dissipated are defined
below.

Energy Signals A continuous-time signal x(t) is said to be an energy signal if the
total energy, E, dissipated by the signal over all time is both nonzero
and finite. Thus:

0 < E <∞ where E =

∫ ∞
−∞
|x(t)|2 dt (1.11)

where |x(t) | means the magnitude of the signal x(t). If x(t) is a
real-signal, this is just its amplitude. If x(t) is a complex-signal,
then |x(t) |2 = x(t) x∗(t) where ∗ denotes complex-conjugate. In this
course, however, only real signals will be encountered.
A necessary condition for the energy to be finite is that the signal
amplitude |x(t) | → 0 as |t| → ∞, otherwise the integral in
Equation 1.11 will not exist. When the amplitude of x(t) does not
tend to zero as |t| → ∞, the signal energy is likely to be infinite. A
more meaningful measure of the signal size in such a case would be
the time average of the energy if it exists. This measure is called the
power of the signal.

Power signals If the average power delivered by the signal over all time is both
nonzero and finite, the signal is classified as a power signal:

0 < P <∞ where P = lim
W→∞

1

2W

∫ W

−W
|x(t)|2 dt (1.12)
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Sidebar 2 Other signal measures

1. While the area under a signal x(t) is a possible measure of its size, because it
takes account not only of the amplitude but also of the duration, is defective
since even for a very large signal, the positive and negative areas could cancel
each other out, indicating a signal of a small size.

2. Using the sum of square values can potentially give undue weighting to any
outliers in the signal, where an outlier is defined as an unusual signal variation
that is not characteristic of the rest of the signal; an example might be a
high-energy shot burst of interference.

3. Therefore, taking the absolute value, |x(t) | ≡ absx(t) is a possible measure,
and in some circumstances can be used. Unfortunately, dealing with the
absolute value of a function can be difficult to manipulate mathematically.
However, using the area under the square of the function is not only more
mathematically tractable but is also more meaningful when compared with the
electrical examples and the volume in Sidebar 1.

4. These notions lead onto the more general subject of signal norms. The Lp-norm
is defined by:

Lp(x) ,

(∫ ∞
−∞
|x(t)|p dt

) 1
p

, p ≥ 1 (1.8)

In particular, the expression for energy is related to the L2-norm, while using the
absolute value of the signbal gives rise to the L1-norm:

L1(x) ,
∫ ∞
−∞
|x(t)| dt (1.9)

which is the integral of the absolute value as described above in part 3.

5. While Parseval’s theorem exists between the time-domain and frequency-domain
for relating the L2-norms, in general no relation exists for other values of p.

6. Note that the Lp-norm generalises for discrete-time signals as follows:

Lp(x) ,

(
∞∑
−∞

|x[t]|p
) 1

p

, p ≥ 1 (1.10)
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x t( )

2

0 t t
0

Figure 1.9: Rectangular pulse of length τ .

where the variable W can be considered as half of the width of a
window that covers the signal and gets larger and larger.

Example 1.1. Name a type of signal which is not an example of an energy signal?

SOLUTION. A periodic signal has finite energy over one period, so consequently has
infinite energy. However, as a result it has a finite average power and is therefore a
power signal, and not an energy signal.

Example 1.2 (Rectangular Pulse). What is the energy of the rectangular pulse shown
in Figure 1.9 as a function of τ , and for the particular case of τ = 4?

SOLUTION. The signal can be represented by

x(t) =

{
2 0 ≤ t < τ

0 otherwise
(1.13)

so that the square of the signal is also rectangular and given by

x2(t) =

{
4 0 ≤ t < τ

0 otherwise
(1.14)

Since an integral can be interpreted as the area under the curve (see Figure 1.10, the
total energy is thus:

E = 4τ (1.15)
�

When τ = 4, E = 16.

1.3.2.3 Units of Energy and Power

New slideIt is important to consider the physical units associated with energy and power, and
therefore to determine how the abstract definitions of E and P in Equation 1.11 and
Equation 1.12 can be converted into real energy and power.
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Summary Slide 4 Energy and Power

Energy Signals
Definite the total energy of a signal x(t) as:

E =

∫ ∞
−∞

x 2(t) dt (1.16)

A signal x(t) is said to be an energy signal if the total energy, E,
dissipated by the signal between the beginning and end of time is
nonzero and finite, such that:

0 < E <∞ (1.17)

Power Signals
Define the average power as:

P = lim
W→∞

1

2W

∫ W

−W
x 2(t) dt (1.18)

A signal x(t) is said to be a power signal if the average power
delivered by the signal from the beginning to the end of time is
nonzero and finite, such that:

0 < P <∞ (1.19)
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Summary Slide 5 Energy and Power

Power of a periodic signal

t0

x t( )

Power in a Step Function

t0

x t( )
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x t
2
( )

4

0 t t
0

Figure 1.10: The total energy of the signal in Figure 1.9 can be found as the area under
the curve representing the square of the rectangular pulse, as shown here.

Consider again power from an electrical perspective. When considering “direct
current” (DC) signals, power is given by

PDC =
V 2

R
=

Volts2

Ohms
= Watts (1.20)

where V is the signal voltage, and R is the resistance through which the power
is dissipated. Consider now the units of the abstract definition of power, P in
Equation 1.12:

P =
1

time
× Volts2 × time = Volts2 = Watts× Ohms (1.21)

where the second unit of time comes from the integral term dt, and in which the
integral may be considered as a summation. Therefore, by comparing Equation 1.20
and Equation 1.12, the abstract definition of power, P , can be converted to real power
by Ohms for the case of electrical circuits.

Similarly, the units of energy in Equation 1.11 is given by

E = volts2 × time (1.22)

Therefore, to convert the abstract energy to Joules, it is again necessary to divide by
Ohms by noting that energy is power multiplied by time.

1.3.2.4 Power for Periodic Signals

The expression in Equation 1.12 can be simplified for periodic signals. Note here
that there might be confusion with using the same symbol T to mean both the period
of a periodic signal and the limit in Equation 1.12. To avoid ambiguity, rewrite
Equation 1.12 with W instead of T where W denotes a window length over which
the power is calculated, and define:

PW =
1

2W

∫ W

−W
|x(t)|2 dt (1.23)
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Thus, the average power over two periods is PT , and the average power over 2N
periods is PNT . It should becomes clear that

PT = PNT , ∀N ∈ Z (1.24)

since the average in each period is the same. Consequently, power for a periodic signal
with period T may be defined as:

P =
1

T

∫ T

0

|x(t)|2 dt (1.25)

Note that the limits in Equation 1.25 may be over any period and thus can be replaced
by (τ, τ + T ) for any value of τ .

1.4 Fourier Series and Fourier Transforms
New slideIn this review of Fourier series and transforms, the topics covered are:

• Complex Fourier series

• Fourier transform

• The discrete-time Fourier transform

• Discrete Fourier transform

1.4.1 Complex Fourier series

New slideThe complex Fourier series is a frequency analysis tool for continuous time periodic
signals. Examples of periodic signals encountered in practice include square waves,
triangular waves, sawtooth waves, pulse waves and, of course, sinusoids and complex
exponentials, as well as half-wave recitifed, full-wave rectified and p-phased rectified
sinusoids. The basic mathematical representation of periodic signals is the Fourier
series, which is a linear weighted sum of harmonically related sinusoids or complex
exponentials.

A periodic continuous-time deterministic signal, xc(t), with fundamental period
Tp can be expressed as a linear combination of harmonically related complex
exponentials:

xc(t) =
∞∑

k=−∞

X̌c(k) ejkω0t, t ∈ R, (M:2.2.1)

where ω0 = 2πF0 = 2π
Tp

is the fundamental frequency. Here, ω0 is in radians per
second, and the fundamental frequency, in Hertz, is given by F0 = 1

Tp
. Moreover,

X̌c(k) =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt, k ∈ Z (M:2.2.2)

July 16, 2015 – 09 : 31



18 Linear Systems Review

Figure 1.11: Function f(t) of Example 1.3

are termed the Fourier coefficients, or spectrum of xc(t). Note that although the
region of integration in Equation M:2.2.2 is from 0 to Tp, it can actually be over any
period of the waveform, since the signal, xc(t), is periodic with period Tp.

The kth frequency component corresponds to frequency ωk = kω0 = k 2π
Tp

. The set of
exponential functions

F(t) = {ejω0kt, k ∈ Z} (1.26)

can be thought of as the basic building blocks from which periodic signals of various
types can be constructed with the proper choice of fundamental frequency and Fourier
coefficients.

Example 1.3 (Complex Fourier Series). Find the complex form of the Fourier series
expansion of the periodic function f(t) defined by:

f(t) = cos
1

2
t (−π < t < π)

f(t+ 2π) = f(t)
(1.27)

SOLUTION. A graph of the function f(t) over the interval −π ≤ t ≤ 3π is shown in
Figure 1.11. The period Tp = 2π, so therefore the complex coefficients, denoted by
Fn, are given by Equation M:2.2.2 as:

Fn =
1

Tp

∫ Tp

0

f(t) e−jnω0t dt, n ∈ Z (1.28)

=
1

2π

∫ π

−π
cos

t

2
e−jnt dt =

1

4π

∫ π

−π

(
ej

t
2 + e−j

t
2

)
e−jnt dt (1.29)

=
1

4π

∫ π

−π

(
e−j(n−

1
2)t + e−j(n+ 1

2)t
)
dt (1.30)

which, after some trivial integration, gives:

Fn =
1

4π

[
−2e−j(2n−1) t

2

j(2n− 1)
− 2e−j(2n+1) t

2

j(2n+ 1)

]π
−π

(1.31)

=
j

2π

[(
e−jnπ ej

π
2

2n− 1
+
e−jnπ e−j

π
2

2n+ 1

)
−
(
ejnπ e−j

π
2

2n− 1
+
ejnπ ej

π
2

2n+ 1

)]
(1.32)
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Noting that e±j
π
2 = ±j, and e±jnπ = cosnπ = (−1)n, then it follows that:

Fn =
j

2π

(
j

2n− 1
− j

2n+ 1
+

j

2n− 1
− j

2n+ 1

)
(−1)n (1.33)

=
(−1)n

π

(
1

2n+ 1
− 1

2n− 1

)
=

2(−1)n+1

(4n2 − 1)π
(1.34)

Note that in this case, the coefficients Fn are real. This is expected, since the function
f(t) is an even function of t. The complex Fourier series expansion for f(t) is
therefore:

f(t) =
∞∑

n=−∞

2(−1)n+1

(4n2 − 1)π
ejnt (1.35)

�

1.4.1.1 Common Fourier Series Expansions

In the following Fourier series expansions, ω0 = 2π
T

is the fundamental frequency.
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Half-wave rectified cosine-wave:

xc(t) =
1

π
+

1

2
cosω0t+

2

π

∞∑
n=1

(−1)n+1 cos(2nω0t)

4n2 − 1

p-phase rectified cosine-wave (p ≥ 2):

xc(t) =
p

π
sin

π

p

[
1 + 2

∞∑
n=1

(−1)n+1 cos(pnω0t)

p2n2 − 1

]

Square wave:

xc(t) =
4

π

∞∑
n=1

sin(2n− 1)ω0t

2n− 1

Triangular wave:

xc(t) =
8

π2

∞∑
n=1

(−1)n+1 sin(2n− 1)ω0t

(2n− 1)2

Sawtooth wave:

xc(t) =
2

π

∞∑
n=1

(−1)n+1 sinnω0t

n

Pulse wave:

xc(t) =
τd
T

[
1 + 2

∞∑
n=1

sin(nπ τd
T

)

(nπ td
T

)
cos(nω0t)

]
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1.4.1.2 Dirichlet Conditions

An important issue that arises in the representation of the continuous time periodic
signal xc(t) by the Fourier series representation,

x̄c(t) =
∞∑

k=−∞

X̌c(k) ejkω0t, (P:4.1.5)

is whether or not the series converges for every value of t ∈ R; i.e., is it true that

x̄c(t)
?
= xc(t), ∀t ∈ R (1.36)

The so-called Dirichlet conditions guarantee that the Fourier series converges
everywhere except at points of discontinuity. At these points, the Fourier series
representation x̄c(t) converges to the midpoint, or average value, of the discontinuity.

The Dirichlet conditions require that the signal xc(t):

1. has a finite number of discontinuities in any period;

2. contains a finite number of maxima and minima during any period;

3. is absolutely integrable in any period; that is:∫
Tp

|xc(t)| dt <∞ (P:4.1.6)

where the integral is over one period. Many periodic signals of practical interest easily
satisfy these conditions, and it is reasonable to assume that all practical periodic signals
do. However, it is important to beware that pathological cases can make certain proofs
or algorithms collapse.

1.4.1.3 Parseval’s Theorem (for Fourier series)

New slideIt is sometimes relevant to consider the energy or power as a means for characterising
a signal. These concepts of power and energy intuitively follow from their use in
other aspects of the physical sciences. However, the concept of signals which exist
for all time requires careful definitions for when it has energy and when it has power.
Consider the following signal classifications:

Energy Signals A signal xc(t) is said to be an energy signal if the total energy, E,
dissipated by the signal over all time is both nonzero and finite. Thus:

0 < E <∞ where E =

∫ ∞
−∞
|xc(t)|2 dt (1.37)

Power signals If the average power delivered by the signal over all time is both
nonzero and finite, the signal is classified as a power signal:

0 < P <∞ where P = lim
T→∞

1

2T

∫ T

−T
|xc(t)|2 dt (1.38)
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A periodic signal has infinite energy, but finite average power. The average power of
xc(t) is given by Parseval’s theorem:

Px =
1

Tp

∫ Tp

0

|xc(t)|2 dt =
∞∑

k=−∞

|X̌c(k)|2 (M:2.2.3)

The term |X̌c(k)|2 represents the power in the kth frequency component, at frequency
ωk = k 2π

Tp
. Hence,

P̌x(k) = |X̌c(k)|2, −∞ < k <∞, k ∈ Z (1.39)

is called the power spectrum of xc(t). Consequently, it follows Px may also be written
as:

Px =
∞∑

k=−∞

P̌x(k) (1.40)

PROOF. Starting with

Px =
1

Tp

∫ Tp

0

xc(t)x
∗
c(t) dt (1.41)

then substituting for the Fourier series expansion of xc(t) gives:

Px =
1

Tp

∫ Tp

0

xc(t)

{
∞∑

k=−∞

X̌c(k) ejkω0t

}∗
dt (1.42)

Noting that the conjugate of a summation (multiplication) is the summation
(multiplication) of the conjugates, then:

Px =
1

Tp

∫ Tp

0

xc(t)
∞∑

k=−∞

X̌∗c (k) e−jkω0t dt (1.43)

Rearranging the order of the integration and the summation gives:

Px =
∞∑

k=−∞

X̌∗c (k)

{
1

Tp

∫ Tp

0

xc(t) e
−jkω0t(t) dt

}
︸ ︷︷ ︸

Xc(k)

(1.44)
�

which is the desired result and completes the proof.

Later in this course, the notion of a power spectrum will be extended to stochastic
signals.

Example 1.4 ( [Proakis:1996, Example 4.1.1, Page 237]). Determine the Fourier
series and the power density spectrum of a rectangular pulse train that is defined over
one period as follows:

xc(t) =


0 if −Tp

2
≤ t < − τ

2

A if − τ
2
≤ t < τ

2

0 if τ
2
≤ t < Tp

2

(1.45)

where τ < Tp.
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Figure 1.12: Continuous-time periodic train of rectangular pulses.

SOLUTION. The signal is periodic with fundamental period Tp and, clearly, satisfies
the Dirichlet conditions. Consequently, this signal can be represented by the Fourier
series. Hence, it follows that

X̌c(k) =
1

Tp

∫ Tp
2

−Tp
2

xc(t) e
−jkω0t dt =

A

Tp

∫ τ
2

− τ
2

e−jkω0t dt (1.46)

Two different integrals need to be performed depending on whether k = 0 or not.
Considering the case when k = 0, then the average value of the signal is obtained and
given by:

X̌c(0) =
1

Tp

∫ τ
2

− τ
2

xc(t) dt =
1

Tp

∫ τ
2

− τ
2

Adt =
Aτ

Tp
(1.47)

For k 6= 0, then

X̌c(k) =
A

Tp

∫ τ
2

− τ
2

e−jkω0t dt =
A

Tp

[
e−jkω0t

−jkω0

] τ
2

− τ
2

(1.48)

=
A

jkω0Tp

(
ejkω0

τ
2 − e−jkω0

τ
2

)
=
Aτ

Tp

sin τω0k
2

kω0
τ
2

(1.49)

=
Aτ

Tp
sinc

τω0k

2
where sincx ,

sinx

x
(1.50)

Hence, the power density spectrum for the rectangular pulse is:∣∣X̌c(k)
∣∣2 =

(
Aτ

Tp

)2

sinc2 τω0k

2
, k ∈ Z (P:4.1.19)

�

where it is noted that sinc (0) = 1.

1.4.2 Fourier transform
New slideAn aperiodic continuous-time deterministic signal, xc(t), can be expressed in the

frequency domain using the Fourier transform pairs:

xc(t) =
1

2π

∫ ∞
−∞

Xc(ω) ejωt dω (M:2.2.5)
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Figure 1.13: The Heaviside step function H(t).

Figure 1.14: Exponential decaying function, f(t) = H(t) e−at for a > 0.

and

Xc(ω) =

∫ ∞
−∞

xc(t) e
−jωt dt (M:2.2.4)

Xc(ω) is called the spectrum of xc(t). Again, note that [Manolakis:2000] uses the
defintion F = ω

2π
. Continuous-time aperiodic signals have continuous aperiodic

spectra.

There are a few mathematical requirements that xc(t) must satisfy for Xc(ω) to exist;
these can be summarised by the phrase that the signal must be well-behaved. More
specifically, the set of conditions that guarantee the existence of the Fourier transform
are the Dirichlet conditions which are the same as for Fourier series.

Example 1.5 (Fourier Transforms). Find the Fourier transform of the one-sided
exponential function

f(t) = H(t) e−at where a > 0 (1.51)

and where H(t) is the Heaviside unit step function show in Figure 1.13 and given by:

H(t) =

{
1 if t ≥ 0

0 otherwise
(1.52)

SOLUTION. Since f(t)→ 0 as t→∞, then the signal energy is bounded, as indicated
by plotting the graph of f(t) as shown in Figure 1.14.
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A Fourier transform therefore exists, and is given by:

Xc(ω) =

∫ ∞
−∞

H(t) e−at e−jωt dt (1.53)

=

∫ ∞
0

e−(a+jω)t dt =

[
−e
−(a+jω)t

a+ jω

]∞
0

(1.54)

giving

Xc(ω) =
1

a+ jω
, for −∞ < ω <∞ (1.55)

�

1.4.2.1 Parseval’s theorem (for Fourier transforms)

New slideThe energy of xc(t) is, as for Fourier series, computed in either the time or frequency
domain by Parseval’s theorem:

Ex =

∫ ∞
−∞
|xc(t)|2 dt =

1

2π

∫ ∞
−∞
|Xc(ω)|2 dω (M:2.2.7)

The function |Xc(ω)|2 ≥ 0 shows the distribution of energy of xc(t) as a function of
frequency, ω, and is called the energy spectrum of xc(t).

PROOF. The derivation of Parseval’s theorem for Fourier transforms follows a similar
line to the derivation of Parseval’s theorem for Fourier series; it proceeds as follows:

Ex =

∫ ∞
−∞

xc(t)x
?
c(t) dt =

∫ ∞
−∞

xc(t)
1

2π

∫ ∞
−∞

X?
c (ω) e−jωt dω dt

=
1

2π

∫ ∞
−∞

X?
c (ω)

∫ ∞
−∞

xc(t) e
−jωt dt dω =

1

2π

∫ ∞
−∞

X?
c (ω)Xc(ω) dω

(1.56)
�

1.4.3 The discrete-time Fourier transform
New slideTurning to discrete-time deterministic signals, the natural starting point is to consider

aperiodic signals that exist for all discrete-time; i.e. {x[n]}∞−∞. It is interesting to note
that there are fewer convergence issues with transforms for discrete-time signals than
there are in the continuous-time case.

An aperiodic discrete-time deterministic signal, {x[n]}∞−∞, can be synthesised from
its spectrum using the inverse-discrete-time Fourier transform, given by:

x[n] =
1

2π

∫ π

−π
X
(
ejωT

)
ejωn dω, n ∈ Z (M:2.2.13)

and the discrete-time Fourier transform (DTFT):

X
(
ejωT

)
=
∑
all n

x[n] e−jωn, ω ∈ R (M:2.2.12)
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X
(
ejωT

)
is the spectrum of x[n].

Since X
(
ejωT

)
= X

(
ej(ω+2πk)

)
, discrete-time aperiodic signals have continuous

periodic spectra with fundamental period 2π. However, this property is just a
consequence of the fact that the frequency range of any discrete-time signal is limited
to [−π, π) or [0, 2π); any frequency outside this interval is equivalent to some
frequency within this interval.

There are two basic differences between the Fourier transform of a discrete-time
finite-energy aperiodic signal, as represented by the discrete-time Fourier transform,
and the Fourier transform of a finite-energy continuous-time aperiodic signal:

1. For continuous-time signals, the Fourier transform, and hence the spectrum of
the signal, have a frequency range of (−∞,∞). In contrast, the frequency
range for a discrete-time signal is unique over the frequency range [−π, π) or,
equivalently, [0, 2π).

2. Since X
(
ejωT

)
in the DTFT is a periodic function of frequency, it has a Fourier

series expansion, provided that the conditions for the existence of the Fourier
series are satisfied. In fact, from the fact thatX

(
ejωT

)
is given by the summation

of exponentially weighted versions of x[n] is is clear that the DTFT already has
the form of a Fourier series. This is not true for the Fourier transform.

In order for X
(
ejωT

)
to exist, x[n] must be absolutely summable:∑

all n

|x[n] | <∞ (M:2.2.11)

Finally, as for the Fourier series, and the Fourier transform, discrete-time aperiodic
signals have energy which satisfies Parseval’s theorem:

Ex =
∞∑

n=−∞

|x[n] |2 =
1

2π

∫ π

−π
|X
(
ejωT

)
|2 dω (P:4.2.41)

1.4.4 Discrete Fourier transform
New slide Any finite-length or periodic discrete-time deterministic signal, {x[n]}N−1

0 , can be
written by the Fourier series, or inverse-DFT (IDFT):

x[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N
nk, n ∈ N (M:2.2.8)

where N = {0, 1, . . . , N − 1} ⊂ Z+, and where the DFT:

Xk =
N−1∑
n=0

x[n] e−j
2π
N
nk, k ∈ N (M:2.2.9)
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are the corresponding Fourier coefficients. The sequence Xk, k ∈ R is the spectrum
of x[n]. Xk is discrete and periodic with the same period as x[n].

Note that a finite-length discrete-time signal of length N has the same Fourier
transform, through the DFT, as an infinite-length discrete-time periodic signal of
period N . Hence, these equivalent perspectives will be considered synonymous.

PROOF (DERIVATION OF DISCRETE FOURIER TRANSFORM). If the discrete-time
signal x[n] is periodic over N samples, then it can be written over one period in
continuous time as:

xc(t) = Tp
∑
n∈N

x[n] δ(t− nTs) , 0 ≤ t < Tp (1.57)

whereN = {0, . . . , N − 1}, Ts is the sampling period, and Tp = N Ts is the period of
the process. Substituting into the expression for the Fourier series, using the sifting
property and noting that ω0 = 2π

Tp
= 2π

NTs
, gives:

Xk =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt (1.58)

=
1

Tp

∫ Tp

0

{
Tp
∑
n∈N

x[n] δ(t− nTs)

}
e−jkω0t dt (1.59)

=
∑
n∈N

x[n]

∫ Tp

0

δ(t− nTs) e−jkω0t dt (1.60)

=
∑
n∈N

x[n] e−j
2π
N
nk (1.61)

�

The IDFT can be obtained using the appropriate identities to ensure a unique inverse.

