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Copyright Statement

This document does not contain copyright material.

The author of this document

1. holds the copyright for all lecture and course materials in this module;

2. holds the copyright for students notes, summaries, or recordings that
substantially reflect the lecture content or materials;

3. makes these materials available only for personal use by students studying this
module;

4. reserves the right that no part of the notes, tutorials, solutions, or other course
materials may be distributed or reproduced for commercial purposes without
express written consent from the author; this does not prevent students from
sharing notes on an individual basis for personal use.

These lecture notes consist of entirely original work, where all material has been
written and typeset by the author. No figures or substantial pieces of text has been
reproduced verbatim from other texts.

However, there is some material that has been based on work in a number of previous
textbooks, and therefore some sections and paragraphs have strong similarities in
structure and wording. These texts have been referenced and include, amongst a
number of others, in order of contributions:

• Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal
Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array
Processing, McGraw Hill, Inc., 2000.

IDENTIFIERS – Paperback, ISBN10: 0070400512, ISBN13: 9780070400511

• Therrien C. W., Discrete Random Signals and Statistical Signal Processing,
Prentice-Hall, Inc., 1992.

IDENTIFIERS – Paperback, ISBN10: 0130225452, ISBN13: 9780130225450

Hardback, ISBN10: 0138521123, ISBN13: 9780138521127
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• Kay S. M., Fundamentals of Statistical Signal Processing: Estimation Theory,
Prentice-Hall, Inc., 1993.

IDENTIFIERS – Hardback, ISBN10: 0133457117, ISBN13: 9780133457117

Paperback, ISBN10: 0130422681, ISBN13: 9780130422682

• Papoulis A. and S. Pillai, Probability, Random Variables, and Stochastic
Processes, Fourth edition, McGraw Hill, Inc., 2002.

IDENTIFIERS – Paperback, ISBN10: 0071226613, ISBN13: 9780071226615

Hardback, ISBN10: 0072817259, ISBN13: 9780072817256

• Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Pearson New International Edition, Fourth
edition, Pearson Education, 2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

• Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing:
Concepts and Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.see.ed.ac.uk/˜{}pmg/SIGPRO

• Therrien C. W. and M. Tummala, Probability and Random Processes for
Electrical and Computer Engineers, Second edition, CRC Press, 2011.

IDENTIFIERS – Hardback, ISBN10: 1439826986, ISBN13: 978-1439826980

• Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Receipes in C: The Art of Scientific Computing, Second edition, Cambridge
University Press, 1992.

IDENTIFIERS – Paperback, ISBN10: 0521437202, ISBN13: 9780521437202

Hardback, ISBN10: 0521431085, ISBN13: 9780521431088

The material in [Kay:1993] is mainly covered in Handout 5; material in
[Therrien:1992] and [Papoulis:1991] is covered throughout the course. The following
labelling convention is used for numbering equations that are taken from the various
recommended texts. Equations labelled as:

M:v.w.xyz are similar to those in [Manolakis:2001] with the corresponding label;

T:w.xyz are similar to those in [Therrien:1992] with the corresponding label;

K:w.xyz are similar to those in [Kay:1993] with the corresponding label;

P:v.w.xyz are used in chapters referring to basic digital signal processing (DSP),
and are references made to [Proakis:1996].
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1
Module Overview, Aims and Objectives

Everything that needs to be said has
already been said. But since no one
was listening, everything must be
said again.

André Gide

If you can’t explain it simply, you
don’t understand it well enough.

Albert Einsten

This handout also provides an introduction to signals and systems, and an overview of
statistical signal processing applications.

1.1 Obtaining the Latest Version of these Handouts

New slide• This research tutorial is intended to cover a wide range of aspects which
cover the fundamentals of statistical signal processing. It is written at a level
which assumes knowledge of undergraduate mathematics and signal processing
nomenclature, but otherwise should be accessible to most technical graduates.

1



2 Aims and Objectives

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛

☞ ✌ ✄ ✍ ✁
✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Figure 1.1: Source localisation and BSS. An example of topics using statistical signal
processing.

Direct
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Figure 1.2: Humans turn their head in the direction of interest in order to reduce
inteference from other directions; joint detection, localisation, and enhancement. An
application of probability and estimation theory, and statistical signal processing.



1.2. Module Abstract 3

KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The
documents published on the USB stick may differ to the slides presented on
the day. In particular, there are likely to be a few typos in the document, so if
there is something that isn’t clear, please feel free to email me so I can correct it
(or make it clearer).

• The latest version of this document can be found online and downloaded at:

http://www.mod-udrc.org/events/2015-summer-school

• Extended thanks are given to the many MSc students over the past 11 years who
have helped proof-read and improve these documents.

1.2 Module Abstract
New slideThe notion of random or stochastic quantities is an extremely powerful concept that

can be constructively used to model observations that result from real-world processes.
These quantities could be scalar measurements, such as an instantaneous measurement
of distance, or they could be vector-measurements such as a coordinate. They could
be random signals either in one-dimension, or in higher-dimensions, such as images.
Stochastic quantities such as random signals, by their very nature, are described
using the mathematics of probability and statistics. By making assumptions such as
the availability of an infinite number of observations or data samples, time-invariant
statistics, and known signal or observation models, it is possible to estimate the
properties of these random quantities or signals and, consequently, use them in signal
processing algorithms.

In practice, of course, these statistical properties must be estimated from finite-length
data signals observed in noise. In order to understand both the concept of
stochastic processes and the inherent uncertainty of signal estimates from finite-length
sequences, it is first necessary to understand the fundamentals of probability, random
variables, and estimation theory.

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing,

together introduce the subject of statistical signal modelling and estimation. In
particular, the module Statistical Signal Processing investigates which statistical
properties are relevant for dealing with signal processing problems, how these
properties can be estimated from real-world signals, and how they can be used in signal
processing algorithms to achieve a particular goal.

July 16, 2015 – 09 : 45
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Figure 1.3: Solutions to the so-called blind deconvolution problem require statistical
signal processing methods.

1.3 Introduction and Overview
New slide Signal processing is concerned with the modification or manipulation of a

signal, defined as an information-bearing representation of a real process,
to the fulfillment of human needs and aspirations.

Gone is the era where information in the form of electrical signals are processed
through analogue devices. For the foreseeable future, processing of digital, sampled,
or discrete-time signals is the definitive approach to analysing data and extracting
information. In this course, it is assumed that the reader already has a grounding in
digital signal processing (DSP), and this module will take you to the next level; a tour
of the exciting, fascinating, and active research area of statistical signal processing
(SSP).

1.3.1 Description and Learning Outcomes

New slide Module Aims The aims of the two modules Probability, Random Variables, and
Estimation Theory (PET), and statistical signal processing (SSP), are
similar to those of the text book [Manolakis:2000, page xvii]. The
principle aim of the modules are:

to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.



1.3. Introduction and Overview 5

Pre-requisites It is strongly recommended that the student has previously attended an
undergraduate level course in either signals and systems, digital signal
processing, automatic control, or an equivalent course.
Section 1.3.2 provides further details regarding the material a student
should have previously covered.

Short Description The Probability, Random Variables, and Estimation Theory
module introduces the fundamental statistical tools that are required
to analyse and describe advanced signal processing algorithms. It
provides a unified mathematical framework which is the basis for
describing random events and signals, and how to describe key
characteristics of random processes.
The module covers probability theory, considers the notion of random
variables and vectors, how they can be manipulated, and provides
an introduction to estimation theory. It is demonstrated that many
estimation problems, and therefore signal processing problems, can
be reduced to an exercise in either optimisation or integration. While
these problems can be solved using deterministic numerical methods,
the module introduces Monte Carlo techniques which are the basis of
powerfull stochastic optimisation and integration algorithms. These
methods rely on being able to sample numbers, or variates, from
arbitrary distributions. This module will therefore discuss the
various techniques which are necessary to understand these methods
and, if time permits, techniques for random number generation are
considered.
The Statistical Signal Processing module then consider representing
real-world signals by stochastic or random processes. The tools for
analysing these random signals are developed in the Probability,
Random Variables, and Estimation Theory module, and this
module extends them to deal with time series. The notion of statistical
quantities such as autocorrelation and auto-covariance are extended
from random vectors to random processes, and a frequency-domain
analysis framework is developed. This module also investigates the
affect of systems and transformations on time-series, and how they
can be used to help design powerful signal processing algorithms to
achieve a particular task.
The module introduces the notion of representing signals using
parametric models; it extends the broad topic of statistical
estimation theory covered in the Probability, Random Variables,
and Estimation Theory module for determining optimal model
parameters. In particular, the Bayesian paradigm for statistical
parameter estimation is introduced. Emphasis is placed on relating
these concepts to state-of-the-art applications and signals.

Keywords Probability, scalar and multiple random variables, stochastic
processes, power spectral densities, linear systems theory, linear signal
models, estimation theory, and Monte Carlo methods.
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6 Aims and Objectives

Module Objectives At the end of these modules, a student should be able to:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling, parameter
estimation, and adaptive filtering techniques;

2. developed an understanding of the basic concepts and
methodologies in statistical signal processing that provides the
foundation for further study, research, and application to new
problems.

Intended Learning Outcomes At the end of the Probability, Random Variables,
and Estimation Theory module, a student should be able to:

1. define, understand and manipulate scalar and multiple random
variables, using the theory of probability; this should include the
tools of probability transformations and characteristic functions;

2. explain the notion of characterising random variables and random
vectors using moments, and be able to manipulate them;
understand the relationship between random variables within a
random vector;

3. understand the central limit theorem (CLT) and explain its use in
estimation theory and the sum of random variables;

4. understand the principles of estimation theory; understand
and be apply to apply estimation techniques such as
maximum-likelihood, least squares, and Bayesian estimation;

5. be able to characterise the uncertainty in an estimator, as well as
characterise the performance of an estimator (bias, variance, and
so forth); understand the Cramér-Rao lower-bound (CRLB) and
minimum variance unbiased estimator (MVUE) estimators.

6. if time permits, explain and apply methods for generating random
numbers, or random variates, from an arbitrary distribution,
using methods such as accept-reject and Gibbs sampling;
understand the notion of stochastic numerical methods for
solving integration and optimisation problems.

At the end of the Statistical Signal Processing module, a student
should be able to:

1. explain, describe, and understand the notion of a random process
and statistical time series;

2. characterise random processes in terms of its statistical
properties, including the notion of stationarity and ergodicity;

3. define, describe, and understand the notion of the power spectral
density of stationary random processes; analyse and manipulate
power spectral densities;
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4. analyse in both time and frequency the affect of transformations
and linear systems on random processes, both in terms of the
density functions, and statistical moments;

5. explain the notion of parametric signal models, and describe
common regression-based signal models in terms of its statistical
characteristics, and in terms of its affect on random signals;

6. apply least squares, maximum-likelihood, and Bayesian
estimators to model based signal processing problems;

1.3.2 Prerequisites

The mathematical treatment throughout this module is kept at a level that is within the
grasp of final-year undergraduate and graduate students, with a background in digital
signal processing (DSP), linear system and control theory, basic probability theory,
calculus, linear algebra, and a competence in Engineering mathematics.

In summary, it is assumed that the reader has knowledge of:

1. Engineering mathematics, including linear algebra, manipulation of vectors
and matrices, complex numbers, linear transforms including Fourier series and
Fourier transforms, z-transforms, and Laplace transforms;

2. basic probability and statistics, albeit with a solid understanding;

3. differential and integral calculus, including differentiating products and
quotients, functions of functions, integration by parts, integration by
substitution;

4. basic digital signal processing (DSP), including:

• the notions of deterministic continuous-time signals, discrete-time signals
and digital (quantised) signals;

• filtering and inverse filtering of signals; convolution;

• the response of linear systems to harmonic inputs; analysing the time and
frequency domain properties of signals and systems;

• sampling of continuous time processes, Nyquist’s sampling theorem and
signal reconstruction;

• and analysing discrete-time signals and systems.

Note that while the reader should have been exposed to the idea of a random variable,
it is not assumed that the reader has been introduced to random signals in any form. A
list of recommended texts covering these prerequisites is given in Section 1.3.3.
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(a) Cover of paperback
version.

(b) Cover of hardback
version.

Figure 1.4: The main course text for this module: [Manolakis:2000].

1.3.3 Recommended Texts for Module Content

The recommended text for this module is cited throughout this document as
[Manolakis:2000]. The full reference is:

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive
Signal Processing: Spectral Estimation, Signal Modeling, Adaptive
Filtering and Array Processing, McGraw Hill, Inc., 2000.

IDENTIFIERS – Paperback, ISBN10: 0070400512, ISBN13: 9780070400511

It is recommended that, if you wish to purchase a hard-copy of this book, you try and
find this paperback version; it should be possible to order a copy relatively cheaply
through the US version of Amazon (check shipping costs). However, please note that
this book is now available, at great expense, in hard-back from an alternative publisher.
The full reference is:

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive
Signal Processing: Spectral Estimation, Signal Modeling, Adaptive
Filtering and Array Processing, Artech House, 2005.

IDENTIFIERS – Hardback, ISBN10: 1580536107, ISBN13: 9781580536103

Images of the book covers are shown in Figure 1.4. For further reading, or an
alternative perspective on the subject matter, other recommended text books for this
module include:

1. Therrien C. W., Discrete Random Signals and Statistical Signal Processing,
Prentice-Hall, Inc., 1992.



1.3. Introduction and Overview 9

(a) Recommended text:
[Kay:1993].

(b) Recommended text:
[Papoulis:1991].

Figure 1.5: Additional recommended texts for the course.

IDENTIFIERS – Paperback, ISBN10: 0130225452, ISBN13: 9780130225450

Hardback, ISBN10: 0138521123, ISBN13: 9780138521127

2. Kay S. M., Fundamentals of Statistical Signal Processing: Estimation Theory,
Prentice-Hall, Inc., 1993.

IDENTIFIERS – Hardback, ISBN10: 0133457117, ISBN13: 9780133457117

Paperback, ISBN10: 0130422681, ISBN13: 9780130422682

3. Papoulis A. and S. Pillai, Probability, Random Variables, and Stochastic
Processes, Fourth edition, McGraw Hill, Inc., 2002.

IDENTIFIERS – Paperback, ISBN10: 0071226613, ISBN13: 9780071226615

Hardback, ISBN10: 0072817259, ISBN13: 9780072817256

These are referenced throughout as [Therrien:1992], [Kay:1993], and [Papoulis:1991],
respectively. Images of the book covers are shown in Figure 1.5. The material in
[Kay:1993] is mainly covered in Handout 5 on Estimation Theory of the PET module.
The material in [Therrien:1992] and [Papoulis:1991] is covered throughout the course,
with the former primarily in the Statistical Signal Processing (SSP) module.
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(a) Third Edition cover. (b) Fourth Edition cover.

Figure 1.6: Course text: further reading for digital signal processing and mathematics,
[Proakis:1996].

KEYPOINT! (Proposed Recommended Text Book for Future Years). Finally,
Therrien has also published a recent book which covers much of this course extremely
well, and therefore comes thoroughly recommended. It has a number of excellent
examples, and covers the material in good detail.

Therrien C. W. and M. Tummala, Probability and Random Processes for
Electrical and Computer Engineers, Second edition, CRC Press, 2011.

IDENTIFIERS – Hardback, ISBN10: 1439826986, ISBN13: 978-1439826980

1.3.4 Recommended Texts: Prerequisite Material

As mentioned in Section 1.3.2 above, regarding the prerequisites, it is assumed that
the reader has a basic knowledge of digital signal processing. If not, or if the reader
wishes to revise the topic, the following book which is highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Third edition, Prentice-Hall, Inc., 1996.

IDENTIFIERS – Paperback, ISBN10: 0133942899, ISBN13: 9780133942897

Hardback, ISBN10: 0133737624, ISBN13: 9780133737622

This is cited throughout as [Proakis:1996] and is referred to in the second handout.
This is the third edition to the book, and a fourth edition has recently been released:
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Figure 1.7: Further reading for statistical signal processing, [Therrien:2011].

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Pearson New International Edition, Fourth
edition, Pearson Education, 2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

Although it is best to purchase the fourth edition, please bear in mind that the
equation references throughout the lecture notes correspond to the third edition. For an
undergraduate level text book covering an introduction to signals and systems theory,
which it is assumed you have covered, the following is recommended [Mulgrew:2002]:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing:
Concepts and Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.see.ed.ac.uk/˜{}pmg/SIGPRO

The latest edition was printed in 2003, but any of the book edition will do. An
alternative presentation of roughly the same material is provided by the following book
[Balmer:1997]:

Balmer L., Signals and Systems: An Introduction, Second edition,
Prentice-Hall, Inc., 1997.

IDENTIFIERS – Paperback, ISBN10: 0134954729, ISBN13: 9780134956725
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(a) [Mulgrew:2002]. (b) [Balmer:1997]. (c) [McClennan:2003].

Figure 1.8: Undergraduate texts on Signals and Systems.

The Appendix on complex numbers may prove useful.

For an excellent and gentle introduction to signals and systems, with an elegant
yet thorough overview of the mathematical framework involved, have a look at the
following book, if you can get hold of a copy (but don’t go spending money on it):

McClellan J. H., R. W. Schafer, and M. A. Yoder, Signal Processing First,
Pearson Education, Inv, 2003.

IDENTIFIERS – Paperback, ISBN10: 0131202650, ISBN13: 9780131202658

Hardback, ISBN10: 0130909998, ISBN13: 9780130909992

1.3.5 Further Recommended Reading

For additional reading, and for guides to the implementation of numerical algorithms
used for some of the actual calculations in this lecture course, the following book is
also strongly recommended:

Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Receipes in C: The Art of Scientific Computing, Second edition,
Cambridge University Press, 1992.

IDENTIFIERS – Paperback, ISBN10: 0521437202, ISBN13: 9780521437202

Hardback, ISBN10: 0521431085, ISBN13: 9780521431088

Please note that there are many versions of the numerical recipes book, and that any
version will do. So it would be worth getting the latest version.
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(a) Recommended text:
[Press:1992].

Figure 1.9: Further reading for numerical methods and mathematics.

1.3.6 Additional Resources

Other useful resources include:

• The extremely comprehensive and interactive mathematics encyclopedia:

Weisstein E. W., MathWorld, From MathWorld - A Wolfram Web
Resource, 2008.

See http://mathworld.wolfram.com

• Connexions is an environment for collaboratively developing, freely sharing, and
rapidly publishing scholarly content on the Web. A wide variety of technical
lectures can be found at:

Connexions, The Connexions Project, 2008.

See http://cnx.org

• The Wikipedia online encyclopedia is very useful, although beware that there
is no guarantee that the technical articles are either correct, or comprehensive.
However, there are some excellent articles available on the site, so it is worth
taking a look.

Wikipedia, The Free EncyclopediaWikipedia, The Free Encyclopedia,
2008.

See http://en.wikipedia.org/

• The Mathworks website, the creators of MATLAB, contains much useful
information:
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(a) The MATLAB logo.
MATLAB is a useful utility to
experiment with.

(b) Wikipedia, The
Free Encyclopedia.

Figure 1.10: Some useful resources.

MATLAB: The language of technical computing, The MathWorks,
Inc., 2008.

See http://www.mathworks.com/

• And, of course, the one website to rule them all:

Google Search Engine, Google, Inc., 2008.

See http://www.google.co.uk

1.3.7 Convention for Equation Numbering

In this handout, the following labelling convention is used for numbering equations
that are taken from the various recommended texts. This labelling should be helpful
for locating the relevant sections in the books for further reading. Equations labelled
as:

M:v.w.xyz are similar to those with the same equation reference in the core
recommended text book, namely [Manolakis:2001];

T:w.xyz are similar to those in [Therrien:1992] with the corresponding label;

K:w.xyz are similar to those in [Kay:1993] with the corresponding label;

P:v.w.xyz are used in chapters referring to basic DSP, and are references made
to [Proakis:1996].

All other equation labeling refers to intra-cross-referencing for these handouts. Most
equations are numbered for ease of referencing the equations, should you wish to refer
to them in tutorials or email communications, and so forth.

http://www.mathworks.com/
http://www.google.co.uk
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1.4 What are Signals and Systems?

New slideCommon usage and understanding of the word signal is actually correct from an
Engineering perspective within some rather broad definitions: a signal is thought of
as something that carries information. Usually, that something is a pattern of variations
of a physical quantity that can be manipulated, stored, or transmitted by a physical
process. Examples include speech signals, general audio signals, video or image
signals, biomedical signals, radar signals, and seismic signals, to name but a few.

So formally, a signal is defined as an information-bearing representation of a real
physical process. It is important to recognise that signals can take many equivalent
forms or representations. For example, a speech signal is produced as an acoustic
signal, but it can be converted to an electrical signal by a microphone, or a pattern of
magnetization on a magnetic tape, or even as a string of numbers as in digital audio
recording.

The term system is a little more ambiguous, and can be subject to interpretation. The
word system can correctly be understood as a process, but often the word system is
used to refer to a large organisation that administers or implements some process.

In Engineering terminology, a system is something that can manipulate, change,
record, or transmit signals. In general, systems operate on signals to produce new
signals or new signal representations. For example, an audio compact disc (CD) stores
or represents a music signal as a sequence of numbers. A CD player is a system for
converting the numerical representation of the signal stored on the disk to an acoustic
signal that can be heard.

1.4.1 Mathematical Representation of Signals

New slideA signal is defined as an information-bearing representation of a real process. It is a
pattern of variations, commonly referred to as a waveform, that encodes, represents,
and carries information.

Many signals are naturally thought of as a pattern of variations with time. For example,
a speech signal arises as a pattern of changing air pressure in the vocal tract, creating
a sound wave, which is then converted into electrical energy using a microphone. This
electrical signal can then be plotted as a time-waveform, and an example is shown in
Figure 1.11. The vertical axis denotes air pressure or microphone voltage, and the
horizontal axis represents time. This particular plot shows four contiguous segments
of the speech waveform. The second plot is a continuation of the first, and so on, and
each plot is vertically offset with the starting time of each segment shown on the left
vertical axis.

1.4.1.1 Continuous-time and discrete-time signals

New slideThe signal shown in Figure 1.11 is an example of a one-dimensional continuous-time
signal. Such signals can be represented mathematically as a function of a single
independent variable, t, which represents time and can take on any real-valued number.
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Figure 1.11: Plot of part of a speech signal. This signal can be represented by the
function s(t), where t is the independent variable representing time. The shaded region
is shown in more detail in Figure 1.12.

Hence, each segment of the speech waveform can be associated with a function s(t).
In some cases, the function s(t) might be a simple function, such as a sinusoid, but for
real signals, it will be a complicated function.

Generally, most real world signals are continuous in time and analogue: this means
they exist for all time-instances, and can assume any value, within a predefined
range, at these time instances. Although most signals originate as continuous-time
signals, digital processors and devices can only deal with discrete-time signals.
A discrete-time representation of a signal can be obtained from a continuous-time
signal by a process known as sampling. There is an elegant theoretical foundation
to the process of sampling, although it suffices to say that the result of sampling
a continuous-time signal at isolated, equally spaced points in time is a sequence of
numbers that can be represented as a function of an index variable that can take on
only discrete integer values.

The sampling points are spaced by the sampling period, denoted by Ts. Hence, the
continuous-time signal, s(t), is sampled at times t = nTs resulting in the discrete-time
waveform denoted by:

s[n] = s(nTs), n ∈ {0, 1, 2, . . . }. (1.1)

where n is the index variable. A discrete-time signal is sometimes referred to as a
discrete-time sequence, since the waveform s[n] is a sequence of numbers. Note,
the convention that parenthesis ( ) are used to enclose the independent variable of
a continuous-time function, and square brackets [ ] enclose the index variable of a
discrete-time signal. Unfortunately, this notation is not always adhered too (and is
not yet consistent in these notes either).

Figure 1.12 shows an example of a short segment of the speech waveform from
Figure 1.11, with a sampling period of Ts = 1

44100
seconds, or a sampling frequency

of fs = 1
Ts

= 44.1 kHz. It is not possible to evaluate the continuous-time function
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Figure 1.12: Example of a discrete-time signal. This is a sampled version of the shaded
region shown in Figure 1.11.

Figure 1.13: Example of a signal that can be represented by a function of two spatial
variables.

s(t) for every value of t, only at a finite-set of points, which will take a finite time to
evaluate. Intuitively, however, it is known that the closer the spacing of the sampled
points, the more the sequence retains the shape of the original continuous-time signal.
The question arises, then, regarding what is the smallest sampling period that can be
used to retain all or most of the information about the original signal.