1.4.4.1 Parseval’s Theorem for Finite Length Discrete-Time Signals

The average power of a finite length or periodic discrete-time signal with period N is
given by

Px =
N−1∑
n=0

|x[n] |2 (P:4.2.10)

Through the same manipulations as for Parseval’s theorems in the cases presented
above, which are left as an exercise for the reader, it is straightforward to show that:

Px =
N−1∑
n=0

|x[n] |2 =
1

N

N−1∑
k=0

|Xk|2 (P:4.2.11)
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1.4.4.2 The DFT as a Linear Transformation

New slideThe formulas for the DFT and IDFT may be expressed as:

Xk =
N−1∑
n=0

x[n] W nk
N , k ∈ N (P:5.1.20)

x[n] =
1

N

N−1∑
k=0

XkW
−nk
N , n ∈ N (P:5.1.21)

where, by definition:
WN = e−j

2π
N (P:5.1.22)

which is the N th root of unity. Note here that, if WN has been pre-calculated,
then the computation of each point of the DFT can be accomplished by N complex
multiplications and N − 1 complex additions. Hence, the N -point DFT can be
computed in a total of N2 complex multiplications and N(N − 1) complex additions.

It is instructive to view the DFT and IDFT as linear transformations on the sequences
{x[n]}N−1

0 and {Xk}N−1
0 . Defining the following vectors and matrices:

xN =

 x[0]
...

x[N − 1]

 , XN =

 X0
...

XN−1

 (1.62)

WN =


1 1 1 · · · 1
1 WN W 2

N · · · WN−1
N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

... · ...
1 WN−1

N W
2(N−1)
N · · · W

(N−1)(N−1)
N

 (1.63)

Observe that Xk can be obtained by the inner-product of the (k − 1) th-order row with
the column xN :

Xk =
[
1 W k

N W 2k
N · · · W

(N−1)k
N

] x[0]
...

x[N − 1]

 (1.64)

Then the N -point DFT may be expressed in vector-matrix form as:

XN = WNxN (P:5.1.24)

where WN is the matrix of the linear transformation. Observe that WN is a symmetric
matrix. Assuming that the inverse of WN exists, then Equation P:5.1.24 can be
inverted by pre-multiplying both sides by W−1

N , to obtain:

xN = W−1
N XN (P:5.1.25)

This is the expression for the IDFT, which can also be expressed in matrix form as:

xN =
1

N
W∗

NXN (P:5.1.26)
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where W∗
N denotes the complex conjugate of the matrix WN . Hence, it follows that:

W−1
N =

1

N
W∗

N or WNW
∗
N = NIN (P:5.1.27)

where IN is the N ×N identity matrix. Hence, WN is an orthogonal or unity matrix.

1.4.4.3 Properties of the discrete Fourier transforms

New slideThere are some important basic properties of the DFT that should be noted. The
notation used to denote the N -point DFT pair x[n] and Xk is

x[n]
DFT

 Xk (1.65)

Periodicity If x[n]
DFT

 Xk, then:

x[n+N ] = x[n] for all n (P:5.2.4)
Xk+N = Xk for all k (P:5.2.5)

These periodicities in x[n] and Xk follow immediately from the
definitions of the DFT and IDFT.

Linearity If x[n]
DFT

 Xk and y[n]

DFT

 Yk, then

α1x[n] + α2y[n]
DFT

 α1Xk + α2Yk (P:5.2.6)

for any real or complex-valued constants α1 and α2.

Symmetry of real-valued sequences If the sequence x[n]
DFT

 Xk is real, then

XN−k = X∗k = X−k (P:5.2.24)

Complex-conjugate properties If x[n]
DFT

 Xk then

x∗[n]
DFT

 X∗N−k (P:5.2.45)

PROOF. The DFT of the sequence x[n] is given by:

Xk =
N−1∑
n=0

x[n] e−j
2π
N
nk, k ∈ N (M:2.2.9)

and the DFT of y[n] = x∗[n] is given by:

Yk =
N−1∑
n=0

x∗[n] e−j
2π
N
nk (1.66)

Taking complex conjugates, and noting that ej
2π
N
mk = e−j

2π
N
m(N−k),

then:

Y ∗k =
N−1∑
n=0

x[n] e−j
2π
N
m(N−k) = XN−k (1.67)

�

Hence, giving x∗[n]
DFT

 X∗N−k as required.
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Time reversal of a sequence If x[n]
DFT

 Xk then

x[N − n]
DFT

 XN−k (P:5.2.42)

Hence, reversing the N -point sequence in time is equivalent to
reversing the DFT values in frequency.

PROOF. From the definition of the DFT, if y[n] = x[N − n], then:

Yk =
N−1∑
n=0

x[N − n] e−j
2π
N
nk =

N∑
m=1

x[m] e−j
2π
N

(N−m)k (1.68)

where the second summation comes from changing the index from n
to m = N −n. Noting then, that x[N ] = x[0],then this may be written
as

Yk =
N−1∑
m=0

x[m] e−j
2π
N

(N−m)k =
N−1∑
m=0

x[m] ej
2π
N
mk (1.69)

=
N−1∑
m=0

x[m] e−j
2π
N
m(N−k) = XN−k (1.70)

�

as required.

Circular Convolution As with many linear transforms, convolution in the
time-domain becomes multiplication in the frequency domain, and
vice-versa. Since the signals are periodic, it is necessary to introduce
the idea of circular convolution. Details of this are discussed in depth
in [Proakis:1996, Section 5.2.2, Page 415] and are currently ommitted
here. However, assuming that convolution is interpreted in the circular
sense (i.e. taking advantage of the periodicity of the time-domain

signals), then if x[n]
DFT

 Xk and y[n]

DFT

 Yk, then:

x[n] ∗ y[n]
DFT

 Xk Yk (P:5.2.41)

1.5 Review of discrete-time systems

New slide The following aspects of discrete-time systems are reviewed:

• Basic discrete-time signals

• The z-transform

• Review of linear time-invariant systems

• Rational transfer functions
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n0

d[ ]n

(a) The unit sample
or unit impulse
sequence δ[n].

n0

u[ ]n

(b) The unit step
sequence u[n].

n0

x[ ]n

(c) The exponential decay
sequence.

Figure 1.15: Basic discrete-time signals.

1.5.1 Basic discrete-time signals

New slide In general, the notation x[n] is used to denote a sequence of numbers that represent a
discrete-time signal. The nth sample refers to the value of this sequence for a specific
value of n. In a strict sense, this terminology is only correct if the discrete-time signal
has been obtained by sampling a continuous-time signal xc(t). In the case of periodic
sampling with sampling period T , then x[n] = xc(nT ) , n ∈ Z; that is, x[n] is the nth
sample of xc(t).

There are some basic discrete-time signals that will be used repeatedly throughout the
course, and these are shown in Figure 1.15:

1. The unit sample or unit impulse sequence δ[n] is defined as:

δ[n] =

{
1 n = 0

0 n 6= 0
(M:2.1.1)

2. The unit step sequence, u[n] is defined as:

u[n] =

{
1 n ≥ 0

0 n < 0
(M:2.1.2)

3. The exponential sequence is of the form

x[n] = an, −∞ < n <∞, n ∈ Z (M:2.1.3)

If a is a complex number, such that a = r ejω0 for r > 0, ω0 6= 0, π, then x[n] is
complex valued and given by:

x[n] = rn ejω0n = xR[n] + jxI [n] (M:2.1.4)
= rn cosω0n+ jrn sinω0n (1.71)

where xR[n] and xI [n] are real sequences given by:

xR[n] = rn cosω0n and xI [n] = rn sinω0n (M:2.1.5)
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Sidebar 3 The signal n rn

The discrete-time signal
x[n] = a n rn (1.73)

is equivalent to the continuous-time signal x[t] = t e−αt, and both are important, as
they represent the response of a critically damped system, as will be seen later. Note
in both cases that:

lim
n→∞

n rn → 0 (1.74)

The shape of x[n] is shown below for r = 0.9, and note the relationship derived in
Sidebar 4 that:

n rn
z+



r

(1− r)2 if |r| < 1 (1.75)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

n

x[
n]

The simple signal nrn

4. The critical decay sequence is of the form

x[n] = a n rn u[n] , n ∈ Z (1.72)

which is discussed further in Sidebar 3.

1.5.2 The z-transform
New slide The z-transform of a sequence is a very powerful tool for the analysis of discrete

linear and time-invariant systems; it plays the same role in the analysis of discrete-time
signals and linear time-invariant (LTI) systems as the Laplace transform does in the
analysis of continuous-time signals and LTI systems. For example, as will be seen, in
the z-domain, also known as the complex z-plane, the convolution of two time-domain
signals is equivalent to multiplication of their corresponding z-transforms. This
property greatly simplifies the analysis of the response of an LTI system to various
inputs.
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Although the Fourier transform also satisfies the property that convolution in the time
domain becomes multiplication in the frequency domain, it is not always possible to
calculate the Fourier transform of a signal, x[n], even for some elementary signals
that are important for the analysis of systems. For example, if x[n] is a power signal
(having finite power), rather than an energy signal, the discrete-time Fourier transform
(DTFT) does not exist.

One such signal, of practical importance, is the unit step function, u[t], as can be
illustrated by attempting to evaluate the DTFT:

U
(
ejωT

)
=

∞∑
n=−∞

u[n] e−jωn =
∞∑
n=0

e−jωn (1.76)

This is a geometric series, of the form
∞∑
n=0

rn where r = e−jω; however, this series

diverges since |r| = 1. Therefore, the DTFT does not exist; this could also have
been deduced from the fact that u[n] is not absolutely summable, which a necessary
condition for a Fourier transform to exist:∑

all n

|u[n]| =
∞∑
n=0

1 6<∞ (1.77)

The solution is to multiply the signal by a convergence factor, which leads to the
z-transform. Details of the derivation can be found in some text books.

1.5.2.1 Bilateral z-transform

New slideThe bilateral z-transform is defined by the following pairs of equations:

X (z) , Z[x[n]] =
∞∑

n=−∞

x[n] z−n (M:2.2.29)

x[n] =
1

2πj

∮
C

X (z) zn−1 dz (M:2.2.30)

where z is a complex variable. This is usually denoted as:

x[n]
z

 X (z) or X (z) = Z[x[n]] (1.78)

The set of values of z for which the power series in the (direct) z-transform converges
is called the region of convergence (ROC) of X (z). A sufficient condition for
convergence is:

∞∑
n=−∞

|x[n] ||z−n| <∞ (M:2.2.31)

The unilateral or one-sided z-transform, which is more commonly encountered in
undergraduate Engineering courses, is discussed below in Section 1.5.2.3. For the
moment, it suffices to mention that the difference between them usually comes down
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Sidebar 4 The Ubiquitous Geometric Progression

The geometric progresson occurs frequently in discrete-time analysis due to the
existance of the summation operator and the commonality of exponential decay
functions. It is essentially the discrete-time equivalent of integrating an exponential
function. The geometric progression is given by

N∑
n=0

a rn = a
1− rN+1

1− r
(1.79)

∞∑
n=0

a rn = a
1

1− r
if |r| < 1 (1.80)

More interesting are variants of the geometric progression that can be obtained by
simple manipulations, such as differentiating both sides of Equation 1.80 with respect
to (w. r. t.) r:

d

dr

[
∞∑
n=0

a rn

]
=

d

dr

[
a

1

1− r

]
(1.81)

∞∑
n=0

a n rn−1 = a
1

(1− r)2 (1.82)

or, multiplying both sides by r, gives:

∞∑
n=0

a n rn = a
r

(1− r)2 if |r| < 1 (1.83)

which is also a useful identity. The signal x[n] = n rn is an important one and
discussed further in Sidebar 3. Differentiating repeated times gives a general expresion
for
∑
np rn which can often be useful.

to the initial conditions, and therefore a discussion of the bilateral transform is not too
restrictive at this point.

By evaluating the z-transform on the unit circle of the z-plane, such that z = ejω, then:

X (z)|z=ejω = X
(
ejωT

)
=

∞∑
n=−∞

x[n] e−jωn (M:2.2.32)

x[n] =
1

2π

∫ π

−π
X
(
ejωT

)
ejωn dω (M:2.2.33)

which are the DTFT and inverse-DTFT relating the signals x[n] and X
(
ejωT

)
. This

relation holds only if the unit circle is inside the ROC.

Example 1.6 ( [Proakis:1996, Example 3.1.3, Page 154]). Determine the
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Figure 1.16: The region of convergence (ROC) for the transfer function in
Equation P:3.1.7.

z-transform of the signal:

x[n] = αn u[n] ≡

{
αn n ≥ 0

0 n < 0
(1.84)

SOLUTION. From the definition of the z-transform, it follows that:

X (z) =
∞∑
k=0

αnz−n =
∞∑
n=0

(
α z−1

)n (1.85)

The summation on the right is a geometric progression, and converges to 1
1−α z−1 if, and

only if, (iff) |αz−1| < 1 or, equivalently, |z| > |α|. Further details on the geometric
progression are given in Sidebar 4. Thus, this gives the z-transform pair:

x[n] = αn u[n]
z

 X (z) =

1

1− αz−1
ROC: |z| > |α| (P:3.1.7)

Note that, in general, α need not be real. The ROC is the exterior of a circle having
radius |α|. The ROC is shown in Figure 1.16. The z-transform in Equation P:3.1.7
may be written as:

X (z) =
z

z − α
ROC: |z| > |α| (1.86)

�
and therefore it has a pole at z = α and a zero at z = 0. The position of the pole is
outside the ROC, which is as expected since the z-transform does not converge at a
pole; it tends to infinity instead. However, simply because there is a zero at the origin
does not mean the z-transform converges at that point – it doesn’t, since it is outside
of the ROC. However, the concept of the zero is still important and is thus still drawn
on the pole-zero diagram.

Example 1.7 (Two-sided exponential (Laplacian exponential)). What is the
bilateral z-transform of the sequence x[n] = a|n| for all n and some real constant a,
where |a| < 1?
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n0

x a[ ]n =
| |n

Figure 1.17: The sequence x[n] = a|n|.

SOLUTION. The bilateral z-transform of a sequence x[n] = a|n|, shown in Figure 1.17,
is given by:

X (z) =
∞∑

n=−∞

x[n] z−n =
∞∑

n=−∞

a|n| z−n (1.87)

=
−1∑

n=−∞

a−n z−n +
∞∑
n=0

an z−n (1.88)

Setting m = −n in the first summation, noting that when n = −∞ then m =∞, and
when n = 0 then m = 0, gives:

X (z) =
∞∑
n=1

(az)n +
∞∑
n=0

(a
z

)n
(1.89)

=
∞∑
n=0

(az)n − 1 +
∞∑
n=0

(a
z

)n
(1.90)

=
1

1− az
− 1 +

1

1− a
z

(1.91)

where the expression for an infinite geometric progression has been used. Note,
however, that each summation has different convergence constraints. Thus, note that
the first summation only exists for |az| < 1, while the second summation only exists
for
∣∣a
z

∣∣ < 1. This means that the ROC for this transform is the ring |a| < z < 1
|a| . The

ROC is thus shown in Figure 1.18.

Combining the various terms and a slight rearrangement gives the expression

X (z) =
1− a2

(1− az) (1− az−1)
(1.92)
�

which has a zero at z = 0 and poles at z = a and z = 1
a
.
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Im( )z

Re( )z

1

a

ROC

unit
circle

pole at z�=�a

and z�=�1/a

outside of ROC

zero
at origin

1/a

Figure 1.18: The region of convergence (ROC) for the transfer function in
Equation 1.92.

1.5.2.2 Properties of the z-transform

The power of the z-transform is a consequence of some very important properties that
the transform possesses. Some of these properties are listed below, as a re-cap. Note
that the proof of many of these properties follows immediately from the definition
of the property itself and the z-transform, and is left as an exercise for the reader.
Alternatively, cheat and look in, for example, [Proakis:1996].

Linearity If x1[n]
z

 X1 (z) and x2[n]

z

 X2 (z), then by linearity

x[n] = α1x1[n]+α2x2[n]
z

 X (z) = α1X1 (z)+α2X2 (z) (P:3.2.1)

for any constants α1 and α2. Obviously, this property can be
generalised for an arbitrary number of signals, and therefore if
xm[n]

z

 Xm (z) for m = {1, . . . ,M}

x[n] =
M∑
m=1

αmxm[n]
z

 X (z) =

M∑
m=1

αmXm (z) (1.93)

for any constants {αm}M1 .

Time shifting If x[n]
z

 X (z) then:

x[n− k]
z

 z−kX (z) (1.94)

The ROC of z−kX (z) is the same as that of X (z) except for z = 0 if
k > 0 and z =∞ if k < 0.

Scaling in the z-domain If x[n]
z

 X (z) with ROC r1 < |z| < r2, then

an x[n]
z

 X(a−1 z) ROC: |a|r1 < |z| < |a|r2 (P:3.2.9)

for any constant a.
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Time reversal If x[n]
z

 X (z) with ROC r1 < |z| < r2, then

x[−n]
z

 X(z−1) ROC:

1

r1

< |z| < 1

r2

(P:3.2.12)

Differentiation in the z-domain If x[n]
z

 X (z) then

nx[n]
z

 −zdX (z)

dz
(P:3.2.14)

PROOF. Since

X (z) =
∞∑

n=−∞

x[n] z−n (1.95)

then differentiating both sides gives:

dX (z)

dz
= −z−1

∞∑
n=−∞

[nx[n]] z−n = −z−1Z[nx[n]] (1.96)
�

Both transforms have the same ROC.

Convolution If x1[n]
z

 X1(z) and x2[n]

z

 X2(z), then

x[n] = x1[n] ∗ x2[n]
z

 X (z) = X1(z)X2(z) (3.2.17)

The ROC of X (z) is, at least, the intersection of that for X1(z) and
X2(z).

PROOF. The convolution of x1[n] and x2[n] is defined as:

x[n] =
∞∑

k=−∞

x1[k]x2[n− k] (1.97)

The z-transform of x[n] is:

X (z) =
∞∑

n=−∞

x[n] z−n =
∞∑

n=−∞

[
∞∑

k=−∞

x1[k]x2[n− k]

]
z−n

(1.98)
Upon changing the order of the summations, then:

X (z) =
∞∑

k=−∞

x1[k]

[
∞∑

n=−∞

x2[n− k] z−n

]
︸ ︷︷ ︸

X2(z) z−k

= X2(z)
∞∑

k=−∞

x1[k] z−k︸ ︷︷ ︸
X1(z)

(1.99)
�

giving the desired result.
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The Initial Value Theorem If x[n] = 0, n < 0 is a causal sequence, then

x[0] = lim
z→∞

X (z) (P:3.2.23)

PROOF. Since x[n] is causal, then:

X (z) = x[0] + x[1] z−1 + x[2] z−2 + · · · (1.100)
�

Hence, as z →∞, z−n → 0 since n > 0, and thus the desired result is
obtained.

1.5.2.3 The Unilateral z-transform

The two-sided z-transform requires that the corresponding signals be specified for the
entire time range n ∈ Z. This requirement prevents its used for systems that are
described by difference equations with nonzero initial conditions. Since the input is
applied at a finite time, say n0, both input and output signals are specified for n ≥ n0,
but are not necessarily zero for n < 0. Thus the two sided z-transform cannot be used

The one-sided unilateral z-transform of a signal x[n] is defined by:

X+(z) ≡
∞∑
n=0

x[n] z−n (P:3.5.1)

This is usually denoted as:

x[n]
z+


 X+(z) or X+(z) = Z+[x[n]] (1.101)

The unilateral z-transform differs from the bilateral transform in the lower limit of the
summation, which is always zero, whether or not the signal x[n] is zero for n < 0
(i.e., causal). Therefore, the unilateral z-transform contains no information about the
signal x[n] for negative values of time, and is therefore unique only for causal signals.
The unilateral and bilateral z-transforms are, consequentially, identical for the signal
x[n]u[n] where u[n] is the step function. Since x[n]u[n] is causal, the ROC of its
transform, and hence the ROC of X+(z), is always the exterior of a circle. Thus, when
discussing the unilateral z-transform, it is not necessary to refer to their ROC - which
perhaps explains why this is the more commonly discussed transform in undergraduate
courses.

Almost all the properties for the bilateral z-transform carry over to the unilateral
transform with the exception of the shifting property.

Shifting property: Time Delay If x[n]
z+


 X+(z) then:

x[n− k]
z+


 z−kX (z) +
−1∑

n=−k

x[n] z−(n+k)

︸ ︷︷ ︸
initial conditions

, k > 0 (1.102)
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PROOF. Since

X+(z) ≡
∞∑
n=0

x[n] z−n (P:3.5.1)

then it follows that

Z+[x[n− k]] =
∞∑
n=0

x[n− k] z−n =
∞∑

m=−k

x[m] z−(m+k) (1.103)

by the change of index m = n− k,

= z−k
−1∑

m=−k

x[m] z−m + z−k
∞∑
m=0

x[m] z−m︸ ︷︷ ︸
X+(z)

(1.104)
�

This is the desired result.

Shifting property: Time Advance If x[n]
z+


 X+(z) then:

x[n+ k]
z+


 zkX (z)−
k−1∑
n=0

x[n] zk−n, k > 0 (1.105)

PROOF. From the definition of the unilateral transform, it follows

Z+[x[n+ k]] =
∞∑
n=0

x[n+ k] z−n =
∞∑
m=k

x[m] z−(m−k) (1.106)

by the change of index m = n+ k. Thus,

= zk
∞∑
0

x[m] z−m︸ ︷︷ ︸
X+(z)

−zk
k−1∑
m=1

x[m] z−m (1.107)
�

This is the desired result.

Final Value Theorem If x[n]
z+


 X+(z) then:

lim
n→∞

x[n] = lim
z→1

(z − 1)X+(z) (P:3.5.6)

The limit on the right hand side (RHS) exists if the ROC of (z −
1)X+(z) includes the unit circle.

Further information can be found in books on discrete-time systems, for example
[Proakis:1996, Section 3.5, Page 197].
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1.5.3 Review of linear time-invariant systems

New slide • Systems which are LTI can be elegantly analysed in both the time and frequency
domain: convolution in time, multiplication in frequency.

• For signals and sequences, it is common to write {y[n]}∞n=−∞, or even {y[n]}n∈Z
rather than simply y[n]: the latter is sufficient for these notes.

• Output, y[n], of a LTI system is the convolution of the input, x[n], and the
impulse response of the system, h[n]:

y[n] = x[n] ∗ h[n] ,
∑
k∈Z

x[k] h[n− k] (M:2.3.2)

• By making the substitution k̂ = n− k, it follows:

y[n] =
∑
k∈Z

h[k] x[n− k] = h[n] ∗ x[n] (M:2.3.3)

1.5.3.1 Matrix-vector formulation for convolution

New slideIf x[n] and h[n] are sequences of finite duration, the convolution operation can be
written in matrix-vector form. Let x[n] , 0 ≤ n ≤ N − 1 and h[n] , 0 ≤ n ≤ M − 1
be finite-duration sequences, then y[n] , 0 ≤ n ≤ L− 1, where L = N + M − 1, can
be written as:

y[0]
y[1]

...
y[M − 1]

...
y[N − 1]

...
y[L− 2]
y[L− 1]


=



x[0] 0 · · · 0

x[1] x[0]
. . . ...

... . . . 0
x[M − 1] · · · · · · x[0]

... . . . . . . ...
x[N − 1] · · · · · · x[N −M ]

0
. . . ...

... . . . x[N − 1] x[N − 2]
0 · · · 0 x[N − 1]




h[0]
h[1]

...
h[M − 1]

 (M:2.3.4)

or
y = Xh (M:2.3.5)

• Here, y ∈ RL, X ∈ RL×M , and h ∈ RM .

• The matrix X is termed an input data matrix, and has the property that it is
toeplitz. 1

1 A Toeplitz matrix is one in which the elements along each diagonal, parallel to the main diagonal
each descending from left to right, are constant. Note that the anti-diagonals are not necessarily equal.
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• The observation or output vector y can also be written in a similar way as:

y = Hx (M:2.3.6)

in which H is also toeplitz.

• A system is causal if the present output sample depends only on past and/or
present input samples.

• Assume system is asymptotically stable.

1.5.3.2 Transform-domain analysis of LTI systems

New slide Time-domain convolution:

y[n] =
∑
k∈Z

x[k] h[n− k] (M:2.3.2)

or
y[n] =

∑
k∈Z

h[k] x[n− k] (M:2.3.3)

Taking z-transforms gives:

Y (z) = H (z) X (z) (M:2.3.8)

where X (z), Y (z) and H (z) are the z-transforms of the input, output, and impulse
response sequences respectively. H (z) = Z[h[n]] is the system function or transfer
function.

1.5.3.3 Frequency response of LTI systems

New slide The frequency response of the system is found by evaluating the z-transform on the
unit circle, so z = ejω:

Y
(
ejωT

)
= H

(
ejωT

)
X
(
ejωT

)
(M:2.3.9)

• |H(ejω)| is the magnitude response of the system, and argH(ejω) is the phase
response.

• The group delay of the system is a measure of the average delay of the system
as a function of frequency:

τ(ejω) = − d

dω
argH(ejω) (M:2.3.11)



1.5. Discrete-time systems 43

1.5.3.4 Frequency response to Periodic Inputs

New slide Although the convolution summation formula can be used to compute the response
of a stable system to any input, the frequency-domain input-output relationship for a
LTI cannot be used with periodic inputs, since periodic signals do not strictly possess
a z-transform. However, it is possible to develop an expression for the frequency
response of LTI from first principles. Let x[n] be a periodic signal with fundamental
period N . This signal can be expanded using an IDFT as:

x[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N
kn, n ∈ {0, . . . , N − 1} (M:2.3.19)

where Xk are the Fourier components.

Hence, it follows that on substitution into the convolution equation:

y[n] =
∞∑

m=−∞

h[m] x[n−m] =
1

N

∞∑
m=−∞

h[m]
N−1∑
k=0

Xk e
j 2π
N
k(n−m) (M:2.3.20)

which, by interchanging the order of summation (noting that the limits are over a
rectangular region of summation), gives;

y[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N
kn

∞∑
m=−∞

h[m] e−j
2π
N
km

︸ ︷︷ ︸
H(ej

2π
N
k)

(1.108)

where H(ej
2π
N
k) are samples of H(ejω). Hence,

y[n] =
1

N

N−1∑
k=0

{
H(ej

2π
N
k)Xk

}
ej

2π
N
kn (1.109)

However, this is just the inverse-DFT expansion of y[n], and therefore:

Yk = H(ej
2π
N
k)Xk k ∈ {0, . . . , N − 1} (M:2.3.21)

Thus, the response of a LTI system to a periodic input is also periodic with the same
period. The magnitude of the input components is modified by |H(ej

2π
N
k)|, and the

phase is modified by argH(ej
2π
N
k).

1.5.4 Rational transfer functions
New slideMany systems can be expressed in the z-domain by a rational transfer function. They

are described in the time domain by:

y[n] = −
P∑
k=1

ak y[n− k] +

Q∑
k=0

dk x[n− k] (M:2.3.12)
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Taking z-transforms gives:

H (z) =
Y (z)

X (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k
,
D (z)

A (z)
(M:2.3.13)

This can be described in the complex z-plane as:

H (z) =
D (z)

A (z)
= G

∏Q
k=1(1− zk z−1)∏P
k=1(1− pk z−1)

(M:2.3.14)

where pk are the poles of the system, and zk are the zeros.



2
Discrete-Time Stochastic Processes

Introduces the notion of time-series or random processes. Gives an interpretation
using ensembles, and covers second-order statistics including correlation sequences.
Discusses types of stationary processes, ergodicity, joint-signal statistics, and
correlation matrices.

2.1 A Note on Notation

Note that, unfortunately, for this module, a slightly different (and abusive use of)
notation for random quantities is used than what was presented in the first four
handouts of the Probability, Random Variables, and Estimation Theory (PET) –
PGEE11123 module. In the literature, most time series are described using lower-case
letters, primarily since once the notation for the representation of a random process in
the frequency domain is discussed, upper-case letters are exclusively reserved to denote
spectral representations. Moreover, lower-case letters for time-series are generally
more recognisable and readable, and helps with the clarity of the presentation. Hence,
random variables and vectors in this handout will not always be denoted using
upper-case letters.

2.2 Definition of a Stochastic Process
New slideAfter studying random variables and vectors, these concepts can now (easily) be

extended to discrete-time signals or sequences.

• Natural discrete-time signals can be characterised as random signals, since
their values cannot be determined precisely; that is, they are unpredictable.

45
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Figure 2.1: A graphical representation of a random process.

A natural mathematical framework for the description of these discrete-time
random signals is provided by discrete-time stochastic processes.

• To obtain a formal definition, consider an experiment with a finite or infinite
number of unpredictable outcomes from a sample space S = {ζk, k ∈ Z+},
each occurring with probability Pr (ζk). Assign by some rule to each ζk ∈ S a
deterministic sequence x[n, ζk] , n ∈ Z.

• The sample space S, probabilities Pr (ζk), and the sequences x[n, ζk] , n ∈ Z
constitute a discrete-time stochastic process, or random sequence.

• Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic process if, for a
fixed value n0 ∈ Z+ of n, x[n0, ζ] , n ∈ Z is a random variable.

• A random or stochastic process is also known as a time series in the statistics
literature.

• It is an infinite sequence of random variables, so could be thought of as an
infinite-dimensional random vector. Indeed, finite-length random signals and
sequences can specifically be represented by the concept of a random vector.

2.2.1 Interpretation of Sequences

New slide The set of all possible sequences {x[n, ζ]} is called an ensemble, and each individual
sequence x[n, ζk], corresponding to a specific value of ζ = ζk, is called a realisation
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or a sample sequence of the ensemble. Hence, when a random process is observed
through the outcome of a single experiment, one member of the ensemble is selected
randomly and presented. A graphical representation of a random process is shown in
Figure 2.1.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable
n Fixed Number Random variable
n Variable Sample sequence Stochastic process

Use simplified notation x[n] ≡ x[n, ζ] to denote both a stochastic process, and a single
realisation. The word stochastic is derived from the Greek word stochasticos, which
means skillful in aiming or guessing. Use the terms random process and stochastic
process interchangeably throughout this course.

2.2.2 Predictable Processes
New slideA deterministic signal is by definition exactly predictable; it assumes there exists

a certain functional relationship that completely describes the signal, even if that
functional relationship is not available or is extremely difficult to describe. The
unpredictability of a random process is, in general, the combined result of the following
two characteristics:

1. The selection of a single realisation of a stochastic process is based on the
outcome of a random experiment; in other-words, it depends on ζ .

2. No functional description is available for all realisations of the ensemble. In
other-words, even if a functional relationship is available for a subset of the
ensemble, it might not be available for all members of the ensemble.

In some special cases, however, a functional relationship is available. This means that
after the occurrence of all samples of a particular realisation up to a particular point, n,
all future values can be predicted exactly from the past ones.

If this is the case for a random process, then it is called predictable, otherwise it is
said to be unpredictable or a regular process.

As an outline of this idea, suppose that all the samples of a stochastic process x(n, ζ)
upto sample n − 1 are known; thus, {x[k, ζ]}n−1

k=−∞ are known. Then the predicted
value of x[n] might, for example, be expressed as:

x̂[n] = −
∞∑
k=1

a∗k x[n− k] (T:7.189)

The error in this prediction is given by

ε[n] = x[n]− x̂[n] =
∞∑
k=0

a∗k x[n− k] (T:7.190)
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where a0 = 1. The process is said to be predictable if the {ak}’s can be chosen such
that:

σ2
ε = E

[
|ε[n] |2

]
= 0 (T:7.191)

Otherwise the process is not predictable. The phrase not predictable is somewhat
misleading, since the linear prediction in Equation T:7.189 can be applied to any
process, whether predictable or not, with satisfactory results. If a process is not
predictable, it just means that the prediction error variance is not zero.

An example of predictable process is the process x[n, ζ] = c, where c is a random
variable, since every realisation of the discrete-time signal has a constant amplitude,
and once x[n0, ζk] is known for a particular realisation, all other samples of that process
have also been determined.

The notion of predictable and regular processes is formally presented through the Wold
decomposition, and further details of this very important theorem can be found in
[Therrien:1992, Section 7.6, Page 390] and [Papoulis:1991, Page 420].

2.2.3 Description using probability density functions (pdfs)

New slide For fixed n = n0, it is clear from Figure 2.1 that x[n0, ζ] is a random variable.
Moreover, the random vector formed from the k random variables {x[nj] , j ∈
{1, . . . k}} is characterised by the joint-cumulative distribution function (cdf) and
pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk) (2.1)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk
(2.2)

In exactly the same way as with random variables and random vectors, it is:

• difficult to estimate these probability functions without considerable additional
information or assumptions;

• possible to frequently characterise stochastic processes usefully with much less
information.

Thus, the density and distribution functions are characterised using moments and, in
particular, second-order moments.

2.3 Second-order Statistical Description

New slide Random variables can be characterised, upto second-order statistics, using the mean
and variance; random vectors are characterised by the mean vector, auto-correlation
and auto-covariance matrices. Random processes, however, are characterised by
sequences, where a particular sample, n0, of this sequence characterises the random
variable x[n0, ζ]. These sequences are the mean and variance sequence, the
autocorrelation and autocovariance sequences, as outlined below.
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Mean and Variance Sequence At time n, the ensemble mean and variance are given
by:

µx[n] = E [x[n]] (M:3.3.3)

σ2
x[n] = E

[
|x[n]− µx[n] |2

]
= E

[
|x[n] |2

]
− |µx[n] |2 (M:3.3.4)

Both µx[n] and σ2
x[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic rxx[n1, n2] provides a measure
of the dependence between values of the process at two different times;
it can provide information about the time variation of the process:

rxx[n1, n2] = E [x[n1] x∗[n2]] (M:3.3.5)

Autocovariance sequence The autocovariance sequence provides a measure of how
similar the deviation from the mean of a process is at two different
time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])∗]

= rxx[n1, n2]− µx[n1] µ∗x[n2]
(M:3.3.6)

To show how these deterministic sequences of a stochastic process can be calculated,
several examples are considered in detail below.

2.3.1 Example of calculating autocorrelations

New slideThese examples assume that the notion of stationarity has been met; this, in fact, is not
discussed until Section 2.5. Either the reader can skip these examples and return to
read them after reading Section 2.5, or for the moment the reader can proceed by using
the simple definition that a “stationary” process is one for which the autocorrelation
function rxx(n,m) = rxx(n−m) = rxx(l) is simply a function of the time (or sample
index) differences, also called the lag: l = n−m.

Example 2.1 (Straightforward example). A random variable y(n) is defined to be:

y(n) = x(n) + x(n+m) (2.3)

where m is some integer, and x(n) is a stationary stochastic process whose
autocorrelation function is given by:

rxx(l) = e−l
2

(2.4)

Derive an expression for the autocorrelation of the stochastic process y(n).

SOLUTION. In this example, it is simplest to form the product:

y(n) y∗(n− l) = [x(n) + x(n+m)] [x∗(n− l) + x∗(n+m− l)] (2.5)
= x(n)x∗(n− l) + x(n+m)x∗(n− l)

+ x(n)x∗(n+m− l) + x(n+m)x∗(n+m− l) (2.6)
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then, taking expectations, noting x(n) is a stationary signal, it follows:

ryy(l) = rxx(l) + rxx(m+ l) + rxx(l −m) + rxx(l) (2.7)

giving, in this particular case,

ryy(l) = 2 e−l
2

+ e−(l+m)2 + e−(l−m)2 (2.8)
�

Example 2.2 ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process x[n] is
defined by:

x[n] =
M∑
k=1

Ak cos(ωkn+ φk), ωk 6= 0 (M:3.3.50)

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are pairwise independent
random variables uniformly distributed in the interval [0, 2π].

1. Determine the mean of x(n).

2. Show the autocorrelation sequence is given by

rxx[`] =
1

2

M∑
k=1

|Ak|2 cosωk`, −∞ < ` <∞ (2.9)

SOLUTION. 1. The expected value of the process is straightforwardly given by:

E [x(n)] = E

[
M∑
k=1

Ak cos(ωkn+ φk)

]
=

M∑
k=1

Ak E [cos(ωkn+ φk)] (2.10)

Recall from results derived earlier in the course that if x(n, ζ) = g(n, φ(ζ)) is
a random variable obtained by transforming φ(ζ) through a known function, g,
the expectation of x(n) = x(n, ζ) is:

E [x(n)] =

∫ ∞
−∞

g(n, φ) pΦ(φ) dφ (2.11)

It is important to consider n as a constant.

Since a co-sinusoid is zero-mean, then:

E [cos(ωkn+ φk)] =

∫ 2π

0

cos(ωkn+ φk)×
1

2π
× dφk = 0 (2.12)

Hence, it follows:
E [x(n)] = 0, ∀n (2.13)
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2. The autocorrelation rxx(n1, n2) = E [x(n1)x∗(n2)] follows similarly:

rxx(n1, n2) = E

[
M∑
k=1

Ak cos(ωkn1 + φk)
M∑
j=1

A∗j cos(ωjn2 + φj)

]
(2.14)

=
M∑
k=1

M∑
j=1

Ak A
∗
jE [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.15)

After some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2

cosωk(n1 − n2) k = j

0 otherwise
(2.16)

The proof of this statement is obtained by considering the term

r(φk, φj) = E [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.17)

for the cases when k 6= j, and when k = j. Considering the former case first,
k 6= j, then

r(φk, φj) =
1

4π2

∫ 2π

0

∫ 2π

0

cos(ωkn1 + φk) cos(ωjn2 + φj) dφj dφk (2.18)

=
1

4π2

∫ 2π

0

cos(ωkn1 + φk) dφk

∫ 2π

0

cos(ωjn2 + φj) dφj (2.19)

= 0 (2.20)

An alternative derivation which might be considered more straightforward is to
observe that Equation 2.17 might also be written as:

r(φk, φj) = E [g(φk)h(φj)] = E [g(φk)]E [h(φj)] (2.21)

where g(φk) = cos(ωkn1 + φk) and h(φk) = cos(ωjn2 + φj), and the fact that
φk and φj are independent implies the expectation function may be factorised.

For the case when k = j such that φ = φk = φj and ω = ωk = ωj , then:

r(φ, φ) =
1

2π

∫ 2π

0

cos(ωn1 + φ) cos(ωn2 + φ) dφ (2.22)

Using the trigonometric identity cosA cosB = 1
2

(cos(A+B) + cos(A−B)),
then:

r(φk, φj) =
1

4π

∫ 2π

0

{cosω(n1 − n2) + cos(ω(n1 + n2) + 2φ)} dφ (2.23)

=
1

2
cosω(n1 − n2) (2.24)

giving the result above; namely:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =
1

2
cosωk(n1 − n2) δ(k − j) (2.25)
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Substituting this expression into

rxx(n1, n2) =
1

2

M∑
k=1

M∑
j=1

Ak A
∗
jE [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.26)

thus leads to the desired result. It can be seen that the process x(n) must be a
stationary process, as it is only a function of the lag l:

rxx(l) =
1

2

M∑
k=1

|Ak|2 cosωkl, −∞ < l <∞ (2.27)
�

2.4 Types of Stochastic Processes

New slide Some useful types of stochastic properties, based on their statistical properties, are now
introduced:

Independence A stochastic process is independent if, and only if, (iff)

fX (x1, . . . , xN | n1, . . . , nN) =
N∏
k=1

fXk (xk | nk) (M:3.3.10)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x(n) is a sequence of
independent random variables.

An independent and identically distributed (i. i. d.) process is one where all the
random variables {x(nk, ζ), nk ∈ Z} have the same pdf, and x(n)
will be called an i. i. d. random process.

Example 2.3 (Independence: i. i. d. processes). I am selling my
house, and have decided to accept the first offer exceeding K pounds.
Assuming that the offers are i. i. d. random variables, with common
cumulative distribution function FX (x), where x is the offer price,
find the expected number of offers received before I sell the house.

SOLUTION. Suppose that I sell the house after N offers. Then there
are N − 1 offers that are less than K, which occur with probability
FX (K). Thus, the probability of selling the house after N offers is:

Pr (N = n) = FX (K)n−1 [1− FX (K)] n ≥ 1 (2.28)

This is a geometric distribution, and its mean can either be looked up
in tables, or calculated:

µN =
∞∑
n=1

n Pr (N = n) =
∞∑
n=1

nFX (K)n−1 [1− FX (K)] (2.29)

=

[
1− r
r

] ∞∑
n=0

n rn (2.30)
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where r = FX (K). There is a general result which can be found in
mathematical tables that [Gradshteyn:1994]:

N−1∑
n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+
br(1− rN−1)

(1− r)2
, r 6= 0, N > 1

(2.31)

Therefore, in the case when a = 0, r = 1, andN →∞, and 0 < r < 1
then:

∞∑
n=0

n rn =
r

(1− r)2
, 0 < r < 1 (2.32)

Hence, this gives the mean of the geometric distribution as:

µN =

[
1− r
r

]
r

(1− r)2
=

1

1− r
= [1− FX (K)]−1 (2.33)

�

An uncorrelated processes is a sequence of uncorrelated random variables:

γxx(n1, n2) = σ2
x(n1) δ(n1 − n2) (M:3.3.11)

Alternatively, the autocorrelation function can be written as:

rxx(n1, n2) =

{
σ2
x(n1) + |µx(n1)|2 n1 = n2

µx(n1)µ∗x(n2) n1 6= n2

(M:3.3.12)

An orthogonal process is a sequence of orthogonal random variables, and is given
by:

rxx(n1, n2) = E
[
|x(n1)|2

]
δ(n1 − n2) (M:3.3.13)

If a process is zero-mean, then it is both orthogonal and uncorrelated
since γxx(n1, n2) = rxx(n1, n2). More often than not, in this course,
we shall consider zero-mean processes.

A stationary process is a random process where its statistical properties do not vary
with time. Put another way, it would be impossible to distinguish the
statistical characteristics of a process at time t from those at some other
time, t′. Processes whose statistical properties do change with time are
referred to as nonstationary.

2.5 Stationary Processes

New slideA random process x(n) has been called stationary if its statistics determined for x(n)
are equal to those for x(n + k), for every k. There are various formal definitions of
stationarity, along with quasi-stationary processes, which are discussed below.
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• Order-N and strict-sense stationarity

• Wide-sense stationarity

• Wide-sense periodicity and cyclo-stationarity

• Local- or quasi-stationary processes

After this, some examples of various stationary processes will be given.

2.5.1 Order-N and strict-sense stationarity

New slide Definition 2.1 (Stationary of order-N ). A stochastic process x(n) is called
stationary of order-N if:

fX (x1, . . . , xN | n1, . . . , nN) = fX (x1, . . . , xN | n1 + k, . . . , nN + k) (M:3.3.21)
♦

for any value of k. If x(n) is stationary for all orders N ∈ Z+, it is said to be
strict-sense stationary (SSS).

Clearly, any stochastic process that is stationary of order-N is also stationary of
order-M , where M ≤ N .

An independent and identically distributed process is SSS since, in this case,
fXk (xk | nk) = fX (xk) is independent of n, and therefore also of n + k. However,
SSS is more restrictive than necessary in practical applications, and is a rarely required
property.

2.5.2 Wide-sense stationarity

New slide A more relaxed form of stationarity, which is sufficient for practical problems, occurs
when a random process is stationary order-2; such a process is wide-sense stationary
(WSS).

Definition 2.2 (Wide-sense stationarity). A random signal x(n) is called wide-sense
stationary if:

• the mean and variance is constant and independent of n:

E [x(n)] = µx (M:3.3.22)
var [x(n)] = σ2

x (M:3.3.23)

• the autocorrelation depends only on the time difference l = n1 − n2, called the
lag:

rxx(n1, n2) = r∗xx(n2, n1) = E [x(n1)x∗(n2)]

= rxx(l) = rxx(n1 − n2) = E [x(n1)x∗(n1 − l)]
= E [x(n2 + l)x∗(n2)]

(M:3.3.24)
♦
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Additionally:

• The autocovariance function is given by:

γxx(l) = rxx(l)− |µx|2 (2.34)

• Since 2nd-order moments are defined in terms of 2nd-order pdf, then strict-sense
stationary are always WSS, but not necessarily vice-versa, except if the signal is
Gaussian.

• In practice, however, it is very rare to encounter a signal that is stationary in the
wide-sense, but not stationary in the strict sense.

Example 2.4 ( [Manolakis:2000, Example 3.3.1, Page 102]). Let w(n) be a
zero-mean, uncorrelated Gaussian random sequence with variance σ2

w(n) = 1.

1. Characterise the random sequence w(n).

2. Define x(n) = w(n)+w(n−1), n ∈ Z. Determine the mean and autocorrelation
of x(n). Also, characterise x(n).

SOLUTION. Note that the variance of w(n) is a constant.

1. Since uncorrelatedness implies independence for Gaussian random variables,
then w(n) is an independent random sequence. Since its mean and variance
are constants, it is at least stationary of first-order. Furthermore, from
Equation M:3.3.12 or from Equation M:3.3.13, then:

rww(n1, n2) = σ2
wδ(n1 − n2) = δ(n1 − n2) (2.35)

Since the autocorrelation sequence depends only on the lag n1 − n2, then by
definition it is WSS process.

2. The mean of x(n) is zero for all n since w(n) is a zero-mean process. Next,
consider:

rxx(n1, n2) = E [x(n1)x∗(n2)] (2.36)
= E [[w(n1) + w(n1 − 1)][w∗(n2) + w∗(n2 − 1)]] (2.37)
= rww(n1, n2) + rww(n1, n2 − 1) + rww(n1 − 1, n2) + rww(n1 − 1, n2 − 1)

(2.38)

= 2δ(n1 − n2) + δ(n1 − n2 + 1) + δ(n1 − n2 − 1) (2.39)
= 2δ(l) + δ(l + 1) + δ(l − 1), l = n1 − n2 (2.40)

�

Hence, since rxx(n1, n2) ≡ rxx(l) is a function of the difference between n1 and
n2 only, then x(n) is a WSS sequence. However, it is not an independent process
since both x(n) and x(n+ 1) both depend on w(n).
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Example 2.5 ( [Manolakis:2000, Example 3.3.2, Page 103]: Wiener Process). A
fair coin is tossed at each n ∈ Z. Let:

w(n) =

{
+S if heads is the outcome, with probability Pr (H) = p

−S if tails is the outcome, with probability Pr (T ) = 1− p
(2.41)

where S is some arbitrary increment or step size in the process w(n). Clearly, w(n) is
an independent random process with E [w(n)] = 0 and

E
[
w2(n)

]
= σ2

w = S2 Pr (H) + (−S)2 Pr (T ) (2.42)
= S2p+ S2 (1− p) = S2 (2.43)

Now, define a new random process x(n), n ≥ 1, as:

x(1) = w(1) (2.44)
x(2) = x(1) + w(2) = w(1) + w(2) (2.45)

... (2.46)

x(n) = x(n− 1) + w(n) =
n∑
k=1

w(n) (2.47)

Note that x(n) is a running sum of independent increments; this is known as an
independent increment process. Such a sequence is called a discrete Wiener
process or random walk. It can easily be seen that the mean is given by:

µx(n) = E [x(n)] = E

[
n∑
k=1

w(n)

]
= 0 (2.48)

and the variance is given by:

σ2
x(n) = E

[
x2(n)

]
− µ2

x(n) = E

[
n∑
k=1

w(k)
n∑
l=1

w(l)

]
(2.49)

= E

[
n∑
k=1

n∑
l=1

w(k)w(l)

]
=

n∑
k=1

n∑
l=1

E [w(k)w(l)] =
n∑
k=1

E
[
w2(k)

]
= nS2

(2.50)
on

since w(k) is an independent process, and therefore E [x(k)w(l)] = 0 if k 6=
l. Therefore, the random walk is a nonstationary (or evolutionary) process with
zero-mean and variance that grows with n, the number of steps taken.