1.4.1.2 Other types of signals

New slideWhile many signals can be considered as evolving patterns in time, many other signals
are not time-varying patterns at all. For example, an image formed by focusing light
through a lens onto an imaging array is a spatial pattern. Thus, an image is represented
mathematically as a function of two independent spatial variables, x and y; thus, a
picture might be denoted as p(x, y). An example of a gray-scale image is shown in
Figure 1.13; thus, the value p(x0, y0) represents the particular shade of gray at position
(x0, y0) in the image.

Although images such as that shown in Figure 1.13 represents a quantity from
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a physical two-dimensional (2-D) spatial continuum, digital images are usually
discrete-variable 2-D signals obtained by sampling a continuous-variable 2-D signal.
Such a 2-D discrete-variable signal would be represented by a 2-D sequence or array
of numbers, and is denoted by:

p[m, n] = p(m∆x, n∆y), m, n ∈ {0, 1, . . . N − 1}. (1.2)

where m and n take on integer values, and ∆x and ∆y are the horizontal and vertical
sampling spacing or periods, respectively.

Two-dimensional functions are appropriate mathematical representations of still
images that do not change with time; on the other hand, a sequence of images that
creates a video requires a third independent variable for time. Thus, a video sequence
is represented by the three-dimensional (3-D) function v(x, y, t).

The purpose of this section is to introduce the idea that signals can:

• be represented by mathematical functions in one or more dimensions;

• be functions of continuous or discrete variables.

The connection between functions and signals is key to signal processing and, at this
point, functions serve as abstract symbols for signals. This is an important, but very
simple, concept for using mathematics to describe signals and systems in a systematic
way.

1.4.2 Mathematical Representation of Systems

New slide A system manipulates, chances, records, or transmits signals. To be more specific,
a one-dimensional continuous-time system takes an input signal x(t) and produces
a corresponding output signal y(t). This can be represented mathematically by the
expression

y(t) = T {x(t)} (1.3)

which means that the input signal, x(t), be it a waveform or an image, is operated on
by the system, which is symbolised by the operator T to produce the output y(t). So,
for example, consider a signal that is the square of the input signal; this is represented
by the equation

y(t) = [x(t)]2 (1.4)

Figure 1.14 and Figure 1.16 show how signals can be generated and observed in a
real application. In Figure 1.14, the sound source and the information received by
the observer, or microphone, are the signals; the room acoustics represent the system.
Figure 1.15 shows the input signal to the system, a characterisation of the system, and
the resulting output signal. In Figure 1.16, the blurred images are the result of the
original image being passed through a linear system; the linear system represents the
physical process of a camera, for example, being out-of-focus, or in motion relative to
the object of interest.

The subject of signals and systems is the basis of a branch of Engineering known as
signal processing; this area is formally defined as follows:
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(a) Acoustic path from a sound source
to a microphone.

(b) Many sound sources within a
room.

Figure 1.14: Observed signals in room acoustics.
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(c) The system output.

(d) Block diagram representation of signal paths.

Figure 1.15: The result of passing a signal through a system.
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(a) An original unblurred
noiseless image.

(b) An image distorted
by an out-of-focus blur.

(c) Image distorted by
motion blur.

Figure 1.16: A blind image deconvolution problem; restoration of natural photographic
images.
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Figure 1.17: Amplitude-verses-time plot.

Signal processing is concerned with the modification or manipulation of a
signal, defined as an information-bearing representation of a real process,
that has been passed through a system, to the fulfillment of human needs
and aspirations.

1.4.3 Deterministic Signals

New slide The deterministic signal model assumes that signals are explicitly known for all time
from time t = −∞ to t = +∞, where t ∈ R, the set of all real numbers. There is
absolutely no uncertainty whatsoever regarding their past, present, or future signal
values. The simplest description of such signals is an amplitude-verses-time plot,
such as that shown in Figure 1.17; this time history helps in the identification of
specific patterns, which can subsequently be used to extract information from the
signal. However, quite often, information present in a signal becomes more evident by
transformation of the signal into another domain, and one of the most nature examples
is the frequency domain.
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1.5 Motivation for Signal Modelling

New slideSome state-of-the-art applications of statistical signal processing include the following:

Biomedical From medical imaging to analysis and diagnosis, signal processing
is now dominant in patient monitoring, preventive health care, and
tele-medicine. From analysing electroencephalogram (EEG) scans to
magnetic resonance imaging (MRI) (or nuclear magnetic resonance
imaging (NMRI)), to classification and analysis of deoxyribonucleic
acid (DNA) from micro-arrays, signal processing is required to make
sense of the analogue signals to then provide information to clinicians
and doctors.

Surveillance and homeland security From fingerprint analysis, voice transcription
and communication monitoring, to the analysis of closed-circuit
television (CCTV) footage, digital signal processing is applied in
many areas of homeland security. It is an especially well-funded area
at the moment.

Target tracking and navigation Although radar and sonar principally use analogue
signals for illuminating an object with either an electromagnetic or
acoustic wave, discrete-time signal processing is the primary method
for analysing the received data. Typical features for estimation include
detecting targets, estimating the position, orientation, and velocity of
the object, target tracking and target identification.
Of recent interest is tracking groups of targets, such as a convey of
vehicles, or a flock of birds. Attempting to track each individual
target is an overly complicated problem, and by considering the group
dynamics of a particular scenario, the multi-target tracking problem is
substantially simplified.

Mobile communications New challenges in mobile communications include
next-generation networks; users demand higher data-rates which,
in-turn, requires higher bandwidth. Typically, higher-bandwidth
communication systems have shorter range. Rather than have more
and more base stations for the mobile network, there is substantial
research into mobile ad-hoc networks.
A mobile ad-hoc network is a self-configuring network of mobile
routers connected by wireless links, forming an arbitrary topology.
The routers are free to move randomly and organize themselves
arbitrarily; thus, the network’s wireless topology may change rapidly
and unpredictably. The challenge is to design a system that can cope
with this changing topology, and is a very active area of research in
communication theory.
A testament to the change in mobile communications is the availability
of cheap mobile broadband modems which provide broadband Internet
access which is comparable with fixed-line technologies that were
available only a few years ago.
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Speech enhancement and recognition Whether for the analysis of a black-box
recording, for enhancing speech recognition in noisy and reverberant
environments, or for the improved acoustic clarity of mobile phone
conversations, the enhancement of acoustic signals is still a major
aspect of signal processing research.

Many signal processing systems are designed to extract information for some purpose.
They share the common problem of needing to estimate the values of a group of
parameters. Such algorithms involve signal modelling and spectral estimation. Some
typical applications and the desired parameter include:

Radar Radar is primarily used in determining the position of an aircraft
or other moving object; for example, in airport surveillance. It is
desirable to estimate the range of the aircraft, as determined by the
time for an electromagnetic pulse to be reflected by the aircraft.

Sonar Sonar is also interested in the position of a target, such as a submarine.
However, whereas radar is, mostly, an active device in the sense that
it transmits an electromagnetic pulse to illuminate the target, sonar
listens for noise radiated by the target. This radiated noise includes
sounds generated by machinery, or the propeller action. Then, by using
a sensor array where the relative positions of each sensor are known,
the time delay between the arrival of the pulse at each sensor can be
measured and this can be used to determine the bearing of the target.

Image analysis It might be desirable to estimate the position and orientation of an
object from a camera image. This would be useful, for example,
in guiding a robot to pick up an object. Alternatively, it might be
desirable to remove various forms of blur from an image, as shown in
Figure 1.16; this blur might be characterised by a parametric function.

Biomedicine A parameter of interest might be the heart rate of a fetus.

Communications Estimate the carrier frequency of a signal such that the signal can
be demodulated to baseband.

Control Estimate the position of a boat such that corrective navigational action
can be taken.

Seismology Estimate the underground distance of an oil deposit based on sound
reflections due to different densities of oil and rock layers.

And the list can go on, with a multitude of applications stemming from the analysis
of data from physical experiments through to economic analysis. To gain some
motivation for looking at various aspects of statistical signal processing, some specific
applications will be considered that require the tools this module will introduce. These
applications include:

• Speech Modelling and Recognition
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Figure 1.18: The speech synthesis model.

• Single Channel Blind System Identification

• Blind Signal Separation

• Data Compression

• Enhancement of Signals in Noise

1.5.1 Speech Modelling and Recognition

New slideStatistical parametric modelling can be used to characterise the speech production
system, and therefore can be applied in the analysis and synthesis of speech. In the
analysis of speech, the waveform is sampled at a rate of about 8 to 20 kHz, and
broken up into short segments whose duration is typically 10 to 20 ms; this results
in consecutive segments containing about 80 to 400 time samples.

Most speech sounds, generally, are classified as either voiced or unvoiced speech:

• voiced speech is characteristic of vowels;

• unvoiced speech is characteristic of consonants at the beginning of syllables,
fricatives (/f/, /s/ sounds), and a combination of these.

Thinking of the types of sound fields created by vowels, it is apparent that voiced
speech has a harmonic quality. In fact, it is sometimes known as frequency-modulated
speech. A commonly used model for voiced speech exploits this harmonic
characteristic, and uses the so-called sum-of-sinusoids decomposition. Unvoiced
speech, on the other hand, does not exhibit such a harmonic structure, although it
does possesses a form that can be modelled using the statistical models introduced in
later lectures.
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Figure 1.19: Solutions to the blind deconvolution problem requires advanced statistical
signal processing.

For both of these types of speech, the production is modelled by driving or exciting a
linear system, representing the vocal tract, with an excitation having a flat (or constant)
spectrum.

The vocal tract, in turn, is modelled by using a pole-zero system, with the poles
modelling the vocal tract resonances and the zeros serving the purpose of dampening
the spectral response between pole frequencies. In the case of voiced speech, the input
to the vocal tract model is a quasi-periodic pulse waveform, whereas for unvoiced
speech, the source is modelled as random noise. Thus, the complete set of parameters
for this model include an indicator variable as to whether the speech is voiced or
unvoiced, the pitch period for voiced sounds, the gain or variance parameter for
unvoiced sounds, and the coefficients for the all-pole filter modelling the vocal tract
filter. The model is shown in Figure 1.18. This model is widely used for low-bit-rate
(less than 2.4 kbits/s) speech coding, synthetic speech generation, and extraction of
features for speaker and speech recognition.

1.5.2 Single Channel Blind System Identification

New slide Consider the following abstract problem that is shown in Figure 1.19:

• The output only of a system is observed, and it is desirable to estimate the
source signal that is applied to the input of the system without knowledge of
the system itself. In other-words, the output observation, x = {x[n], n ∈ Z},1
is modelled as a function of the unknown source signal, s = {s[n], n ∈ Z},
with an unknown, possibly nonlinear, distortion denoted by F ; more formally,
x = F(s).

• When the function F is linear time-invariant (LTI), and defined by the impulse
response h[n], then:

x[n] = h[n] ∗ s[n] =
∑
k∈Z

h[n− k] s[n] (1.5)

• Problem: Given only {x[n]}, estimate either the channel function, F , which in
the LTI case will be represented by the impulse response h[n], or a scaled shifted
version of the source signal, {s[n]}; i.e. ŝ[n] = a s[n− l] for some l.

1 The notation n ∈ Z means that n belongs to, or is an element of, the set of integers:
{−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}. In otherwords, it may take on any integer value.
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Figure 1.20: Standard signal separation using the independent component assumption.

The distortion operator, F , could represent the:

• acoustical properties of a room (with applications in hands free telephones,
hearing aids, archive restoration, and automatic speech recognition);

• effect of multi-path radio propagation (with applications in communication
channels);

• non-impulsive excitation in seismic applications (with applications in
seismology);

• blurring functions in image processing; in this case, the signals are 2-D.

This problem can only be solved by parametrically modelling the source signal and
channel, and using parameter estimation techniques to determine the appropriate
parameter values.

1.5.3 Blind Signal Separation

New slideAn extremely broad and fundamental problem in signal processing is BSS, and an
important special case is the separation of a mixture of audio signals in an acoustic
environment. Typical applications include the separation of overlapping speech
signals, the separation of musical instruments, enhancement of speech recordings in
the presence of background sounds, or any variation of the three. In general, a number
of sounds at discrete locations within a room are filtered due to room acoustics and then
mixed at the observation points; for example, a microphone will pick up a number of
reverberant sounds simultaneously (see Figure 1.14).

A very powerful paradigm within which signal separation can be achieved is the
assumption that the source signals are statistically independent of one another; this
is known as independent component analysis (ICA). Figure 1.20 demonstrates
a separation algorithm based on ICA; an “unmixing” system is chosen that has
minimal statistical correlation (a sufficient but not necessary condition for statistical
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independence, as will be seen later in this course) of the hypothesised separated signals,
thereby matching the statistical characteristics of the original signals. This algorithm
then uses standard convex optimisation algorithms to solve the minimisation problem.

It is clear, then, that this approach to ICA requires good estimates of the correlation
functions from a limited amount of data.

1.5.4 Data Compression

New slide Three basis principles of data compression for communication systems include:

Mathematically Lossless Compression This principle looks for mathematical
coding schemes that reduce the bits required to represent a signal.
For example, long runs of 0’s might be replaced by a shorter
representation. This method of compression is used in computer file
compression systems.

Lossy compression by removing redundant information This approach is often
performed in a transform domain, such as the frequency domain.
There might be many Fourier coefficients that are small, and do not
significantly contribute to the representation of the signal. If these
small coefficients are not transmitted, then compression is achieved.

Lossless compression by linear prediction If it is possible to predict the current data
sample from previous data samples, then it would not be necessary to
transmit the current data symbol. Typically, however, the prediction is
not completely accurate. However, by only transmitting the difference
between the prediction and the actual value, which is typically a lot
smaller than the actual value, then it turns out a fewer number of bits
need to be transmitted, and thus compression achieved. The trick is to
design a good predictor, and this is where statistical signal processing
comes in handy.

1.5.5 Enhancement of Signals in Noise

High quality digital audio has in recent years dramatically raised expectations about
sound quality. For example, high quality media such as:

• compact disc

• digital audio tape

• digital versitile disc-audio and super-audio CD.

Audio degradation is any undesirable modification to an audio signal occurring as the
result of, or subsequent to, the recording process. Disturbances or distortions such as
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(a) The digital
versitile disc-audio
(DVD-A) logo.

(b) The super-audio
CD (SACD) logo.

Figure 1.21: High-quality audio formats.

1. background noise,

2. echoes and reverberation,

3. and media noise.

must be reduced to adequately low levels. Ideal restoration reconstructs the original
sound exactly as would be received by transducers (microphone etc.,) in the absence
of noise and acoustic distortion. Interest in historical material led to restoration of
degraded sources including

1. wax cylinders recordings,

2. disc recordings (78rpm, etc.),

3. and magnetic tape recordings.

Restoration is also required in contemporary digital recordings if distortion too
intrusive. Note that noise present in recording environment, such as audience noise at
a musical performance, considered part of performance. Statistical signal processing
is required in such applications.
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2
Review of Basic Probability Theory

All knowledge degenerates into
probability.

David Hume

This handout gives a review of the fundamentals of probability theory.

2.1 Introduction
New slideThe theory of probability deals with averages of mass phenomena occurring

sequentially or simultaneously; in signal processing and communications, this might
include radar detection, signal detection, anomaly detection, parameter estimation, and
so forth.

How does one start considering the notion and meaning of probability? It has been
observed in many fields that certain averages approach a constant value as the number
of observations increases, and this value remains the same if the averages are evaluated
over any subsequence (of observations) specified before the experiment is performed.
In a coin experiment, for example, the percentage of heads approaches 0.5 or some
other constant, and the same average is obtained if every fourth, sixth, or arbitrary
selection of tosses is chosen. Note that the notion of an average is not in-itself a
probabilistic term.

The purpose of the theory of probability is to describe and predict these averages in
terms of probabilities of events. The probability of an event A is a number Pr (A)
assigned to this event. This number could be interpreted as follows:

29
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If an experiment is performed n times, and the event A occurs nA times,
then with a high degree of certainty, the relative frequency nA/n is close to
Pr (A), such that:

Pr (A) ≈ nA
n

(2.1)

provided that n is sufficiently large.

Note that this interpretation and the language used is all very imprecise, and phrases
such as high degree of certainty, close to, and sufficiently large has no clear meaning.
These terms will be more precisely defined as concepts are introduced throughout this
course.

2.2 Classical Definition of Probability

New slide For several centuries, the theory of probability was based on the classical definition,
which states that the probability Pr (A) of an event A is determine a priori without
actual experimentation. It is given by the ratio:

Pr (A) =
NA

N
(2.2)

where:

• N is the total number of outcomes,

• and NA is the total number of outcomes that are favourable to the event A,
provided that all outcomes are equally probable.

This definition, however, has some difficulties when the number of possible outcomes
is infinite, as illustrated in the following example in Section 2.2.1.

2.2.1 Bertrand’s Paradox
New slide Consider a circle C of radius r; what is the probability p that the length ` of a randomly

selected cord AB is greater than the length, r
√

3, of the inscribed equilateral triangle?

KEYPOINT! (Recalling Geometry!). To fully appreciate this problem, it is perhaps
worth being aware of the geometry of this problem. The idea of the geometry is to keep
simple geometric shapes, rather than to play on some obscure geometric properties.
Therefore, note that if three tangents to a circle of radius r/2 are drawn at angular
intervals of 120 degs, then the resulting equilateral triangle fits inside a larger circle
of radius r, as shown in Figure 2.1. The length of the sides of one of this equilateral
triangle is r

√
3.

Using the classical definition of probability, three reasonable solutions can be obtained:
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r/2

r

Figure 2.1: Bertrand’s paradox, problem definition.

A

B

M

(a) The midpoint method.

A

BD

E

(b) The endpoint
method.

A B
R

(c) The radius method.

Figure 2.2: Different selection methods.
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1. In the random midpoints method, a cord is selected by choosing a point M
anywhere in the circle, an end-point A on the circumference of the circle, and
constructing a chord AB through these chosen points. This is shown graphically
in Figure 2.2a.

It is reasonable, therefore, to consider as favourable outcomes all points inside
the inner-circle of radius r/2, and to consider all possible outcomes as points
inside the outer-circle of radius r. Therefore, using as a measure of these
outcomes the corresponding areas, it follows that:

p =
π
(
r
2

)2

πr2
=

1

4
(2.3)

2. In the random endpoints method, consider selecting two random points on the
circumference of the (outer) circle,A andB, and drawing a chord between them.
This is shown in Figure 2.2b, where the point A has been drawn to coincide with
the particular triangle drawn. If B lies on the arc between the two other vertices,
D and E, of the triangle whose first vertex coincides with A, then AB will be
longer than the length of the side of the triangle.

The favourable outcomes are now the points on this arc, and since the angle
of the arc DE is 2π

3
radians, a measure of this outcome is the arc length 2πr

3
.

Moreover, the total outcomes are all the points on the circumference of the main
circle, and therefore it follows:

p =
2πr
3

2πr
=

1

3
(2.4)

3. Finally, in the random radius method, a radius of the circle is chosen at random,
and a point on the radius is chosen at random. The chord AB is constructed
as a line perpendicular to the chosen radius through the chosen point. The
construction of this chord is shown in Figure 2.2c.

The favourable outcomes are the points on the radius that lie inside of the
inner-circle, or a measure of this outcome is given by the diameter of the
inner-circle, r. The total outcomes are the points on the diameter of the
outer-circle, and a measure of that respective length is 2r. Therefore, the
probability is given by

p =
r

2r
=

1

2
(2.5)

There are thus three different but reasonable solutions to the same problem. Which
one is valid?

2.2.2 Using the Classical Definition

New slide The difficulty with the classical definition in Equation 2.2, as seen in Bertrand’s
Paradox, is in determining N and NA.
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Example 2.1 (Rolling two dice). Two dice are rolled; find the probability, p, that the
sum of the numbers shown equals 7. Consider three possibilities:

1. The possible outcomes total 11 which are the sums {2, 3, . . . , 12}. Of these,
only one (the sum 7) is favourable. Hence, p = 1

11
.

This is, of course, wrong, and the reason is that each of the 11 possible outcomes
are not equally probable.

2. Similarly, writing down the possible pairs of shown numbers, without
distinguishing between the first and second die. There are then 21 pairs,
(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6), of which there are three favourable
pairs (3, 4), (5, 2) and (6, 1). However, gain, the pairs (3, 4) and (6, 6), for
example, are not equally likely.

3. Therefore, to count all possible outcomes which are equally probable, it is
necessary to could all pairs of numbers distinguishing between the first and
second die. This will give the correct probability.

2.2.3 Difficulties with the Classical Definition
New slideThe classical definition in Equation 2.2 can be questioned on several grounds, namely:

1. The term equally probable in the definition of probability is making use of a
concept still to be defined!

2. The definition can only be applied to a limited class of problems.

In the die experiment, for example, it is applicable only if the six faces have the
same probability. If the die is loaded and the probability of a “4” equals 0.2, say,
then this cannot be determined from the classical ratio in Equation 2.2.

3. If the number of possible outcomes is infinite, then some other measure of
infinity for determining the classical probability ration in Equation 2.2 is needed,
such as length, or area. This leads to difficulties, as discussed in Bertrand’s
paradox.

2.3 Axiomatic Definition
New slideThe axiomatic approach to probability is based on the following three postulates and

on nothing else:

1. The probability Pr (A) of an event A is a non-negative number assigned to this
event:

Pr (A) ≥ 0 (2.6)
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2. Defining the certain event, S, as the event that occurs in every trial, then the
probability of the certain event equals 1, such that:

Pr (S) = 1 (2.7)

3. If the events A and B are mutually exclusive, then the probability of one event
or the other occurring separately is:

Pr (A ∪B) = Pr (A) + Pr (B) (2.8)

or more generally, if A1, A2, . . . is a collection of disjoint events, such that
Ai ∩ Aj = ∅ for all pairs i, j satisfying i 6= j, then:

Pr

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr (Ai) (2.9)

Note that Equation 2.9 does not directly follow from Equation 2.8, even though
it may appear to. Dealing with infinitely many sets requires further insight, and
here the result of Equation 2.9 is actually an additional condition known as the
axiom of infinite additivity.

These axioms can be formalised by defining measures and fields as appropriate, but
the level of detail is beyond this course.

These axioms, once formalised, are known as the Kolmogorov Axioms, named after
the Russian mathematician. Note that an alternative approach to deriving the laws of
probability theory from a certain set of postulates was developed by Cox. However,
this won’t be considered in this course.

2.3.1 Set Theory

New slide Since the classical definition of probability details in total number of outcomes, as
well as events, it is necessary to utilise the mathematical language of sets to formulise
precise definitions.

A set is a collection of objects called elements. For example, “car, apple, apple” is
a set with three elements whose elements are a car, an apple, and a pencil. The set
“heads, tails” has two elements, while the set “1, 2, 3, 5”, has four. It is assumed that
most readers will have come across set theory to some extent, and therefore, it will be
used throughout the document as and when needed.

Some basic notation, however, includes the following:

Unions and Intersections Unions and intersections are commutative, associative, and
distributive, such that:

A ∪B = B ∪ A, (A ∪B) ∪ C = A ∪ (B ∪ C) (2.10)
AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪ AC (2.11)
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Complements The complement A of a set A ⊂ S is the set consisting of all elements
of S that are not in A. Note that:

A ∪ A = S and A ∩ A ≡ AA = {∅} (2.12)

Partitions A partition U of a set S is a collection of mutually exclusive subsets
Ai of S whose union equations S, such that:

∞⋃
i=1

Ai = S, Ai ∩ Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An]

(2.13)

De Morgan’s Law Using Venn diagrams, it is relatively straightforward to show

A ∪B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B (2.14)

As an application of this, note that:

A ∪BC = ABC = A
(
B ∪ C

)
(2.15)

=
(
AB

)
∪
(
AC

)
(2.16)

= A ∪B ∪ A ∪ C (2.17)
⇒ A ∪BC = (A ∪B) (A ∪ C) (2.18)

This result can easily be derived by using Venn diagrams, and it is
worth checking this result yourself. This latter identity will also be
used later in Section 2.3.2.

2.3.2 Properties of Axiomatic Probability

New slideSome simple consequences of the definition of probability defined in Section 2.3
follow immediately:

Impossible Event The probability of the impossible event is 0, and therefore:

Pr (∅) = 0 (2.19)

Complements Since A ∪ A = S and AA = {∅}, then using Equation 2.8,
Pr
(
A ∪ A

)
= Pr (A) + Pr

(
A
)

= Pr (S) = 1, such that:

Pr
(
A
)

= 1− Pr (A) (2.20)

Sum Rule The addition law of probability or the sum rule for any two events
A and B is given by:

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B) (2.21)

Example 2.2 (Proof of the Sum Rule). Prove the result in Equation 2.21.

July 16, 2015 – 09 : 45



36 Probability Theory

SOLUTION. To prove this, separately write A∪B and B as the union of two mutually
exclusive events (using Equation 2.18 and the fact A ∪ A = S and S B = B).

• First, note that

A ∪
(
AB

)
=
(
A ∪ A

)
(A ∪B) = A ∪B (2.22)

and that since A
(
AB

)
=
(
AA

)
B = {∅}B = {∅}, then A and AB are

mutually exclusive events.

• Second, note that:

B =
(
A ∪ A

)
B = (AB) ∪

(
AB

)
(2.23)

and that (AB) ∩
(
AB

)
= AAB = {∅}B = {∅} and are therefore mutually

exclusive events.

Using these two disjoint unions, then:

Pr (A ∪B) = Pr
(
A ∪

(
AB

))
= Pr (A) + Pr

(
AB

)
(2.24)

Pr (B) = Pr
(
(AB) ∪

(
AB

))
= Pr (AB) + Pr

(
AB

)
(2.25)

Eliminating Pr
(
AB

)
by subtracting these equations gives the desired result:

Pr (A ∪B)− Pr (B) = Pr
(
A ∪

(
AB

))
= Pr (A)− Pr (AB) (2.26)

�

Example 2.3 (Sum Rule). Let A and B be events with probabilities Pr (A) = 3/4 and
Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A) + Pr (B)− Pr (A ∪B) ≥ Pr (A) + Pr (B)− 1 =
1

12
(2.27)
�

which is the case when the whole sample space is covered by the two events. The
second bound occurs since A ∩ B ⊂ B and similarly A ∩ B ⊂ A, where ⊂ denotes
subset. Therefore, it can be deduced Pr (AB) ≤ min{Pr (A) , Pr (B)} = 1/3.
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2.3.3 Countable Spaces

New slide
If the certain event, S, consists of N outcomes, and N is a finite number, then the
probabilities of all events can be expressed in terms of the probabilities Pr (ζi) = pi of
the elementary events {ζi}.

Example 2.4 (Cups and Saucers). Six cups and saucers come in pairs: there are two
cups and saucers which are red, two which are while, and two which are blue. If the
cups are placed randomly onto the saucers (one each), find the probability that no cup
is upon a saucer of the same pattern.

SOLUTION. • Lay the saucers in order, say as RRWWBB.

• The cups may be arranged in 6! ways, but since each pair of a given colour may
be switched without changing the appearance, there are 6!/(2!)3 = 90 distinct
arrangements.

By assumption, each of these are equally likely.

• The arrangements in which cups never match their saucers are:

WWBBRR, WBRBWR, BWBRRW, BBRRWW

WBBRWR, BWRBRW

WBRBRW, BWRBWR

WBBRWR, BWBRRW

(2.28)
�

• Hence, the required probability is 10/90 = 1/9.

2.3.4 The Real Line

New slide
If the certain event, S, consists of a non-countable infinity of elements, then its
probabilities cannot be determined in terms of the probabilities of elementary events.
This is the case if S is the set of points in an n-dimensional space.

Suppose that S is the set of all real numbers. Its subsets can be considered as sets of
points on the real line. To construct a probability space on the real line, consider events
as intervals x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification of probabilities for this set, it suffices to assign
probabilities to the events {x ≤ xi}.

This notion leads to cumulative distribution functions (cdfs) and probability
density functions (pdfs) in the next handout.
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2.4 Conditional Probability

New slideTo introduce conditional probability, consider the discussion about proportions in
Section 2.1. If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are observed. Suppose that
only those outcomes for which B occurs are considered, and all other experiments are
disregarded.

In this smaller collection of trials, the proportion of times that A occurs, given that B
has occurred, is:

Pr
(
A
∣∣B) ≈ nAB

nB
=

nAB/n
nB/n

=
Pr (AB)

Pr (B)
(2.29)

provided that n is sufficiently large.

The conditional probability of an event A assuming another event B, denoted by
Pr
(
A
∣∣B), is defined by the ratio:

Pr
(
A
∣∣B) =

Pr (A ∩B)

Pr (A)
(2.30)

It can be shown that this definition satisfies the Kolmogorov Axioms.

Example 2.5 (Two Children). A family has two children. What is the probability that
both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or female, and it is
assumed that each is equally likely.

There are four possibilities for the gender of the children, namely:

S = {GG, GB, BG, BB} (2.31)

where the four possibilities are equally probable:

Pr (GG) = Pr (GB) = Pr (BG) = Pr (BB) =
1

4
(2.32)

The subset of S which contains the possibilities of one child being a boy is at SB =
{GB, BG, BB}, and therefore the conditional probability:

Pr
(
BB

∣∣SB) =
Pr (BB ∩ (GB ∪BG ∪BB))

Pr (SB)
(2.33)

Note that {BB ∩ (GB ∪BG ∪BB)} = {BB}, and that Pr (SB) = 1 − Pr (SB) =
1− Pr (GG) = 3

4
. Therefore:

Pr
(
BB

∣∣SB) =
Pr (BB)

1− Pr (GG)
=

1/4

3/4
=

1

3
(2.34)
�

Note that the question is completely different if it were what is the probability that both
are boys, given that the youngest child is a boy, in which case the solution is 1/2. This is
since information has been provided about one of the children, thereby distinguishing
between the children.
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The example in Example 2.5 might seem a little abstract to signal processing, but there
are other ways of phrasing exactly the same problem. Using an example taken from
[Therrien:2011], it could be phrased as follows:

A compact disc (CD) selected from the bins at Simon’s Surplus are as
likely to be good as they are bad. Simon decides to sell these CDs in
packages of two, but guarantees that in each package, at least one CD will
be good. What is the probability that when you buy a signle package, you
get two good CDs?

Example 2.6 (Prisoner’s Paradox). Three prisoners, A, B and C, are in separate
cells and sentenced to death. The governor has selected one of them at random to
be pardoned. The warden knows which one is pardoned, but is not allowed to tell.
Prisoner A begs the warden to let him know the identity of one of the others who is
going to be executed.

If B is to be pardoned, give me C’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B is to be executed. Prisoner A is pleased because he believes
that his probability of surviving has gone up from 1/3 to 1/2, as it is now between him
and C. Prisoner A secretly tells C the news, who is also pleased, because he reasons
that A still has a chance of 1/3 to be the pardoned one, but his chance has gone up to
2/3. What is the correct answer?
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3
Scalar Random Variables

This handout introduces the concept of a random variable, its probabilistic description
in terms of pdfs and cdfs, and characteristic features such as mean, variance, and other
moments. It covers the probability transformation rule and characteristic functions.

3.1 Abstract
New slide• Deterministic signals are interesting from an analytical perspective since their

signal value or amplitude are uniquely and completely specified by a functional
form, albeit that function might be very complicated. Thus, a deterministic
signal is some function of time: x = x(t).

• In practice, this precise description cannot be obtained for real-world signals
and, moreover, it can be argued philosophically that real-world signals are not
deterministic but, rather, they are inherently random or stochastic in nature.

• Although random signals evolve in time stochastically, their average properties
are often deterministic, and thus can be specified by an explicit functional form.

• This part of the course looks at the properties of stochastic processes, both in
terms of an exact probabilistic description, and also characteristic features such
as mean, variance, and other moments.

3.2 Definition Random Variables
New slideA random variable (RV) X (ζ) is a mapping that assigns a real number X ∈

(−∞, ∞) to every outcome ζ from an abstract probability space. This mapping from
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ζ to X should satisfy the following two conditions:

1. the interval {X (ζ) ≤ x} is an event in the abstract probability space for every
x ∈ R;

2. Pr (X (ζ) =∞) = 0 and Pr (X (ζ) = −∞) = 0.

The second condition states that, although X is allowed to take the values x = ±∞,
the outcomes form a set with zero probability.

KEYPOINT! (Nature of Outcomes). Note that the outcomes of events are not
necessarily numbers themselves, although they should be distinct in nature. Hence,
examples of outcomes might be:

• outcomes of tossing coins (head/tails); card drawn from a deck (King, Queen,
8-of-Hearts);

• characters or words (A-Z); symbols used in deoxyribonucleic acid (DNA)
sequencing (A, T, G, C);

• a numerical result, such as the number rolled on a die.

A more graphical representation of a discrete RV is shown in Figure 3.1. In this
model, a physical experiment can lead to a number of possible events representing
the outcomes of the experiment. These outcomes may be values, or they may be
symbols, or some other representation of the event. Each outcome (or event), ζk, has
a probability Pr (ζk) assigned to it. Each outcome ζk then a real number assigned to
that outcome, xk. The RV is then defined as the collection of these three values; an
outcome index, the probability of the outcome, and the real value assigned to that
outcome, thus X (ζ) = {ζk, Pr (ζk) , xk.

A more specific example is shown in Figure 3.2 in which the experiment is that
of rolling a die, the outcomes are the colors of the dies, each event is simply each
outcome, and the specific user-defined values assigned are the numbers shown.

Example 3.1 (Rolling die). Consider rolling a die, with six outcomes {ζi, i ∈
{1, . . . , 6}}. In this experiment, assign the number 1 to every even outcome, and the
number 0 to every odd outcome. Then the RV X (ζ) is given by:

X (ζ1) = X (ζ3) = X (ζ5) = 0 and X (ζ2) = X (ζ4) = X (ζ6) = 1 (3.1)
on

Example 3.2 (Letters of the alphabet). Suppose the outcome of an experiment is a
letter A to Z, such that X (A) = 1, X (B) = 2, ..., X (Z) = 26. Then the event
X (ζ) ≤ 5 corresponds to the letters A, B, C, D, or E.
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Figure 3.1: A graphical representation of a random variable.
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Figure 3.2: A graphical representation of a random variable.
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3.2.1 Distribution functions

New slide Random variables are fundamentally characterised by their distribution and density
functions. These concepts are considered in this and the next section.

• The probability set function Pr (X (ζ) ≤ x) is a function of the set {X (ζ) ≤
x}, and therefore of the point x ∈ R.

• This probability is the cumulative distribution function (cdf), FX (x) of a RV
X (ζ), and is defined by:

FX (x) , Pr (X (ζ) ≤ x) (M:3.1.1)

3.2.2 Density functions

New slide • The probability density function (pdf), fX (x) of a RV X (ζ), is defined as a
formal derivative:

fX (x) ,
dFX (x)

dx
(M:3.1.2)

Note the density fX (x) is not a probability on its own; it must be multiplied by
a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ ∆FX (x) , FX (x+ ∆x)− FX (x) ≈ Pr (x < X (ζ) ≤ x+ ∆x)
(3.2)

This can be written, more formally, as:

fX (x) = lim
∆x→0

FX(x+ ∆x)− FX(x)

∆x
(3.3)

= lim
∆x→0

Pr (x < X (ζ) ≤ x+ ∆x)

∆x
(3.4)

• It directly follows that:

FX(x) =

∫ x

−∞
fX(v) dv (M:3.1.4)

• For discrete-valued RV, use the probability mass function (pmf), pk, defined
as the probability thatX (ζ) takes on a value equal to xk: pk , Pr (X (ζ) = xk).

3.2.3 Properties of Distribution and Density Functions

New slide The following properties are for continuous RVs. Similar properties follow, mutatis
mutandis, for discrete RVs.



3.2. Definition 45

Sidebar 1 Probability of X (ζ) taking on a specific value

The simplest way to consider why the probability of a RV, X (ζ), taking on a specific
value, x0, is zero for a continuous RV, but not a discrete one, is to consider the limiting
case:

Pr (X (ζ) = x0) = lim
∆x0→0

Pr (x0 −∆x0 ≤ X (ζ) ≤ x0 + δx0) (3.5)

which can be expressed in terms of its probability density function (pdf), fX (x), as:

Pr (X (ζ) = x0) = lim
∆x0→0

∫ x0+∆x0

x0−∆x0

fX (u) du (3.6)

Suppose that around the region R = [x0 − ∆x0, x0 + ∆x0], the pdf fX (x) can be
expressed as:

fX (x) = p0 δ (x− x0) (3.7)

then using the sifting theorem, which states that∫
R
φ(t) δ(t− T ) dt =

{
φ(T ) if T ∈ R
0 otherwise

, (3.8)

then it becomes clear that

Pr (X (ζ) = x0) = lim
∆x0→0

∫ x0+∆x0

x0−∆x0

p0 δ (x− x0) du = p0 (3.9)

whereas for the continuous time case, the limit in Equation 3.6 tends to zero. In
otherwords, only in the case when the pdf of X (ζ), fX (x), contains a delta function at
a specific value, will the probability of that specific value be non-zero. A delta function
in a pdf corresponds to a discrete-component of the RV. An example of a mixture of
discrete and continous random variables is shown in Figure 3.3. Note the step function
in the cumulative distribution function (cdf).
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Figure 3.3: A probability density function and its corresponding cumulative
distribution function for a RV which is a mixture of continuous and discrete
components.

• Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1 (M:3.1.6)

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b (3.10)

• Properties of pdfs:

fX (x) ≥ 0,

∫ ∞
−∞

fX (x) dx = 1 (M:3.1.7)

• Probability of arbitrary events:

Pr (x1 < X (ζ) ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x) dx (M:3.1.8)

3.2.4 Kolmogorov’s Axioms

New slide The events {x ≤ x1} and {x1 < x ≤ x2} are mutually exclussive events. Therefore,
their union equals {x ≤ x2}, and therefore:

Pr (x ≤ x1) + Pr (x1 < x ≤ x2) = Pr (x ≤ x2) (3.11)∫ x1

−∞
p (v) dv + Pr (x1 < x ≤ x2) =

∫ x2

−∞
p (v) dv (3.12)

⇒ Pr (x1 < x ≤ x2) =

∫ x2

x1

p (v) dv (3.13)

Moreover, it follows that Pr (−∞ < x ≤ ∞) = 1 and the probability of the impossible
event, Pr (x ≤ −∞) = 0. Hence, the cdf satisfies the axiomatic definition of
probability.
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Figure 3.4: The uniform probability density function and cumulative distribution
function.

3.3 Examples of Continuous random variables

New slide Uniform distribution The RV X (ζ) is uniform on [a, b] if it has pdf:

fX (x) =

{
1
b−a if a < x ≤ b,
0 otherwise

(M:3.1.33)

The pdf is plotted in Figure 3.4.
Consequently, the cdf is given by:

FX (x) =


0 if x ≤ a,
x−a
b−a if a < x ≤ b,
1 if x > b.

(M:3.1.34)

The cdf is also shown in Figure 3.4. Roughly speaking,X takes on any
value between a and b with equal probability. The mean and variance
of this random variable are given by, respectively:

µX =
a+ b

2
and σ2

X =
(b− a)2

12
(M:3.1.35)

Exponential distribution The RV X (ζ) is exponential with parameter λ > 0 if it has
pdf:

fX (x) =

{
0 if x < 0,
λe−λx if x ≥ 0,

(3.14)

Consequently, the cdf is given by:

FX (x) =

{
0 if x < 0,
1− e−λx if x ≥ 0,

(3.15)

The exponential distribution occurs very often in practice as a
description of the time elapsing between random events.
The exponential pdf and cdf are shown in Figure 3.5, for various
different values of the parameter λ. The mean and variance of this
random variable are given by, respectively:

µX =
1

λ
and σ2

X = µ2
X =

1

λ2
(3.16)
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Figure 3.5: The exponential density and distribution functions, for various different
values of the parameter λ.

Hence, for an exponential distribution, the mean and standard
deviation are identical.

Normal distribution Arguably the most important continuous distribution is the
normal or Gaussian distribution; these terms will be used
interchangabally. The pdf of a Gaussian distributed RV, X (ζ), with
mean µX and standard deviation σ2

X , is given by:

fX (x) =
1√

2πσ2
X

exp

[
−1

2

(
x− µX
σX

)2
]
, x ∈ R (M:3.1.37)

It is common to denote this by:

fX (x) = N
(
x
∣∣µX , σ2

X

)
(3.17)

Note, however, that if x̂ is a sample of a Gaussian random variable,
then it is written:

x̂ ∼ N
(
µX , σ

2
X

)
(3.18)

The Gaussian pdf and cdf are shown in Figure 3.6 for a zero-mean RV,
and for various variances, σ2

X .

Gamma distribution The RV X (ζ) has the Gamma distribution with parameters
α > 0, β > 0 if it has pdf:

fX (x) =

{
0 if x < 0,

1
Γ(β)

αβ xβ−1 e−αx if x ≥ 0,
(3.19)

where Γ(β) is the gamma function given by:

Γ(β) =

∫ ∞
0

xβ−1 e−x dx (3.20)
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Figure 3.6: The Gaussian density and distribution functions; these plots are for a zero
mean normal pdf, and are plotted for various different variances, σ2

X .

This distribution is often written as fX (x) = Ga
(
x
∣∣α, β). If β = 1,

then X is exponentially distributed with parameter α.
The Gamma pdf and cdf are shown in Figure 3.7, for the case when
α = 1 and for various values of the parameter β.

Inverse-Gamma distribution The RV X (ζ) has the inverse-Gamma distribution
with parameters α > 0, β > 0 is related to a Gamma-distributed RV,
say U , through the transformation X = 1

U
. It can be shown using the

probability transformation rule that the pdf of X is thus given by:

fX (x) =

{
0 if x < 0,

1
Γ(β)

αβ x−(β+1) e−
α
x if x ≥ 0,

(3.21)

It is common to denote this by:

fX (x) = IG
(
x
∣∣α, β) (3.22)

Note, however, that if x̂ is a sample of a inverse-gamma distributed
variable, then it is written:

x̂ ∼ IG (α, β) (3.23)

Cauchy distribution The RVX (ζ) has the Cauchy distribution with parameters µX
and β if it has pdf:

fX (x) =
β

π

1

(x− µX)2 + β2
(M:3.1.41)

The Cauchy random variable has mean µX , but its variance does not
exist. The corresponding cdf is given by:

FX (x) =
1

2
+

1

π
arctan

x− µX
β

(3.24)
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Figure 3.7: The Gamma density and distribution functions, for the case when α = 1
and for various values of β.

The Cauchy distribution is an appropriate model in which a random
variable takes large values with significant probability, and is thus a
heavy-tailed distribution.

Beta distribution The RV X (ζ) is beta, parameters a, b > 0, if it has density
function:

fX (x) =

{
1

B(a,b)
xa−1(1− x)b−1 0 ≤ x ≤ 1

0 otherwise.
(3.25)

where the beta function is given by

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx (3.26)

If a = b = 1, then X is uniform on [0, 1].

Erlang-k distribution The RV X (ζ) has an Erlang-k distribution, with parameters
γ > 0 and k ∈ Z+ is a positive integer, if it has density function:

fX (x) =

{
γk(γkx)k−1

(k−1)!
e−γkx x ≥ 0

0 otherwise.
(3.27)

The mean and variance of this random variable are given by,
respectively:

µX =
1

γ
and σ2

X =
1

kγ2
(3.28)

Weibull distribution The RV X (ζ) is Weibull, parameters α, β > 0, if it has density
function:

fX (x) =

{
0 x < 0

αβxβ−1 e−αx
β

x ≥ 0
(3.29)
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Figure 3.8: The Weibull density and distribution functions, for the case when α = 1,
and for various values of the parameter β.

Y g X( ) ( ( ))z z=
X( )z Y( )z

f xX( ) f yY( )
?

Figure 3.9: The mapping y = g(x).

The corresponding the cdf is given by:

FX (x) =

{
0 x < 0

1− e−αxβ x ≥ 0
(3.30)

Setting β = 1 gives the exponential distribution.
The Weibull pdf and cdf are shown in Figure 3.8, for the case when
α = 1, and for various values of the parameter β.

3.4 Probability transformation rule

New slideSuppose a random variable Y (ζ) is a function, g, of a random variable X (ζ), which
has pdf given by fX (x). What is fY (y)?

This functional relationship is shown diagrammatically in Figure 3.9, and an arbitrary
function between X (ζ) and Y (ζ) is shown in Figure 3.10.

This general question is discussed in detail in, for example, [Papoulis:1991, Chapter
5]. It can be concluded that for Y (ζ) = g[X (ζ)] to be a valid random variable, the
function g(x) must have the following properties:
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Figure 3.10: The mapping y = g(x), and the effect of the mapping on intervals.

1. Its domain must include the range of the RV X (ζ).

2. It must be a so-called Baire function; that is, for every y, the set Ry = {x :
g(x) ≤ y, x ∈ R} must consist of the union and intersection of a countable
number of intervals. Only then the set {Y (ζ) ≤ y} is an event.

3. The events {g[X (ζ)] = ±∞} must have probability zero.

These properties are usually satisfied.

Consider the setR ⊂ R of the y-axis that is not in the range of the function g(x); that
is, g : R 9 R. In this case, Pr (g[X (ζ)] ∈ R) = 0. Hence, fY (y) = 0, y ∈ R. It
suffices, therefore, to consider values of y such that, for some x, g(x) = y.

Theorem 3.1 (Probability transformation rule). Denote the real roots of y = g(x)
by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN) (3.31)

Then, if the Y (ζ) = g[X (ζ)], the pdf of Y (ζ) in terms of the pdf of X (ζ) is given by:

fY (y) =
N∑
n=1

fX (xn)

|g′(xn)|
(3.32)

where g′(x) is the derivative with respect to (w. r. t.) x of g(x).

PROOF. The definition of a pdf gives:

fY (y) dy = Pr (y < Y (ζ) ≤ y + dy) (3.33)

The set of values x such that y < g(x) ≤ y + dy consists of the intervals:

xn < x ≤ xn + dxn (3.34)

This is shown in Figure 3.10 for the case when there are three solutions to the equation
y = g(x). The probability that x lies in this set is, of course,

fX (xn) dxn = Pr (xn < X (ζ) ≤ xn + dxn) (3.35)



3.4. Probability transformation rule 53

and, from the transformation from x to y, then

dxn =
dy

|g′(xn)|
(3.36)

Since these are mutually exclusive sets, then

Pr (y < Y (ζ) ≤ y + dy) =
N∑
n=1

Pr (xn < X (ζ) ≤ xn + dxn) (3.37)

=
N∑
n=1

fX (xn)
dy

|g′(xn)|
(3.38)
�

and thus the desired result is obtained after minor rearrangement.

Example 3.3 (Log-normal distribution). Let Y = eX , where X ∼ N (0, 1). Find
the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π
e−

x2

2 (3.39)

Considering the transformation y = g(x) = ex, there is one root, given by x = ln y.
Therefore, the derivative of this expression is g′(x) = ex = y. Hence, it follows:

fY (y) =
fX (x)

g′(x)
=

1

y
√

2π
e−

(ln y)2

2 (3.40)
�

This distribution is known as the log-normal distribution. It is important for cases
where the random variable X might describe the amplitude of a signal in decibels, and
where Y is the actual amplitude.

Example 3.4 (Inverse of a random variable). Let Y = 1
X

. Find the pdf for the RV
Y , given by fY (y), in terms of the pdf for the RVX , given by fX (x). Further, consider
the special case when X has a Cauchy density with parameter α, such that:

fX (x) =
α

π

1

x2 + α2
(3.41)

SOLUTION. There is a single solution to the equation y = 1
x
, given by x = 1

y
. Hence,

|g′(x)| = 1
x2

= y2, and:

fY (y) =
1

y2
fX

(
1

y

)
(3.42)

In the special case of a Cauchy density,

fX (x) =
α

π

1

x2 + α2
(3.43)
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such that:

fY (y) =
1

y2
fX

(
1

y

)
=

1

y2

α

π

1
1
y2

+ α2
(3.44)

=
1/α

π

1

y2 + 1
α2

(3.45)
�

which is also a Cauchy density with parameter 1
α

.

3.5 Expectations

New slide To completely characterise a RV, the pdf must be known. However, it is desirable
to summarise key aspects of the pdf by using a few parameters rather than having to
specify the entire density function.

• The expected or mean value of a function of a RV X (ζ) is given by:

E [X (ζ)] =

∫
R
x fX(x) dx (3.46)

• If X (ζ) is discrete, then its corresponding pdf may be written in terms of its
pmf as:

fX(x) =
∑
k

pk δ(x− xk) (3.47)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero otherwise.

• Hence, for a discrete RV, the expected value is given by:

µx =

∫
R
x fX(x) dx =

∫
R
x
∑
k

pk δ(x− xk) dx =
∑
k

xk pk (3.48)

where the order of integration and summation have been interchanged, and the
sifting-property applied.

3.5.1 Properties of expectation operator

New slide The expectation operator computes a statistical average by using the density fX(x) as
a weighting function. Hence, the mean µx can be regarded as the center of gravity of
the density.

• If fX(x) is an even function, then µX = 0. Note that since fX(x) ≥ 0, then
fX(x) cannot be an odd function.
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• If fX(x) is symmetrical about x = a, such that fX(a − x) = fX(x + a), then
µX = a.