2.5.3 Wide-sense periodicity and cyclo-stationarity

New slide A signal whose statistical properties vary cyclically with time is called a
cyclostationary process. A cyclostationary process can be viewed as several
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interleaved stationary processes. For example, the maximum daily temperature in
Edinburgh can be modeled as a cyclostationary process: the maximum temperature
on July 21 is statistically different from the temperature on December 18; however, the
temperature on December 18 of different years has (arguably) identical statistics.

Two classes of cyclostationary signals that are actually nonstationary process which,
in part, have properties resembling stationary signals are:

1. A wide-sense periodic (WSP) process is classified as signals whose mean is
periodic, and whose autocorrelation function is periodic in both
dimensions:

µx(n) = µx(n+N) (M:3.3.14)

rxx(n1, n2) = rxx(n1 +N, n2) = rxx(n1, n2 +N)

= rxx(n1 +N, n2 +N)
(M:3.3.15)

for all n, n1 and n2. These are quite tight constraints for real signals.

2. A wide-sense cyclo-stationary process has similar but less restrictive properties
than a WSP process, in that the mean is periodic, but the
autocorrelation function is now just invariant to a shift by N in both of
its arguments:

µx(n) = µx(n+N) (M:3.3.16)
rxx(n1, n2) = rxx(n1 +N, n2 +N) (M:3.3.17)

for all n, n1 and n2. This type of nonstationary process has more
practical applications, as the following example will show.

Example 2.6 (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal

x(n) =
∞∑

m=−∞

cm h(n−mT ) (2.51)

for some period T , and where cm is a stationary sequence of random variables (RVs)
with autocorrelation function rcc(n1, n2) = E

[
cn1 c

∗
n2

]
= rcc(n1 − n2), and h(n) is a

given deterministic sequence. An example of a particular pulse shape for h(n) and a
typical sequence x(n) is shown in Figure 2.2.

The stochastic process x(n) represents the signal for several different types of
linear modulation techniques used in digital communication systems. The sequence
{cm} represents the digital information (of symbols) that is transmitted over the
communication channel, and 1

T
represents the rate of transmission of the information

symbols.

Note that this example demonstrates why notation can become an issue: how is it
possible to determine that cn is a RV, while h(n) is not?
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(a) An example of a pulse
shape.

(b) Typical transmitted signal.

Figure 2.2: An example pulse shape and typical transmit signal in a communications
system.

To see that this is a wide-sense cyclo-stationary process, first begin by writing:

µx(n) = E [x(n)] =
∞∑

m=−∞

E [cm] h(n−mT ) = µc

∞∑
m=−∞

h(n−mT ) (2.52)

where µc(n) = µc since it is a stationary process. Thus, observe that

µx(n+ kT ) = µc

∞∑
m=−∞

h(n+ kT − Tm) = µc

∞∑
r=−∞

h(n− Tr) = µx(n) (2.53)

by a change of variables r = m− k.

Next consider the autocorrelation function given by:

rxx(n1, n2) = E [x(n1)x∗(n2)] =
∞∑

m=−∞

∞∑
l=−∞

h(n1 − Tm)h(n2 − T l) rcc(m− l)

(2.54)
where it has been noted that rcc(m, l) = rcc(m − l) since it is a stationary process.
Similar to the approach with the mean above, observe that

rxx(n1 + pT, n2 + qT ) =
∞∑

m=−∞

∞∑
l=−∞

h(n1 − T (m− p))h(n2 − T (l − q)) rcc(m− l)

(2.55)
Again, by the change of variables r = m− p and s = l − q, it can be seen that

rxx(n1 +pT, n2 + qT ) =
∞∑

r=−∞

∞∑
s=−∞

h(n1−Tr)h(n2−Ts) rcc(r− s+p− q) (2.56)

In the case that p = q, then it finally follows that:

rxx(n1 + pT, n2 + qT ) = rxx(n1, n2) (2.57)
on

By definition, x(n) is therefore a cyclo-stationary process.
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2.5.4 Local- or quasi-stationary processes

New slide At the introduction of this lecture course, it was noted that in the analysis of speech
signals, the speech waveform is broken up into short segments whose duration is
typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary or quasi-stationary
process. Such processes possess statistical properties that change slowly over short
periods of time. They are globally nonstationary, but are approximately locally
stationary, and are modelled as if the statistics actually are stationary over a short
segment of time.

Quasi-stationary models are, in fact, just a special case of nonstationary processes, but
are distinguished since their characterisation closely resemble stationary processes.

2.6 Autocorrelation properties for WSS processes

New slideThe average power of a WSS process x(n) satisfies:

rxx(0) = σ2
x + |µx|2 (M:3.3.27)

rxx(0) ≥ rxx(l), for all l (M:3.3.28)

The expression for power can be broken down as follows:

Average DC Power: |µx|2

Average AC Power: σ2
x

Total average power: rxx(0)

In otherwords,

Total average power = Average DC power + Average AC power (M:3.3.27)

To prove rxx(0) ≥ rxx(l), observe that E [|x(n+ l)± x(n)|2] ≥ 0. On expansion, this
yields the desired result; this is left as an exercise to the reader, see [Manolakis:2000,
Exercise 3.21, Page 145].

Moreover, it follows that γxx(0) ≥ γxx(l).

It is also the intuitively obvious, since the autocorrelation of a function should be
maximum when it is “self-aligned” with itself. This property also it useful for
template-matching time-series; i.e. to find which of a particular set of realisations
is most like a given separate realisation.

It is left as an exercise to show that the autocorrelation sequence rxx(l) is:

• a conjugate symmetric function of the lag l:

r∗xx(−l) = rxx(l) (M:3.3.29)
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• a nonnegative-definite or positive semi-definite function, such that for any
sequence α(n):

M∑
n=1

M∑
m=1

α∗(n) rxx(n−m)α(m) ≥ 0 (M:3.3.30)

Note that, more generally, even a correlation function for a nonstationary random
process is positive semi-definite:

M∑
n=1

M∑
m=1

α∗(n) rxx(n,m)α(m) ≥ 0 for any sequence α(n) (2.58)

When dealing with stationary processes, this course will exclusively consider
wide-sense stationary (WSS) rather than strict-sense stationary (SSS) processes.
Therefore, the term stationary will be used to mean WSS form here onwards.

2.7 Estimating statistical properties

New slide • A stochastic process consists of the ensemble, x(n, ζ), and a probability law,
fX ({x} | {n}). If this information is available ∀n, the statistical properties are
easily determined.

• In practice, only a limited number of realisations of a process is available, and
often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}} is known for some K, but
fX (x | n) is unknown.

• Is is possible to infer the statistical characteristics of a process from a single
realisation? Yes, for the following class of signals:

– ergodic processes;

– nonstationary processes where additional structure about the
autocorrelation function is known (beyond the scope of this course).

2.7.1 Ensemble and Time-Averages

New slide Ensemble averaging, as considered so far in the course, is not frequently used in
practice since it is impractical to obtain the number of realisations needed for an
accurate estimate.

A statistical average that can be obtained from a single realisation of a process is a
time-average, defined by:

〈g(x(n))〉 , lim
N→∞

1

2N + 1

N∑
n=−N

g(x(n)) (M:3.3.32)
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For every ensemble average, a corresponding time-average can be defined; the
time-average above corresponds to: E [g(x(n))].

Time-averages are random variables since they implicitly depend on the particular
realisation, given by ζ . Averages of deterministic signals are fixed numbers or
sequences, even though they are given by the same expression.

2.7.2 Ergodicity

New slideA stochastic process, x(n), is ergodic if its ensemble averages can be
estimated from a single realisation of a process using time averages.

The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical expected values and
sample-means:

〈x(n)〉 = E [x(n)] (M:3.3.34)

Covariance-Ergodic Processes (or ergodic in correlation) have the property that:

〈x(n)x∗(n− l)〉 = E [x(n)x∗(n− l)] (M:3.3.35)

Another form of ergodicity is a distribution-ergodic process, but this will not be
discussed here.

• It should be intuitiveness obvious that ergodic processes must be stationary and,
moreover, that a process which is ergodic both in the mean and correlation is
WSS.

• WSS processes are not necessarily ergodic.

• Ergodic is often used to mean both ergodic in the mean and correlation.

• In practice, only finite records of data are available, and therefore an estimate of
the time-average will be given by

〈g(x(n))〉 =
1

N

∑
n∈N

g(x(n)) (M:3.3.37)

where N is the number of data-points available. The performance of this
estimator will be discussed later in this course.
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2.7.3 More Details on Mean-Ergodicity

Returning to the definition of mean-ergodicity, a little more detail of conditions on the
random process is given. Consider the time-average over 2N + 1 samples, {x(n)}N−N
is given by:

µx|N = 〈x(n)〉 =
1

2N + 1

N∑
n=−N

x(n) (2.59)

Clearly, µX |N is a RV with mean:

E [µx|N ] =
1

2N + 1

N∑
n=−N

E [x(n)] = µx (2.60)

since x(n) is a stationary stochastic process. As will be seen in later lectures, this
is known as an unbiased estimate since the sample mean is equal to the ensemble
mean. Since µx|N is a RV, then it must have a variance as well:

var [µx|N ] = var

[
1

2N + 1

N∑
n=−N

x(n)

]
(2.61)

Noting the mean of the expression in the square brackets on the right hand side (RHS)
is equal to µx, then:

var [µx|N ] =
1

(2N + 1)2
E

[
N∑

n=−N

N∑
m=−N

x(n)x∗(m)

]
− µ2

x (2.62)

=
1

(2N + 1)2

{
N∑

n=−N

N∑
m=−N

rxx(n−m)

}
− µ2

x (2.63)

since x(n) is a stationary process, and therefore its autocorrelation function only
depends on the time difference. With a little manipulation, then noting that the
autocovariance is given by γxx(l) = rxx(l)− µ2

x, it follows that:

var [µx|N ] =
1

(2N + 1)2

N∑
n=−N

N∑
m=−N

γxx(n−m) (2.64)

A change of variable can now be performed by setting l = n−m. Hence:

var [µx|N ] =
1

(2N + 1)2

N∑
n=−N

n+N∑
l=n−N

γxx(l) (2.65)

The region of summation is shown in Figure 2.3.

Thus, the next step is to change the order of summation (as this is the usual trick), and
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Figure 2.3: Region of summation for deriving the variance of the time-average.

so considering the region of summation, then summing l first:

var [µx|N ] =
1

(2N + 1)2

2N∑
l=−2N

min{N,l+N}∑
n=max{−N,l−N}

γxx(l) (2.66)

=
1

(2N + 1)2

2N∑
l=−2N

(2N + 1− |l|)γxx(l) (2.67)

=
1

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
γxx(l) (2.68)

If the variance limN→∞ var [µx|N ] = 0, then µx|N → µx in the mean-square sense.
In this case, it is said that the time average µx|N computed from a single realisation
of x(n) is close to µx with probability close to 1. If this is true, then the technical
definition is that the process x(n) is mean-ergodic. The result presented above leads
to the following conclusion:

Theorem 2.1 (Mean-ergodic processes). A discrete-random process x(n) with
autocovariance γxx(l) is mean-ergodic iff:

lim
N→∞

1

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
γxx(l) = 0 (2.69)

PROOF. See discussion above.

Example 2.7 ( [Papoulis:1991, Example 13.3, Page 429]). A stationary stochastic
process x(n) has an autocovariance function given by γxx(l) = q e−c |l| for some
constants q and l. Is the process x(n) ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
1

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
γxx(l) =

q

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
e−c|l|

(2.70)
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which can be written as:

var [µx|N ] =
q

2N + 1

{
2

2N∑
l=0

(
1− l

2N + 1

)
e−c l − 1

}
(2.71)

Now, again noting the general result which can be found in mathematical tables
[Gradshteyn:1994]:

N−1∑
n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+
br(1− rN−1)

(1− r)2
, r 6= 0, N > 1 (2.72)

then by setting a = 1, b = − 1
2N+1

and r = e−c, with n = l and N → 2N + 1:

var [µx|N ] = 2q

[ 1
M
− 1

M2 e
−Mc

1− e−c
+

1
M2 e

−c − 1
M2 e

−Mc

(1− e−c)2
− 1

2M

]
(2.73)

where M = 2N + 1. Now, by setting N → ∞, which is equivalent to M → ∞, and
noting the relationship that:

lim
n→∞

ns xn → 0 if |x| < 1 for any real value of s (2.74)

it can easily be seen that
lim
N→∞

var [µx|N ] = 0 (2.75)
�

and therefore x(n) is mean-ergodic.

2.8 Joint Signal Statistics

New slide Next, it is important to consider the dependence between two different random
processes, and these follow similar definitions to those introduced for random vectors.
In this section, consider the interaction between two random processes x(n) and y(n).

Cross-correlation and cross-covariance A measure of the dependence between
values of two different stochastic processes is given by the
cross-correlation and cross-covariance functions:

rxy(n1, n2) = E [x(n1) y∗(n2)] (M:3.3.7)
γxy(n1, n2) = rxy(n1, n2)− µx(n1)µ∗y(n2) (M:3.3.8)

Normalised cross-correlation (or cross-covariance) The cross-covariance provides
a measure of similarity of the deviation from the respective means of
two processes. It makes sense to consider this deviation relative to
their standard deviations; thus, normalised cross-correlations:

ρxy(n1, n2) =
γxy(n1, n2)

σx(n1)σy(n2)
(M:3.3.9)
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2.8.1 Types of Joint Stochastic Processes

New slide The definitions introduced earlier for a single stochastic process can be extended to the
case of two joint stochastic processes:

Statistically independence of two stochastic processes occurs when, for every nx and
ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny) (M:3.3.18)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy(nx, ny) = 0

rxy(nx, ny) = µx(nx)µy(ny)
(M:3.3.19)

Joint stochastic processes that are statistically independent are uncorrelated, but not
necessarily vice-versa, except for Gaussian processes. Nevertheless, a measure of
uncorrelatedness is often used as a measure of independence. More on this later.

Further definitions include:

Orthogonal joint processes have, for every n1 and n2 6= n1:

rxy(n1, n2) = 0 (M:3.3.20)

Joint WSS is a similar to WSS for a single stochastic process, and is useful since
it facilitates a spectral description, as discussed later in this course:

rxy(l) = rxy(n1 − n2) = r∗yx(−l) = E [x(n) y∗(n− l)] (2.76)

γxy(l) = γxy(n1 − n2) = γ∗yx(−l) = rxy(l)− µx µ∗y (2.77)

Joint-Ergodicity applies to two ergodic processes, x(n) and y(n), whose ensemble
cross-correlation can be estimated from a time-average:

〈x(n) y∗(n− l)〉 = E [x(n) y∗(n− l)] (M:3.3.36)

2.9 Correlation Matrices for Random Processes
New slideA stochastic process can also be represented as a random vector, and its second-order

statistics given by the mean vector and the correlation matrix. Obviously these
quantities are functions of the index n.

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived from the random
process x(n) as follows:

X(n) ,
[
x(n) x(n− 1) · · · x(n−M + 1)

]T (M:3.4.56)
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Then its mean is given by an M -vector

µX(n) ,
[
µx(n) µx(n− 1) · · · µx(n−M + 1)

]T (M:3.4.57)

and the M ×M correlation matrix is given by:

RX(n) = E
[
X(n)XH(n)

]
(T:4.23)

which can explicitly be written as:

RX(n) ,

 rxx(n, n) · · · rxx(n, n−M + 1)
... . . . ...

rxx(n−M + 1, n) · · · rxx(n−M + 1, n−M + 1)

 (M:3.4.58)

Clearly RX(n) is Hermitian, since rxx(n−i, n−j) = E [x(n− i)x∗(n− j)] = r∗xx(n−
j, n− i), 0 ≤ i, j ≤ M − 1. This vector representation can be useful in discussion of
optimum filters.

For stationary processes, the correlation matrix has an interesting additional structure.
Note that:

1. RX(n) is a constant matrix RX;

2. rxx(n− i, n− j) = rxx(j − i) = rxx(l), l = j − i;

3. conjugate symmetry gives rxx(l) = r∗xx(−l).

Hence, the matrix Rxx is given by:

RX ,


rxx(0) rxx(1) rxx(2) · · · rxx(M − 1)
r∗xx(1) rxx(0) rxx(1) · · · rxx(M − 2)
r∗xx(2) r∗xx(1) rxx(0) · · · rxx(M − 3)

...
...

... . . . ...
r∗xx(M − 1) r∗xx(M − 2) r∗xx(M − 3) · · · rxx(0)

 (M:3.4.60)

It can easily be seen that RX is Hermitian and Toeplitz; a Toeplitz matrix is one in
which the elements along each diagonal, parallel to the main diagonal, are equal. Note
that the anti-diagonals are not necessarily equal. Thus, the autocorrelation matrix of a
stationary process is Hermitian, nonnegative definite, and Toeplitz.

Example 2.8 (Correlation matrices). The correlation function for a certain random
process x(n) has the exponential form:

rxx(l) = 4(−0.5)|l| (2.78)

Hence, the correlation matrix for N = 3 is given by:

RX =

rxx(0) rxx(1) rxx(2)
r∗xx(1) rxx(0) rxx(1)
r∗xx(2) r∗xx(1) r∗xx(0)

 (2.79)

=

4(−0.5)0 4(−0.5)1 4(−0.5)2

4(−0.5)1 4(−0.5)0 4(−0.5)1

4(−0.5)2 4(−0.5)1 4(−0.5)0

 =

 4 −2 1
−2 4 −2
1 −2 4

 (2.80)
on

which is clearly Toeplitz.
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Note that the definition of a covariance matrix for a random process follows an almost
identical form, except with the elements of the autocorrelation functions replaced by
the autocovariance functions. Finally, note that is is possible to define a correlation or
covariance matrix for a random vector that consists of non-consecutive samples from
a random process. Hence, if

X({n}) ,
[
x(n1) x(n2) · · · x(nM)

]T (2.81)

where {nk}M1 are unique arbitrary indices to samples from the random process, then
the correlation matrix is still defined as:

RX({n}) = E
[
X({n})XH({n})

]
(T:4.23)

2.10 Markov Processes
New slideFinally, in this handout, a powerful model for a stochastic process known as a Markov

model is introduced; such a process that satisfies this model is known as a Markov
process. Quite simply, a Markov process is one in which the probability of any
particular value in a sequence is dependent upon the preceding sample values. The
simplest kind of dependence arises when the probability of any sample depends only
upon the value of the immediately preceding sample, and this is known as a first-order
Markov process. This simple process is a surprisingly good model for a number of
practical signal processing, communications and control problems.

As an example of a Markov process, consider the process generated by the difference
equation

x(n) = −a x(n− 1) + w(n) (T:3.17)

where a is a known constant, and w(n) is a sequence of zero-mean i. i. d. Gaussian
random variables with variance σ2

W density:

fW (w(n)) =
1√

2πσ2
W

exp

{
−w(n)2

2σ2
W

}
(T:3.18)

The conditional density of x(n) given x(n − 1) is also Gaussian, and using the
probability transformation rule for which the Jacobian evaluates to one, it can be shown
that

fX (x(n) | x(n− 1)) =
1√

2πσ2
W

exp

{
−(x(n) + ax(n− 1))2

2σ2
W

}
(T:3.19)

In fact, if w(n) is independent with any density fW (w(n)), the conditional density
of x(n) given x(n − 1) is fW (x(n) + a x(n− 1)). Note that x(n − 1) completely
determines the distribution for x(n), and x(n) completely determines the distribution
for x(n + 1) and so forth. Thus, the value of the sequence at any time n0 completely
determines the distribution of x(n) for any n > n0. The following serves as a formal
definition of a Markov process.
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Definition 2.3 (Markov Process). A random process is a P th-order Markov process
if the distribution of x(n), given the infinite past, depends only on the previous P
samples {x(n− 1), . . . , x(n− P )}; that is, if:

fX (x(n) | x(n− 1), x(n− 2), . . . ) = fX (x(n) | x(n− 1), . . . , x(n− P ))
(T:3.20)

♦

Finally, it is noted that if x(n) takes on a countable (discrete) set of values, a Markov
random process is called a Markov chain. This will always be the case in digital
signal processing since the values of the random sequence are represented with a finite
number of bits. There is a tremendous volume of results on Markov chains, but they
will not presently be covered in this course.



3
Frequency-Domain Description of

Stationary Processes

Introduces the notion of a frequency-domain description of stationary random
processes, defining the power spectral density (PSD) as the Fourier transform of the
autocorrelation function. Considers the properties of the PSD including the PSD of
harmonic processes. Defines the cross-PSD and the complex spectral density.

3.1 Introduction to the power spectral density

New slideFrequency- and transform-domain methods including the Fourier-transform and
z-transform are very powerful tools for the analysis of deterministic sequences. It
seems natural to extend these techniques to analysis stationary random processes.

So far in this course, stationary stochastic processes have been considered in the
time-domain through the use of the autocorrelation function (ACF). Since the ACF
for a stationary process is a function of a single-discrete time process, then the question
arises as to what the discrete-time Fourier transform (DTFT) corresponds to. It turns
out to be known as the power spectral density (PSD) of a stationary random process,
and the PSD is an extremely powerful and conceptually appealing tool in statistical
signal processing. This handout will study the PSD in some detail.

In signal theory for deterministic signals, spectra are used to represent a function as a
superposition of exponential functions. For random signals, the notion of a spectrum
has two interpretations:

Transform of averages The first involves transform of averages (or moments). As
will be seen, this will be the Fourier transform of the autocorrelation
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function.

Stochastic decomposition The second interpretation represents a stochastic process
as a superposition of exponentials, where the coefficients are
themselves random variables. Hence, a stochastic process x(n) can
be represented as:

x(n) =
1

2π

∫ π

−π
X(ejω) ejωn dω, n ∈ R (3.1)

where X(ejω) is a random variable for a given value of
ω. Alternatively, X(ejω) can be considered as a continuous
random-process, as a function of ω. This interpretation is extremely
powerful, and can in fact be extended to the superposition of any set of
basis functions; the Karhunen-Loeve (KL) transform is an example of
such a decomposition. Unfortunately, there is not time in this course
to consider this spectral representation, extremely interesting as it is.

3.2 Motivating the power spectral density

It is important to appreciate that most realisations of random signals, x[n, ζ], do
not have finite energy, as they usually don’t decay away as n → ±∞. Therefore,
technically, they do not possess a corresponding DTFT, and hence it is not possible
simply to take the DTFT of a random signal. Noting that a random signal is actually an
ensemble of realisations, each realisation occuring with a different probability, it is, in
any case, somewhat meaningless to take the DTFT of a random process. It should also
be remembered that the DTFT of a particular observed realisation, even if it existed, is
itself a random process, albeit as a function of frequency rather than time. Therefore,
it is necessary to take an alternative perspective, as discussed in this section.