• The expectation operator is linear:

E [αX (ζ) + β] = αµX + β (M:3.1.10)

• If Y (ζ) = g{X (ζ)} is a RV obtained by transforming X (ζ) through a suitable
function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X (ζ)}] =

∫ ∞
−∞

g(x) fX(x) dx (M:3.1.11)

This important property is known as the invariance of the expectation
operator, and is extremely important. .

3.6 Moments
New slideRecall that mean and variance can be defined as:

E [X (ζ)] = µX =

∫
R
x fX(x) dx (3.53)

var [X (ζ)] = σ2
X =

∫
R
x2 fX(x) dx− µ2

X = E
[
X2(ζ)

]
− E2 [X (ζ)] (3.54)

Thus, key characteristics of the pdf of a RV can be calculated if the expressions
E [Xm(ζ)] , m ∈ {1, 2} are known.

Further aspects of the pdf can be described by defining various moments ofX (ζ): the
m-th moment of X (ζ) is given by:

r
(m)
X , E [Xm(ζ)] =

∫
R
xm fX(x) dx (M:3.1.12)

Note, of course, that in general: E [Xm(ζ)] 6= Em [X (ζ)].

Example 3.5 (Expectations of non-negative RVs). Let X (ζ) be a non-negative RV
with pdf fX (x). Show that

E [Xr(ζ)] =

∫ ∞
0

r xr−1 Pr (X (ζ) > x) dx (3.55)

for any r ≥ 1 for which the expectation is finite.

SOLUTION. In this case, since the question says to show that, it is sufficient to
manipulate the right hand side (RHS). This proceeds as follows: notice,

∫ ∞
0

r xr−1 Pr (X (ζ) > x) dx =

∫ ∞
0

r xr−1

{∫ ∞
y=x

fX (y) dy

}
dx (3.56)
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Sidebar 2 Invariance of Expectation

The invariance of the expectation operator is an extremely important property, and
makes statistical analysis of transformed random variables much simpler. It can
be explained using similar techniques to those used in deriving the probability
transformation rule in Theorem 3.1.

Consider again Figure 3.10 on page 52, which is reproduced above. Let Y (ζ) =
g (X (ζ)). Consider first the approximation for the expectation of Y (ζ):

E [Y ] =

∫ ∞
−∞

y fY (y) dy ≈
∑
∀k

yk fY (yk) δy (3.49)

where fY (yk) δy = Pr (yk < Y (ζ) ≤ yk + δy) is the probability that Y (ζ) is in the
small interval yk < Y (ζ) ≤ yk + δy. This probability, as in Theorem 3.1, can be
written as the sum of the probabilities that X (ζ) is each of the corresponding small
intervals shown in Figure 3.10 above, such that:

fY (yk) δy =
N∑
n=1

Pr (xk,n < X (ζ) ≤ xk,n + δxk,n) =
N∑
n=1

fX (xk,n) δxk,n (3.50)

Substituting Equation 3.50 into Equation 3.52 gives:

E [Y ] ≈
∑
∀k

yk

N∑
n=1

fX (xk,n) δxk,n =
∑
∀k

N∑
n=1

g (xk,n) fX (xk,n) δxk,n (3.51)

Since the double summation merely covers all possible regions of x, this can be
reindexed as

E [Y ] ≈
∑
∀`

g (x`) fX (x`) δx` (3.52)

which in the limit gives the integral Equation M:3.1.11, page 55. So, in summary, to
compute the expectation of Y (ζ) = g (X (ζ)), it is not necessary to transform and find
the pdf of fY (y), but simply use this invariance of expectation property.
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(a) Integration w. r. t. x
first, and then w. r. t. y.

(b) Integration w. r. t. y
first, and then w. r. t. x.

Figure 3.11: The region of integration for the integral in Equation 3.56.

and rearrange the order of integration, noting the region of integration as shown in
Figure 3.11, and thus the change in the limits:

=

∫ ∞
0

fX (y)

{∫ y

x=0

r xr−1 dx

}
dy (3.57)

=

∫ ∞
0

fX (y) [xr]y0 dy =

∫ ∞
0

yrfX (y) dy = E [Xr(ζ)] (3.58)
�

3.6.1 Central Moments

Central moments of X (ζ) can also be defined: the m-th central moment of X (ζ) is
given by:

γ
(m)
X , E [(X (ζ)− µX)m] =

∫
R

(x− µX)m fX(x) dx (M:3.1.14)

Some obvious properties that follow from these definitions are:

• The variance of X (ζ) can be defined as:

var [X (ζ)] , σ2
X , γ

(2)
X = E

[
(X (ζ)− µX)2

]
(3.59)

• Standard deviation is given by: σX =
√

var [X (ζ)].

• Trivial moments: r(0)
X = 1 and r(1)

X = µX .

• Trivial central moments: γ(0)
X = 1, γ(1)

X = 0, and γ(2)
X = σ2

X .
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3.6.2 Relationship between Moments and Central Moments

Moments and central moments are related by the expressions:

γ
(m)
X =

m∑
k=0

(
m

k

)
(−1)k µkX r

(m−k)
X (M:3.1.16)

r
(m)
X =

m∑
k=0

(
m

k

)
µkX γ

(m−k)
X (3.60)

where the general combinatorial term nCr =
(
n
r

)
is given by

nCr =
n!

r! (n− r)!
(3.61)

In particular, second-order moments are related as follows:

σ2
X = r

(2)
X − µ

2
X = E

[
X2(ζ)

]
− E2 [X (ζ)] (M:3.1.17)

PROOF. These results are proved by expanding the term (x − µx)m in the expression
for central-moments using the binomial expansion.

Thus, recalling that

γ
(m)
X =

∫
R

(x− µX)m fX(x) dx (M:3.1.14)

then using the binomial:

(x+ a)n =
n∑
k=0

(
n

k

)
xk an−k =

n∑
k=0

(
n

k

)
ak xn−k (3.62)

it follows:

γ
(m)
X =

∫
R

m∑
k=0

(
m

k

)
xm−k (−µX)k fX(x) dx (3.63)

=
m∑
k=0

(
m

k

)
(−1)k µkX

∫
R
xm−k fX(x) dx︸ ︷︷ ︸

r
(m−k)
X

(3.64)

as required. Similarly, note that

r
(m)
X =

∫
R

[(x− µX) + µX ]m fX(x) dx (M:3.1.12)

=

∫
R

m∑
k=0

(
m

k

)
µkX (x− µX)m−k fX(x) dx (3.65)

=
m∑
k=0

(
m

k

)
µkX

∫
R

(x− µX)m−k fX(x) dx︸ ︷︷ ︸
γ
(m−k)
X

(3.66)
�

giving the desired result.
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3.6.3 Characteristic Functions
New slide The Fourier and Laplace transforms find many uses in probability theory through the

concepts of characteristic functions and moment generating functions.

The characteristic function of a rv X (ζ) is defined by the integral:

ΦX(ξ) , E
[
ejξ X(ζ)

]
=

∫ ∞
−∞

fX (x) ejξx dx (M:3.1.21)

This can be interpreted as the Fourier transform of fX (x) with a sign reversal in the
complex exponent. To avoid confusion with the pdf, FX(x) is not used to denote this
Fourier transform.

When jξ is replaced by a complex variable s, the moment generating function is
obtained, as defined by:

Φ̄X(s) , E
[
esX(ζ)

]
=

∫ ∞
−∞

fX (x) esx dx (M:3.1.22)

which can be interpreted as the Laplace transform of fX (x) with a sign reversal in the
complex exponent.

Using a series expansion for esX(ζ) gives: 1

Φ̄X(s) = E
[
esX(ζ)

]
= E

[
∞∑
n=0

(sX (ζ))n

n!

]
(3.68)

=
∞∑
n=0

sn

n!
E [Xn(ζ)] (3.69)

and noting that E [Xn(ζ)] = r
(m)
X , this gives:

Φ̄X(s) =
∞∑
n=0

sn

n!
r

(n)
X (M:3.1.23)

provided that every moment r(m)
X exists. Thus, if all moments of X (ζ) are known and

exist, then Φ̄X(s) can be assembled, and upon inverse Laplace transformation, the pdf
fX (x) can be determined.

Differentiating Φ̄X(s) m-times w. r. t. s, provides the mth-order moment of the RV
X (ζ):

r
(m)
X =

dmΦ̄X(s)

dsm

∣∣∣∣
s=0

= (−j)m dmΦX(ξ)

dξm

∣∣∣∣
ξ=0

, m ∈ Z+ (M:3.1.24)

1 It is better if you can work through some of these results for yourself without always having to
check every minor step, but just in case you’ve forgotten, the power series expansion for the exponential
function is given by:

ex =

∞∑
n=0

xn

n!
(3.67)
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Theorem 3.2 (Characteristic Functions). The characteristic function ΦX(ξ)
satisfies:

1. |ΦX(ξ)| ≤ ΦX(0) = 1 for all ξ.

2. ΦX(ξ) is uniformly continuous on the real axis: R.

3. ΦX(ξ) is nonnegative definite, which is to say that:∑
j

∑
k

ΦX(ξj − ξk) zj z∗k ≥ 0 (3.70)

for all real ξi and complex zi.

PROOF. 1. Clearly, ΦX(0) = E [1] = 1. Furthermore, using the Schwartz
inequality:

ΦX(ξ)| ≤
∫
fX (x) |ejξx| dx =

∫
fX (x) dx = 1 (3.71)

as required.

2. This is quite a technical property, but for completeness is proved here. Consider:

|ΦX(ξ + δξ)− ΦX(ξ)| =
∣∣E [ej(ξ+δξ)X(ζ) − ejξX(ζ)

]∣∣ (3.72)

using the linearity property of the expectation operator. Using Schwartz’s
inequality again, where it can be deduced that |E [·] | ≤ E [| · |], then:

|ΦX(ξ + δξ)− ΦX(ξ)| ≤ E
[∣∣ej(ξ+δξ)X(ζ) − ejξX(ζ)

∣∣] (3.73)

≤ E
[∣∣ejξX(ζ)

(
ejδξX(ζ) − 1

)∣∣] (3.74)

≤ E
[∣∣ejδξX(ζ) − 1

∣∣] (3.75)

Clearly, the quantity
∣∣ejδξX(ζ) − 1

∣∣→ 0 as δξ → 0, and thus

|ΦX(ξ + δξ)− ΦX(ξ)| → 0 as δξ → 0 (3.76)

and therefore ΦX(ξ) is uniformally continuous.

3. Finally,∑
p

∑
q

ΦX(ξp − ξq) zp z∗q =
∑
p

∑
q

zp z
∗
q

∫
fX (x) ej(ξp−ξq)x dx (3.77)

=

∫
fX (x)

{∑
p

∑
q

zpe
jξpx z∗qe

−jξqx

}
dx (3.78)

=

∫
fX (x)

∣∣∣∣∣∑
p

zpe
jξpx

∣∣∣∣∣
2

dx = E

∣∣∣∣∣∑
p

zpe
jξpx

∣∣∣∣∣
2
 ≥ 0 (3.79)

�
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Example 3.6 ( [Manolakis:2000, Exercise 3.6, Page 144]). Using the moment
generating function, show that the linear transformation of a Gaussian RV is also
Gaussian.

SOLUTION. To answer this question, proceed as follows:

1. Find the moment generating function of a Gaussian RV;

2. Write down Y (ζ) = aX (ζ) + b, such that:

Φ̄Y (s) , E
[
esY (ζ)

]
= E

[
es(aX(ζ)+b)

]
≡ esbE

[
easX(ζ)

]
= esbΦ̄X(s a) (3.80)

where the linearity of the expectation operator has been used.

3. Check to see what distribution this new moment generating function corresponds
to.

Thus, start by noting that a Gaussian random variable has pdf given by:

fX (x) =
1√

2πσ2
X

exp

[
−1

2

(
x− µX
σX

)2
]
, x ∈ R (M:3.1.37)

and the moment generating function is given by:

Φ̄X(s) , E
[
esX(ζ)

]
=

∫ ∞
−∞

fX (x) esx dx (M:3.1.22)

Substituting one into the other gives

Φ̄X(s) =
1√

2πσ2
X

∫ ∞
−∞

exp

[
−1

2

(
x− µX
σX

)2
]
esx dx (3.81)

=
1√

2πσ2
X

∫ ∞
−∞

exp

[
−x

2 − 2(µX + σ2
Xs)x+ µ2

X

2σ2
X

]
dx (3.82)

which, by completing the square, can be written as:

Φ̄X(s) =
1√

2πσ2
X

∫ ∞
−∞

exp

[
−(x− {µX + σ2

Xs})
2 − (2µXσ

2
Xs+ {σ2

Xs}2)

2σ2
X

]
dx

(3.83)

Φ̄X(s) = exp

[
µXs+

1

2
σ2
Xs

2

]
1√

2πσ2
X

∫ ∞
−∞

exp

[
−(x− {µX + σ2

Xs})
2

2σ2
X

]
dx︸ ︷︷ ︸

=1

(3.84)

Thus gives the moment generating function for a Gaussian RV as:

Φ̄X(s) = exp

[
µXs+

1

2
σ2
Xs

2

]
(3.85)
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Hence, the moment generating function for the RV Y (ζ) = aX (ζ) + b is given by:

Φ̄Y (s) = esbΦ̄X(s a) = esb exp

[
aµXs+

1

2
σ2
Xa

2s2

]
(3.86)

= exp

[
(aµX + b)s+

1

2
(σ2

Xa
2)s2

]
= exp

[
µY s+

1

2
σ2
Y s

2

]
(3.87)
�

where µY = aµX + b and σY = aσX . Thus, the form of the moment generating
function for Y (ζ) is the same as that for a Gaussian RV, and therefore is a Gaussian
RV.

3.6.4 Higher-order statistics

New slide Two important and commonly used higher-order statistics that are useful for
characterising a random variable are:

Skewness characterises the degree of asymmetry of a distribution about its mean.
It is defined as a normalised third-order central moment:

κ̃
(3)
X , E

[{
X (ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X (M:3.1.18)

and is a dimensionless quantity. The skewness is:

κ̃
(3)
X =


< 0 if the density leans towards the left
0 if the density is symmetric about µX
> 0 if the density leans towards the right

(3.88)

In otherwords, if the left side or left tail of the distribution is more
pronounced than the right tail, the function is said to have negative
skewness (and leans to the left). If the reverse is true, it has positive
skewness (and leans to the right). If the two are equal, it has zero
skewness.

Kurtosis measures relative flatness or peakedness of a distribution about its
mean value. It is defined based on a normalised fourth-central
moment:

κ̃
(4)
X , E

[{
X (ζ)− µX

σX

}4
]
− 3 =

1

σ4
X

γ
(4)
X − 3 (M:3.1.19)

This measure is relative with respect to a normal distribution, which
has the property γ(4)

X = 3σ4
X , therefore having zero kurtosis. For this

reason, this measure is some times known as kurtosis excess, with
kurtosis proper having the same definition but without the offset of 3.
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3.6.5 Cumulants

Cumulants are statistical descriptors that are similar to moments, but provide better
information for higher-order moment analysis. Cumulants are derived by considering
the moment generating function’s natural logarithm. This logarithm is commonly
referred to as the cumulant generating function. This is given by:

Ψ̄X(s) , ln Φ̄X(s) = lnE
[
esX(ζ)

]
(M:3.1.26)

When s is replaced by jξ, the resulting function is known as the second characteristic
function, and is denoted by ΨX(ξ).

The cumulants, κ(m)
X , of a RV, X (ζ), are defined as the derivatives of the cumulant

generating function; that is:

κ
(m)
X ,

dmΨ̄X(s)

dsm

∣∣∣∣
s=0

= (−j)m dmΨX(ξ)

dξm

∣∣∣∣
ξ=0

, m ∈ Z+ (M:3.1.27)

The logarithmic function in the definition of the cumulant generating function is
useful for dealing with products of characteristic functions, which occurs when dealing
with sums of independent RVs.
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4
Random Vectors and Multiple Random

Variables

This handout extends the concept of a random variable to groups of random variables
known as a random vector. The notion of joint, marginal, and conditional probability
density functions is introduced. Statistical descriptors of joint random variables is
discussed including the notion of correlation. The probability transformation rule and
characteristic function is extended to random vectors, and the multivariate Gaussian
distribution studied.

4.1 Abstract
New slideA group of signal observations can be modelled as a collection of random variables

(RVs) that can be grouped to form a random vector, or vector RV.

• This is an extension of the concept of a RV, and generalises many of the results
presented for scalar RVs.

• Note that each element of a random vector is not necessarily generated
independently from a separate experiment. In other words, the output of a
single experiment might be a series of related random variables; for example,
biomedical signal analysis, where multiple readings are taken simultaneously.

• Random vectors also lead to the notion of the relationship between the
random elements.For example, an experiment might yield multiple outputs
that are related somehow. In biomedical Engineering, it might be that
electroencephalogram (EEG) signals obtained by taking measurements from
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various different positions on the human body are related due to electrical
conductance through the body between sensors.

• This course mainly deals with real-valued random vectors, although the concept
can be extended to complex-valued random vectors. Details of how to deal with
complex-valued random vectors will be discussed in these lecture-notes where
they are appropriate and useful, but not specifically as a separate topic. Note that
the case of a complex-valued RV, X (ζ) = XR (ζ) + j XI (ζ) can be considered
as a group of XR (ζ) and XI (ζ), where these are both real-valued RVs.

4.2 Definition of Random Vectors
New slide A real-valued random vector X (ζ) containing N real-valued RVs, each denoted by

Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by the column-vector:

X (ζ) =
[
X1(ζ) X2(ζ) · · · XN(ζ)

]T (M:3.2.1)

Hence, the elements or components of X (ζ) are real-valued RVs. The complex-valued
RV X (ζ) = XR (ζ) + j XI (ζ) where XR (ζ) and XI (ζ) are real-valued RVs can be
expressed as the following complex-valued random vector:

X (ζ) =

[
XR (ζ)
XI (ζ)

]
(4.1)

A real-valued random vector can be thought as a mapping from an abstract probability
space to a vector-valued, real space RN . Thus, the range of this mapping is an
N -dimensional space.

Denote a specific value for a random vector as:

x =
[
x1 x2 · · · xN

]T (4.2)

Then the notation X (ζ) ≤ x is equivalent to the event {Xn(ζ) ≤ xn, n ∈ N}.

4.2.1 Distribution and Density Functions

New slide As with random variables, a random vector is completely characterised by its
cumulative distribution function (cdf) and probability density function (pdf). These
are direct generalisations of the case for a RV, and most of the time involve converting
a single integral or summation to a multiple integral or summation.

The joint cdf completely characterises a random vector, and is defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x) (M:3.2.2)

A random vector can also be characterised by its joint pdf, which is defined by

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn + ∆xn, n ∈ N})
∆x1 · · ·∆xN

(M:3.2.4)

=
∂

∂x1

∂

∂x2

· · · ∂

∂xN
FX (x) (4.3)
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where ∆x = ∆x1∆x2 · · ·∆xN , and ∆x → 0 , {∆n → 0, n ∈ N}. The joint pdf
must be multiplied by a certain N -dimensional region ∆x to obtain a probability.

Hence, it follows:

FX (x) =

∫ x1

−∞
· · ·
∫ xN

−∞
fX (v) dvN · · · dv1 =

∫ x

−∞
fX (v) dv (M:3.2.6)

As with scalar RVs, the distribution and density functions satisfy the following
conditions:

• Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1 (4.4)

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b (4.5)

Finally, a valid joint-cdf must have a valid corresponding joint-pdf; it is possible
to find a function of multiple parameters which satisfies the properties required
of a joint-cdf, but the partial differentials of the cdf do not form a valid joint-pdf.
An example is given in the tutorial questions.

• Properties of joint-pdfs:

fX (x) ≥ 0,

∫ ∞

−∞
fX (x) dx = 1 (4.6)

Similarly, a valid pdf must have a corresponding valid cdf – although this is
virtually always the case for functions that satisfy the properties in Equation 4.6.

• Probability of arbitrary events; note that in general the following relationship is
not true!

Pr (x1 < X (ζ) ≤ x2) 6= FX (x2)− FX (x1) =

∫ x2

x1

fX (v) dv (4.7)

There is an exercise in the tutorial questions that will show you the true
relationship for two RVs.

Example 4.1 ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a random
vector Z(ζ) which has two elements and therefore two random variables given by
X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2
(x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
(4.8)

Calculate the joint-cumulative distribution function, FZ (z).
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(a) A plot of the pdf. (b) Region of
integration.

Figure 4.1: A plot of the probability density function, fZ (z), for the problem in
[Therrien:1992, Example 2.1, Page 20], and a figure showing the region over which
the pdf is non-zero, which is the region of integration for calculating the cdf.

SOLUTION. First note that the pdf integrates to unity since:∫ ∞

−∞
fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy (4.9)

=

∫ 1

0

1

4
+

3

2
y dy =

[
y

4
+

3y2

4

]1

0

=
1

4
+

3

4
= 1 (4.10)

The pdf and the region over which it is non-zero is shown in Figure 4.1.

The cumulative distribution function is obtained by integrating over both x and y,
observing the limits of integration.

For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 also.

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞
fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ (4.11)

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)
dȳ =

1

2

(
x2

2
y +

3xy2

2

)
=
xy

4
(x+ 3y) (4.12)

Finally, if x > 1 or y > 1, the upper limit of integration for the corresponding variable
becomes equal to 1.

Hence, in summary, it follows:

FZ (z) =



0 x ≤ 0 or y ≤ 0
xy
4

(x+ 3y) 0 < x, y ≤ 1
x
4
(x+ 3) 0 < x ≤ 1, 1 < y

y
4
(1 + 3y) 0 < y ≤ 1, 1 < x

1 1 < x, y <∞

(4.13)
�
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Figure 4.2: A plot of the cumulative distribution function, FZ (z), for the problem in
[Therrien:1992, Example 2.1, Page 20].

The cdf is plotted in Figure 4.2.

4.2.2 Marginal Density Function

New slideRandom vectors lead to the notion of dependence between their components. This
notion will be discussed in abstract here, although such dependence between random
variables will be emphasised more vividly when the notion of stochastic processes are
introduced later in the course.

The joint pdf characterises the random vector; the so-called marginal pdf describes a
subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to elements in the
N -dimensional random vector X (ζ), such that, for example, if N = 20 and M = 3,

k =
[
1 5 12

]T (4.14)

Now define a M -dimensional random vector, Xk(ζ), that contains the M random
variables which are components of X (ζ) and indexed by the elements of k. In
other-words, if

k =


k1

k2
...
kM

 then Xk(ζ) =


Xk1(ζ)
Xk2(ζ)

...
XkM (ζ)

 (4.15)

Hence, for example, using the vector k above, then:

X[1,5,12](ζ) =

X1(ζ)
X5(ζ)
X12(ζ)

 (4.16)
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The marginal pdf is then given by:

fXk
(xk) =

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

N −M integrals

fX (x) dx−k (4.17)

where x−k is the vector x with the elements indexed by the vector k removed.

A special case is the marginal pdf describing the individual RV Xj:

fXj (xj) =

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN (M:3.2.5)

In the case of a scalar RV, since it is not characterised by a joint pdf, then its pdf might
be called a marginal pdf. This technical detail, which seems somewhat unnecessary, is
ignored here.

Marginal pdfs will become particular useful when dealing with Bayesian parameter
estimation later in the course.

Example 4.2 (Marginalisation). This example is again based on [Therrien:1992,
Example 2.1, Page 20].

The joint-pdf of a random vector Z(ζ) which has two elements and therefore two
random variables given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2
(x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
(4.18)

Calculate the marginal-pdfs, fX (x) and fY (y), and their corresponding marginal-cdfs,
FX (x) and FY (y).

SOLUTION. By definition:

fX (x) =

∫
R
fZ (z) dy (4.19)

fY (y) =

∫
R
fZ (z) dx (4.20)

Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise
(4.21)

which after a simple integration gives:

fX (x) =

{
1
2

(
x+ 3

2

)
0 ≤ x ≤ 1

0 otherwise
(4.22)
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(a) A plot of the marginal-pdf, X (ζ).
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(b) A plot of the marginal-cdf, X (ζ).

Figure 4.3: The marginal-pdf, fX (x), and cdf, FX (x), for the RV, X (ζ).

The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞
fX (u) du =


0 x ≤ 0
1
2

∫ x
0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

(4.23)

Which after, again, a straightforward integration gives:

FX (x) =


0 x ≤ 0
x
4

(x+ 3) 0 ≤ x ≤ 1

1 x > 1

(4.24)

Note that limx→∞ FX (x) = 1, as expected.

Similarly, it can be shown that:

fY (y) =

{
1
2

(
1
2

+ 3y
)

0 ≤ y ≤ 1

0 otherwise
(4.25)

and

FY (y) =


0 y ≤ 0
y
4

(1 + 3y) 0 ≤ y ≤ 1

1 y > 1

(4.26)
�

The marginal-pdfs and cdfs are shown in Figure 4.3 and Figure 4.4 respectively.

4.2.3 Independence

New slideThe notion of joint RVs leads to the idea of how they relate to one another. Two
random variables, X1(ζ) and X2(ζ) are independent if the events {X1(ζ) ≤ x1} and
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(a) A plot of the marginal-pdf for
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Figure 4.4: The marginal-pdf, fY (y), and cdf, FY (y), for the RV, Y (ζ).

{X2(ζ) ≤ x2} are jointly independent; that is, the events do not influence one another,
and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2) (4.27)

This then implies that

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2)

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)
(M:3.2.7)

Independence will be discussed again later when stochastic processes are introduced.

4.2.4 Complex-valued RVs and vectors

Please note that this section on complex-valued random variables and vectors will not
be examined. It is purely for completeness of the notes.

In applications such as (radio) channel equalisation, array processing, and so on,
complex signal and noise models are encountered. To help formulate these models, it is
necessary to extend the results introduced above to describe complex-valued random
variables and vectors. A complex random variable is defined as X (ζ) = XR (ζ) +
jXI (ζ), where XR (ζ) and XI (ζ) are both real-valued RVs. Thus, either X (ζ) can
be considered as a mapping from an abstract probability space S to a complex space
C, or perhaps more simply, as a real-valued random vector, [XR (ζ) , XI (ζ)]T , with
a joint cdf, FXR,XI (xr, xi), and joint pdf, fXR,XI (xr, xi), that can thus lead to a full
statistical description.

Thus, the mean of X (ζ) is defined as:

E [X (ζ)] = µX = E [XR (ζ) + jXI (ζ)] = µXR + jµXI (M:3.2.8)
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and the variance is defined as:

var [X (ζ)] = σ2
X = E

[
|X (ζ)− µX |2

]
(M:3.2.9)

which can be shown to equal

var [X (ζ)] = E
[
|X (ζ)|2

]
− |µX |2 (M:3.2.10)

PROOF (EQUIVALENCE OF VARIANCE EXPRESSIONS FOR A COMPLEX-VALUED RV).
Beginning with the natural definition of the variance, then:

σ2
X = E

[
|X (ζ)− µX |2

]
(M:3.2.9)

= E [(X (ζ)− µX)∗ (X (ζ)− µX)] (4.28)

= E
[
|X (ζ) |2 − µ∗XX (ζ)−X∗(ζ)µX + |µX |2

]
(4.29)

= E
[
|X (ζ) |2

]
− µ∗XE [X (ζ)]︸ ︷︷ ︸

E[|µX |2]

−E [X∗(ζ)]µX︸ ︷︷ ︸
E[|µX |2]

+ |µX |2 (4.30)
�

giving the desired result.

Similarly, a complex-valued random vector is given by:

X (ζ) = XR(ζ) + jXI(ζ) =

XR1(ζ)
...

XRN(ζ)

+ j

XI1(ζ)
...

XIN(ζ)

 (M:3.2.11)

Again, a complex-valued vector can be considered as a mapping from an abstract
probability space to a vector-valued complex space CN . However, some prefer to
consider it a mapping to R2N , although this viewpoint does not always provide an
elegant derivation of many results. The joint cdf for X (ζ) is defined as:

FX (x) , Pr (X (ζ) ≤ x) , Pr (XR(ζ) ≤ xr, XI(ζ) ≤ xi) (M:3.2.12)

while its joint pdf, is defined by

fX (x) = lim
∆x→0

Pr (xr < XR(ζ) ≤ xr + ∆xr, xi < XI(ζ) ≤ xi + ∆xi)

∆xr1 · · ·∆xrN∆xi1 · · ·∆xiN
=

∂

∂xr1

∂

∂xi1
· · · ∂

∂xrN

∂

∂xiN
FX (x)

(M:3.2.13)

where ∆x = ∆xr1∆xi1 · · ·∆xrN∆xiN . Moreover, it follows:

FX (x) =

∫ xr1

−∞

∫ xi1

−∞
· · ·
∫ xrN

−∞

∫ xiN

−∞
fX (v) dvr1dvi1 · · · dvrNdviN =

∫ x

−∞
fX (v) dv

(M:3.2.14)
Note that the single integral in the last expression is used as a compact notation for a
multidimensional integral over all real and imaginary parts, and should not be confused
with a complex-contour integral.

These probability functions for a complex-valued random vector or variable possess
properties similar to those for real-valued random vectors, and will not be reproduced
here. Note, in particular, however, that:∫ ∞

−∞
fX (v) dv = 1 (M:3.2.14)
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4.2.5 Conditional Densities and Bayes’s Theorem

New slide The notion of joint probabilities and pdf also leads to the notion of conditional
probabilities; what is the probability of a random vector Y (ζ), given the random vector
X (ζ).

The conditional probability of two events Y given X is defined as

Pr
(
Y
∣∣X) =

Pr (X, Y )

Pr (X)
(T:2.35)

Defining the event X as:
X : x ≤ X (ζ) ≤ x + dx (T:2.36)

and the event Y as:
Y : y ≤ Y (ζ) ≤ y + dy (T:2.37)

then

Pr
(
Y
∣∣X) =

Pr (x ≤ X (ζ) ≤ x + dx, y ≤ Y (ζ) ≤ y + dy)

Pr (x ≤ X (ζ) ≤ x + dx)
(4.31)

=
fXY (x, y)

∏
dx dy

fX (x)
∏
dx

=

{
fXY (x, y)

fX (x)

}∏
dy (4.32)

, fY|X (y | x)
∏

dy (4.33)

hence, the conditional pdf of Y (ζ) given X (ζ) is defined as:

fY|X (y | x) =
fXY (x, y)

fX (x)
(T:2.39)

Note that ∫
R
fY|X (y | x) dy =

∫
R

fXY (x, y)

fX (x)
dy =

fX (x)

fX (x)
= 1 (T:2.40)

This emphasises that fY|X (y | x) is the density for Y (ζ) that depends on X (ζ) almost
as if it were a parameter. Note that the integral of fY|X (y | x) with respect to (w. r. t.)
x is meaningless.

If the random vectors X (ζ) and Y (ζ) are independent, then the conditional pdf must
be identical to the unconditional pdf: fY|X (y | x) = fY (y). Hence, it follows that:

fXY (x, y) = fX (x) fY (y) (T:2.41)

as previously defined.

Bayes’s rule or Bayes’s theorem is based on the fact that the joint pdf of two events
can be expressed in terms of either the conditional probability for the first event, or
the conditional probability for the second event. Hence, Bayes’s theorem for events
follows by noting:

Pr (X, Y ) = Pr
(
X
∣∣Y )Pr (Y ) = Pr

(
Y
∣∣X)Pr (X) = Pr (Y, X) (4.34)
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and therefore

Pr
(
X
∣∣Y ) =

Pr
(
Y
∣∣X)Pr (X)

Pr (Y )
(T:2.42)

An analogous expression can be written for density functions. Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x) (T:2.43)

it follows

fX|Y (x | y) =
fY|X (y | x) fX (x)

fY (y)
(T:2.44)

This result can also be derived by considering an events based approach as used above
in the derivation of conditional probabilities.

Since fY (y) can be expressed as:

fY (y) =

∫
R
fXY (x, y) dx =

∫
R
fY|X (y | x) fX (x) dx (4.35)

then it follows

fX|Y (x | y) =
fY|X (y | x) fX (x)∫

R fY|X (y | x) fX (x) dx
(T:2.45)

Bayes’s Theorem arises frequently in problems of statistical decision and estimation,
the latter of which will be considered later in the course. Suppose that Y (ζ) is an
observation of an experiment which depends on some unknown random vector X (ζ);
for example, Y (ζ) is X (ζ) observed in additive noise. Then given X (ζ), it is easy to
find the likelihood of Y (ζ), which is represented by the density fY|X (y | x); this
is the likelihood function, and will again be introduced later in this course. The
prior density, fX (x), represents the density of the unknown random vector before
it is observed. Hence, given the likelihood and the prior, it is possible to calculate
the posterior density, fX|Y (x | y), which is the density of the unseen random vector
X (ζ) given the observations Y (ζ).

Example 4.3 (The lighthouse problem). A lighthouse is somewhere off a piece of
straight coastline at a position α along the shore and a distance β out at sea. It emits a
series of short highly collimated flashes (i.e. essentially a single ray of light) at random
intervals and hence at random azimuths (i.e. the angle at which the light ray is emitted).
These pulses are intercepted on the coast by photo-detectors that record only the fact
that a flash has occurred, but not the angle from which it came. N flashes have so far
been recorded at positions {xk}. Where is the lighthouse?

SOLUTION. The aim of the problem is to estimate the values of α and β from
the observations. Estimating both of these parameters from the data is somewhat
complicated for this example, and so it will be assumed that the distance out-to-sea, β,
is known. The geometry of the lighthouse problem is shown in Figure 4.5.

Given the characteristics of the lighthouse emissions, it seems reasonable to assign a
uniform pdf to the azimuth of the observation, or if referring to a single observation,
the datum, which is given by θ. Hence,

fΘ (θ) =

{
1
π
−π

2
< θ < π

2

0 otherwise
(4.36)
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Figure 4.5: The geometry of the lighthouse problem.

The angle must lie between ±π
2

radians to have been detected. Since the
photo-detectors are only sensitive to position along the coast rather than direction,
it is necessary to relate θ to x. An inspection of Figure 4.5 shows that

β tan θ = x− α (4.37)

Using the probability transformation rule, it is possible to show that

fX (x | α) =
β

π [β2 + (x− α)2]
(4.38)

where, as a reminder, it is assumed that β is known. This transformation is left as
an exercise to the reader. Assuming that the observations are independent, then the
joint-pdf of all the data points is given by:

fX (x | α) = fX (x1, . . . , xN | α) =
N∏
k=1

fX (xk | α)

=
N∏
k=1

β

π [β2 + (xk − α)2]

(4.39)

The position of the lighthouse is then expressed by:

fA (α | x) =
fX (x | α) fA (α)

fX (x)
(4.40)

It is reasonable, also, to assign a simple uniform pdf for the prior density for the
distance along the shore:

fA (α) =

{
1

αmax−αmin
αmin ≤ α ≤ αmax

0 otherwise
(4.41)

Hence, it follows that

fA (α | x) =
fX (x | α) fA (α)

fX (x)
∝ fX (x | α) fA (α) (4.42)

∝ 1

αmax − αmin

N∏
k=1

β

π [β2 + (xk − α)2]
, for αmin ≤ α ≤ αmax (4.43)

�
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(a) Surface plot of the log-posterior.
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(b) Contour plot of the log-posterior.

Figure 4.6: Visualising the log-posterior function described in Equation 4.43 when
both α and β are unknown. In this case, the number of data-points used is N = 500.
The actual lighthouse location is at (α, β) = (15, 45). Note the error in the estitmae
of the maximum value.

and zero otherwise. Hence, this posterior density can be maximised to find the
best estimate of the distance along the shore, α. Unfortunately, in this case, this
maximisation is not easy.

The result in Equation 4.43 can easily be generalised when both α and β are unknown,
and the logarithm of the posterior can be plotted as a function of α and β. The resulting
two-dimensional (2-D) function is shown in Figure 4.6 and Figure 4.7 for when the
lightouse is actually at (α, β) = (15, 45). Note that for N = 500 data-points, there is
a relatively large error in the estimate, especially when compared with N = 50000.
This will be discussed in later handouts. Moreover, note that when you run the
corresponding MATLAB code, in which the data is generated synthetically, a new
estimate is obtained each time. Can you explain why? Finally, if N is small, a typical
estimate might be far from the true solution.

A MATLAB script is available on LEARN which plots these functions.

thisData = LighthouseProblem(N)

4.3 Statistical Description

New slideAs with scalar RVs, the probabilistic descriptions require an enormous amount of
information that is not always easy to obtain, or is too complex mathematically for
practical use.
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(a) Surface plot of the log-posterior.
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(b) Contour plot of the log-posterior.

Figure 4.7: Visualising the log-posterior function described in Equation 4.43 when
both α and β are unknown. In this case, the number of data-points used is N = 50000.
The actual lighthouse location is at (α, β) = (15, 45). Note the error in the estimate
of the maximum value is much less than for N = 500.

Statistical averages are more manageable, but less of a complete description of random
vectors. With care, it is possible to extend many of the statistical descriptors for scalar
RVs to random vectors. Rather than list them all here, they will be introduced where
necessary. However, it is important to understand that multiple RVs leads to the notion
of measuring their interaction or dependence. This concept is useful in abstract, but
also when dealing with stochastic processes or time-series.

The most important statistical descriptors discussed in this section are the mean
vector, the correlation matrix and the covariance matrix.

Mean vector The most important statistical operation is the expectation operator.
The mean vector is the first-moment of the random vector, and is
given by:

µX = E [X (ζ)] =

E [X1(ζ)]
...

E [XN(ζ)]

 =

µX1

...
µXN

 (M:3.2.16)

Correlation Matrix The second-order moments of the random vector describe the
spread of the distribution. The autocorrelation matrix is defined by:

RX ,

E [X1(ζ)X∗1 (ζ)] · · · E [X1(ζ)X∗N(ζ)]
... . . . · · ·

E [XN(ζ)X∗1 (ζ)] · · · E [XN(ζ)X∗N(ζ)]

 (4.44)
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or, more succinctly,

RX , E
[
X (ζ) XH(ζ)

]
=

rX1X1 · · · rX1XN
... . . . ...

rXNX1 · · · rXNXN

 (M:3.2.17)

where the superscript H denotes the conjugate transpose operation; in
otherwords, for a general N ×M matrix A ∈ CN×M with complex
elements aij ∈ C, then

AH =


a11 a12 · · · a1M

a21 a22 · · · a2M
...

... · · · ...
aN1 aN2 · · · aNM


H

=


a∗11 a∗21 · · · a∗N1

a∗12 a∗22 · · · a∗N2
...

... . . . ...
a∗1M a∗2M · · · a∗NM

 ∈ CM×N

(4.45)
The diagonal terms

rXiXi , E
[
|Xi(ζ)|2

]
, i ∈ {1, . . . , N} (M:3.2.18)

are the second-order moments of each of the RVs, Xi(ζ).
The off-diagonal terms

rXiXj , E
[
Xi(ζ)X∗j (ζ)

]
= r∗XjXi , i 6= j (M:3.2.19)

measure the correlation, or statistical similarity between the RVs
Xi(ζ) and Xj(ζ).
If the Xi(ζ) and Xj(ζ) are orthogonal then their correlation is zero:

rXiXj = E
[
Xi(ζ)X∗j (ζ)

]
= 0, i 6= j (M:3.2.26)

Hence, if all the RVs are mutually orthogonal, then the RX will be
diagonal.
Note that the correlation matrix RX is conjugate symmetric, which is
also known as Hermitian; that is, RX = RH

X.

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E
[
(X (ζ)− µX) (X (ζ)− µX)H

]
=

γX1X1 · · · γX1XN
... . . . · · ·

γXNX1 · · · γXNXN


(M:3.2.20)

The diagonal terms

γXiXi , σ2
Xi

= E
[
|Xi(ζ)− µXi|

2] , i ∈ {1, . . . , N} (M:3.2.21)

are the variances of each of the RVs, Xi(ζ).
The off-diagonal terms

γXiXj , E
[
(Xi(ζ)− µXi)

(
Xj(ζ)− µXj

)∗]
= rXiXj − µXiµ∗Xj = γ∗XjXi , i 6= j

(M:3.2.22)
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Sidebar 3 Positive semi-definiteness of Real Matrices
If a matrix R is real, then the calculation aH ΓXa simplifies to only needing to consider
any real vector a. This can be shown by writing:

a = aR + jaI (4.47)

where aR and aI are real column vectors. Hence, assuming that Γ is real, it follows
that:

I = aHΓa = (aR + jaI)
H (ΓaR + jΓaI) (4.48)

= aTR (ΓaR + jΓaR)− jaTI (ΓaR + jΓaI) (4.49)

= aTRΓaR + jaTRΓaR − jaTI ΓaR + aTI ΓaI (4.50)

Now, noting that I is a scalar quantity, and with Γ = ΓT , I is also a real scalar quantity.
Hence, it can be seen that aHRΓaR = aHI ΓaR, therefore giving

I = aTΓa = aTRΓaR + aTI ΓaI (4.51)

Since both of these terms are real, then there is no need for both the real and imaginary
components of the vector a, and therefore it makes sense to set aI = 0.

measure the covariance Xi(ζ) and Xj(ζ).
It should also be noticed that the covariance and correlation matrices
are positive semidefinite; that is, they satisfy the relations:

aH RXa ≥0

aH ΓXa ≥0
(T:2.65)

for any complex vector a. This follows since:

aH RXa = aH E
[
xxH

]
a = E

[∣∣xHa
∣∣2] (4.46)

The covariance matrix ΓX is also a Hermitian matrix. Note that a
Hermitian matrix is semi-positive definite if all its eigenvalues are
greater than or equal to zero.
Moreover, as for scalar RVs, the covariance, γXiXj can also be
expressed in terms of the standard deviations of Xi(ζ) and Xj(ζ):

ρXiXj ,
γXiXj
σXiσXj

= ρ∗XjXi (M:3.2.23)

Again, the correlation coefficient measures the degree of statistical
similarity between two random variables. Note that:∣∣ρXiXj ∣∣ ≤ 1, i 6= j, and ρXiXi = 1 (M:3.2.24)

If
∣∣ρXiXj ∣∣ = 1, i 6= j, then the RVs are said to be perfectly correlated.

However, if ρXiXj = 0, which occurs when the covariance γXiXj = 0,
then the RVs are said to be uncorrelated.
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Example 4.4 ( [Manolakis:2001, Exercise 3.14, Page 145]). Determine whether the
following matrices are valid correlation matrices:

R1 =

[
1 1
1 1

]
R2 =

1 1
2

1
4

1
2

1 1
2

1
4

1
2

1

 (4.52)

R3 =

[
1 1− j

1 + j 1

]
R4 =

1 1
2

1
1
2

2 1
2

1 1 1

 (4.53)

SOLUTION. Correlation (and covariance) matrices are Hermitian and positive
semidefinite. The first three correlation matrices are Hermitian, and are therefore valid.
R4 is not, and so therefore is not a valid correlation matrix. Next, it is necessary to test
whether these matrices are positive semi-definite, and this test is performed below:

1. Setting a = [a1, a2]T , then

aTR1a =
[
a1 a2

] [a1 + a2

a1 + a2

]
= a2

1 + 2a1a2 + a2
2 = (a1 + a2)2 ≥ 0 (4.54)

for all a1, a2. Thus, this is a valid correlation matrix.

2. Setting a = [a1, a2, a3]T , then

aTR2a =
[
a1 a2 a3

] a1 + a2
2

+ a3
4

a1
2

+ a2 + a3
2

a1
4

+ a2
2

+ a3

 (4.55)

= a2
1 + a1a2 +

1

2
a1a3 + a2

2 + a2a3 + a2
3 (4.56)

=
1

2
(a1 + a2 + a3)2 +

1

2
(a1 −

1

2
a3)2 +

1

2
a2

2 +
3

8
a2

3 ≥ 0 (4.57)

for all a1, a2. Thus, this is a valid correlation matrix.

3. Finally, for this complex case, a = [a1, a2]T , then

aHR3a =
[
a∗1 a∗2

] [a1 + (1− j)a2

(1 + j)a1 + a2

]
(4.58)

= |a1|2 + (1− j)a∗1a2 + (1 + j)a∗2a1 + |a2|2 (4.59)
= |a1 + (1− j)a2|2 − |a2|2 (4.60)

�

for all a1, a2. To see that this is not always positive, choose the counter-example:
a1 = −1 + j and a2 = 1; then clearly aHR3a = −1 < 0. Therefore, this is not
a valid correlation matrix.

4. As mentioned above, but repeated here for completeness, R4 is not Hermitian,
and is therefore not a valid correlation matrix.
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The autocorrelation and autocovariance matrices are related, and it can easily be seen
that:

ΓX , E
[
[X (ζ)− µX] [X (ζ)− µX]H

]
= RX − µXµ

H
X (M:3.3.25)

which shows that the two moments have essentially the same amount of information.
In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then they are also
uncorrelated since:

rXiXj = E [Xi(ζ)Xj(ζ)∗] = E [Xi(ζ)]E
[
X∗j (ζ)

]
= µXiµ

∗
Xj

⇒ γXiXj = 0
(M:3.3.36)

Note, however, that uncorrelatedness does not imply independence, unless the RVs
are jointly-Gaussian. If one or both RVs have zero means, then uncorrelatedness also
implies orthogonality.

Naturally, the correlation and covariance between two random vectors can also be
defined. Let X (ζ) and Y (ζ) be random N - and M - vectors.

Cross-correlation is defined as

RXY , E
[
X (ζ) YH(ζ)

]
=

E [X1(ζ)Y ∗1 (ζ)] · · · E [X1(ζ)Y ∗M(ζ)]
... . . . ...

E [XN(ζ)Y ∗1 (ζ)] · · · E [XN(ζ)Y ∗M(ζ)]


(M:3.2.28)

which is a N ×M matrix. The elements rXiYj = E
[
Xi(ζ)Y ∗j (ζ)

]
are

the correlations between the RVs X (ζ) and Y (ζ).

Cross-covariance is defined as

ΓXY , E
[
{X (ζ)− µX} {Y (ζ)− µY}

H
]

= RXY − µXµ
H
Y

(M:3.2.29)

which too is a N × M matrix. The elements γXiYj =

E
[
(Xi(ζ)− µXi)

(
Yj(ζ)− µYj

)∗] are the covariances between X (ζ)
and Y (ζ).

In general, cross-matrices are not square, and even if N = M , they are not necessarily
symmetric.

Two random-vectors X (ζ) and Y (ζ) are said to be:

• Uncorrelated if ΓXY = 0 ⇒ RXY = µXµ
H
Y.

• Orthogonal if RXY = 0.

Again, if µX or µY or both are zero vectors, then uncorrelatedness implies
orthogonality.
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4.4 Probability Transformation Rule

New slide The probability transformation rule for scalar RVs can be extended to multiple RVs
using a similar derivation.

Theorem 4.1 (Probability Transformation Rule). The set of random variables
X (ζ) = {Xn(ζ), n ∈ N} where N = {1, . . . , N} are transformed to a new set
of RVs, Y (ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N (4.61)

or, using an alternative notation,

Y (ζ) = g(X (ζ)) (4.62)

where g(·) denotes a vector of functions such that Yn(ζ) = gn(X (ζ)) as above.

Assuming M -real vector-roots of the equation y = g(x) by {xm, m ∈M}, such that

y = g(x1) = · · · = g(xM) (4.63)

then the joint-pdf of Y (ζ) in terms of (i. t. o.) the joint-pdf of X (ζ)is:

fY (y) =
M∑
m=1

fX (xm)

|J(xm)|
(4.64)

where the Jacobian of the transformation, Jg(x), is given by:

Jg(x) ,
∂(y1, . . . , yN)

∂(x1, . . . , xN)

=

∣∣∣∣∣∣∣∣∣∣

∂g1(x)
∂x1

∂g2(x)
∂x1

· · · ∂gN (x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

· · · ∂gN (x)
∂x2...

... . . . ...
∂g1(x)
∂xN

∂g2(x)
∂xN

· · · ∂gN (x)
∂xN

∣∣∣∣∣∣∣∣∣∣
(T:2.123)

It should also be noted, from vector calculus results, that the Jacobian can also be
expressed as:

1

Jg(x)
,
∂(x1, . . . , xN)

∂(y1, . . . , yN)

=

∣∣∣∣∣∣∣∣∣
∂x1
∂y1

∂x2
∂y1

· · · ∂xN
∂y1

∂x1
∂y2

∂x2
∂y2

· · · ∂xN
∂y2

...
... . . . ...

∂x1
∂yN

∂x2
∂yN

· · · ∂xN
∂yN

∣∣∣∣∣∣∣∣∣
(T:2.123)

PROOF. The proof follows a very similar line to that for the scalar RVs case. The
definition of the joint-pdf is:

fY (y)
∏

dy = Pr (y < Y (ζ) ≤ y + dy) (4.65)
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Figure 4.8: The Cartesian and polar coordinate systems.

where
∏
dy = dy1 dy2 . . . dyN . The set of values x such that y < g(x) ≤ y + dy,

consists of the intervals:
xn < x ≤ xn + dxn (4.66)

The probability that x lies in this set is, of course,

fX (xn)
∏

dxn = Pr (xn < X (ζ) ≤ xn + dxn) (4.67)

Moreover, the transformation from x to y is given by the Jacobian:∏
dy = Jg(x)

∏
dx (4.68)

Since these are mutually exclusive sets, then

Pr (y < Y (ζ) ≤ y + dy) =
M∑
m=1

Pr (xn < X (ζ) ≤ xn + dxn) (4.69)

=
M∑
m=1

fX (xn)

∏
dy

Jg(xn)
(4.70)
�

and thus the desired result is obtained after minor rearrangement.