Motivated by the stochastic decomposition in Equation 3.1, and restricting the
analsysis to wide-sense stationary (WSS) processes, consider the random variable
(RV), X(ejω), resulting from the DTFT of a random signal, x[n]:

X
(
ejω
)

=
∞∑

n=−∞

x[n] e−jωn (3.2)

It is of interest to consider the total power in the rv, X (ejω), which is given by the
second moment:

PXX
(
ejω
)

= E
[∣∣X (ejω)∣∣2] (3.3)

Since random signals are not finite energy, then this expression will diverge, so
consider instead the definition:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1
E
[∣∣XN

(
ejω
)∣∣2] (3.4)
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Figure 3.1: Region of summation for deriving the variance of the time-average.

where XN (ejω) is the truncated Fourier transform of x[n], or basically a windowed
version of the sequence between −N and N , as given by:

XN

(
ejω
)
,

N∑
n=−N

x[n] e−jωn =
∞∑

n=−∞

w[n]x[n] e−jωn (3.5)

where w[n] is the window function:

w[n] =

{
1 −N ≤ n ≤ N

0 otherwise
(3.6)

Then, substituting Equation 3.5 into Equation 3.4 and rearranging gives:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1
E

[
N∑

n=−N

x[n] e−jωn
N∑

m=−N

x∗[m] ejωm

]
(3.7)

= lim
N→∞

1

2N + 1

N∑
n=−N

N∑
m=−N

E [x[n]x∗[m]] e−jω(n−m) (3.8)

Substitute the variable ` = n −m, such that when m = ±N , then ` = n ∓ N . Since
the summation is over integers, which means that

∑b
a(·) =

∑a
b (·), and noting that for

WSS processes, E [x[n]x∗[n− `]] = rxx[`] this means Equation 3.8 becomes:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1

N∑
n=−N

n+N∑
`=n−N

rxx[`] e
−jω` (3.9)

The region of summation is shown in Figure 3.1. Changing the order of summation (as
this is the usual trick), to sum over ` first, then it can be seen that ` varies from−2N to
2N , while n will vary from max{−N, `−N} to min{N, `+N}. Hence, Equation 3.9
becomes:
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PXX
(
ejω
)

= lim
N→∞

1

2N + 1

2N∑
`=−2N

min{N, `+N}∑
n=max{−N, `−N}

rxx[`] e
−jω` (3.10)

PXX
(
ejω
)

= lim
N→∞

1

2N + 1

2N∑
`=−2N

rxx[`] e
−jω`

 min{N, `+N}∑
n=max{−N, `−N}

1

 (3.11)

The second summation in the square brackets can be shown by, simple counting, to
simplify to 2N + 1− |`|, and therefore:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1

2N∑
`=−2N

(2N + 1− |`|) rxx[`] e−jω` (3.12)

=
∞∑

`=−∞

rxx[`] e
−jω` − lim

N→∞

2N∑
`=−2N

|`|
2N + 1

rxx[`] e
−jω` (3.13)

Assuming the mild assumption that the autocorrelation sequence rxx[`] decays
sufficiently rapidly such that:

lim
N→∞

2N∑
`=−2N

|`| |rxx[`] = 0 (3.14)

then Equation 3.13 simplifies to:

PXX
(
ejω
)

=
∞∑

`=−∞

rxx[`] e
−jω` (3.15)

Hence, PXX (ejω) can be viewed as the average power, or energy, of the Fourier
transform of a random process at frequency ω. Clearly, this gives an indication of
whether, on average, there are dominant frequencies present in the realisations of x[n].

3.3 The power spectral density

New slide The discrete-time Fourier transform of the autocorrelation function of a stationary
stochastic process x[n, ζ] is known as the power spectral density (PSD), is denoted
by Pxx(ejω), and is given by:

Pxx(e
jω) =

∑
`∈Z

rxx[`] e
−jω` (M:3.3.39)

where ω is frequency in radians per sample.

The autocorrelation function, rxx[`], can be recovered from the PSD by using the
inverse-DTFT:

rxx[`] =
1

2π

∫ π

−π
Pxx(e

jω) ejω` dω, ` ∈ Z (M:3.3.41)
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Sometimes the PSD is called the auto-PSD to distinguish it from the cross-PSD
introduced in Section 3.4. In the case that rxx[`] is periodic, corresponding to a
wide-sense periodic stochastic process, then the power spectral density is defined as
the discrete Fourier transform of the autocorrelation sequence. This natural extension
is easily obtained once the aperiodic-case is considered in depth.

3.3.1 Properties of the power spectral density

New slideThere are a number of properties of the power spectral density that follow from the
corresponding properties of the autocorrelation sequence, and the discrete-time Fourier
transform.

• Pxx(ejω) : ω → R+; in otherwords, the PSD is real valued, and nonnegative
definite. i.e.

Pxx(e
jω) ≥ 0 (M:3.3.44)

This property follows from the positive semi-definiteness of the autocorrelation
sequence.

• Pxx(ejω) = Pxx(e
j(ω+2nπ)); in otherwords, the PSD is periodic with period 2π.

• If x[n] is real-valued, then:

– rxx[`] is real and even;
– Pxx(e

jω) = Pxx(e
−jω) is an even function of ω.

• The area under Pxx(ejω) is nonnegative and is equal to the average power of
x[n]. Hence:

1

2π

∫ π

−π
Pxx(e

jω) dω = rxx[0] = E
[
|x[n] |2

]
≥ 0 (M:3.3.45)

Example 3.1 ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the PSD of
a zero-mean WSS process x(n) with rxx(l) = a|l|, −1 < a < 1.

SOLUTION. Using the definition of the PSD directly, then:

Pxx(e
jω) =

∑
l∈Z

rxx(l) e
−jωl (3.16)

=
∑
l∈Z

a|l| e−jωl (3.17)

=
∞∑
l=0

(
a e−jω

)l
+
∞∑
l=0

(
a ejω

)l − 1 (3.18)

which, by using the expressions for geometric series, gives:

Pxx(e
jω) =

1

1− a e−jω
+

1

1− a ejω
− 1 (M:3.3.42)

=
1− a2

1− 2a cosω + a2
(3.19)
�

which is a real-valued, even, and nonnegative function of ω.
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3.3.2 General form of the PSD

New slide A process, x(n), and therefore its corresponding autocorrelation function (ACF),
rxx(l), can always be decomposed into a zero-mean aperiodic component, r(a)

xx (l), and
a non-zero-mean periodic component, r(p)

xx (l):

rxx(l) = r(a)
xx (l) + r(p)

xx (l) (3.20)

Theorem 3.1 (PSD of a non-zero-mean process with periodic component). The
most general definition of the PSD for a non-zero-mean stochastic process with a
periodic component is given by:

Pxx(e
jω) = P (a)

xx (ejω) +
2π

K

∑
k∈K

P (p)
xx (k) δ (ω − ωk) (T:4.41)

The term P
(a)
xx (ejω) is the DTFT of the aperiodic component r(a)

xx (l), while P (p)
xx (k) are

the discrete Fourier transform (DFT) coefficients for the periodic component r(p)
xx (l)

assuming a periodicity of length K, and where ωk = 2πk
K

.

Moreover, it can be seen that P (a)
xx (ejω) represents the continuous part of the spectrum,

while the sum of weighted impulses represent the discrete part or lines of the spectrum.

PROOF. The non-zero-mean periodic component, r(p)
xx (l) can itself be decomposed

using a discrete Fourier transform:

r(p)
xx (l) =

1

K

∑
k∈K

P (p)
xx (k) ejωkl (3.21)

where K = {0, . . . , K − 1}, and ωk = 2π
K
k. Thus, the PSD of X(ζ), becomes:

Pxx(e
jω) = P (a)

xx (ejω) +
1

K

∑
`∈Z

∑
k∈K

P (p)
xx (k) ejωk` e−jω` (3.22)

As usual, change the order of summation:

= P (a)
xx (ejω) +

1

K

∑
k∈K

P (p)
xx (k)

∑
`∈Z

e−j`(ω−ωk) (3.23)

= P (a)
xx (ejω) +

2π

K

∑
k∈K

P (p)
xx (k) δ (ω − ωk) (3.24)

where Poisson’s formula, which can be derived by writing down the Fourier series for
an impulse train, is used:

∞∑
n=−∞

δ (t− nT ) =
1

T

∞∑
`=−∞

e−j`ω0t (3.25)

where ω0 = 2π
T

. Thus, by letting T = 2π, and t = ω − ωk, then:

2π
∞∑

n=−∞

δ (ω − ωk − 2πn) =
∞∑

`=−∞

e−j`(ω−ωk) (3.26)
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Since −2π < ωk ≤ 2π, and Pxx(e
jω) is periodic in ω with period 2π, then it is

sufficient to write for |ω| ≤ 2π, that:

2πδ (ω − ωk) =
∞∑

l=−∞

e−jl(ω−ωk) (3.27)
�

which can be substituted to give the desired result.

Example 3.2 ( [Manolakis:2001, Harmonic Processes, Page 110-111]). Determine
the PSD of the harmonic process introduced in the previous handout and defined by:

x[n] =
M∑
k=1

Ak cos(ωkn+ φk), ωk 6= 0 (M:3.3.50)

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are pairwise independent and
identically distributed (i. i. d.) RVs uniformly distributed in the interval [0, 2π].

SOLUTION. As shown in the previous handout, x[n] is a stationary process with
zero-mean, and autocorrelation function (ACF):

rxx[`] =
1

2

M∑
k=1

|Ak|2 cosωk`, −∞ < ` <∞ (M:3.3.52)

Note that rxx[`] consists of a sum of in-phase cosines with the same frequencies as in
x[n]. By writing

cosωk` =
ejωk` + e−jωk`

2
(3.28)

then Equation M:3.3.52 may be written as:

rxx[`] =
1

4

M∑
k=1

|Ak|2
(
ejωk` + e−jωk`

)
=

M∑
k=1

|Ak|2

4
ejωk` +

M∑
k=1

|Ak|2

4
e−jωk`

=
M∑
k=1

|Ak|2

4
ejωk` +

−M∑
k̂=−1

|A−k̂|2

4
e−jω−k̂`

(3.29)

Hence, the ACF can be written as:

rxx[`] =
M∑

k=−M

|Ak|2

4
ejωk`, −∞ < ` <∞ (3.30)

where the following are defined: A0 = 0, Ak = A−k, and ω−k = −ωk.
Hence, it directly follows using the results above that:

Pxx(e
jω) = 2π

M∑
k=−M

|Ak|2

4
δ(ω − ωk) =

π

2

M∑
k=−M

|Ak|2δ(ω − ωk) (3.31)
�
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The harmonic process is predictable because any given realisation is a sinusoidal
sequence with fixed amplitude, frequency and phase. The independence and uniform
distribution of the phase, however, is strictly required to ensure the stationarity of the
process x[n].

3.4 The cross-power spectral density

New slide The cross-power spectral density (CPSD) of two jointly stationary stochastic
processes, x(n) and y(n), provides a description of their statistical relations in the
frequency domain. It is defined, naturally, as the DTFT of the cross-correlation,
rxy(`) , E [x(n) y∗(n− `)]:

Pxy(e
jω) = F{rxy(`)} =

∑
l∈Z

rxy(`) e
−jω` (M:3.3.56)

The cross-correlation rxy(l) can be recovered by using the inverse-DTFT:

rxy(l) =
1

2π

∫ π

−π
Pxy(e

jω) ejωl dω, l ∈ R (M:3.3.57)

Since this integral is essentially a summation, then an interpretation that can be given
to the cross-spectrum is that Pxy(ejω0) measures the correlation between two RVs at a
given frequency ω0.

The cross-spectrum Pxy(e
jω) is, in general, a complex function of ω.

Some properties of the CPSD and related definitions include:

1. Pxy(ejω) is periodic in ω with period 2π.

2. Since rxy(l) = r∗yx(−l), then it follows:

Pxy(e
jω) = P ∗yx(e

jω) (M:3.3.58)

Thus, Pxy(ejω) and Pyx(ejω) have the same magnitude, but opposite phase.

3. If the process x(n) is real, then rxy(l) is real, and:

Pxy(e
jω) = P ∗xy(e

−jω) (3.32)

4. The normalised cross-correlation, or coherence function, is given by:

Γxy(e
jω) ,

Pxy(e
jω)√

Pxx(ejω)
√
Pyy(ejω)

(M:3.3.59)

Its squared magnitude is known as the magnitude square coherence (MSC)
function. ∣∣Γxy(ejω)

∣∣2 =
|Pxy(ejω)|2

Pxx(ejω)Pyy(ejω)
(3.33)

If y(n) = x(n), then Γxy(e
jω), corresponding to maximum correlation, whereas

if x(n) and y(n) are uncorrelated, then rxy(l) = 0, and therefore Γxy(e
jω) = 0.

Hence:
0 ≤ |Γxy(ejω)|2 ≤ 1 (M:3.3.60)
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3.5 Complex Spectral Density Functions

New slideThe analysis of discrete-deterministic signals is also performed through the the
z-transform and, therefore, in addition to using the Fourier transform, it is also very
important to analyse stationary random processes using this transform; it is a perfectly
natural extension.

The second moment quantities that described a random process in the transform
domain are known as the complex spectral density and complex cross-spectral
density functions. The PSD and CPSD functions discussed previously can be
considered as special cases of the complex spectral density functions when the latter
are evaluated on the unit circle.

If the sequences rxx(l) and rxy(l) are absolutely summable within a certain ring of the
complex z-plane, then their z-transforms exist. Hence, rxx(l)

z

 Pxx(z) and rxy(l)

z



Pxy(z), where:

Pxx(z) =
∑
l∈Z

rxx(l) z
−l (M:3.3.61)

Pxy(z) =
∑
l∈Z

rxy(l) z
−l (M:3.3.62)

Note that these are bilateral z-transforms. If the unit circle, defined by z = ejω is
within the region of convergence of these summations, then:

Pxx(e
jω) = Pxx(z)|z=ejω (M:3.3.63)

Pxy(e
jω) = Pxy(z)|z=ejω (M:3.3.64)

The inverse of the complex spectral and cross-spectral densities are given by the
contour integral:

rxx(l) =
1

2πj

∮
C

Pxx(z) zl−1 dz (3.34)

rxy(l) =
1

2πj

∮
C

Pxy(z) zl−1 dz (3.35)

where the contour of integration C is to be taken counterclockwise and in the region
of convergence. In practice, these integrals are usually never performed, and tables,
instead, are used.

Some properties of the complex spectral densities include:

1. Conjugate-symmetry:

Pxx(z) = P ∗xx(1/z
∗) and Pxy(z) = P ∗xy(1/z

∗) (3.36)

2. For the case when x(n) is real, then:

Pxx(z) = Pxx(z
−1) (3.37)

July 16, 2015 – 09 : 31



78 Power Spectral Density

The possible existence of lines in the PSD function due to a periodic component of
the random process, as discussed in Section 3.3.2, poses some mathematical problems
in defining the complex spectral density function since the z-transform does not exist.
Try, for example, finding the complex spectral density of a function with a non-zero
mean. In the case of the PSD, these functions were included formally as impulses in
frequency. A similar approach to that in Equation T:4.41 is used here, and the complex
spectral density function is written as:

Pxx(z) = P (a)
xx (z) + 2π

∑
k∈K

P (p)
xx (k) δ

(
z − ejωk

)
(3.38)

where P (a)
xx (z) corresponds to the aperiodic component of the autocorrelation function,

and the second summation term denotes the line spectra.

3.6 Table of bilateral z-transforms

New slide
The bilateral z-transform is defined by the following pairs of equations:

X(z) , Z[x(n)] =
∞∑

n=−∞

x(n) z−n (M:2.2.29)

x(n) =
1

2πj

∮
C

X(z) zn−1 dz (M:2.2.30)

In the following table, it is assumed that |a| ≤ 1. It is important to note that this is a
crucial condition, as it will distinguish signals that exist only for n ≥ 0 and those for
x < 0. To use these tables, it is crucial to match an expression with an identity exactly,
otherwise the incorrect inverse transform might accidentally be used.

For the purposes of the table, recall that u(n) is the discrete-time step function given
by:

u(n) =

{
1 n ≥ 0

0 n < 0
(3.39)

The region of convergence (ROC) is also shown for completeness, although it is usual
to assume that z is only considered within the ROC. Note that if the signal x(n) = 0
for n < 0, it is known as a causal sequence, and if x(n) = 0 for n > 0, it is known as
a anticausal sequence.
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Notes x[n] X(z) ROC

x[n] = 0, n < 0 u[n]
1

1− z−1
≡ z

z − 1
|z| > 1

x[n] = 0, n > 0 u[−n]
1

1− z
|z| < 1

x[n] = 0, n < 0 an u(n)
z

z − a
≡ 1

1− az−1
|z| > |a|

x[n] = 0, n ≤ 0 an u[n− 1]
a

z − a
≡ az−1

1− az−1
|z| > |a|

x(n) = 0, n > 0 a−n u(−n)
1

1− az
≡ z−1

z−1 − a
|z| < 1

|a|

x(n) = 0, n ≥ 0 a−n u(−n− 1)
az

1− az
≡ a

z−1 − a
|z| < 1

|a|

x(n) = 0, n < 0 nan u(n)
az−1

(1− az−1)2 |z| > |a|

x(n) = 0, n ≥ 0 −na−n u(−n− 1)
az

(1− az)2 |z| < 1

|a|

See note 3
{
a|

n
2 | n ∈ {0, even}

0 for n odd

1

1− az2
+

az−2

1− az−2

or
1− a2

(1− az2) (1− az−2)

|a|
1
2 < |z| < 1

|a| 12

{
a|

n
2 |+ 1

2 for n odd
0 otherwise

az

1− az2
+

az−1

1− az−2

|a|
1
2 < |z| < 1

|a| 12

See notes 1, 3 a|n|

1

1− az−1
+

az

1− az
or

1− a2

(1− az) (1− az−1)

|a| < |z| < 1

|a|

See note 2 |n|a|n| az−1

(1− az−1)2 +
az

(1− az)2
|a| < |z| < 1

|a|

Notes: 1. This identity follows since a|n| ≡ an u(n) + a−n u(−n− 1).

2. Similarly, note that |n|a|n| = nan u(n)− na−n u(−n− 1).

3. Note other similar expressions result, as shown below.
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A variety of equivalent expressions can result from some simple manipulations; thus,
other tables of z-transforms may appear to list different results, but are actually
equivalent. Some examples include:

x(n) =

{
a|

n
2 | n ∈ {0, even}

0 for n odd

z



1

1− az2
+

az−2

1− az−2
=

{
az2

1− az2
+ 1

}
+

{
1

1− az−2
− 1

}
=

az2

1− az2
+

1

1− az−2

and

x(n) = a|n|
z



1

1− az−1
+

az

1− az
=

{
1

1− az−1
− 1

}
+

{
az

1− az
+ 1

}
=

az−1

1− az−1
+

1

1− az

The fact that there are so many equivalent expressions means that sometimes it can
be difficult to find the exact transform relation in tables. The particular form of the
z-transform that needs to be inverted can vary depending on how it is calculated.



4
Linear Systems with Stationary Random

Inputs

Considers the concept of applying a stochastic signal to the input of a system and
determining the resulting output. Looks at the special case of linear time-invariant
(LTI) systems with stationary inputs. Analysis by looking at the input and output
statistics, as well as the input-output joint-statistics. Discusses system identification
using cross-correlation. Provides examples for systems with rationale transfer
functions (using time domain analysis by solving difference equations and frequency
domain analysis).

4.1 Systems with Stochastic Inputs

New slideSignal processing involves the transformation of signals to enhance certain
characteristics; for example, to suppress noise, or to extract meaningful information.
This handout considers the processing of random processes by systems, and in
particular linear systems.

What does it mean to apply a stochastic signal to the input of a system? This question
is an interesting one since a stochastic process is not just a single sequence but an
ensemble of sequences.

If the system is a general nonlinear possibly time-varying system, then one approach
of expressing the relationship is as follows: Given a stochastic process x(n, ζ), assign
according to some rule to each of its realisations x(n, ζk) a function y(n, ζk). Thus,
another process has been created in which:

y(n) = T [x(n)] (4.1)

81
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Figure 4.1: A graphical representation of a random process at the output of a system
in relation to a random process at the input of the system.

whose realisations are the functions {y(n, ζk)}. This process y(n) so formed can be
considered as the output of a system or transformation with, as its input, the process
x(n). The system is completely specified in terms of the transformation function (or
operator) T ; that is, the rule of correspondence between the samples of the input x(n)
and the output y(n). This relationship is indicated in Figure 4.1.

In principle, the statistics of the output of a system can be expressed in terms of the
statistics of the input. However, in general this is a complicated problem except in
special cases. A special case is that of linear systems, and this is considered in the next
section. In particular, if the input is a stationary stochastic process, and the system
linear time-invariant (LTI), the statistics are even simpler. Moreover, it leads to a
slightly simpler and intuitive explanation for the response of the system to the input.
There are other systems that can be analysed, but due to time constraints, they are
not considered in this course. For more information see, for example, [Papoulis:1991,
Chapter 10].

4.2 LTI Systems with Stationary Inputs

New slide The notation:
y(n) = L[x(n)] (P:10-76)

will indicate that y(n) is the output of a linear system with input x(n). This means
that for K random processes {xk(n)}Kk=1 and K scalar values {αk}Kk=1, then

y(n) = L

[
K∑
k=1

αk xk(n)

]
=

K∑
k=1

αk L[xk(n)] (P:10-77)

Since each sequence (realisation) of a stochastic process is a deterministic signal, there
is a well-defined input signal producing a well-defined output signal corresponding to
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a single realisation of the output stochastic process:

y(n, ζ) =
∞∑

k=−∞

h(k)x(n− k, ζ) (M:3.4.1)

This is the familiar convolution integral for LTI systems, and the impulse response of
this system is given by:

h(n) = L[δ(n)] (P:10-78)

If the sum in the right hand side (RHS) of Equation M:3.4.1 exists for all ζ such
that Pr (ζ) = 1, then it is said that this sum has almost-everywhere convergence with
probability of 1.

Theorem 4.1 (Input-output realisations for a LTI). If the process x(n, ζ)
is stationary with E [|x(n, ζ)|] < ∞ and if the system is bounded-input,
bounded-output (BIBO) stable, such that

∑∞
−∞ |h(k)| < ∞, then the output

y(n, ζ) of the system in Equation M:3.4.1 converges absolutely with probability 1, or:

y(n, ζ) =
∞∑

k=−∞

h(k)x(n− k, ζ) for all ζ ∈ A, Pr (A) = 1 (M:3.4.2)
♦

• A complete description of y(n, ζ) requires the computation of an infinite number
of convolutions, corresponding to each value of ζ .

• Thus, a better description would be to consider the statistical properties of
y(n, ζ) in terms of the statistical properties of the input and the characteristics of
the system. For Gaussian signals, which are used very often in practice, first- and
second- order statistics are sufficient, since higher-order statistics are completely
specified by these first two moments.

To investigate the statistical input-output properties of a linear system, note the
following fundamental theorem:

Theorem 4.2 (Expectation in Linear Systems). For any linear system,

E [L[x(n)]] = L[E [x(n)]] (4.2)

In other words, the mean µy(n) of the output y(n) equals the response of the system to
the mean µx(n) of the input:

µy(n) = L[µx(n)] (4.3)

PROOF. This is a simple extension of the linearity of expected values to arbitrary linear
operators.

This result will be used throughout the next section.
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4.2.1 Input-output Statistics of a LTI System

New slideIf a stationary stochastic process x[n] with mean value µx and correlation rxx[`] is
applied to the input of a LTI system with impulse response h[n] and transfer function
H(ejω), then the:

Output mean value is given by:

µy = µx

∞∑
k=−∞

h[k] = µxH(ej0) (M:3.4.4)

This is easily shown by using the linearity property of the expectation
operator:

µy = E

[
∞∑

k=−∞

h[k]x[n− k]

]
=

∞∑
k=−∞

h[k]E [x[n− k]] (M:3.4.4)

and since the process is stationary, then E [x[n− k]] = µx, giving the
desired result. Since µx and H(ej0) are constant, µy is also constant.
Note that H(ej0) is the “direct current” (DC) gain of the spectrum.

Input-output cross-correlation is given by:

rxy[`] = h∗[−`] ∗ rxx[`] =
∞∑

k=−∞

h∗[−k] rxx[`− k] (M:3.4.5)

This can be shown by writing:

rxy(l) = E [x(n) y∗(n− l)] = E [x(n+ l) y∗(n)] (4.4)

= E

[
x(n+ l)

∞∑
k=−∞

h∗(k)x∗(n− k)

]
(4.5)

=
∞∑

k=−∞

h∗(k)E [x(n+ l)x∗(n− k)] (4.6)

=
∞∑

k=−∞

h∗(k) rxx(l + k) (4.7)

which by making the substitution m = −k, gives:

rxy(l) =
∞∑

m=−∞

h∗(−m) rxx(l −m) = h∗(−l) ∗ rxx(l) (4.8)

as required.
Similarly, it follows that ryx(l) = h(l) ∗ rxx(l). Since rxy(l) depends
only on the lag l, then the input and output processes of a BIBO stable
linear time-invariant system, when driven by a wide-sense stationary
(WSS) input, are jointly WSS.
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Figure 4.2: An equivalent LTI system for autocorrelation filtration.