4.4.1 Polar Transformation
New slide An important transformation example is the mapping from Cartesian to polar

coordinates. Each of these coordinates are shown in Figure 4.8.

Consider the transformation from the random vector C(ζ) = [X (ζ) , Y (ζ)]T to
P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√
X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X (ζ)

(4.71)
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where it is assumed that r(ζ) ≥ 0, and |θ(ζ)| ≤ π. With this assumption, the
transformation r =

√
x2 + y2, θ = arctan y

x
has a single solution:

x = r cos θ

y = r sin θ

}
for r > 0 (4.72)

The Jacobian is given by:

Jg(c) =
∂(r, θ)

∂(x, y)
=

∣∣∣∣ ∂θ∂x ∂r
∂x

∂θ
∂y

∂r
∂y

∣∣∣∣ =

∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣−1

(4.73)

In the case of polar transformations, Jg(c) simplifies to:

Jg(c) =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣−1

=
1

r
(4.74)

Thus, it follows that:

fR,Θ (r, θ) = rfXY (r cos θ, r sin θ) (4.75)

Example 4.5 (Cartesian to polar transformation of RVs). If X (ζ) and Y (ζ) are
independent and identically distributed (i. i. d.) Gaussian distributed coordinates in
Cartesian space, such that X (ζ) , Y (ζ) ∼ N (0, σ2), find the distribution when these
are transformed into polar coordinates.

SOLUTION. First, note:

fXY (x, y) = fX (x) fY (y) =
1

2πσ2
exp

{
−x

2 + y2

2σ2

}
(4.76)

Hence, applying the transformation r =
√
x2 + y2, θ = arctan y

x
, it directly follows

that

fRΘ (r, θ) =
r

2πσ2
exp

{
− r2

2σ2

}
I[−π,π] (θ) IR+ (r) (4.77)

where, as a reminder, IA (a) = 1 if a ∈ A and zero otherwise. This density is a product
of a function of r times a function of θ. Hence, the RVs r and θ are independent with:

fR (r) =
r

σ2
exp

{
− r2

2σ2

}
IR+ (r) and fΘ (θ) =

1

2π
I[−π,π] (θ) (4.78)

�

where the scaling factors have been apportioned such that these are proper densities, in
the sense that

∫
R fR (r) dr =

∫
R fΘ (θ) dθ = 1. Note that θ is uniformally distributed,

while r has a Rayleigh distribution.
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4.4.2 Linear Transformations
New slideSince linear systems represent such an important class if signal processing systems, it

is important to consider linear transformations of random vectors. Thus, consider
a random vector Y (ζ) defined by a linear transformation of the random vector X (ζ)
through the matrix A:

Y (ζ) = A X (ζ) (M:3.2.32)

The matrix A is not necessarily square and, in particular, if X (ζ) is of dimension M ,
and Y (ζ) of dimension N , then A is of size N ×M (rows by columns).

IfN > M , then onlyM Ym(ζ) RVs can be independently determined from X (ζ). The
remaining N −M Ym(ζ) RVs can then be obtained from the first M Ym(ζ) RVs. If,
however, M > N , then the random vector Y (ζ) can be augmented into an M -vector
by introducing the auxiliary RVs,

Yn(ζ) = Xn(ζ), for n > m (M:3.2.33)

These additional auxiliary variables must then be marginalised out to obtain the
joint-pdf for the original N -vector, Y (ζ). The approach of using auxiliary variables is
discussed further below in Section 4.4.3.

Both of these cases, for M 6= N , lead to less elegant expressions for fY (y), and
therefore it will be assumed that M = N , and that A is nonsingular.

The Jacobian of a nonsingular linear transformation defined by a matrix A is simply
the absolute value of the determinant of A as shown in Sidebar 4. Thus, assuming
X (ζ), Y (ζ), and A are all real, then:

fY (y) =
fX

(
A−1y

)
|det A|

(M:3.2.34)

In general, determining fY (y) is a laborious exercise, except in the case of Gaussian
random vectors. In practice, however, the knowledge of µY, ΓY, ΓXY or ΓYX is
sufficient information for many algorithms.

Taking expectations of both sides of Equation M:3.2.32, the following relations are
found:

Mean vector:
µY = E [A X (ζ)] = AµX (M:3.2.38)

Autocorrelation matrix:

RY = E
[
Y (ζ) YH(ζ)

]
= E

[
AX (ζ) XH(ζ)AH

]
= AE

[
X (ζ) XH(ζ)

]
AH = ARXAH

(M:3.2.39)

Autocovariance matrix:
ΓY = AΓXAH (M:3.2.40)
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Sidebar 4 Jacobian of a Linear Transformation
A linear transformation of N variables, {xi}N1 , to N variables, {yi}N1 , can either be
written in matrix-vector form as shown in Equation M:3.2.33, or equivalently:

y1

y2
...
yN


︸ ︷︷ ︸

Y(ζ)

=


a11 a12 · · · a1N

a21 a22 · · · a2N
...

... . . . . . .
aN1 aN2 · · · aNN


︸ ︷︷ ︸

A


x1

x2
...
xN


︸ ︷︷ ︸

X(ζ)

(4.79)

or in the scalar form by the linear equation:

yi =
N∑
k=1

aik xk (4.80)

where aij is the ith row and jth column of the matrix A. The Jacobian is obtained by
calculating:

∂yi
∂xj

=
N∑
k=1

aik
∂xk
∂xj

= aij (4.81)

using the fact that
∂xk
∂xj

=

{
1 if k = j

0 if k 6= j
(4.82)

Hence, constructing the Jacobian matrix using Equation 4.81 gives the matrix A.
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Cross-correlation matrix:

RXY = E
[
X (ζ) YH(ζ)

]
= E

[
X (ζ) XH(ζ)AH

]
= E

[
X (ζ) XH(ζ)

]
AH = RX AH

(M:3.2.42)

and hence RYX = ARX.

Cross-covariance matrices:

ΓXY = ΓX AH and ΓYX = A ΓX (M:3.2.43)

These results will be used to show what happens to a Gaussian random vector under a
linear transformation in Section 4.5.

4.4.3 Auxiliary Variables

New slide The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ)) of two RVs can be
determined from the results above, by choosing a convenient auxiliary variable. The
choice of this auxiliary variable comes with experience, but usually the simpler the
better.

Examples might beW (ζ) = X (ζ) orW (ζ) = Y (ζ). The density of the function Z(ζ)
can then be found by marginalisation:

fZ (z) =

∫
R
fWZ (w, z) dw =

M∑
m=1

∫
R

fXY (xm, ym)

|J(xm, ym)|
dw (4.83)

Example 4.6 (Sum of two RVs). If X (ζ) and Y (ζ) have joint-pdf fXY (x, y), find
the pdf of the RV Z(ζ) = aX (ζ) + bY (ζ) for constants a and b.

SOLUTION. Use as the auxiliary variable the function W (ζ) = Y (ζ). The system
z = ax+ by, w = y has a single solution at x = z−bw

a
, y = w. Hence, the Jacobian is

given by:

J(x, y) =

∣∣∣∣∂w∂x ∂z
∂x

∂w
∂y

∂z
∂y

∣∣∣∣ =

∣∣∣∣0 a
1 b

∣∣∣∣ = −a (4.84)

Hence, it follows that:

fWZ (w, z) =
1

|a|
fXY

(
z − bw
a

, w

)
(4.85)

Thus, it follows that:

fZ (z) =
1

|a|

∫
R
fXY

(
z − bw
a

, w

)
dw (4.86)

�
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KEYPOINT! (Choosing the auxiliary variable). Note that you might be concerned
about the choice of the auxiliary variable, and what happens if you chose something
different to that used here. The answer is that, as long as the auxliary variable is a
function of at least one of the RVs, then it doesn’t really matter, as the marginalisation
stage will usually yield the same answer. An example is discussed in Sidebar 5
on page 90. Nevertheless, it usally pays to chose the auxiliary variable carefully to
minimise any difficulties in evaluating the marginal-pdf.

Example 4.7 ( [Papoulis:1991, Page 149, Problem 6-8]). The RVs X (ζ) and Y (ζ)
are independent with Rayleigh densities:

fX (x) =
x

α2
exp

{
− x2

2α2

}
IR+ (x) (4.96)

fY (y) =
y

β2
exp

{
− y2

2β2

}
IR+ (y) (4.97)

1. Show that if Z(ζ) = X(ζ)
Y (ζ)

, then:

fZ (z) =
2α2

β2

z(
z2 + α2

β2

)2 IR+ (z) (4.98)

2. Using this result, show that for any k > 0,

Pr (X (ζ) ≤ k Y (ζ)) =
k2

k2 + α2

β2

(4.99)

SOLUTION. Considering the first part of the question, then choose the auxiliary
variable as W (ζ) = X (ζ), then the system z = x

y
, w = x has the single solution

x = w, y = w
z

. The Jacobian is given by:

J(x, y) = abs

∣∣∣∣∂w∂x ∂z
∂x

∂w
∂y

∂z
∂y

∣∣∣∣ = abs

∣∣∣∣1 1
y

0 − x
y2

∣∣∣∣ = abs

∣∣∣∣− x

y2

∣∣∣∣ =

∣∣∣∣z2

w

∣∣∣∣ (4.100)

The RVs X (ζ) and Y (ζ) only take on positive values, since they are Rayleigh
distribution, and therefore in this case the Jacobian can be simplified to

J(x, y) =
z2

w
(4.101)

Hence, since X (ζ) and Y (ζ) are independent,

fWZ (w, z) =
w

z2
fX (w) fY

(w
z

)
(4.102)

=
1

α2β2

w3

z3
exp

{
−w

2

2

(
1

α2
+

1

z2β2

)}
IR+×R+ (w, z) (4.103)

=
α̂2

z3α2β2

[
w2 w

α̂2
exp

{
− w2

2α̂2

}]
IR+×R+ (w, z) (4.104)
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Sidebar 5 What if you chose a complicated auxiliary variable?

Consider Example 4.6 and suppose that rather than chosing W (ζ) = Y (ζ), you
accidentally chose something more complicated such as:

W (ζ) =
X (ζ)

Y (ζ)
(4.87)

Will the resulting expression for fZ (z) be the same as Equation 4.86? The answer can
be seen through an example, or a more detailed generic analysis. Here, we show an
example. While the joint-pdf fWZ (w, z) will be different from Equation 4.85, it is the
marginalisation stage that ensures the expressions for fZ (z) are the same. For the
auxiliary variable shown in Equation 4.87, noting that Z (ζ) = aX (ζ) + bY (ζ), then

x = w y ⇒ z = awy + by = y(aw + b) (4.88)

y =
z

aw + b
, x =

wz

aw + b
(4.89)

The Jacobian is given by:

J = abs

[ ∂z
∂x

∂z
∂y

∂w
∂x

∂w
∂y

]
= abs

[
a b
1
y
− x
y2

]
(4.90)

= abs
ax+ by

y2
= abs

z

y2
= abs

(aw + b)2

z
(4.91)

For simplicity, assume that (x, y) > 0.a Then, the joint-pdf is given by:

fWZ (w, z) =
z

(b+ aw)2fXY

(
wz

aw + b
,

z

aw + b

)
(4.92)

This is clearly different to that in Equation 4.85. However, the marginal for Z (ζ) is:

fZ (z) =

∫
z

(b+ aw)2fXY

(
wz

aw + b
,

z

aw + b

)
dw (4.93)

Let θ =
z

aw + b
, such that dθ = − az

(aw + b)2 dw, and also note that

wz

aw + b
= θ w = θ

(
z − bθ
θ a

)
=
z − bθ
a

(4.94)

Substituting into Equation 4.93, and noting that the minus sign in the differential term
will get absorbed into the limits of the integral, then Equation 4.93 becomes:

fZ (z) =
1

a

∫
fXY

(
z − bθ
a

, θ

)
dθ (4.95)

which is indeed equivalent to Equation 4.86.

aThis ensures that it is not necessary to worry about the absolute value of the Jacobian. Depending
on the range of values that X (ζ) and Y (ζ) take on, this proof will need to be tightened up to take
account of the absolute value of the Jacobian.
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where α̂2 = α2 z2

z2+α2

β2

. Integrating over all values of w gives:

fZ (z) =

∫
R+

fXZ (w, z) dw =
α̂2

z3α2β2

∫ ∞
0

w2 w

α̂2
exp

{
− w2

2α̂2

}
dw (4.105)

The integral is the second moment of a Rayleigh distribution. It can be shown that∫ ∞
0

w2 w

α̂2
exp

{
− w2

2α̂2

}
dw = 2α̂2 (4.106)

Finally, therefore,

fZ (z) =
2α̂4

z3α2β2
IR+ (z) =

2α2

β2

z(
z2 + α2

β2

)2 IR+ (z) (4.107)

For the second part of the question, notice that:

Pr (X (ζ) ≤ kY (ζ)) = Pr (Z(ζ) ≤ k) =

∫ k

0

fZ (z) dz (4.108)

=
α2

β2

∫ k

0

2z(
z2 + α2

β2

)2 dz = −α
2

β2

[
1

z2 + α2

β2

]k
0

(4.109)

=
α2

β2

[
1
α2

β2

− 1

k2 + α2

β2

]
= 1−

α2

β2

k2 + α2

β2

(4.110)
�

which gives the desired result when these fractions are combined.

4.5 Multivariate Gaussian Density Function

New slideGaussian random vectors and Gaussian random sequences, as will be seen in the
following handouts, play a very important role in the design and analysis of signal
processing systems. A Gaussian random vector is characterised by a multivariate
Normal or Gaussian density function.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX|

1
2

exp

[
−1

2
(x− µX)T Γ−1

X (x− µX)

]
(M:3.2.44)

where N is the dimension of X (ζ), and X (ζ) has mean µX and covariance ΓX. It is
often denoted as:

fX (x) = N
(
x
∣∣µX, ΓX

)
(4.111)
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Note the difference between the notation used here, and the notation used to indicate
when a random vector is distributed, or drawn, from a normal distribution:

X (ζ) ∼ N (µX, ΓX) (4.112)

The term in the exponent of Equation M:3.2.44 is a positive definite quadratic function
of xn, and can be written as:

(x− µX)T Γ−1
X (x− µX) =

N∑
i=1

N∑
j=1

〈Γ−1
X 〉ij(xi − µi)(xj − µj) (M:3.2.45)

where 〈Γ−1
X 〉ij denotes the (i, j)th element of Γ−1

X . It is therefore straightforward to
calculate the marginal distribution for the RV Xn(ζ) by marginalising over all the
other RVs. The details are left as an exercise for the reader.

The complex-valued normal random vector has pdf:

fX (x) =
1

πN |ΓX|
exp

[
− (x− µX)H Γ−1

X (x− µX)
]

(M:3.2.47)

again with mean µX and covariance ΓX. For a more detail discussion of complex
random variables, see [Therrien:1991].

The normal distribution is a useful model of a random vector because of its many
important properties.

1. fX (x) = N
(
x
∣∣µX, ΓX

)
is completely specified by its mean µX and

covariance ΓX. All other higher-order moments can be obtained from these
parameters.

Theorem 4.2 (Moments of a Gaussian RV). The moments of a Gaussian RV
X (ζ) ∼ N (0, σ2

x), are given by:

E
[
Xk(ζ)

]
=

{
1 · 3 · · · (k − 1)σkx k even
0 k odd

(4.113)

PROOF. Since fX (x) is an even function, then it follows that the odd moments
are zero. The proof for the even moments then follows by using integration by
parts to obtain a recursive relationship between E

[
Xk(ζ)

]
and E

[
Xk+2(ζ)

]
.

This is left as an exercise for the reader.

This theorem can be extended to the multivariate case.

2. If the components of X (ζ) are mutually uncorrelated, then they are also
independent. This property has an important consequence in blind signal
separation or independent component analysis (ICA).
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3. A linear transformation of a normal random vector is also normal. This can
readily be seen as follows, where the proof assumes a real normal random vector;
the proof for a complex normal random vector follows a similar line. Noting that
for a linear transformation,

fY (y) =
fX

(
A−1y

)
|det A|

(M:3.2.34)

then if fX (x) = N
(
x
∣∣µX, ΓX

)
, it follows:

fY (y) =
1

|det A|
1

(2π)
N
2 |ΓX|

1
2

exp

[
−1

2

(
A−1y − µX

)T
Γ−1

X

(
A−1y − µX

)]
(4.114)

=
1

(2π)
N
2

∣∣AΓXAT
∣∣ 12 exp

[
−1

2
(y −AµX)T A−TΓ−1

X A−1 (y −AµX)

]
(4.115)

where it has been noted that
∣∣AΓXAT

∣∣ 12 = |A||ΓX|
1
2 . Thus, using the

expressions for µY and ΓY above, it directly follows that

fY (y) =
1

(2π)
N
2 |ΓY|

1
2

exp

[
−1

2
(y − µY)T Γ−1

Y (y − µY)

]
(4.116)

= N
(
y
∣∣µY, ΓY

)
(4.117)

This is a particularly useful, since the output of a linear system subject to a
Gaussian input is also Gaussian.

4. If X (ζ) and Y (ζ) are jointly-Gaussian, then so are their marginal-distributions,
and their conditional-distributions. This can be shown as follows, assuming real
random vectors and that X (ζ) ∈ RN , Y (ζ) ∈ RM ; as usual, a similar derivation
follows for the complex case. Defining the joint random vector:

Z(ζ) =

[
X (ζ)
Y (ζ)

]
(T:2.101)

then the corresponding mean vector and covariance matrix is given by:

µZ = E
[[

X (ζ)
Y (ζ)

]]
=

[
µX

µY

]
(T:2.102)

ΓZ = E
[[

X (ζ)− µX

Y (ζ)− µY

] [
X (ζ)− µX Y (ζ)− µY

]H]
=

[
ΓX ΓXY

ΓH
XY ΓY

]
(T:2.103)

Hence, the joint-pdf is given by:

fXY (x, y) = fZ (z) = N
(
z
∣∣µZ, ΓZ

)
(4.118)

=
1

(2π)
N+M

2 |ΓZ|
1
2

exp

[
−1

2
(z− µZ)T Γ−1

Z (z− µZ)

]
(4.119)
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But by substituting for z,µz and Γz in terms of the x and y components and their
respective means and covariances, it can be shown that the marginal densities are
also Gaussian, where:

fX (x) = N
(
x
∣∣µX, ΓX

)
(4.120)

fY (y) = N
(
y
∣∣µY, ΓY

)
(4.121)

Moreover, since

fY|X (y | x) =
fXY (x, y)

fX (x)
(T:2.39)

then the conditional density is also Gaussian, given by:

fY|X (y | x) =
1

(2π)
M
2

∣∣ΓY|X
∣∣ 12 exp

[
−1

2

(
y − µY|X

)T
Γ−1

Y|X
(
y − µY|X

)]
(T:2.106)

where

µY|X = µY + ΓH
XYΓ−1

X (x− µX) (T:2.108)

ΓY|X = ΓY − ΓH
XYΓ−1

X ΓXY (T:2.109)

4.6 Characteristic Functions
New slide The characteristic function and moment generating function for a scalar random

variable can be extended to deal with random vectors. Essentially, these are defined
as the multi-dimensional Fourier transform of the joint-pdf. Hence, the characteristic
function is:

ΦX(ξ) , E
[
ejξ

T X(ζ)
]

=

∫ ∞

−∞
fX (x) ejξ

Tx dx (4.122)

Similarly, the moment generating function is given by:

Φ̄X(s) , E
[
esT X(ζ)

]
=

∫ ∞

−∞
fX (x) esTx dx (4.123)

The characteristic function for a real-valued Gaussian random vector is given by:

ΦX(ξ) =

∫ ∞

−∞
fX (x) ejξ

Tx dx (4.124)

=
1

(2π)
N
2 |ΓX|

1
2

∫ ∞

−∞
exp

[
−1

2
(x− µX)T Γ−1

X (x− µX)

]
ejξ

Tx dx (4.125)

=
1

(2π)
N
2 |ΓX|

1
2

∫ ∞

−∞
exp

[
−

xTΓ−1
X x− 2

(
µTXΓ−1

X + jξT
)

x + µTXΓ−1
X µX

2

]
dx

(4.126)
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Using the integral identity:∫
RP

exp

{
−1

2

[
α + 2yTβ + yTΓy

]}
dy =

(2π)
P
2

|Γ| 12
exp

{
−1

2

[
α− βTΓ−1β

]}
(4.127)

where y ∈ RP is a P -dimensional column vector, then it follows by setting α =

µTXΓ−1
X µX, β = −

(
Γ−1

X µX + jξ
)T , Γ = Γ−1

X , y = x and P = N , that:

ΦX(ξ) = exp

[
−1

2

{
µTXΓ−1

X µX −
(
µTXΓ−1

X + jξT
)
ΓX

(
Γ−1

X µX + jξ
)}]

(4.128)

which after multiplying out gives:

ΦX(ξ) = exp

[
jξTµX −

1

2
ξTΓXξ

]
(M:3.2.46)

where, of course, ξT = [ξ1, . . . , ξN ]. It can be shown that the characteristic function
for the complex-valued normal random vector is given by

ΦX(ξ) = exp

[
j<{ξHµX} −

1

4
ξHΓXξ

]
(M:3.2.50)

4.7 Higher-Order Statistics

Random vectors, and random processes as introduced in the forthcoming lectures, can
also be characterised by higher-order moments. These, again, are a generalisation
of the equivalent definitions for scalar-random variables. However, they become
significantly more complicated for random vectors since the various products of the
random variables creates a very large set of combinations. These will not be discussed
in this course, although an introduction can be found in [Therrien:1992, Section
4.10.1]. As an example, taken from [Manolakis:2000, Page 89], it is noted that the
fourth-order moment of a normal random vector

X (ζ) =
[
X1(ζ) X2(ζ) X3(ζ) X4(ζ)

]T (4.129)

can be expressed in terms of its second order moments. For the real case when X (ζ) ∼
N (0, ΓX), then:

E [X1(ζ)X2(ζ)X3(ζ)X4(ζ)] =E [X1(ζ)X2(ζ)]E [X3(ζ)X4(ζ)]

+ E [X1(ζ)X3(ζ)]E [X2(ζ)X4(ζ)]

+ E [X1(ζ)X4(ζ)]E [X2(ζ)X3(ζ)]

(M:3.2.53)

Note that each RV appears only once in each term. It is also possible to define
higher-order cumulants which can be extremely useful; for example, they are
identically zero for Gaussian random processes, which can help identify whether a
process is Gaussian or not.
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4.8 Sum of Independent Random Variables

New slideTheorem 4.3 (Sum of Random Variables and Vectors). If X (ζ) and Y (ζ) have
joint-pdf, fXY (x, y), then Z(ζ) = X (ζ) + Y (ζ) has density function:

fZ (z) , fX+Y (z) =

∫
R
fXY (x, z− x) dx (4.130)

PROOF. Define the event Z = {(x, y) : x+ y ≤ z}. Then:

Pr (X + Y ≤ x) =

∫∫
Z

fXY (u, v) du dv =

∫
v∈R

∫ z−v

u=−∞
fXY (u, v) du dv

(4.131)

and by making the substitution w = u + v.

=

∫
v∈R

∫ z

w=−∞
fXY (w − u, v) dw dv (4.132)

=

∫ z

w=−∞

∫
v∈R

fXY (u, w − v) du dv ,
∫ z

w=−∞
fX (v) dv

(4.133)
�

giving the result as required. This result can also be obtained using the probability
transformation rule and an auxiliary variable. This is left as an exercise for the reader.

Theorem 4.4 (Sum of Independent Random Variables and Vectors). If X (ζ) and
Y (ζ) are independent, this result becomes

fZ (z) , fX+Y (z) =

∫
R
fX (x) fY (z− x) dx (4.134)

=

∫
R
fX (z− y) fY (y) dy = fX (z) ∗ fY (y) (4.135)

PROOF. Follows trivially by writing fXY (x, y) = fX (x) fY (y)

Independent RVs can also be dealt with using characteristic functions as introduced
in the lecture on scalar random variables.