Output autocorrelation is obtained by pre-multiplying the system-output by y∗(n−
l) and taking expectations:

ryy(l) =
∞∑

k=−∞

h(k)E [x(n− k) y∗(n− l)] = h(l)∗ rxy(l) (M:3.4.8)

Substituting the expression for rxy(l) gives:

ryy(l) = h(l) ∗ h∗(−l) ∗ rxx(l) = rhh(l) ∗ rxx(l) (M:3.4.10)

where rhh(l) = r∗hh(−l) is the autocorrelation, for want of a better
phrase, of the system impulse response:

rhh(l) , h(l) ∗ h∗(−l) =
∞∑

n=−∞

h(n)h∗(n− l) (M:3.4.11)

where , means defined as. If the relationship in Equation M:3.4.11 is
not apparent, it can be proven by writing g(l) = h∗(−l), such that the
standard convolution formula gives:

rhh(l) , h(l) ∗ g(l) =
∞∑

n=−∞

h(n) g(l − n) (4.9)

and, since g(l − n) = h∗(−[l − n]) = h∗(n − l), Equation M:3.4.11
follows. However, this equation can also be written in an alternative
form by making the substitution m = n− l such that when n→ ±∞,
m→ ±∞, and Equation M:3.4.11 becomes:

rhh(l) , h(l) ∗ h∗(−l) =
∞∑

m=−∞

h(m+ l)h∗(m) (M:3.4.11)

Both of these forms of the convolution rhh[`] , h[`] ∗ h∗[−`] are
equally valid. It is straightforward to show that rhh[`] = r∗hh[−`] by
writing:

r∗hh[−`] = (h[−`] ∗ h∗[+`])∗ = h[−`]∗ ∗ h[+`] = rhh[`] (4.10)
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Since µy, as given by Equation M:3.4.4 is constant, and ryy(l) depends
only on the lag l, the response of a BIBO stable linear time-invariant to
a stationary input is also a stationary process. A careful examination
of Equation M:3.4.10 shows that when a signal x(n) is filtered by a
LTI system with impulse response h(n), its autocorrelation function is
filtered by a system with impulse response equal to the autocorrelation
of its impulse response. This idea is illustrated in Figure 4.2.

Output-power of the process y(n) is given by ryy(0) = E [|y(n)|2], and therefore
since ryy(l) = rhh(l) ∗ rxx(l),

Pyy = rhh(l) ∗ rxx(l)|l=0 =
∞∑

k=−∞

rhh(k) rxx(−k) (4.11)

Noting power, Pyy, is real, then taking complex-conjugates using
r∗xx(−l) = rxx(l):

Pyy =
∞∑

k=−∞

r∗hh(k) rxx(k) =
∞∑

n=−∞

h∗(n)
∞∑

k=−∞

rxx(n+ k)h(k)

(4.12)

This last step can be shown as follows:

Pyy =
∞∑

k=−∞

r∗hh(k) rxx(k) =
∞∑

k=−∞

{
∞∑

n=−∞

h∗(n)h(n− k)

}
rxx(n)

(4.13)

Hence, by rearranging the order of summation, and bringing the h∗(n)
forward, this gives:

=
∞∑

n=−∞

h∗(n)
∞∑

k=−∞

h(n− k) rxx(n) (4.14)

Then, by letting m = n− k, the desired result is obtained.

Output probability density function (pdf) In general, it is very difficult to calculate
the pdf of the output of a LTI system, except in special cases, namely
Gaussian processes.
If x(n) is a Gaussian process, then the output is also a Gaussian process
with mean and autocorrelation sequence given by Equation M:3.4.4
and Equation M:3.4.10 above. Also, if x(n) is independent and
identically distributed (i. i. d.), the pdf of the output is obtained by
noting that y(n) is a weighted sum of independent random variables
(RVs). Indeed, as shown in earlier handouts, the pdf of the sum of
independent RVs is the convolution of their pdfs or the product of their
characteristic functions.
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Figure 4.3: A LTI system for [Therrien:1991, Example 5.1, Page 229].

Figure 4.4: The input-output cross-covariance sequences for [Therrien:1991, Example
5.1, Page 229].

Finally, before concluding this section, note that the covariance sequences (or
functions) is just the correlation sequences for the random process with the mean
removed. As a result, the covariance functions satisfy a set of equations analogous
to those derived above. For completeness, they are listed below:

γyx(l) = h(l) ∗ γxx(l) (T:5.18)
γxy(l) = h∗(−l) ∗ γxx(l) (T:5.19)
γyy(l) = h(l) ∗ γxy(l) (T:5.20)

= h(l) ∗ h∗(−l) ∗ γxx(l) (T:5.21)

The following example illustrates the application of these results.

Example 4.1 ( [Therrien:1991, Example 5.1, Page 229]). The LTI system shown in
Figure 4.3 is driven by a process with mean µx and covariance sequence γxx(l) =
σ2
xδ(l); note that this input process is white noise with an added nonzero mean.

Calculate the mean, autocorrelation and autocovariance sequences of the output, y(n),
as well as the cross-correlation and cross-covariance functions between the input and
the output.

SOLUTION. Each of these functions may be calculated using the equations listed in
this section. Hence:

Output mean value Using Equation M:3.4.4, then:

µy = µx

∞∑
k=−∞

h(k) = µx

∞∑
k=0

ρk =
µx

1− ρ
(4.15)

Input-output cross-covariance Since the input and the output both have nonzero
mean, then it is easiest to first calculate the auto- and cross-covariance
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functions, and then use these to find the auto- and cross-correlation
functions. Thus, the output-input cross-covariance is given by
Equation T:5.18:

γyx(l) = h(l) ∗ γxx(l) =
(
ρlu(l)

)
∗
(
σ2
xδ(l)

)
= σ2

xρ
lu(l) (4.16)

and therefore the input-output cross-covariance is

γxy(l) = γ∗yx(−l) = σ2
x(ρ
∗)−lu(−l) (4.17)

Output autocovariance Next, using Equation T:5.20, then:

γyy(l) = h(l) ∗ γxy(l) =
∞∑

k=−∞

h(k) γxy(l − k) (4.18)

The input-output cross-covariance sequence, γxy(l), is plotted in
Figure 4.4, along with γxy(l − k) as a function of k. Hence, if l > 0 it
follows

γyy(l) =
∞∑
k=l

h(k) γxy(l − k) =
∞∑
k=l

ρk σ2
x(ρ
∗)−(l−k) (4.19)

Substituting m = k − l, such that when k = l, ∞, then m = 0, ∞,
and so:

γyy(l) = σ2
x

∞∑
m=0

ρl ρm (ρ∗)m = σ2
xρ

l

∞∑
m=0

(
|ρ|2
)m

=
σ2
xρ

l

1− |ρ|2
, l > 0

(4.20)
If l ≤ 0, then the summation is slightly different:

γyy(l) =
∞∑
k=0

ρk σ2
x(ρ
∗)−(l−k) = σ2

x(ρ
∗)−l

∞∑
k=0

(
|ρ|2
)k

=
σ2
x(ρ
∗)−l

1− |ρ|2
, l ≤ 0

(4.21)

Input-output cross-correlation This can now be calculated using the relationship:

rxy(l) = γxy(l) + µx µ
∗
y (4.22)

= σ2
x(ρ
∗)−lu(−l) + µx

µ∗x
1− ρ∗

(4.23)

= σ2
x(ρ
∗)−lu(−l) +

|µx|2

1− ρ∗
(4.24)

Output autocorrelation In a similar manner, the autocorrelation of the output is given
by:

ryy(l) = γyy(l) + |µy|2 =


σ2
xρ
l

1−|ρ|2 +
∣∣∣ µx1−ρ

∣∣∣2 l > 0

σ2
x(ρ∗)−l

1−|ρ|2 +
∣∣∣ µx1−ρ

∣∣∣2 l ≤ 0
(4.25)
�

Note that these results show that a process with the exponential correlation function
can always be generated by applying white noise to a stable first-order system.



4.3. LTV Systems with Nonstationary Inputs 89

Figure 4.5: System identification by cross-correlation.

4.2.2 System identification by cross-correlation

New slideThe input-output cross-correlation of a LTI system is the basis for a classical method
of identification of an unknown linear system.

The system is excited with a white Gaussian noise (WGN) input with autocorrelation
function:

rxx(l) = δ(l) (4.26)

Since the output-input cross-correlation can be written as:

ryx(l) = h(l) ∗ rxx(l) (M:3.4.6)

then, with rxx(l) = δ(l), it follows:

ryx(l) = h(l) ∗ δ(l) = h(l) (4.27)

Hence, the impulse response of an unknown LTI system can be estimated by exciting
the system with WGN and evaluating the input-output cross-correlation.

If the discrete system represents a sampled continuous system, this method of
estimating the impulse response out-performs an estimation based on simply driving
the system by an impulse since:

1. it is easier to generate an approximation to white noise than to generate an
approximation to an impulse, since the latter must have finite energy in an almost
zero-width pulse;

2. application of an impulse to a physical system requires driving it very hard, albeit
for a very short time, and may cause damage. Driving a system with white
noise is less traumatic. As an example, consider estimating the acoustic impulse
response (AIR) of a concert hall or office; one method of generating an impulse
is to fire a gun and, obviously, this will damage the concert hall, which is less
than desirable.

4.3 LTV Systems with Nonstationary Inputs

New slideIt is also possible to analyse a general linear system that is not necessarily
time-invariant, as shown in Figure 4.6; such a system is called linear time-varying
(LTV).
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Figure 4.6: General linear time-varying (LTV) system with nonstationary input; the
impulse response h(n, k) is the response at index n to an impulse occurring at time
index k.

The input and output are related by the generalised convolution:

y(n) =
∞∑

k=−∞

h(n, k)x(k) (T:5.1)

where h(n, k) is the response at time-index n to an impulse occurring at the system
input at time-index k. The mean, autocorrelation and autocovariance sequences of the
output, y(n), as well as the cross-correlation and cross-covariance functions between
the input and the output, can be calculated in a similar way as for LTI systems with
stationary inputs. It is left as an exercise to the reader to derive these, but the results
are summarised in the next section.

4.3.1 Input-output Statistics of a LTV System

It is important to note that the input-output statistics of a LTI system with a stationary
input are simply special cases of the following results. Thus, it is perhaps preferable to
remember these more general results and simplify them as necessary.

Output mean value is given by

µy(n) =
∞∑

k=−∞

h(n, k)µx(k) (T:5.2)

This can be written as:

µy(n) = L[µx(n)] (P:10-80)

Output-input cross-correlation is given by

ryx(n,m) =
∞∑

k=−∞

h(n, k) rxx(k,m) (T:5.5)

and the input-output cross-correlation is:

rxy(n,m) = r∗yx(m,n) (T:5.4)

Output autocorrelation is a similar form, given by:

ryy(n,m) =
∞∑

k=−∞

h(n, k) rxy(k,m) (T:5.3)
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Figure 4.7: Cross-correlation with respect to a third random process.

Output-input cross-covariance has an identical form to that for the input-output
cross-correlation functions:

γyx(n,m) = ryx(n,m)− µy(n)µ∗x(m) (4.28)

=
∞∑

k=−∞

h(n, k) γxx(k,m) (T:5.9)

and
γyx(n,m) = γ∗xy(m,n) (T:5.8)

Output autocovariance is given by:

γyy(n,m) = ryy(n,m)− µy(n)µ∗y(m) (T:5.6)

=
∞∑

k=−∞

h(n, k) γxy(k,m) (T:5.7)

Note that if the impulse response of the system has finite support, in the sense the
region over which it has non-zero values is a well-defined finite region, then it is
possible to represent the correlation functions and the impulse response function in
matrix form:

Ryy = HRxxH
H (4.29)

Correlation matrices were introduced in an earlier handout.

4.3.2 Effect of Linear Transformations on Cross-correlation

Another situation worth considering is the cross-correlation with respect to a third
random process, as shown in Figure 4.7.

A random process x(n) is transformed by a LTV system to produce another signal
y(n). The process x(n) is related to a third process z(n), and rxz(n1, n2) is known. It
is desirable to find ryz(n1, n2). The response of the LTV system to x(n) is:

y(n) =
∑
k∈Z

h(n, k)x(k) (T:5.22)
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Hence, multiplying both sides by z∗(m) and taking expectations:

ryz(n,m) =
∑
k∈Z

h(n, k) rxz(k,m) = h(n, k) ∗ rxz(k,m) (T:5.24)

If the system is LTI, then this simplifies to:

ryz(l) =
∑
k∈Z

h(k) rxz(l − k) = h(l) ∗ rxz(l) (4.30)

4.4 Difference Equation

New slide A mathematically elegant analysis of stochastic systems comes about when a LTI
system can be represented by difference equations. This will be particularly useful in
the next handout on linear signal models. Although the results of the preceding sections
apply to these systems, the difference equation offers an alternative representation of
the results that can sometimes be quite useful and important.

Consider a LTI system that can be represented by a difference equation:
P∑
p=0

ap y(n− p) =

Q∑
q=0

bq x(n− q) (4.31)

where a0 , 1. Assuming that both x(n) and y(n) are stationary processes, such that
E [x(n− p)] = µx and E [y(n− q)] = µy, then taking expectations of both sides gives,
after a little rearrangement:

µy =

∑Q
q=0 bq

1 +
∑P

p=1 ap
µx (4.32)

Next, multiplying the system equation throughout by y∗(m) and taking expectations
gives:

P∑
p=0

ap ryy(n− p,m) =

Q∑
q=0

bq rxy(n− q,m) (4.33)

Similarly, rather than multiplying throughout the system equation by y∗(m), instead
multiply though by x∗(m) to give:

P∑
p=0

ap ryx(n− p,m) =

Q∑
q=0

bq rxx(n− q,m) (4.34)

These two difference equations may be used to solve for ryy(n1, n2) and rxy(n1, n2).
Similar expressions can be obtained for the covariance functions. They are given by:

P∑
p=0

ap γyy(n− p,m) =

Q∑
q=0

bq γxy(n− p,m) (4.35)

and
P∑
p=0

ap γyx(n− p,m) =

Q∑
q=0

bq γxx(n− p,m) (4.36)
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Example 4.2 ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x(n) be a random
process generated by the first order difference equation given by:

x(n) = αx(n− 1) + w(n), |α| ≤ 1, n ∈ Z (4.37)

where w(n) ∼ N (µw, σ
2
w) is an i. i. d. WGN process.

• Demonstrate that the process x(n) is stationary, and determine the mean µx.

• Determine the autocovariance and autocorrelation function, γxx(l) and rxx(l).

SOLUTION. Note that this is a first-order autoregressive (AR) process, which will be
discussed in more detail later in the lecture course. The case written above is, in fact,
the stationary case, and [Manolakis, Exercise 3.23, Page 145] poses the case where
there is an initial transient, resulting in a nonstationary autocorrelation function. This
exercise is left for those interested, although be forewarned that this is not an easy
exercise. This example uses the theory described above.

• The output of a LTI system with a stationary input is always stationary. It follows
directly from the results above that:

µx =
µw

1− α
(4.38)

• Using the results for the input-output covariance of a LTI system represented by
difference equation:

γxx(n,m)− α γxx(n− 1,m) = γwx(n,m) (4.39)
γxw(n,m)− α γxw(n− 1,m) = γww(n,m) (4.40)

which, since the system is stationary, can be written as:

γxx(l)− α γxx(l − 1) = γwx(l) (4.41)
γxw(l)− α γxw(l − 1) = γww(l) (4.42)

Noting x(n) cannot depend on future values of w(n), then γxw(n + l, n) =
γxw(l) = 0, l < 0. This can also be demonstrated by explicitly evaluating
γxw(n,m), m < n, and noting that x(n) and w(n) are independent and zero
mean. Since γww(l) = σ2

w δ(l), the second of the equations above becomes:

γxw(l) =


α γxw(l − 1) l > 0

σ2
w l = 0

0 l < 0

(4.43)

Solving for l ≥ 0 gives by repeated substitution, γxw(l) = αl σ2
w, and zero for l <

0. Since γwx(l) = γ∗xw(−l), then the difference equation for the autocovariance
function of x(n) simplifies to:

γxx(l)− α γxx(l − 1) =

{
0 l > 0

α−l σ2
w l ≤ 0

(4.44)
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Figure 4.8: The PSD at the input and output of a LTI system with stationary input.

Note the solution for l > 0 is the solution of the homogeneous equation. Hence,
since γxx(l) = γxx(−l) for a real process, then this equation is solved by
assuming the solution:

γxx(l) = aα|l| + b (4.45)

The values of a and b can be found by directly substituting the proposed solution
for l ≤ 0 into the difference equation:

aα−l + b− α
(
aα−(l−1) + b

)
= α−l σ2

w (4.46)

α−l
(
1− α2

)
a+ (1− α) b = α−l σ2

w (4.47)

from which it directly follows that b = 0 and a = σ2
x = σ2

w

1−α2 , corresponding to
the case when l = 0. Hence, in conclusion

γxx(l) =
σ2
w

1− α2
α|l| (4.48)

Using the relationship that rxx(l) = γxx(l) + µ2
x, it follows that the output

auto-correlation is given by

rxx(l) =
σ2
w

1− α2
α|l| +

µ2
w

(1− α)2
(4.49)
�

As usual, if µw = 0, then rxx(l) = γxx(l).

4.5 Frequency-Domain Analysis of LTI systems

New slide Now consider how a LTI transformation affects the power spectra and complex power
density spectra of a stationary random process. Recall that the power spectral density
(PSD) is the Fourier transform of the autocorrelation functions. Alternatively, it is
possible to note that the frequency response of a system is the z-transform evaluated
on the unit circle.
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This therefore leads to the following spectral densities:

Pxy(e
jω) = H∗(ejω)Pxx(e

jω) (M:3.4.19)

Pyx(e
jω) = H(ejω)Pxx(e

jω) (M:3.4.20)

Pyy(e
jω) = |H(ejω)|2 Pxx(ejω) (M:3.4.21)

These results are derived very easily from the results in Section 4.2.1 and the properties
of the Fourier transform, especially that convolution becomes multiplication. It is
important to stress the similarity of these results with those for the frequency analysis
of linear time-invariant systems with deterministic signal inputs. The system is
depicted in Figure 4.8.

• If the input and output autocorrelations or autospectral densities are known, the
magnitude response of a system |H(ejω)| can be determined, but not the phase
response.

• Only cross-correlation or cross-spectral information can help determine the
phase response.

A set of similar relations to Equation M:3.4.19, Equation M:3.4.20 and
Equation M:3.4.21 can also be derived for the complex spectral density function.
Specifically, if h(l)

z

 H(z), then h∗(−l)

z

 H∗

(
1
z∗

)
and therefore:

Pxy(z) = H∗
(

1

z∗

)
Pxx(z) (T:5.41)

Pyx(z) = H(z)Pxx(z) (T:5.40)
Pyy(z) = H(z)Pxy(z) (T:5.42)

Pyy(z) = H(z)H∗
(

1

z∗

)
Pxx(z) (T:5.44)

Note that Pyy(z) satisfies the required property for a complex spectral density function,
namely that Pyy(z) = P ∗yy

(
1
z∗

)
. Also, note the following result for real filters that make

the above equations simplify accordingly.

Theorem 4.3 (Transfer function for a real filter). For a real filter:

h(−l)
z

 H∗

(
1

z∗

)
= H(z−1) (4.50)

PROOF. Writing:

H(z) =
∞∑

n=−∞

h(n) z−n (4.51)

then setting z → 1
z∗

gives:

H

(
1

z∗

)
=

∞∑
n=−∞

h(n)

[
1

z∗

]−n
(4.52)

Now, taking complex-conjugates, using the following facts:
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• the conjugate of a sum/product of complex numbers is the sum/product of the
conjugates of the complex numbers, or in otherwords (a + b)∗ = a∗ + b∗ and
(ab)∗ = a∗b∗,

• the filter coefficients are real, such that h(n)∗ = h(n),

then

H∗
(

1

z∗

)
=

∞∑
n=−∞

h(n) zn ≡
∞∑

m=−∞

h(−m) z−m (4.53)
�

where in the last step, the substitution m = −n has been made. Hence, this gives the
desired result. It is straightfoward to adapt the final stage of this proof to show that
h∗(−l)

z

 H∗

(
1
z∗

)
in general.

Consider again the earlier example based on [Therrien:1991, Example 5.1, Page 229].

Example 4.3 ( [Therrien:1991, Example 5.3, Page 237]). Again, the LTI system
shown in Figure 4.3 is driven by a process with mean µx and covariance sequence
γxx(l) = σ2

x δ(l). Calculate the power spectral density (PSD), cross-power spectral
density (CPSD) and the complex cross-spectral densities.

SOLUTION. The first-order system with impulse response h(n) = ρnu(n) has system
transfer function

H(z) =
1

1− ρ z−1
(4.54)

The complex spectral density function for the white noise with added mean is given by
the z-transform of the autocorrelation sequence. Since γxx(l) = σ2

xδ(l), then rxx(l) =
γxx(l) + µ2

x = σ2
xδ(l) + |µx|2. Taking z-transforms gives:

Pxx(z) = σ2
x + 2π|µx|2δ(z − ej0) (4.55)

= σ2
x + 2π|µx|2δ(z − 1) (4.56)

where the complex spectral density result in Equation (T:4.59) at the end of the
previous handout has been used. Hence, the complex cross-spectral density is given
by:

Pxy(z) = H∗
(

1

z∗

)
Pxx(z) =

(
1

1− ρ
[

1
z∗

]−1

)∗ [
σ2
x + 2π|µx|2δ(z − 1)

]
(4.57)

=
σ2
x

1− ρ∗z
+

2π|µx|2

1− ρ∗z
δ(z − 1) (4.58)

Moreover, the complex spectral density is given by:

Pyy(z) = H(z)Pxy(z) =

(
1

1− ρz−1

)(
1

1− ρ∗z

)[
σ2
x + 2π|µx|2δ(z − 1)

]
(4.59)

=
σ2
x

1 + |ρ|2 − ρ∗z − ρz−1
+

2π|µx|2

|1− ρ|2
δ(z − 1) (4.60)
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Thus, the CPSD and the PSD can be obtained by setting z = ejω to obtain:

Pxy(e
jω) =

σ2
x

1− ρ∗ejω
+

2π|µx|2

1− ρ∗ejω
δ(ejω − 1) (4.61)

Moreover, the complex spectral density is given by:

Pyy(e
jω) =

σ2
x

1 + |ρ|2 − 2|ρ| cos(ω − arg ρ)
+

2π|µx|2

|1− ρ|2
δ(ejω − 1) (4.62)

where the simplification that:

ρ∗ejω + ρe−jω = |ρ|
[
e−j arg ρ ejω + ej arg ρe−jω

]
= |ρ|

[
ej(ω−arg ρ) + e−j(ω−arg ρ)

]
(4.63)

= 2|ρ| cos(ω − arg ρ) (4.64)
�

has been used.
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5
Linear Signal Models

This handout looks at the special class of stationary signals that are obtained by driving
a linear time-invariant (LTI) system with white noise. A particular focus is placed
on system functions that are rational; that is, they can be expressed at the ratio of
two polynomials. Thus, the time-domain and frequency domain characteristics of
pole-zero, all-pole, and all-zero models are investigated, including their time-series
equivalents.

5.1 Abstract
New slide• In the last lecture, the response of a linear-system when a stochastic process is

applied at the input was considered. General linear systems were considered,
and no focus on their interpretation or their practical applications was discussed.

• This lecture looks at the special class of stationary signals that are obtained by
driving a linear time-invariant (LTI) system with white noise. A particular focus
is placed on system functions that are rational; that is, they can be expressed at
the ratio of two polynomials. The power spectral density (PSD) of the resulting
process is also rational, and its shape is completely determined by the filter
coefficients. As a result, linear signal models provide a method for modelling the
PSD of a process, and thus leads to parametric PSD estimation, also known as
modern spectral estimation.