If Z(ζ) = X (ζ) + Y (ζ), then its characteristic function is given by:

ΦZ(ξ) , E
[
ejξ Z(ζ)

]
= E

[
ejξ[X(ζ)+Y (ζ)]

]
= E

[
ejξ X(ζ)

]
E
[
ejξ Y (ζ)

]
(M:3.2.59)

where the last inequality follows from independence. More explicitly, observe that:

ΦZ(ξ) = E
[
ejξ[X(ζ)+Y (ζ)]

]
=

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y) ejξ[x+y] dx dy (4.136)
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and noting that due to independence fXY (x, y) = fX (x) fY (y), then

ΦZ(ξ) =

∫ ∞
−∞

∫ ∞
−∞

fX (x) fY (y) ejξ xejξ y dx dy (4.137)

=

{∫ ∞
−∞

fX (x) ejξ x dx

}{∫ ∞
−∞

fY (y) ejξ y dy

}
(4.138)

giving the desired result.

Hence, from the convolution property of the Fourier transform, it follows directly from
this result that

fZ (z) = fX (x) ∗ fY (y) (M:3.2.61)

This result can be generalised to the summation of M independent RVs:

Y (ζ) =
M∑
k=1

ckXk(ζ) (M:3.2.55)

where {ck}M1 is a set of fixed (deterministic) coefficients.

It follows straightforwardly that:

ΦY (ξ) , E
[
ejξ Y (ζ)

]
=

M∏
k=1

E
[
ejξ ckXk(ζ)

]
=

M∏
k=1

ΦXk(ckξ) (M:3.2.72)

Hence, the pdf of Y (ζ) is given by:

fY (y) =
1

|c1|
fX1

(
y

c1

)
∗ 1

|c2|
fX2

(
y

c2

)
∗ · · · ∗ 1

|cM |
fXM

(
y

cM

)
(M:3.2.73)

where, implicitly, the Fourier transform of a frequency scaled signal has been used,
which is equivalent to using the probability transformation rule for a scalar random
variable.

Theorem 4.5 (Mean and variance of sum of independent RVs). Using the
linearity of the expectation operator, and taking expectations of both sides of
Equation M:3.2.55, then:

µY =
M∑
k=1

ck µXk (M:3.2.56)

Moreover, assuming independence, then the variance of Y (ζ) is given by:

σ2
Y = E

∣∣∣∣∣
M∑
k=1

ck µXk − µXk

∣∣∣∣∣
2
 =

M∑
k=1

|ck|2 σ2
Xk

(M:3.2.57)

PROOF. These results follow from the linearity of the expectation operator, and the
independence property of the random variables. The proof is left as an exercise for the
reader.
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Finally, the cumulant generating, or second characteristic, function can be used to
determine the nth-order cumulants for Y (ζ).

Recall that
ΨX(ξ) , ln ΦX(ξ) = lnE

[
ek ξ X(ζ)

]
(4.139)

Then, from Equation M:3.2.72,

ΨY (ξ) , lnE
[
ejξ Y (ζ)

]
=

M∑
k=1

lnE
[
ejξ ckXk(ζ)

]
=

M∑
k=1

ΨXk(ckξ) (M:3.2.74)

Therefore, it can readily be shown that the cumulants of Y (ζ) are given by:

κ
(n)
Y =

M∑
k=1

cnk κ
(n)
Xk

(M:3.2.75)

It is left as an exercise for the reader to demonstrate this.

When these results are extended to the sum of an infinite number of statistically
independent random variables, a powerful theorem known as the central limit theorem
(CLT) is obtained.

Another interesting concept develops when the sum of i. i. d. random variables
preserve their distribution, which results in so-called stable distributions. Examples
are the Gaussian and Cauchy distributions.

4.8.1 Central limit theorem
New slide Consider the random variable Y (ζ) given by:

YM(ζ) =
M∑
k=1

ckXk(ζ) (M:3.2.55)

What is the distribution of YM(ζ) as M →∞?

If YM(ζ) is a sum of i. i. d. RVs with a stable distribution, the distribution of YM(ζ) also
converges to a stable distribution. If the distributions are not stable and, in particular,
have finite variance, then the CLT reveals the distribution for limM→∞ YM(ζ).

Theorem 4.6 (Central limit theorem). Let {Xk(ζ)}Mk=1 be a collection of RVs that
are independent and identically distributed and for which the mean and variance of
each RV exists and is finite, such that µX = µXk < ∞ and σX = σ2

Xk
< ∞ for all

k = {1, . . . ,M}. Then the distribution of the normalised random variable

ŶM(ζ) =
YM(ζ)− µYM

σYM
where YM(ζ) =

M∑
k=1

Xk(ζ) (M:3.2.55)

approaches that of a normal random variable with zero mean and unit standard
deviation as M →∞; in other words,

lim
M→∞

fŶM (y) = N
(
y
∣∣ 0, 1

)
(4.140)
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PROOF. Since the Xk(ζ)’s are i. i. d., then µYM = MµX and σ2
YM

= Mσ2
X . Let

Zk(ζ) =
Xk(ζ)− µX

σX
(4.141)

such that µZk = µZ = 0, σ2
Zk

= σ2
Z = 1 and:

ŶM(ζ) =
1√
M

M∑
k=1

Zk(ζ) (4.142)

Noting that if V (ζ) = aU(ζ) for some real-scalar a then

ΦV (ξ) = E
[
ejξ aU(ζ)

]
= ΦU(aξ) (4.143)

Hence, from Equation M:3.2.72, the characteristic function for ŶM(ζ) is given by:

ΦŶM
(ξ) =

M∏
k=1

ΦZk

(
ξ√
M

)
(4.144)

Since the Xk(ζ)’s and therefore the Zk(ζ)’s are i. i. d., then ΦZk(ξ) = ΦZ(ξ), or:

ΦŶM
(ξ) = ΦM

Z

(
ξ√
M

)
(4.145)

From the previous chapter on scalar random variables,

ΦZ(ξ) = E
[
ejξ Z(ζ)

]
=
∞∑
n=0

(jξ)n

n!
E [Zn(ζ)] (4.146)

and therefore

ΦŶM
(ξ) =

{
∞∑
n=0

1

n!

(
jξ√
M

)n
E [Zn(ζ)]

}M

=

{
1 +

jξµZ√
M
− ξ2σ2

Z

2M
+O

({
ξ√
M

}3
)}M

(4.147)

=

{
1− ξ2

2M
+O

({
ξ√
M

}3
)}M

→ e−
1
2
ξ2 as M →∞ (4.148)

using the limit that:
lim
n→∞

(
1 +

x

n

)n
= ex (4.149)

�

This last term is the characteristic function of the N
(
y
∣∣ 0, 1

)
distribution.
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5
Principles of Estimation Theory

This handout presents an introduction to estimation theory, including the notion of an
estimator, measures of performance of the estimator (bias, variance, mean-squared
error (MSE), the Cramér-Rao lower-bound (CRLB), and consistency). Discusses
various estimators such as maximum-likelihood estimate (MLE), least-squares, and
Bayesian estimators.

5.1 Introduction
New slide• Thus far, the theory and material presented in this lecture course have assumed

that either the probability density function (pdf) or statistical values, such as
mean, covariance, or higher order statistics, associated with a problem are fully
known. As a result, all required probabilities, and statistical functions could
either be derived from a set of assumptions about a particular problem, or were
given a priori.

• In most practical applications, this is the exception rather than the rule. In fact,
unless the process by which observations, such as random values or vectors, are
generated is known exactly, such that desired pdf or statistical properties could
be theoretically calculated, there is absolutely no reason why they should be
known a priori.

• The properties and parameters of random events must be obtained by collecting
and analysing finite set of measurements. Again, it would be impossible or very
rare indeed to known the ensemble of realisations of a sample space, and it will
always be the case in practical applications that only a few realisations will ever
be observed.
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• This handout will consider the problem of Parameter Estimation. This refers
to the estimation of a parameter that is fixed, but is unknown. For example, given
a collection of observations that are known to be from a Gaussian distribution
with unknown mean, estimate the mean from the observations.

5.1.1 A (Confusing) Note on Notation

Note that, unfortunately, from this point onwards, a slightly different (and abusive
use of) notation for random quantities is used than what was presented in the first
set of handouts. In the literature, the nth-order particular observation of a random
variable are written as lower-case letters, possibly using subscripts such as xn, but also
often using square brackets, such as x[n]. This is all fine; except that for convenience,
lower-case letters are often also used to mean the random variable itself meaning
that, in different contexts, x[n] can mean both a particular observation, as well as a
potentially random value (x[n] = X (ζ). Where possible, upper-case letters are used
to denote random elements, but this isn’t always true.

The reason for this sloppiness is due to the notation used to describe random
processes in the next lecture course, where the representation of a random process
in the frequency domain is discussed, and upper-case letters are exclusively reserved
to denote spectral representations. Moreover, lower-case letters for time-series are
generally more recognisable and readable, and helps with the clarity of the presentation
(where, as will be seen, x[n] is short-hand notation for x[n, ζ]).

Since this handout leads onto the notation of stochastic processes in the next course,
this sloppy notation will be introduced now, but note that where the existing notation
can be used without ambiguity in exam questions, it will be.

5.1.2 Examples of parameter estimation

To motivate this handout, this section lists a number of potential problems in which
parameters might wish to be estimated.

Frequency Estimation Consider estimating the spectral content of a harmonic
process x[n] consisting of a single-tone, given by

x[n] = A0 cos(ω0n+ φ0) + w[n] (5.1)

where A0, φ0, and ω0 are unknown constants, and where w[n] is an
additive white Gaussian noise (AWGN) process with zero-mean and
variance σ2. It is desired to estimate the unknown constants, namely
the amplitude A0, phase φ0, and frequency ω0 from a realisation of the
random process x[n].

Sampling Distribution Parameters It is known that a set of observations, {x[n]}N−1
0 ,

are drawn from a sampling distribution with unknown parameters θ,
such that:

x[n] ∼ fX (x | θ) (5.2)
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Sidebar 6 The taxi-cab problem

The following taxicab problem has been part of the orally transmitted folklore in the
area of elementary parameter estimation for several decades [Jaynes:2003, Page 190],
and is essentially an application of estimating the parameters of a sampling distribution
from a small sample size.

It goes as follows: you are travelling on a night train; on awakening from sleep, you
notice that the train has stopped at some unknown town, and all you can see is a taxicab
with the number 27 on it. What, then, is your guess as to the number N of taxicabs in
the town, which would in turn give a clue as to the size of the town?

Many people intuitively answer that there seems to be something about the choice
Nest = 2×27 = 54 that recommends itself; but few can offer a convincing rationale for
this. The obvious model that seems to apply is that there will be N taxicabs numbered
1 through N , and, given N , the taxicab observed is equally likely to be any of them.
Given that model, it is deductively known that N ≥ 27, but from that point on, the
reasoning depends on what metric is being used for deciding what a good estimator is.

If the problem seems to abstract by virtue of just one observation, consider observing
a number of taxi’s, say 2 or 3 taxi’s with numbers 27, 13, and 28. Now what would
your estimate be, and how many taxi’s would you prefer to see before estimating the
value of N?

This problem might seem rather academic, but has actually in the past been far from it.

For example, if it is known that x[n] ∼ U[a, b], then it might be of
interest to estimate the parameters a and b.

Estimate of Moments It might be of interest to estimate the moments of a set of
observations, {x[n]}N−1

0 , for example µX = E [x[n]] and σ2
X =

var [x[n]].

Constant value in noise An example which covers the various cases above is
estimating a “direct current” (DC) constant in noise:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1} (5.3)

This list isn’t exhaustiive, but gives an example of the type of parameter estimation
problems that need to be addressed.

5.2 Properties of Estimators

New slideConsider the set of N observations, X = {x[n]}N−1
0 , from a random experiment;

suppose they are used to estimate a parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
(5.4)
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Sidebar 7 German Tank Problem
In the statistical theory of estimation, the problem of estimating the maximum of a
discrete uniform distribution from sampling without replacement is known in English
as the German tank problem, due to its application in World War II to the estimation
of the number of German tanks.

In this scenario, an intelligence officer has spotted a number of enermy tanks, with
serial numbers that were assumed to be sequentially numbered from 1 to N . Given
these observations, what is the prediction of the number of tanks produced? http:
//en.wikipedia.org/wiki/German_tank_problem

The function θ̂ [X ] is known as an estimator whereas the value taken by the estimator,
using a particular set of observations, is called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the true value of the
parameter, θ, as possible.

Since θ̂ is a function of a number of particular realisations of a random outcome (or
experiment), then it is itself a random variable (RV), and thus has a mean and variance.
As an example of an estimator, consider estimating the mean µX of a random variate,
X (ζ), from N observations X = {x[n]}N−1

0 . The most natural estimator is a simple
arithmetic average of these observations, given by the sample mean:

µ̂X = θ̂[X ] =
1

N

N−1∑
n=0

x[n] (M:3.6.1)

Similarly, a natural estimator of the variance, σ2
X , of the random variable X (ζ), x[n],

would be:

σ̂2
X = θ̂′[X ] =

1

N

N−1∑
n=0

(x[n]− µ̂X)2 (M:3.6.2)

Thus, to demonstrate that these estimates are RVs, consider repeating the procedure for
calculating the sample mean and sample variance from a large number of difference
sets of realisations. Then a large number of estimates of µX and σ2

X , denoted by the set
{µ̂X} and {σ̂2

X} respectively, is obtained, and these can be used to generate a histogram
showing the distribution of the estimates.

The set ofN observations, {x[n]}N−1
n=0 can be regarded as one realisation of the random

process {x[n, ζ]}N−1
n=0 which, technically, is defined on an N -dimensional sample

space. Hence, the estimator θ̂
[
{x[n, ζ]}N−1

0

]
becomes a RV whose probability density

function can be obtained from the joint-pdf of the random variables {x[n, ζ]}N−1
0

using the probability transformation rule. This distribution is called the sampling
distribution of the estimator, and is a fundamental concept in estimation theory
because it provides all the information needed to evaluate the quality of an estimator.

Now, the sampling distribution of a good estimator should be concentrated as closely as
possible around the parameter that it estimates. To determine how good an estimator
is, and how different estimators of the same parameter compare with one another,

http://en.wikipedia.org/wiki/German_tank_problem
http://en.wikipedia.org/wiki/German_tank_problem


5.2. Properties of Estimators 105

Sidebar 8 Expectation w. r. t. what?

Note that the expectation is taken with respect to the pdf of the data X , denoted by
p (X | θ). Thus, more precisely one would write:

B(θ̂) , Ep(X | θ)
[
θ̂
]
− θ (5.5)

where
Ep(X | θ)

[
θ̂
]
,
∫

Θ

θ̂ (X ) p (X | θ) dX (5.6)

However, often in textbooks and the literature, the pdf with which the expecation is
taken against is omitted.

it is necessary to determine their sampling distributions. Of course, in practice, the
joint-pdf for the random process x[n, ζ] is rarely known, so frequently it is not possible
to obtain the sampling distribution. However, it is possible to estimate the statistical
properties of the sampling distribution, such as lower-order moments (mean, variance,
mean-squared error, and so forth), and that is the subject of this handout.

5.2.1 Bias of estimator
New slideThe bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E
[
θ̂
]
− θ (M:3.6.3)

It is important to appreciate that the expectation is taken with respect to (w. r. t.) the
observed data given the true parameter θ.

If θ is large, then a small deviation would give what would appear to be a large bias.
Thus, the normalised bias is often used instead:

εb(θ̂) ,
B(θ̂)

θ
=

E
[
θ̂
]

θ
− 1, θ 6= 0 (M:3.6.4)

Example 5.1 (Biasness of sample mean estimator). Is the sample mean, µ̂x =
1
N

∑N−1
n=0 x[n] biased?

SOLUTION. No, since E [µ̂x] = E
[

1
N

∑N−1
n=0 x[n]

]
= 1

N

∑N−1
n=0 E [x[n]] = NµX

N
=

µX .

When B(θ̂) = 0, the estimator is said to be unbiased and the pdf of the estimator is
centered exactly at the true value of θ. Generally, estimators that are unbiased should
be selected, such as the sample mean above, or very nearly unbiased. However, as will
be seen later, it is not always wise to select an unbiased estimator. That an estimator is
unbiased does not necessarily mean that it is a good estimator, only that it guarantees on
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average that it will attain the true value. It might have a higher variance, as discussed
below, than a biased estimator. On the other hand, biased estimators are ones that are
characterised by a systematic error, which presumably should not be present, and a
persistent bias will always result in a poor estimator.

[Therrien:1992, Section 6.1.3, Page 290] gives a more formal definition of
unbiasedness, and this is as follows:

Definition 5.1 (Bias of an estimator). An estimate θ̂N , based onN data observations,
of a parameter θ is unbiased if

E
[
θ̂N

]
= θ (5.7)

Otherwise, the estimate is biased with bias B(θ̂N) = E
[
θ̂N

]
− θ. An estimate is

asymptotically unbiased if
lim
N→∞

E
[
θ̂N

]
= θ (5.8)

♦

5.2.2 Variance of estimator
New slide The variance of the estimator θ̂ is defined by:

var
[
θ̂
]

= σ2
θ̂
, E

[∣∣∣θ̂ − E
[
θ̂
]∣∣∣2] (M:3.6.5)

This, as with any variance value, measures the spread of the pdf of θ̂ around the mean.
Therefore, it would, at first sight, seem sensible to select an estimate with the smallest
variance. However, a minimum variance criterion is not always compatible with the
minimum bias requirement; reducing the variance may result in an increase in bias.

Therefore, a compromise or balance between these two conflicting criteria is required,
and this is provided by the mean-squared error (MSE) measure described below.

The normalised standard deviation is defined by:

εr ,
σθ̂
θ
, θ 6= 0 (M:3.6.6)

5.2.3 Mean square error

New slide Minimising estimator variance can increase bias. A compromise criterion, and a
natural one at that, is the mean-squared error (MSE) of the estimator, which is given
by:

MSE(θ̂) = E
[∣∣∣θ̂ − θ∣∣∣2] = σ2

θ̂
+ |B(θ̂)|2 (M:3.6.7)

Again, it is important to remember that the expectation in the MSE term is w. r. t. the
data, x, as discussed in Sidebar 8 page 105.
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PROOF (RELATIONSHIP BETWEEN MSE, VARIANCE AND BIAS OF AN ESTIMATOR.).
Rewriting Equation M:3.6.7 by substracting and adding the mean of the estimator
gives:

MSE(θ̂) = E
[
|θ̂ − E

[
θ̂
]
− (θ − E

[
θ̂
]
)|2
]

(5.9)

= E
[
|θ̂ − E

[
θ̂
]
|2
]
− E

[
(θ̂ − E

[
θ̂
]
)∗(θ − E

[
θ̂
]
)
]

(5.10)

− E
[
(θ − E

[
θ̂
]
)(θ̂ − E

[
θ̂
]
)∗
]

+ E
[
|θ − E

[
θ̂
]
|2
]

(5.11)

Now, note that E
[
|θ − E

[
θ̂
]
|2
]

= |θ − E
[
θ̂
]
)|2, since both θ and E

[
θ̂
]

are
deterministic values. Moreover,

E
[
(θ − E

[
θ̂
]
)∗(θ̂ − E

[
θ̂
]
)
]

= (θ − E
[
θ̂
]
)∗E

[
θ̂ − E

[
θ̂
]]

(5.12)

= (θ − E
[
θ̂
]
)∗
{
E
[
θ̂
]
− E

[
θ̂
]}

= 0 (5.13)

giving:
MSE(θ̂) = E

[
|θ̂ − E

[
θ̂
]
|2
]

︸ ︷︷ ︸
σ2
θ̂

+ |θ − E
[
θ̂
]
|2︸ ︷︷ ︸

B(θ̂)

(M:3.6.9)
�

as required.

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is known as the minimum
mean-square error:

θ̂MSE = argθ̂ min MSE(θ̂) (5.14)

This measures the average mean squared deviation of the estimator from its true value.
Unfortunately, the last expression in the right hand side (RHS) of Equation M:3.6.7
indicates that adoption of this natural criterion leads to unrealisable estimators; ones
which cannot be written solely as a function of the data.

To see how this problem arises, note from Equation M:3.6.7 that the MSE is composed
of errors due to the variance of the estimator, as well as the bias. This inevitable leads
to an optimal estimator that is a function of the true parameter value.

Note that when finding the minimum MSE through application of Equation 5.14, the
argument (or parameter) that is minimised is usually a parameter that defines the
structure of the estimator and is not necessarily the unknown parameter of interest.
Thus, a parameter α might affect the functional form of the estimator such that
θ̂ = θ̂ [X , α], and it is actually α that is used as the variable parameter in the
optimisation. The following example demonstrates these issues.

Example 5.2 ( [Kay:1993, Example 2.1, Page 16]). Consider the observations

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1} (K:2.2)

where A is the parameter to be estimated, and w[n] is white Gaussian noise (WGN).
The parameter A can take on any value in the interval −∞ < A < ∞. A reasonable
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estimator for the average value of x[n] is:

Âa = a
1

N

N−1∑
n=0

x[n] (5.15)

If a = 1, then this is just the sample mean. Due to the linearity properties of the
expectation operator, then it can be seen, as in the previous example, that:

E
[
Â1

]
= E

[
1

N

N−1∑
n=0

x[n]

]
=

1

N

N−1∑
n=0

E [x[n]] = A (5.16)

for all A. Hence, the sample mean is unbiased. However, consider finding the optimal
(modified) estimator Âa by finding the value of a that minimises the MSE. Then noting
that:

E
[
Âa

]
= E

[
a

1

N

N−1∑
n=0

x[n]

]
= aA (5.17)

which, incidentally is a biased estimate, and also noting that the samples x[n] are
independent and identically distributed (i. i. d.) such that E [x[n]x[m]] = σ2 δ(n −
m) + A2 since σ2

x = σ2, then:

var
[
Âa

]
= E

∣∣∣∣∣
{
a

1

N

N−1∑
n=0

x[n]

}
− aA

∣∣∣∣∣
2
 (5.18)

=
a2

N2
E

[
N−1∑
n=0

N−1∑
m=0

x[n]x[m]− 2AN
N−1∑
n=0

x[n] +N2A2

]
(5.19)

=
a2

N2

{
N
[
σ2 +NA2

]
− 2N2A2 +N2A2

}
=
a2σ2

N
(5.20)

Hence, the MSE is given by:

MSE(Âa) = var
[
Âa

]
+ |B(Âa)|2 =

a2σ2

N
+ (a− 1)2A2 (5.21)

In order to find the minimum mean-square error (MMSE), then differentiate this and
set to zero:

dMSE(Âa)

da
=

2aσ2

N
+ 2(a− 1)A2 (5.22)

which is equal to zero when

aopt =
A2

A2 + σ2

N

(5.23)
on

Thus, unfortunately, the optimal value of a depends upon the unknown parameter A.
The estimator is therefore not realisable, and this is since the bias term is a function
of A. It would therefore seem that any criterion which depends on the bias of the
estimator will lead to an unrealisable estimator. Although this is generally true, on
occasion realisable MMSE estimators can be found.
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From a practical viewpoint, therefore, the MMSE estimator needs to be abandoned.
An alternative approach is to constrain the bias to be zero, and find the estimator that
minimises the variance. Such an estimator is termed the minimum variance unbiased
estimator (MVUE). Note that the MSE of an unbiased estimator is just the variance.

It should be noted, however, that the MMSE criterion is the basis of most least-squares
algorithms as will be seen later in the course, and is also intimately connected with
Gaussian processes. However, in those contexts, the meaning and application is
somewhat different, as will be seen.

5.2.4 Cramer-Rao Lower Bound
New slideBeing able to place a lower bound on the variance of any unbiased estimator process

to be an extremely useful tool in practice. At best, it allows the identification of a
minimum variance unbiased (MVU) estimator. This will be the case if the estimator
attains the bound for all values of the unknown parameter. At worst, it provides a
benchmark against which the performance of any unbiased estimator can be compared.
Moreover, it highlights the physical impossibility of finding an unbiased estimator
whose variance is less than the bound, and this can be useful in signal processing
feasibility studies. Although many such bounds on the variance of an estimator exists,
the Cramér-Rao lower-bound (CRLB) is by far the easiest to determine. Additionally,
the theory of the CRLB provides a condition for which it is possible to determine
whether an estimator exists that attains the bound.

If the MSE can be minimised when the bias is zero, then clearly the variance is
also minimised. Such estimators are called MVUEs. MVUE possess the important
property that they attain a minimum bound on the variance of the estimator, called the
Cramér-Rao lower-bound (CRLB).

Theorem 5.1 (CRLB - scalar parameter). Recalling {x[n]}N−1
0 is just one

realisation of the RVs {x[n, ζ]}N−1
0 , defined on an N -dimensional space, then if

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]T and fX (x | θ) is the joint density of X(ζ) which
depends on fixed but unknown parameter θ, then the variance of the estimator θ̂ is
bounded by:

var
[
θ̂
]
≥ 1

E
[(

∂ ln fX(x | θ)
∂θ

)2
] (M:3.6.17)

Alternatively, it may also be expressed as:

var
[
θ̂
]
≥ − 1

E
[
∂2 ln fX(x | θ)

∂θ2

] (M:3.6.18)

The function ln fX (x | θ) is called the log-likelihood function of θ. A discussion
about the likelihood-function is given in Sidebar 9.