• The following models are considered in detail:

– All-pole systems and autoregressive (AR) processes;

– All-zero systems and moving average (MA) processes;

99
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– and pole-zero systems and autoregressive moving average (ARMA)
processes.

• Pole-zero models are widely used for modelling stationary signals with short
memory; the concepts will be extended, in overview at least, to nonstationary
processes.

Linear signal models are developed first by assuming that the second order moments of
the random process are known, and equations are developed whose solution provides
the model parameters. In most practical applications of the theory, however, the fixed
quantities in the equations, namely the correlation functions and the model orders, are
not known a priori but need to be estimated from the data. This, as a result, introduces
the issue of estimation of the model parameters and leads to the notion of, for example,
maximum likelihood estimation and least squares estimates as discussed in the next
handout.

5.2 The Ubiquitous WGN Sequence

New slide The simplest random signal model is the wide-sense stationary (WSS) white Gaussian
noise (WGN) sequence:

w(n) ∼ N
(
0, σ2

w

)
(5.1)

The sequence is independent and identically distributed (i. i. d.), and has a flat PSD:
Pww(ejω) = σ2

w, −π < ω ≤ π. It is also easy (as shown below) to generate samples
using simple algorithms.

5.2.1 Generating WGN samples

Recall that the probability transformation rule takes random variables from one
distribution as inputs and outputs random variables in a new distribution function:

Theorem 5.1 (Probability transformation rule (revised)). If {x1, . . . xn} are
random variables with a joint-probability density function (pdf) fX (x1, . . . , xn),
and if {y1, . . . yn} are random variables obtained from functions of {xk}, such that
yk = gk(x1, x2 . . . xn), then the joint-pdf, fY (y1, . . . , yn), is given by:

fY (y1, . . . , yn) =
1

|J(x1, . . . , xn)|
fX (x1, . . . , xn) (5.2)

where J(x1, . . . , xn) is the Jacobian of the transformation given by:

J(x1, . . . , xn) =
∂(y1, . . . yn)

∂(x1, . . . xn)
(5.3)
♦
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One particular well-known example is the Box-Muller (1958) transformation that
takes two uniformly distributed random variables, and transforms them to a bivariate
Gaussian distribution. Consider the transformation between two uniform random
variables given by,

fXk (xk) = I0,1 (xk) , k = 1, 2 (5.4)

where IA (x) = 1 if x ∈ A, and zero otherwise, and the two random variables y1, y2

given by:

y1 =
√
−2 lnx1 cos 2πx2 (5.5)

y2 =
√
−2 lnx1 sin 2πx2 (5.6)

It follows, by rearranging these equations, that:

x1 = exp

[
−1

2
(y2

1 + y2
2)

]
(5.7)

x2 =
1

2π
arctan

y2

y1

(5.8)

The Jacobian determinant can be calculated as:

J(x1, x2) =

∣∣∣∣∣ ∂y1∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣ =

∣∣∣∣∣ −1
x1
√
−2 lnx1

cos 2πx2 −2π
√
−2 lnx1 sin 2πx2

−1
x1
√
−2 lnx1

sin 2πx2 2π
√
−2 lnx1 cos 2πx2

∣∣∣∣∣ =
2π

x1

(5.9)
Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π
e−y

2
1/2

] [
1√
2π
e−y

2
2/2

]
(5.10)

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus covering the range
of real numbers. This is the product of y1 alone and y2 alone, and therefore each y is
i. i. d. according to the normal distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution in
order to obtain samples that have the same pdf as a Gaussian random variable.

5.2.2 Filtration of WGN
New slideBy filtering a WGN through a stable LTI system, it is possible to obtain a stochastic

signal at the output with almost any arbitrary aperiodic correlation function or
continuous PSD. The PSD of the output is given by:

Pxx(e
jω) = σ2

w|H(ejω)|2 = G2

∏Q
k=1 |1− zk e−jω|

2∏P
k=1 |1− pk e−jω|

2
(5.11)

Note that the shape of the power spectrum depends only upon the magnitude of the
filter’s frequency response.
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Figure 5.1: Signal models with continuous and discrete (line) power spectrum
densities.

Figure 5.2: The speech synthesis model.

Random signals with line PSDs can be generated by using the harmonic process
model, which is a linear combination of sinusoidal sequences with statistically
independent random phases. Signal models with mixed PSDs can be obtained by
combining these two models; a process justified by the Wold decomposition. This
is highlighted in Figure 5.1; contrast this with the speech synthesis model shown in
Figure 5.2, which was also shown in the introductory handout.

5.3 Nonparametric and parametric signal models

New slide Nonparametric models have no restriction on its form, or the number of parameters
characterising the model. For example, specifying a LTI filter by its
impulse response is a nonparametric model.

If the input w(n) is a zero-mean white noise process with variance σ2
w,

autocorrelation rww(l) = σ2
wδ(l) and Pww(ejω) = σ2

w, −π < ω ≤
π, then the autocorrelation, complex spectral density, and PSD of the
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output x(n) are given by, respectively:

rxx(l) = σ2
w

∞∑
k=−∞

h(k)h∗(k − l) = σ2
wrhh(l) (M:4.1.2)

Pxx(z) = σ2
wH(z)H∗

(
1

z∗

)
(M:4.1.3)

Pxx(e
jω) = σ2

w|H(ejω)|2 (M:4.1.4)

Notice that the shape of the autocorrelation and the power spectrum
of the output signal are completely characterised by the system. This
is known as a system based signal model, and in the case of linear
systems, is also known as the linear random signal model, or the
general linear process model.

Parametric models, on the other hand, describe a system with a finite number of
parameters. For example, if a LTI filter is specified by a finite-order
rational system function, it is a parametric model.
Two important analysis tools present themselves for parametric
modelling:

1. given the parameters of the model, analyse the characteristics of
that model (in terms of moments etc.);

2. design of a parametric system model to produce a random signal
with a specified autocorrelation function or PSD. This problem
is known as signal modelling.

5.4 Parametric Pole-Zero Signal Models

New slideParametric models describe a system with a finite number of parameters. Consider a
system described by the following linear constant-coefficient difference equation:

x(n) = −
P∑
k=1

ak x(n− k) +

Q∑
k=0

dk w(n− k) (M:4.1.21)

This rational transfer function was introduced in the first lecture. Taking z-transforms
gives the system function:

H(z) =
X(z)

W (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

(M:4.1.22)

,
D(z)

A(z)
= G

∏Q
k=1(1− zk z−1)∏P
k=1(1− pk z−1)

(M:4.1.23)

This system has Q zeros, {zk, k ∈ Q} where Q = {1, . . . , Q}, and P poles, {pk, k ∈
P}. Note that poles and zeros at z = 0 are not considered here. The term G is
the system gain. It is assumed that the polynomials A(z) and D(z) do not have any
common roots; that is, common poles and zeros have already been cancelled.
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Figure 5.3: Types of linear model; top to bottom, these are the AR, MA and ARMA
models.

5.4.1 Types of pole-zero models

New slide There are three cases of interest as shown in Figure 5.3:

All-pole model when Q = 0. The input-output difference equation is given by:

x(n) = −
P∑
k=1

ak x(n− k) + d0w(n) (M:4.1.26)

This is commonly denoted as the AP (P ) model.

All-zero model when P = 0. The input-output relation is given by:

x(n) =

Q∑
k=0

dk w(n− k) (M:4.1.25)

This is commonly denoted as the AZ(Q) model.

Pole-zero model when P > 0 and Q > 0.
This is commonly denoted as the PZ(P,Q) model, and if it is assumed
to be causal, is given by Equation M:4.1.21. This is, of course, the
most general of the linear signal models.

If a parametric model is excited with WGN, the resulting output signal has
second-order moments determined by the parameters of the model. These stochastic
processes have special names in the literature, and are known as:

a moving average (MA) process when it is the output of an all-zero model;

an autoregressive (AR) process when it is the output of an all-pole model;
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an autoregressive moving average (ARMA) process when it is the output of an
pole-zero model;

each subject to a WGN process at the input.

The parametric signal model is usually specified by normalising d0 = 1 and setting the
variance of the input to σ2

w. The alternative is to specify σ2
w = 1 and leave d0 arbitrary,

but this isn’t quite as elegant when it comes to deriving pdfs. It is also important to
stress that these models assume the resulting processes are stationary, which is ensured
if the corresponding systems are bounded-input, bounded-output (BIBO) stable.

5.4.2 All-pole Models

New slideA discussion of linear signal models should begin with all-pole models because they
are the easiest to analyse, and the most often used in practical applications. Assume an
all-pole model of the form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0∏P

k=1(1− pk z−1)
(M:4.2.1)

where d0 is the system gain, and P is the order of the model.

All-pole models are frequently used in signal processing applications since they are:

• mathematically convenient since model parameters can be estimated by solving
a set of linear equations, and

• they widely parsimoniously approximate rational transfer functions, especially
resonant systems.

There are various model properties of the all-pole model that are useful; these include:

1. the systems impulse response;

2. the somewhat inappropriate term called the autocorrelation of the impulse
response;

3. and minimum-phase conditions.

Although the autocorrelation of the impulse response is useful to gain additional
insight into aspects of the all-pole filter, it is better to consider the autocorrelation
function of an AR process (i.e. the autocorrelation function of the output of an all-pole
filter). However, for completeness, the details of the autocorrelation of the impulse
response is included in these notes.
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5.4.2.1 Frequency Response of an All-Pole Filter

New slideThe all-pole model has form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0∏P

k=1(1− pk z−1)
(M:4.2.1)

and therefore its frequency response is given by:

H(ejω) =
d0

1 +
∑P

k=1 ak e
−jkω

=
d0∏P

k=1(1− pk e−jω)
(5.12)

When each of the poles are written in the form pk = rke
jωk , then the frequency

response can be written as:

H(ejω) =
d0∏P

k=1(1− rk e−j(ω−ωk))
(5.13)

Hence, it can be deduced that resonances occur near the frequencies corresponding to
the phase position of the poles. When the system is real, the complex-poles occur in
conjugate-pairs.

Hence, the PSD of the output of an all-pole filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 =

G2∏P
k=1 |1− rk e−j(ω−ωk)|2

(5.14)

where G = σw d0 is the overall gain of the system.

Consider the all-pole model with poles at positions:

{pk} = {rk ejωk} where

{
{rk} = {0.985, 0.951, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(5.15)

The pole positions and magnitude frequency response of this system is plotted in
Figure 5.4. For comparison, the PSD of the output of the system is shown in Figure 5.5.

5.4.2.2 Impulse Response of an All-Pole Filter

New slide Recalling that the input-output difference equation for an all-pole filter is given by:

x(n) = −
P∑
k=1

ak x(n− k) + d0w(n) (M:4.1.26)

then the impulse response, h(n), is the output of this system when the input is a delta
function, w(n) = δ(n).

The impulse response of the all-pole filter satisfies the equation:

h(n) = −
P∑
k=1

ak h(n− k) + d0 δ(n) (M:4.2.3)
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Figure 5.4: The frequency response and position of the poles in an all-pole system.
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Figure 5.5: Power spectral response of an all-pole model.
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The derivation in [Manolakis:2000, page 157] is somewhat verbose; nevertheless, their
approach is to re-write the system function of the all-pole filter as:

H(z) +
P∑
k=1

akH(z) z−k = d0 (5.16)

and thus by taking the inverse z-transform gives the same result as above. If H(z) has
its poles inside the unit circle, then h(n) is a causal, stable sequence, and the system is
minimum-phase.

Assuming causality, such that h(n) = 0, n < 0 then it follows h(−k) = 0, k > 0,
and therefore:

h(n) =


0 if n < 0

d0 if n = 0

−
∑P

k=1 ak h(n− k) if n > 0

(M:4.2.5)

Thus, except for the value at n = 0, h(n) can be obtained recursively as a linearly
weighted summation of its previous values, {h(n− p), p = {1, . . . , P}}. Thus, in this
sense, h(n) can be predicted, for n 6= 0, with zero error from the past P past values.
Thus, the coefficients {ak} are often referred to as predictor coefficients.

Finally, note that a causal H(z) can be written as a one-sided z-transform, or infinite
polynomial, H(z) =

∑∞
n=0 h(n) z−n. This representation implies that any finite-order,

all-pole model can be represented equivalently by an infinite number of zeros, and
conversely a single zero can be represented by an infinite number of poles. If the poles
are inside the unit circle, then so are the corresponding zeros, and vice-versa.

5.4.2.3 Autocorrelation of the Impulse Response

The impulse response h(n) of an all-pole model has infinite duration, so that its
autocorrelation involves an infinite summation, which is not practical to write in closed
form except for low-order models. However, the autocorrelation function for the
all-pole model can be written as a recursive relation that relates the autocorrelation
values to the model parameters. As introduced previously, the autocorrelation of the
system impulse response is given by:

rhh(l) , h(l) ∗ h∗(−l) =
∞∑

n=−∞

h(n)h∗(n− l) (5.17)

Multiplying both side of Equation M:4.2.3 by h∗(n− l) gives and summing over all n:
∞∑

n=−∞

P∑
k=0

ak h(n− k)h∗(n− l) = d0

∞∑
n=−∞

h∗(n− l)δ(n) (M:4.2.14)

where a0 = 1. Interchanging the order of summations (as usual) in the left hand
side (LHS), and setting n̂ = n− k gives:

P∑
k=0

ak

∞∑
n̂=−∞

h(n̂)h∗(n̂− (l − k)) = d0 h
∗(−l) (5.18)
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which can also be written as

P∑
k=0

ak rhh(l − k) = d0 h
∗(−l) (M:4.2.15)

Since h(n) = 0, n < 0, then h(−l) = 0, l > 0, and h(0) = d0, then:

rhh(l) =


d0 h

∗(−l)−
∑P

k=1 ak rhh(l − k) l < 0

|d0|2 −
∑P

k=1 ak rhh(−k) l = 0

−
∑P

k=1 ak rhh(l − k) l > 0

(5.19)

These are recursive relationships for rhh(l) in terms of past values of the
autocorrelation function.

It is also possible to write the autocorrelation in terms of the poles of the model, and
to also investigate the response of the model to an impulse train (harmonic) excitation.
These are not considered in this handout, but are detailed in [Manolakis:2000, Section
4.2].

5.4.2.4 All-Pole Modelling and Linear Prediction

New slideA linear predictor forms an estimate, or prediction, x̂(n), of the present value of a
stochastic process x(n) from a linear combination of the past P samples; that is:

x̂(n) = −
P∑
k=1

ak x(n− k) (M:1.4.1)

The coefficients {ak} of the linear predictor are determined by attempting to minimise
some function of the prediction error given by:

e(n) = x(n)− x̂(n) (M:1.4.2)

Usually the objective function is equivalent to mean-squared error (MSE), given by
E =

∑
n e

2(n).

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P∑
k=1

ak x(n− k) (M:4.2.50)

• Thus, the prediction error is equal to the excitation of the all-pole model; e(n) =
w(n). Clearly, finite impulse response (FIR) linear prediction and all-pole
modelling are closely related.

• Many of the properties and algorithms developed for either linear prediction or
all-pole modelling can be applied to the other.

• To all intents and purposes, linear prediction, all-pole modelling, and AR
processes (discussed next) are equivalent terms for the same concept.

July 16, 2015 – 09 : 31



110 Linear Signal Models

5.4.2.5 Autoregressive Processes

New slideWhile all-pole models refer to the properties of a rational system containing only
poles, AR processes refer to the resulting stochastic process that occurs as the result
of WGN being applied to the input of an all-pole filter.

As such, the same input-output equations for all-pole models still apply although, in
this case, the AR process refers to x(n), whereas all-pole modelling would refer to the
system itself, as defined by the linear difference equation and the parameters {ak}.
Thus:

x(n) = −
P∑
k=1

ak x(n− k) + w(n), w(n) ∼ N
(
0, σ2

w

)
(M:4.2.52)

The AR process is valid only if the corresponding all-pole system is stable. The
autoregressive output, x(n), is a stationary sequence with a mean value of zero, µx = 0.

The autocorrelation function (ACF) can be calculated in a similar approach to finding
the output autocorrelation and cross-correlation for linear systems.

Multiply the difference Equation M:4.2.52 through by x∗(n− l) and take expectations
to obtain:

rxx(l) +
P∑
k=1

ak rxx(l − k) = rwx(l) (M:4.2.54)

Observing that x(n) cannot depend on future values of w(n) since the system is causal,
then rwx(l) = E [w(n)x∗(n− l)] is zero if l > 0, and σ2

w if l = 0.

Thus, writing Equation M:4.2.54 for l = {0, 1, . . . , P} gives:

rxx(0) + a1 rxx(−1) + · · ·+ aP rxx(−P ) = σ2
w (5.20)

rxx(1) + a1 rxx(0) + · · ·+ aP rxx(−P + 1) = 0 (5.21)
... (5.22)

rxx(P ) + a1 rxx(P − 1) + · · ·+ aP rxx(0) = 0 (5.23)

This can be written in matrix-vector form (noting that rxx(l) = r∗xx(−l) and that the
parameters {ak} are real) as:

rxx(0) r∗xx(1) · · · r∗xx(P )
rxx(1) rxx(0) · · · r∗xx(P − 1)

...
... . . . ...

rxx(P ) rxx(P − 1) · · · r∗xx(0)




1
a1
...
aP

 =


σ2
w

0
...
0

 (M:4.2.56)

These Yule-Walker equations have an identical form to the normal equations which
are a result of analysing linear prediction. The differences are minor, but the interested
reader can find out more in [Therrien:1992, Chapter 8]. It is important to note that the
Yule-Walker equations are linear in the parameters ak, and there are several different
efficient methods for solving them. Details, again, can be found in [Therrien:1992,
Chapters 8 and 9].
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5.4.2.6 Autocorrelation Function from AR parameters

In the previous section, an expression for calculating the AR coefficients given
the autocorrelation values was given. But what if the AR coefficients are known,
and it is desirable to calculate the autocorrelation function given these parameters.
A formulation is given here. Assume that an AR process is real, such that the
Yule-Walker equations become:
rxx(0) rxx(1) · · · rxx(P )
rxx(1) rxx(0) · · · rxx(P − 1)

...
... . . . ...

rxx(P ) rxx(P − 1) · · · rxx(0)

 â = b where â =


1
a1
...
aP

 and b =


σ2
w

0
...
0


(5.24)

To generate the autocorrelation values from the AR parameters, it is desirable to obtain
an equation of the form Ar = b, where

[
rxx(0) · · · rxx(P )

]T , and the matrix A
and vector b are functions of the parameters {ak} and the input variance σ2

w. Write the
Yule-Walker equations as:

rxx(0)


1 0 · · · 0

0
. . . . . . ...

... . . . . . . 0
0 · · · 0 1

 â+rxx(1)


0 1 · · · 0

1
. . . . . . ...

... . . . . . . 1
0 · · · 1 0

 â+· · ·+rxx(P )


0 0 · · · 1

0
. . . . . . ...

... . . . . . . 0
1 · · · 0 0

 â = b

(5.25)
By defining the P ×P matrix IP,k with ones on the kth diagonal away from the leading
diagonal, and zero elsewhere, then it follows:

P∑
k=0

(IP+1,k â) rxx(k) = b (5.26)

Next defining the vector âk = IP+1,k â and the matrix
[
â0 · · · âP

]
, then the

matrix-vector equation
Ar = b (5.27)

has been obtained. In low-order cases, it might be more straightforward to explicitly
compute the autocorrelation functions by writing out the Yule-Walker equations.

All-pole models therefore have the unique property that the model parameters are
completely specified by the first P + 1 autocorrelation coefficients via a set of linear
equations, as given by the equation Ar = b. An alternative way of writing this is:

σ2
w

a1
...
aP

↔
 rxx(0)

...
rxx(P )

 (5.28)

Thus, the mapping of the model parameters to the autocorrelation coefficients is
reversible and unique. This correlation matching of all-pole models is quite
remarkable, and is not shared by all-zero models, and is true for pole-zero models
only under certain conditions.
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Example 5.1 (Calculating Autocorrelation Functions of All-Pole Model). Given
the parameters σ2

w, a1, and a2, of a second-order all-pole model, compute the
autocorrelation values rxx(k) for {k = 0, 1, 2}.

SOLUTION. Using the results above, it follows that:

rxx(0)

1 0 0
0 1 0
0 0 1

 1
a1

a2

+ rxx(1)

0 1 0
1 0 1
0 1 0

 1
a1

a2

+ rxx(2)

0 0 1
0 0 0
1 0 0

 1
a1

a2

 =

σ2
w

0
0


(5.29)

or,  1 a1 a2

a1 1 + a2 0
a2 a1 1

rxx(0)
rxx(1)
rxx(2)

 =

σ2
w

0
0

 (5.30)

Although you could try a direct version to solve this, a slightly more ad-hoc
approach quickly yields a solution in this case, and is related to Gaussian elimination.
Multiplying the second row by a1 and the last row by a2, and then subtracting them
both from the first row gives:1− a2

1 − a2
2 −2a1a2 0

a2
1 a1(1 + a2) 0
a2

2 a1 a2 a2

rxx(0)
rxx(1)
rxx(2)

 =

σ2
w

0
0

 (5.31)

It can thus be seen that the first two equations for rxx(0) and rxx(1) do not depend on
rxx(2) and therefore, by inverting the 2 by 2 matrix, this gives:[

rxx(0)
rxx(1)

]
=

1

a1(1 + a2)(1− a2
1 − a2

2) + 2a3
1 a2

[
a1(1 + a2) 2a1 a2

−a2
1 1− a2

1 − a2
2

] [
σ2
w

0

]
(5.32)

=
σ2
w

(1− a2
1 − a2

2) +
2a21 a2
1+a2

[
1

− a1
1+a2

]
(5.33)

Moreover,

rxx(2) = − 1

a2

[
a2

2 a1 a2

] [rxx(0)
rxx(1)

]
=

σ2
w

(1− a2
1 − a2

2) +
2a21 a2
1+a2

(
a2

1

1 + a2

− a2

)
(5.34)

In summary, rxx(0)
rxx(1)
rxx(2)

 =
σ2
w

(1− a2
1 − a2

2) +
2a21 a2
1+a2

 1
− a1

1+a2
a21

1+a2
− a2

 (5.35)
�
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5.4.3 All-Zero models
New slide Whereas all-pole models can capture resonant features of a particular PSD, it cannot

capture nulls in the frequency response. These can only be modelled using a pole-zero
or all-zero model.

The output of an all-zero model is the weighted average of delayed versions of the
input signal. Thus, assume an all-zero model of the form:

x(n) =

Q∑
k=0

dk w(n− k) (M:4.3.1)

where Q is the order of the model, and the corresponding system function is given by:

H(z) = D(z) =

Q∑
k=0

dk z
−k (M:4.3.2)

Similar to the relationship between all-pole models and AR processes, all-zero
models refer to the properties of a rational system containing only zeros, while MA
processes refer to the resulting stochastic process that occurs as the result of WGN
being applied to the input of an all-zero filter.

All-zero models are difficult to deal with since, unlike the Yule-Walker equations
for the all-pole model, the solution for model parameters given the autocorrelation
functions involves solving nonlinear equations, which becomes quite a complicated
task.

5.4.3.1 Frequency Response of an All-Zero Filter

New slideThe all-zero model has form:

H(z) = D(z) =

Q∑
k=0

dk z
−k = d0

Q∏
k=1

(
1− zk z−1

)
(5.36)

where {zk} are the zeros of the all-zero model. Therefore, its frequency response is
given by:

H(ejω) =

Q∑
k=0

dk e
−jkω = d0

Q∏
k=1

(
1− zk e−jω

)
(5.37)

When each of the zeros are written in the form zk = rke
jωk , then the frequency

response can be written as:

H(ejω) = d0

Q∏
k=1

(
1− rk e−j(ω−ωk)

)
(5.38)

Hence, it can be deduced that troughs or nulls occur near frequencies corresponding to
the phase position of the zeros. When the system is real, the complex-zeros occur in
conjugate-pairs.
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(b) Positions of zeros.

Figure 5.6: The frequency response and position of the zeros in an all-zero system.

Hence, the PSD of the output of an all-zero filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 = G2

Q∏
k=1

∣∣1− rk e−j(ω−ωk)
∣∣2 (5.39)

where G = σw d0 is the overall gain of the system. Consider the all-zero model with
zeros at positions:

{zk} = {rk ejωk} where

{
{rk} = {0.985, 1, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(5.40)

The zero positions and magnitude frequency response of this system is plotted in
Figure 5.6. For comparison, the power spectral density of the output of the system
is shown in Figure 5.7. Note that one of the zeros is on the unit circle, and that the
frequency response at this point is zero.

5.4.3.2 Impulse Response

The impulse response of an all-zero model is an FIR system with impulse response:

h(n) =

{
dn 0 ≤ n ≤ Q

0 elsewhere
(5.41)

5.4.3.3 Autocorrelation of the Impulse Response

Following a similar line to that shown for all-pole models, the autocorrelation of the
impulse response of an all-zero system can be found.
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Figure 5.7: Power spectral response of an all-zero model.

Theorem 5.2. The autocorrelation function of the impulse response of an all-zero
system is given by:

rhh[`] =
∞∑

n=−∞

h[n] h∗[n− `] =


Q−`∑
k=0

dk+` d
∗
k 0 ≤ ` ≤ Q

0 ` > Q

(M:4.3.4)

and r∗hh[−`] = rhh[`] for all `.

PROOF. The autocorrelation function of the impulse response of an all-zero system is
given by the discrete-time convolution:

rhh[`] =
∞∑

n=−∞

h[n] h∗[n− `] (5.42)

Considering the term h[n],

h[n] =

{
dn 0 ≤ n ≤ Q

0 otherwise
(5.43)

or, in otherwords, h(n) = 0 when n < 0 and n > Q. Hence Equation 5.42 becomes:

rhh[`] =

Q∑
n=0

dn h
∗[n− `] (5.44)

Moreover, the lower-limit is constrained since

h∗[n− l] =

{
d∗n−` 0 ≤ n− ` ≤ Q

0 otherwise
(5.45)

or, in otherwords, h∗[n− l] = 0 if n < ` and when n > Q + `. Assuming that ` ≥ 0,
the second condition is already met by the upper-limit in Equation 5.44. Therefore,
Equation 5.44 becomes:

rhh[`] =

Q∑
n=`

dn d
∗
n−` (5.46)

July 16, 2015 – 09 : 31



116 Linear Signal Models

By substituting k = n− `, such that when n = {`, Q}, k = {0, Q− `}, then:

rhh[`] =

Q−`∑
k=0

dk+` d
∗
k, for ` ≥ 0 (5.47)

Clearly this expression is equal to zero if ` > Q. Therefore, using the result from the
previous handout that rhh[`] = r∗hh[−`], it follows:

rhh[`] =
∞∑

n=−∞

h[n] h∗[n− `] =


Q−`∑
k=0

dk+` d
∗
k 0 ≤ ` ≤ Q

0 ` > Q

(M:4.3.4)
�

and r∗hh[−`] = rhh[`] for all `.

5.4.3.4 Moving-average processes

New slide As an analogy with Section 5.4.2.5, a MA process refers to the stochastic process that
is obtained at the output of an all-zero filter when a WGN sequence is applied to the
input.

Thus, a MA process is an AZ(Q) model with d0 = 1 driven by WGN. That is,

x[n] = w[n] +

Q∑
k=1

dk w[n− k] , w[n] ∼ N
(
0, σ2

w

)
(M:4.3.9)

The output x(n) has zero-mean, and variance of

σ2
x = σ2

w

[
1 +

Q∑
k=1

|dk|2
]

(5.48)

The autocorrelation function and PSD are given by:

rxx[`] = σ2
wrhh[`] = σ2

w

Q−`∑
k=0

dk+l d
∗
k, for 0 ≤ ` ≤ Q (5.49)

and is zero for ` > Q, with rxx[`] = r∗xx[−`], where d0 = 1, and also where Pxx(ejω) =

σ2
w |D(ejω)|2.

The fact that rxx[`] = 0 if the samples are more than Q samples apart, means that they
are therefore uncorrelated. An alternative derivation for the autocorrelation function
for an MA process is given in the following section, Section 5.4.3.5.
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5.4.3.5 Autocorrelation Function for MA Process

As stated in the previous section, using the results for the statistics of a stationary
signal passed through a linear system, then the autocorrelation function for a MA
process is given by rxx[`] = σ2

wrhh[`], where rhh[`] is given by Equation M:4.3.4.
For completeness, this section gives an alternative derivation from first principles.

Multiplying the difference equation, Equation M:4.3.1, through by x∗[n− `] and
taking expectations gives:

rxx[`] =

Q∑
k=0

dk rwx[`− k] (5.50)

Similarly, post-multiplying by w∗[n− `] gives:

rxw[`] =

Q∑
k=0

dk rww[`− k] =

{
σ2
w d` 0 ≤ ` ≤ Q

0 otherwise
(5.51)

since rww[`] = σ2
w δ(`). Recalling that rwx[`] = r∗xw[−`], then:

rwx[`] =

{
σ2
w d
∗
−` 0 ≤ −` ≤ Q

0 otherwise
(5.52)

with the limit 0 ≤ −` ≤ Q being equivalent to −Q ≤ ` ≤ 0. Consequently,

rwx[`− k] =

{
σ2
w d
∗
k−` 0 ≤ k − ` ≤ Q

0 otherwise
(5.53)

where this should be viewed as a function of k for a given `. The range of non-zero
values is given by ` ≤ k ≤ Q+ `. Considering ` > 0, the autocorrelation function for
an MA process is thus:

rxx[`] = σ2
w

Q∑
k=`

dk d
∗
k−` = σ2

w

Q−`∑
k=0

dk+` d
∗
k (5.54)

for 0 ≤ ` ≤ Q, and zero for ` > Q. The last expression was been obtained by making
the substitution k → k − `. Using the relationship rxx[−`] = r∗xx[`] gives the ACF for
all values of `.

Unlike AR models, is is not possible to solve for the model parameters using linear
algebra techniques. It requires the solution of highly nonlinear equations, and is
therefore more difficult than dealing with AR process. This, hence, is one reason
why many algorithms in statistical signal processing prefer to use all-pole models over
all-zero models.
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5.4.4 Pole-Zero Models
New slideFinally, the most general of LTI parametric signal models is the pole-zero model

which, as the name suggests, is a combination of the all-pole and all-zero models,
and can therefore model both resonances as well as nulls in a frequency response.

The output of a causal pole-zero model is given by the recursive input-output
relationship:

x[n] = −
P∑
k=1

ak x[n− k] +

Q∑
k=0

dk w[n− k] (M:4.4.1)

where it is assumed that the model orders P > 0 and Q ≥ 1. The corresponding
system function is given by:

H(z) =
D(z)

A(z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

(5.55)

5.4.4.1 Frequency Response of an Pole-Zero Model

New slide The pole-zero model can be written as

H(z) =
D(z)

A(z)
= d0

∏Q
k=1 (1− zk z−1)∏P
k=1 (1− pk z−1)

(5.56)

where {pk} and {zk} are the poles and zeros of the pole-zero model. Therefore, its
frequency response is given by:

H(ejω) = d0

∏Q
k=1 (1− zk e−jω)∏P
k=1 (1− pk e−jω)

(5.57)

As before, it can be deduced that troughs or nulls occur at frequencies corresponding to
the phase position of the zeros, while resonances occur at frequencies corresponding to
the phase of the poles. When the system is real, the complex-poles and complex-zeros
occur in conjugate-pairs.

The PSD of the output of a pole-zero filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 = G2

∏Q
k=1 |1− zk e−jω|

2∏P
k=1 |1− pk e−jω|

2
(5.58)

where G = σw d0 is the overall gain of the system.

Consider the pole-zero model with poles at positions:

{pk} = {rk ejωk} where

{
{rk} = {0.925, 0.951, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(5.59)

and zeros at:

{zk} = {rk ejωk} where

{
{rk} = {1, 0.855}
{ωk} = 2π × {700, 1000}/2450;

(5.60)
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Figure 5.8: The frequency response and position of the poles and zeros in an pole-zero
system.

The pole and zero positions, and the magnitude frequency response of this system
is plotted in Figure 5.8, while the PSD of the output of the system is shown in
Figure 5.9. Note again that one of the zeros lies on the unit-circle, and therefore at
the corresponding frequency, the frequency response is zero.

5.4.4.2 Impulse Response

The impulse response of a causal pole-zero filter can be obtained from
Equation M:4.4.1 by substituting w(n) = δ(n) and x(n) = h(n), such that:

h(n) = −
P∑
k=1

ak h(n− k) + dn, n ≥ 0 (M:4.4.2)

where dn = 0 for n > Q and n < 0, and h(n) = 0 for n < 0. Hence, writing this
explicitly as:

h(n) =


0 n < 0

−
∑P

k=1 ak h(n− k) + dn 0 ≤ n ≤ Q

−
∑P

k=1 ak h(n− k) n > 0

(5.61)

it can be seen that the impulse response obeys a linear prediction equation for n > Q.
Thus, given h(n) for 0 ≤ n ≤ P + Q, the all-pole parameters {ak} can be calculated
by using the P equations specified by Q + 1 ≤ n ≤ P + Q. Given the {ak}’s, it
is then possible to compute the all-zero parameters from Equation M:4.4.2 using the
equations for 0 ≤ n ≤ Q. Thus, it is clear that the first P +Q+1 values of the impulse
response completely specify the pole-zero model.
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Figure 5.9: Power spectral response of an pole-zero model.

5.4.4.3 Autocorrelation of the Impulse Response

Multiplying both sides of Equation M:4.4.2 by h∗(n− l) and summing over all n gives:

∞∑
n=−∞

h(n)h∗(n− l) = −
P∑
k=1

ak

∞∑
n=−∞

h(n−k)h∗(n− l)+
∞∑

n=−∞

dn h
∗(n− l) (5.62)

where dn = 0 if n < 0 or n > Q. Note that the order of summations in the middle
term has implicitly been reordered. Using the definition for rhh(l) and noting that
h∗(n− l) = 0 for n− l < 0 then this equation may be expressed as:

rhh(l) = −
P∑
k=1

ak rhh(l − k) +

Q∑
n=0

dn h
∗(n− l) (M:4.4.6)

Since the impulse response h(n) is a function of the parameters {ak}’s and {dk}’s,
then this set of equations is nonlinear in terms of these parameters. However, noting
that the right hand side (RHS) of this equation is zero for l > Q, then:

P∑
k=1

ak rhh(l − k) = −rhh(l), l > Q (5.63)

This equation, unlike Equation M:4.4.6, is linear in the all-pole parameters {ak}’s.
Therefore, given the autocorrelation of the impulse response, the all-pole parameters
can be calculated by solving Equation 5.63 for l ∈ {Q+ 1, . . . , Q+ P} to give:

rhh(Q) rhh(Q− 1) · · · rhh(Q+ 1− P )
rhh(Q+ 1) rhh(Q) · · · rhh(Q+ 2− P )

...
... . . . ...

rhh(Q+ P − 1) rh(Q+ P − 2) · · · rhh(Q)



a1

a2
...
aP

 = −


rhh(Q+ 1)
rhh(Q+ 2)

...
rhh(Q+ P )


(M:4.4.8)
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or, alternatively,
Rhh a = −rhh (M:4.4.9)

The matrix Rhh in Equation M:4.4.9 is a non-Hermitian Toeplitz matrix; it can be
solved using a variety of linear algebra techniques.

Given the all-pole parameters, it then falls to solve Equation M:4.4.6 for the all-zero
parameters {dk}’s. This is somewhat involved, but they can be found using spectral
factorisation. The details are omitted from this handout, but can be found in
[Therrien:1992, Section 9.1, page 509] or [Manolakis:2000, Page 178].

5.4.4.4 Autoregressive Moving-Average Processes

As with the all-pole and all-zero models, the corresponding random process associated
with a pole-zero model is the ARMA process. This is the output of a pole-zero model,
when the input of the system is driven by WGN. Hence, a causal ARMA model with
model orders P and Q is defined by:

x(n) = −
P∑
k=1

ak x(n− k) + w(n) +

Q∑
k=1

dk w(n− k) (M:4.4.15)

where w(n) ∼ N (0, σ2
w), the model-orders are P and Q, and the full set of model

parameters are {σ2
w, a1, . . . , aP , d1, . . . , dQ}. The output has zero-mean and variance

that can be shown to equal:

σ2
x = −

P∑
k=1

ak rxx(k) + σ2
w

[
1 +

Q∑
k=1

dk h(k)

]
(M:4.4.16)

where h(n) is the impulse response of the pole-zero filter. The derivation of this result
is left as an exercise for the reader. The presence of h(n) in the expression for the
variance makes the dependence of σ2

x on the model parameters highly nonlinear.

Finally, in a manner similar to the derivations of the autocorrelation function for the
other models, it can be shown that the autocorrelation function for the output is given
by:

rxx(l) = −
P∑
k=1

ak rxx(l − k) + σ2
w

[
1 +

Q∑
n=l

dn h
∗(n− l)

]
(5.64)

where it has been noted that d0 = 1. Similar in manner to Equation M:4.4.8 and
Equation M:4.4.9 it is possible to obtain equations for finding the model parameters
given the autocorrelation functions. Further details can be found in [Therrien:1992,
Section 9.1, page 506]. The interested reader may wish to explore derivations of said
equations.

5.5 Estimation of AR Model Parameters from Data

The Yule-Walker equations introduced earlier in this handout provide an approach for
finding the model parameters for an AR process. Although a valid technique, there are
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two implicit assumptions that limit its use for practical problems. These assumptions
are:

• That the order, P , of the model is known.

• That the correlation function, rxx[`], is known.

If these two conditions are met then, using the Yule-Walker equations, the model
parameters, ak, can be found exactly. Unfortunately, in most practical situations,
neither of these conditions is met.

From a theoretical perspective, the first assumption that the model order is known is
less of an issue than the second assumption. This is since if a larger model order than
the true model order is chosen, then the excess parameters will theoretically be zero. In
practice, choosing the models order is not that straightforward, and there are numerous
methods for model order estimation. Model order selection criteria include names
such as final prediction error (FPE), Akaike’s information criterion (AIC), minimum
description length (MDL), Parzen’s criterion autoregressive transfer function (CAT)
and B-Information criterion (BIC). There is not time in this course to discuss these
techniques, although there are plenty of tutorial papers in the literature, as well as
being covered by many text books.

The second assumption leads to both theoretical and practical problems since, if the
correlation function is not known, it must be estimated from the data. This brings up
the following questions:

1. If the correlation function is estimated, how good is the resulting estimate for the
model parameters, in a statistical sense?

2. Why estimate the correlation function at all when it is the model parameters that
need to be estimated?

3. What is the best procedure for this problem?

5.5.1 LS AR parameter estimation

Suppose that a particular realisation of a process that is to be modelled as an
AR process is given. It is possible to estimate the correlation function as a
time-average from the realisation, assuming that the process is time-ergodic, and
then use these estimates in the Yule-Walker equations. The method described in this
chapter effectively estimates the AR parameters in this way, although the problem
is not formulated as such. Two common data-oriented methods, known as the
autocorrelation method and the covariance method, are presented in this section
and the next section. A description of these methods begins with the autocorrelation
method.

Suppose linear prediction is used to model a particular realisation of a random process
as accurately as possible. Thus, suppose a linear predictor forms an estimate,
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or prediction, x̂[n], of the present value of a stochastic process x[n] from a linear
combination of the past P samples; that is:

x̂[n] = −
P∑
k=1

ak x[n− k] (M:1.4.1)

Then the prediction error is given by:

e[n] = x[n]− x̂[n] = x[n] +
P∑
k=1

ak x[n− k] (M:4.2.50)

Note that this is different to the WGN sequence that drives a linear system to generate
an autoregressive random process; the difference is that here, the prediction error is the
difference between the actual value and the predicted value of a particular realisation
of a random process.

Writing Equation M:4.2.50 for n ∈ {nI , . . . , nF}, in matrix-vector form:
e[nI ]

e[nI + 1]
...

e[nF ]


︸ ︷︷ ︸

e

=


x[nI ]

x[nI + 1]
...

x[nF ]


︸ ︷︷ ︸

x

+


x[nI − 1] x[nI − 2] · · · x[nI − P ]
x[nI ] x[nI − 1] · · · x[nI − P + 1]

...
... · · · ...

x[nF − 1] x[nF − 2] · · · x[nF − P ]


︸ ︷︷ ︸

X


a1

a2
...
aP


︸ ︷︷ ︸

a

(5.65)
which can hence be written as:

e = x + Xa (5.66)

The parameters a can now be estimated using any of the parameter estimation
techniques discussed above. Here, the least-squares estimate (LSE) is used. Thus,
noting that:

J(a) =

nF∑
n=nI

e2[n] = eTe (5.67)

= (x + Xa)T (x + Xa) (5.68)

= xTx + 2xTXa + aTXTXa (5.69)

where it has been noted that aTXTx = xTXa. Hence, differentiating with respect
to (w. r. t.) a and setting to zero gives the LSE, â. Noting that for real vector a,

∂

∂a

(
bT a

)
= b and

∂

∂a

(
aT Ba

)
=
(
B + BT

)
a (5.70)

The reader is invited to derive these results. Hence,

∂J(a)

∂a
= 2XT x + 2XT Xa (5.71)

where it has been noted that the matrix XTX is symmetric. Setting this to zero, and
rearranging noting that XTX is of full rank, gives the LSE:

aLSE = −
(
XTX

)−1
XT x (5.72)
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Defining Np = nF − nI + 1, the least-squares (LS) error is then given by:

J (aLSE) = xT
(
INp −X

(
XTX

)−1
XT
)
x (5.73)

= xT (x + XaLSE) (5.74)

Observe the similarity of these results with those of the linear LS formulation. In
fact, this derivation is identical to the LS formulation with the matrix H replaced
by X! There are two different methods which result from different choices of nI
and nF . These are called the autocorrelation method and the covariance method.
However, as mentioned in [Therrien:1991], these terms do not bear any relation to
the statistical meanings of these terms, and so they should not be confused with the
statistical definitions. The names for these methods are unfortunate, but have found a
niche in signal processing, and are unlikely to be changed.

5.5.2 Autocorrelation Method

In the autocorrelation method, the end points are chosen as nI = 0 and nF = N +
P−1. Thus, the AR filter model runs over the entire length of the data, predicting some
of the early points from zero valued samples, and predicting P additional zero values
at the end. Since this method uses zeros for the data outside of the given interval, it
can be thought of as applying a rectangular window to the data. For this method, the
(N + P )× P data matrix X has the specific structure:

X =



0 0 · · · 0
x[0] 0 · · · 0
x[1] x[0] · · · 0

...
... . . . ...

x[P − 1] x[P − 2] · · · x[0]
x[P ] x[P − 1] · · · x[1]

...
...

...
x[N − 1] x[N − 2] · · · x[N − P ]

0 x[N − 1] · · · x[N − P + 1]
...

... . . . ...
0 0 · · · x[N − 1]



(T:9.112)

When formed into the product XT X, this data matrix produces a Toeplitz correlation
matrix; consequently, the normal equations may be solved very efficiently, for
example using the Levinson recursion. Moreover, the matrix XT X is strictly positive
definite, and thus a valid correlation matrix.

5.5.3 Covariance Method

An alternative method is to choose nI = P and nF = N − 1. With this method,
no zeros are either predicted, or used in the prediction. In other words, the limits
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are chosen so that the data that the AR filter operates on always remain within the
measured data; no window is applied. For this method, the (N − P ) × P data matrix
has the specific form:

X =


x[P − 1] x[P − 2] · · · x[0]
x[P ] x[P − 1] · · · x[1]

...
... . . . ...

x[N − 2] x[N − 3] · · · x[N − P − 1]

 (T:9.113)

A variation of this method called the prewindowed covariance method chooses nI =
0 and nF = N − 1, and results in a data matrix that consists of the first N rows of
Equation T:9.112. Moreover, the postwindowed covariance method chooses nI = P
and nF = N + P − 1. In the autocorrelation method, the data is said to be both
prewindowed and postwindowed.

With the covariance method, or the prewindowed covariance method, the resulting
correlation matrix is positive semidefinite, but it is not Toeplitz. Thus, the Yule-Walker
equations are more difficult to solve. Moreover, the resulting AR model may not
be stable, since the poles corresponding to the estimated parameters may not lie
within the unit circle. Nevertheless, unstable cases rarely seem to occur in practice,
and the covariance method is often preferred because it makes use of only the
measured data. This avoids any bias in the estimation of the AR filter coefficients.
In addition, with some mild conditions, the method can be shown to be equivalent to
the maximum-likelihood estimate (MLE).

Example 5.2 ( [Therrien:1991, Example 9.6, Page 539]). It is desired to estimate
the parameters of a second-order AR model for the sequence {x[n]}4

0 =
{1, −2, 3, −4, 5} by using both the autocorrelation and covariance methods.

SOLUTION. Applying both methods as requested:

Autocorrelation Method The data matrix can be obtained from Equation T:9.112,
and is given by:

X =



0 0
x[0] 0
x[1] x[0]
x[2] x[1]
x[3] x[2]
x[4] x[3]

0 x[4]


=



0 0
1 0
−2 1
3 −2
−4 3
5 −4
0 5


(5.75)

July 16, 2015 – 09 : 31



126 Linear Signal Models

Hence, it can be shown that:

XTX =

[
0 1 −2 3 −4 5 0
0 0 1 −2 3 −4 5

]


0 0
1 0
−2 1
3 −2
−4 3
5 −4
0 5


(5.76)

=

[
55 −40
−40 55

]
(5.77)

Note that the matrix is Toeplitz. The least squares Yule-Walker
equations can then be found by solving:

aLSE = −
(
XTX

)−1
XT x (5.78)

= −
[

55 −40
−40 55

]−1 [
0 1 −2 3 −4 5 0
0 0 1 −2 3 −4 5

]


1
−2
3
−4
5
0
0


(5.79)

Solving these equations gives:

aLSE =

[
232
285
34
285

]
≈
[
0.8140
0.1193

]
(5.80)

The LS error is then given by:

J (aLSE) = xT (x + XaLSE) = 25.54 (5.81)

Hence, the prediction error variance is estimated as:

σ2
e =

J (aLSE)

N
=

25.54

7
= 3.64 (5.82)

Covariance Method Next, apply the covariance method to the same problem. Since
the AR filter stays entirely within the data, the error is evaluated from
n = 2 to n = 4. The data matrix is therefore:

X =

x[1] x[0]
x[2] x[1]
x[3] x[2]

 =

−2 1
3 −2
−4 3

 (5.83)

Notice that, in this data matrix, not all the the data has been used, since
x[4] does not appear. Hence, the correlation matrix is given by:

XT X =

[
−2 3 −4
1 −2 3

]−2 1
3 −2
−4 3

 =

[
29 −20
−20 14

]
(5.84)
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This matrix is not Toeplitz. The LSE estimate is therefore:

aLSE = −
(
XTX

)−1
XT x (5.85)

= −
[

29 −20
−20 14

]−1 [−2 3 −4
1 −2 3

] 3
−4
5

 =

[
2
1

]
(5.86)

Moreover, the LS error is then given by:

J (aLSE) = xT (x + XaLSE) = 0 (5.87)

Hence, the prediction error variance is estimated as:

σ2
e =

J (aLSE)

N
=

0

3
= 0 (5.88)

Evidently, this filter predicts the data perfectly. Indeed, if the
prediction error, e[n], is computed over the chosen range n = 2 to
n = 4, it is found to be zero at every point. The price to be paid for
this perfect prediction, however, is an unstable AR model. The transfer
function for this AR model can be written as:

H(z) =
1

1 + 2z−1 + z−2
=

1

(1 + z−1)2
(5.89)
�

which has a double pole at z = −1. Therefore, a bounded-input into
this filter can potentially produce an unbounded-output. Further, any
errors in computation of the model coefficients can easily put a pole
outside of the unit circle.
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