Furthermore, an unbiased estimator may be found that attains the bound for all θ if,
and only if, (iff)

θ̂ − θ = K(θ)
∂ ln fX (x | θ)

∂θ
(K:3.7)

July 16, 2015 – 09 : 45



110 Estimation Theory

Sidebar 9 The likelihood function
The likelihood function is discussed in detail in Section 5.3. As has been noted
throughout this course, given a physical model of a problem, it is possible to write
down the joint density of the RVs X (ζ) = {x[n, ζ]}N−1

n=0 , which depends on a fixed but
unknown parameter vector θ: it is given by fX (x | θ), and can be viewed as a function
of x.

This same quantity, viewed as a function of the parameter θ when given a particular
set of observations, x = x̂, is known as the likelihood function. It is usually written
as:

L (θ; x) ≡ fX (x | θ)|fixed x, variable θ (5.24)

Thus, the likelihood function L (θ; x) should be intepreted as a function of θ given x.
However, it is important to note that L (θ; x) ≡ fX (x | θ) as a function of θ is not
necessarily a pdf since, in general, it does not integrate to one over θ:∫

L (θ; x) dθ =

∫
fX (x | θ) dθ 6= 1 (5.25)

Note, however, that according to Bayes’s theorem:∫
fΘ (θ | x) dθ =

∫
fX (x | θ) fΘ (θ)

fX (x)
dθ = 1 (5.26)

or alternatively, a weighted version of the likelihood gives rise to the probability of the
observations: ∫

L (θ; x) fΘ (θ) dθ = fX (x) (5.27)

In otherwords, it is simply important to not intepret the likelihood function as a pdf,
and simply to be carefull with the manipulations.
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for some function K(θ), and where θ̂ = θ̂(x) is a function of the data only and,
importantly, not a function of the true value of θ. Alternatively, a more useful way
of writing Equation K:3.7 is to determine whether the log-likelihood function can be
written in the form:

∂ ln fX (x | θ)
∂θ

= I(θ)
(
θ̂ − θ

)
, where I(θ) = K−1(θ). (5.28)

The estimator θ̂ which attains this bound is the MVUE, and the minimum variance is
given by K(θ). Note that an estimator which is unbiased and attains the CRLB is also
said to be an efficient estimator in that it efficiently used the data.

PROOF. If θ̂ is unbiased, then E
[
θ̂ − θ

]
= 0, which may be expressed as:∫ ∞

−∞
· · ·
∫ ∞
−∞

(θ̂ − θ)fX (x | θ) dx = 0 (M:3.6.11)

Differentiating w. r. t. the true parameter θ, and assuming a real-value θ̂, then:

0 =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂θ

[
(θ̂ − θ)fX (x | θ)

]
dx (5.29)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

(θ̂ − θ)∂fX (x | θ)
∂θ

dx−
∫ ∞
−∞
· · ·
∫ ∞
−∞

fX (x | θ) dx︸ ︷︷ ︸
=1

(M:3.6.12)

Note that here it has been assumed differentiation and integration may be interchanged.
This is generally true except when the domain of the pdf for which it is nonzero
depends on the known parameter. Using the fact that

∂ ln fX (x | θ)
∂θ

=
1

fX (x | θ)
∂fX (x | θ)

∂θ
(5.30)

or,

∂fX (x | θ)
∂θ

=
∂ ln fX (x | θ)

∂θ
fX (x | θ) (M:3.6.13)

then substituting into Equation M:3.6.12 gives:∫ ∞
−∞
· · ·
∫ ∞
−∞

{
(θ̂ − θ)∂ ln fX (x | θ)

∂θ

}
fX (x | θ) dx = 1 (M:3.6.14)

which can be written using the expectation operator as:

E
[
(θ̂ − θ)∂ ln fX (x | θ)

∂θ

]
= 1 (M:3.6.15)

Now, using the Cauchy-Schwartz inequality (see [Papoulis:1991]), which states that:

|E [X(ζ)Y(ζ)]|2 ≤ E
[
|X(ζ)|2

]
E
[
|Y(ζ)|2

]
(5.31)
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then squaring both sides of Equation M:3.6.15 gives

1 = E2

[
(θ̂ − θ)∂ ln fX (x | θ)

∂θ

]
≤ E

[
(θ̂ − θ)2

]
E

[(
∂ ln fX (x | θ)

∂θ

)2
]

(M:3.6.16)
Note that the Cauchy-Schwartz inequality becomes and equality iff the two integrands
that are implicit in the expectation operator are related by a constant multiplier,
independent of x. That is, when:

(θ̂ − θ)2 fX (x | θ) = K(θ)

(
∂ ln fX (x | θ)

∂θ

)2

fX (x | θ) (5.32)

or, alternatively,

θ̂ − θ = K(θ)
∂ ln fX (x | θ)

∂θ
(K:3.7)

This is the minimum variance unbiased estimator. Since the estimator is unbiased, then
var
[
θ̂
]

= E
[
(θ̂ − θ)2

]
, and therefore:

var
[
θ̂
]
≥ 1

E
[(

∂ ln fX(x | θ)
∂θ

)2
] (M:3.6.17)

To derive the second form by starting with the simple condition that:∫ ∞
−∞
· · ·
∫ ∞
−∞

fX (x | θ) dx = 1 (5.33)

Differentiating once w. r. t. to θand using Equation M:3.6.13 gives∫ ∞
−∞
· · ·
∫ ∞
−∞

∂fX (x | θ)
∂θ

dx =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∂ ln fX (x | θ)
∂θ

fX (x | θ) dx = 0

(5.34)

and differentiating again gives:

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
∂2 ln fX (x | θ)

∂θ2
fX (x | θ) +

{
∂ ln fX (x | θ)

∂θ

}2

fX (x | θ)

)
dx = 0

(5.35)

which gives the desired result

E
[
∂2 ln fX (x | θ)

∂θ2

]
= −E

[{
∂ ln fX (x | θ)

∂θ

}2
]

(5.36)
�

This can then be substituted into Equation M:3.6.17.
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Note that a generalisation of the CRLB for biased estimates is given by:

var
[
θ̂
]
≥

(
1 + ∂B(θ̂)

∂θ

)2

E
[(

∂ ln fX(x | θ)
∂θ

)2
] (5.37)

where B(θ̂) is the bias as previously defined. The proof follows a very similar line as
given above, and is left as an exercise for the reader.

Example 5.3 ( [Kay:1993, Example 3.3, Page 31]). Consider again the observations

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1} (K:2.2)

whereA is the parameter to be estimated, and w[n] is WGN. The parameterA can take
on any value in the interval −∞ < A <∞. Determine the CRLB for an estimator, Â,
of the parameter A.

SOLUTION. Since the transformation between x[n] and x[n] is linear, with a
multiplication factor of 1, the likelihood function can be written down as:

fX (x | A) =
N−1∏
n=0

1√
2πσ2

exp

[
− 1

2σ2
(x[n]− A)2

]
(5.38)

=
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− A)2

]
(5.39)

Note, a more detailed derivation of this likelihood is given in Sidebar 10 on page 114.
Taking the first derivative of the log-likelihood gives:

∂ ln fX (x | A)

∂A
=

∂

∂A

[
−N

2
ln
(
2πσ2

)
− 1

2σ2

N−1∑
n=0

(x[n]− A)2

]
(5.40)

=
1

σ2

N−1∑
n=0

(x[n]− A) =
N

σ2
(µ̂X − A) (K:3.8)

where µ̂X is the sample mean. Differentiating again, then:

∂2 ln fX (x | A)

∂A2
= −N

σ2
(5.41)

and noting that this second derivative is constant, then the CRLB is given by:

var
[
Â
]
≥ σ2

N
(K:3.9)

�

Comparing Equation K:3.7 and Equation K:3.8, then it is clear that the sample mean
attains the bound, such that Â = µX , and must therefore be the MVUE. Hence, the
minimum variance will also be given by var

[
Â
]

= σ2

N
.
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Sidebar 10 Likelihood Derivation for Signal in Noise

A common model for a set of observations X = {x[n]}N−1
0 is the signal in noise:

x[n] = s[n; θ] + w[n] , w[n] ∼ N
(
0, σ2

w

)
(5.42)

where s[n; θ] denotes a parametric model for the underlying signal, and is dependent
on a parameter (vector) θ. The noise process w[n] is assumed to be i. i. d.; therefore,
since x[n] does not depend on previous values of either the input, w[n], or the observed
process, x[n], it follows that x[n] is also i. i. d..

Conditional on θ and a particular time index n, the pdf for the observed sample x[n]
can be obtained using the probability transformation rule. Hence, noting that there is
one unique solution w[n] = x[n]− s[n; θ], and that the Jacobian of the transformation
is given by:

Jw[n]→x[n] =
∂x[n]

∂w[n]
= 1 (5.43)

it follows that

fX (x[n] | θ) =
fW (x[n]− s[n; θ])

Jw[n]→x[n]

=
1√

2πσ2
w

exp

{
−(x[n]− s[n; θ])2

2σ2
w

}
(5.44)

where it is implicitly understood that fX (x[n] | θ) = fX (x[n] | θ, σ2
w) also depends

on the noise variance σ2
w although this isn’t always explicitly written. Since the x[n]’s

are i. i. d., then it follows that:

fX (x | θ) = fX (x[0] , . . . , x[N − 1] | θ) (5.45)

=
N−1∏
n=0

fX (x[n] | θ) (5.46)

=
N−1∏
n=0

1√
2πσ2

w

exp

{
−(x[n]− s[n; θ])2

2σ2
w

}
(5.47)

=
1

(2πσ2
w)

N
2

exp

{
−
∑N−1

n=0 (x[n]− s[n; θ])2

2σ2
w

}
(5.48)

Note, therefore, that many of the examples in this handout have a likelihood function
that take this form. Nevertheless, it is important to derive these results carefully each
time you attempt to solve a problem, as a different model might give a different result.
Moreover, this derivation should be included in any example questions that you tackle.
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5.2.5 Consistency of an Estimator

New slideIf the MSE of the estimator,

MSE(θ̂) = E
[
|θ̂ − θ|2

]
= σ2

θ̂
+ |B(θ̂)|2 (M:3.6.7)

can be made to approach zero as the sample size N becomes large, then both the
bias and the variance tends toward zero. Thus, the sampling distribution tends to
concentrate around θ, and as N → ∞, it will become an impulse at θ. This is a
very important and desirable property, and such an estimator is called a consistent
estimator.

Note that [Therrien:1992, Section 6.1.3, Page 290] gives a slightly more formal
definition of a consistent estimator:

Definition 5.2 (Consistent Estimator). An estimate θ̂N , based on N data
observations, is consistent if

lim
N→∞

Pr
(∣∣∣θ̂N − θ∣∣∣ < ε

)
= 1 (5.49)

♦

for any arbitrarily small number ε. The sequence of estimates {θ̂N}∞0 is said to
converge in probability to the true value of the parameter θ.

Example 5.4 ( [Manolakis:2001, Exercise 3.32, Page 147]). The Cauchy
distribution with mean µ is given by:

fX (x) =
1

π

1

1 + (x− µ)2
, x ∈ R (5.50)

Let {xk}N−1
k=0 be N i. i. d. RVs with this distribution. Consider the mean estimator

based on these samples:

µ̂ =
1

N

N−1∑
k=0

xk (5.51)

Determine whether µ̂ is a consistent estimator of µ.

SOLUTION. It is simplest to use the definition that an estimator is consistent if
limN→∞MSE(θ) = 0, where

MSE(θ) = E
[
|θ̂ − θ|2

]
= σ2

θ̂
+ |B(θ̂)|2 (M:3.6.7)

and

σ2
θ̂
, E

[∣∣∣θ̂ − E
[
θ̂
]∣∣∣2] ≡ E

[∣∣∣θ̂∣∣∣2]− E2
[
θ̂
]

(M:3.6.5)
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Hence, by noting that E [µ̂] = µ, such that |B(θ̂)|2 = 0, then the MSE is given by:

MSE(θ) = σ2
θ̂

= E
[
|µ̂|2
]
− E2 [µ̂] (5.52)

≡ E
[
|µ̂− E [µ̂]|2

]
= E

∣∣∣∣∣ 1

N

N−1∑
k=0

xk − µ

∣∣∣∣∣
2
 (5.53)

≡ 1

N2

N−1∑
k=0

N−1∑
l=0

E [xk xl]− µ2 (5.54)

Since the samples are independent and identically distributed (i. i. d.), then the
autocorrelation function is given by:

E [xk xl] =

{
E [xk] E [xl] k 6= l

E [x2
k] k = l

(5.55)

=

{
µ2 k 6= l

µ2 + σ2 k = l
(5.56)

= σ2 δ(k − l) + µ2 (5.57)

Hence,

MSE(θ) =
1

N2

N−1∑
k=0

N−1∑
l=0

(
σ2 δ(k − l) + µ2

)
− µ2 (5.58)

=
1

N2

N−1∑
k=0

(
σ2 +Nµ2

)
− µ2 (5.59)

=
1

N

(
σ2 +Nµ2

)
− µ2 =

σ2

N
(5.60)
�

Since the variance for a Cauchy distribution is unbounded, such that σ2 → ∞, then
limN→∞MSE(θ) does not converge to zero, and is therefore not consistent.

5.2.6 Efficiency of an estimator

Definition 5.3 (Efficiency of an estimator). An estimate is said to be efficient w. r. t.
another estimate if it has a lower variance. Thus, if θ̂N is an estimator that depends on
N observations and is both unbiased and efficient with respect to θ̂N−1 for all N , then
θ̂N is a consistent estimate.
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5.2.7 Estimating Multiple Parameters

New slide Multiple parameters occur in, for example, estimating the statistical properties of
a random time-series, estimating the parameters of a curve fitted to a set of data,
estimating any model described by a set of parameters. To deal with these vectors
of parameters, the previous results can be extended and defined in an analogous way.

A vector of parameters, θ, of a random event X (ζ) can be estimated from a set of
observations, X = {x[n]}N−1

0 , using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
(5.61)

The definitions of unbiasedness, consistency, efficiency, and the CRLB are all
straightforward extensions of the definitions and results for scalar parameter estimates.

Assuming θ is a P × 1 parameter vector, these properties are:

Unbiased Estimator An estimate θ̂N is unbiased if

E
[
θ̂N

]
= θ (5.62)

Otherwise, the estimate is biased with bias b(θ̂N) = E
[
θ̂N

]
− θ. An

estimate is asymptotically unbiased if

lim
N→∞

E
[
θ̂N

]
= θ (5.63)

Consistent Estimator An estimate θ̂N , based on N data observations, is consistent
if

lim
N→∞

Pr
(∣∣∣θ̂N − θ∣∣∣ < ε

)
= 1 (5.64)

for any arbitrarily small number ε. The sequence of estimates {θ̂N}∞0
is said to converge in probability to the true value of the parameter θ.

Efficient Estimator An estimate θ̂ is said to be efficient w. r. t. another estimate θ̂
′
if

the difference of their covariance matrices Γ
θ̂
′−Γθ̂ is positive definite.

This implies that the variance of every component of θ̂ must be smaller
than the variance of the corresponding component of θ̂

′
. If θ̂N is

unbiased and efficient with respect to θ̂N−1 for all N , then θ̂N is a
consistent estimate.

Theorem 5.2 (CRLB - real parameter vectors). This theorem is only for real
parameter vectors. Complex-parameter vectors are slightly more detailed, but the
principle no different, as highlighted by the note following this theorem. Assuming
that the estimator θ̂ is unbiased, then the vector parameter CRLB will place a bound on
the variance of each element. This CRLB for a vector parameter is similar in concept
to the scalar form, but requires a little more slickness in mathematical presentation.
Define the gradient of the log-likelihood function to be:

s ≡ s(x;θ) , ∇θ ln fX (x | θ) (T:6.43)
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The vector s is called the score for θ based on x and can be shown to have zero
mean (see [Therrien:1993, Problem 6.8, Page 331]). If θ̂ is substituted for θ, the
score is a measure of the optimality of the estimate, which scores near 0P×1 being
more desirable (albeit, not necessarily revealing the optimum solution); it follows that
the maximum-likelihood estimate (MLE) introduced in the next section has a score of
exactly 0P×1. The covariance of the score vector is known as the Fisher information
matrix, and is assumed to be nonsingular:

J(θ) = E
[
s(x;θ) sT (x;θ)

]
(T:6.42)

The Fisher information matrix can also be written in the following equivalent form:

[J(θ)]ij = −E
[
∂2 ln fX (x | θ)

∂θi∂θj

]
(K:3.21)

If θ̂ is any unbiased estimate, and Γθ̂ is its covariance matrix, then the CRLB can be
stated as:

Γθ̂ ≥ J−1(θ) (5.65)

where the notation≥means that the difference matrix Γθ̂−J−1(θ) is positive definite.
This bound is satisfied with equality iff the estimate satisfies an equation of the form:

θ̂ − θ = J−1(θ)s(x;θ) (T:6.47)

where θ̂ = θ̂(x) is a function of the data only (and, importantly, not a function of the
true value of θ. Note that an estimator which is unbiased and attains the CRLB is also
said to be an efficient estimator in that it efficiently used the data.

PROOF. For a full proof, see [Therrien:1992, Page 298], or [Kay:1993]. However,
the proof is relatively straightforward and is analogous to the proof for the case of the
scalar real parameter. It is currently omitted from this document.

The CRLB derived here can, of course, be applied to complex parameters by separating
the parameter into real and imaginary parts, and including those parts separately into
the real vector θ. It is possible to develop a direct complex version of this bound, and
this is discussed in [Therrien:1992, Page 298].

Example 5.5 ( [Kay:1993, Example 3.7, Page 41] - Line fitting). Consider the
problem of fitting a line to a set of observations, that is dependent on the observation
index n. This, given a random process X (ζ, n) = x[n], and the model

x[n] = A+Bn+ w[n] , n ∈ {0, 1, . . . , N − 1} (5.66)

where w[n] is WGN. Determine the CRLB for the slope B and the intercept A.

SOLUTION. The 2× 2 Fisher information matrix is given by:

J(θ) = E
[
s(x;θ) sT (x;θ)

]
(T:6.42)

= E
[
∇θ ln fX (x | θ) ∇T

θ ln fX (x | θ)
]

(5.67)

=

 E
[(

∂ ln fX(x |θ)
∂A

)2
]

E
[
∂ ln fX(x |θ)

∂A
∂ ln fX(x |θ)

∂B

]
E
[
∂ ln fX(x |θ)

∂B
∂ ln fX(x |θ)

∂A

]
E
[(

∂ ln fX(x |θ)
∂B

)2
]

 (5.68)
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where the notation θ = [A, B]T is used as a shorthand. Alternatively, the elements of
the Fisher information matrix can be found using:

[J(θ)]ij = −E
[
∂2 ln fX (x | θ)

∂θi∂θj

]
(K:3.21)

This alternative expression is often a more straightforward method for evaluating the
Fisher information matrix, and will be used here. As in the case of a DC signal in
WGN , the likelihood function can be written as

fX (x | θ) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− A−Bn)2

]
(5.69)

from which the following derivatives follow:

∂ ln fX (x | θ)

∂A
=

1

σ2

N−1∑
n=0

(x[n]− A−Bn) (5.70)

∂ ln fX (x | θ)

∂B
=

1

σ2

N−1∑
n=0

(x[n]− A−Bn)n (5.71)

and

∂2 ln fX (x | θ)

∂A2
= −N

σ2
(5.72)

∂2 ln fX (x | θ)

∂A∂B
= − 1

σ2

N−1∑
n=0

n (5.73)

∂2 ln fX (x | θ)

∂B2
= − 1

σ2

N−1∑
n=0

n2 (5.74)

Using the identities that

N∑
n=1

n =
1

2
N(N + 1) and

N∑
n=1

n2 =
1

6
N(N + 1)(2N + 1) (5.75)

and noting that the second-order derivatives do not depend on x and therefore equal
their expected values, then the Fisher information can be written as follows:

J(θ) =
1

σ2

[
N N(N−1)

2
N(N−1)

2
N(N−1)(2N−1)

6

]
(5.76)

Inverting this matrix yields:

J−1(θ) = σ2

[
2(2N−1)
N(N+1)

− 6
N(N+1)

− 6
N(N+1)

12
N(N2−1)

]
(5.77)
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Hence, it can be deduced that the variances for the individual parameters is given by
the CRLB or:

var
[
Â
]
≥ 2(2N − 1)σ2

N(N + 1)
(5.78)

var
[
B̂
]
≥ 12σ2

N(N2 − 1)
(5.79)

Finally, note that a MVUE, if it exists, satisfies the relationship:

θ̂ − θ = J(θ)−1∇θ ln fX (x | θ) (T:6.47)

where the estimator θ̂ depends on the observations only, and not the true parameter θ;
if this were not the case, then the MVUE cannot exist physically. Hence, using the
expressions for the terms in the RHS

θ̂ − θ = J(θ)−1

[
∂ ln fX(x |θ)

∂A
∂ ln fX(x |θ)

∂B

]
(5.80)

[
Â− A
B̂ −B

]
= σ2

[
2(2N−1)
N(N+1)

− 6
N(N+1)

− 6
N(N+1)

12
N(N2−1)

][
1
σ2

∑N−1
n=0 (x[n]− A−Bn)

1
σ2

∑N−1
n=0 (x[n]− A−Bn)n

]
(5.81)

=

[
2(2N−1)
N(N+1)

∑N−1
n=0 (x[n]− A−Bn)− 6

N(N+1)

∑N−1
n=0 (x[n]− A−Bn)n

− 6
N(N+1)

∑N−1
n=0 (x[n]− A−Bn) + 12

N(N2−1)

∑N−1
n=0 (x[n]− A−Bn)n

]
(5.82)

=
2

N(N + 1)

[
(2N − 1)

∑N−1
n=0 x[n]− 3

∑N−1
n=0 nx[n]

−3
∑N−1

n=0 x[n] + 6
(N−1)

∑N−1
n=0 nx[n]

]
−
[
A
B

]
(5.83)

where again the identities for
∑N−1

n=0 n and
∑N−1

n=0 n
2 have been used, and the terms

not involving the data have been grouped, simplified, and ultimately either cancelled
or rearranged into the second column vector on the RHS. Hence, it follows that:[

Â

B̂

]
=

2

N(N + 1)

[
(2N − 1)

∑N−1
n=0 x[n]− 3

∑N−1
n=0 nx[n]

−3
∑N−1

n=0 x[n] + 6
(N−1)

∑N−1
n=0 nx[n]

]
(5.84)
�

Since the estimator is not dependent on the true value of the parameters, then this is
indeed the MVUE for the line fitting problem. It would not be straightforward to have
intuitively determined what this estimator should have been without using the CRLB.

This previous example leads to an interesting observation. Note first that the CRLB for
Â has increased over that obtained when B is known, for in the latter case, it can be
determined that var

[
Â
]
≥ σ2

N
, which for N ≥ 2, is less than 2(2N−1)σ2

N(N+1)
. This relates to

quite a general result that asserts that the CRLB always increases as more parameters
are estimated.
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5.3 Maximum Likelihood Estimation
New slide This section now investigates an alternative to the MVUE, which is desirable in

situations where the MVUE does not exist, or cannot be found even if it does
exist. This estimator, which is based on the maximum likelihood principle, is
overwhelmingly the most popular approach to practical estimators. It has the
advantage of being a recipe procedure, allowing it to be implemented for complicated
problems. Additionally, for most cases of practical interest, its performance is optimal
for large enough data records. Specifically, it is approximately the MVUE estimator
due to its approximate efficiency. For these reasons, almost all practical estimators are
based on the maximum likelihood principle.

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends on fixed but

unknown parameter vector θ, is given by fX (x | θ). This same quantity, viewed as a
function of the parameter θ when a particular set of observations, x̂ is given, is known
as the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ, denoted by θ̂ml, is
defined as that value of θ that maximises fX ( x̂ | θ). In other-words, the MLE for a
parameter θ is that estimate that makes the given value of the observation vector the
most likely value.

This point cannot be over-emphasised; it is common to think of fX (x | θ) as a function
of x; now it is necessary to turn this thinking around, and view fX (x | θ) as a function
of θ, for a given x.

The MLE for θ is defined by:

θ̂ml(x) = argθ max fX (x | θ) (T:6.40)

Note that since θ̂ml(x) depends on the random observation vector x, and so is itself a
RV.

Assuming a differentiable likelihood function, and that θ ∈ RP , the MLE is found
from 

∂fX(x |θ)
∂θ1...

∂fX(x |θ)
∂θP

 =

0
...
0

 (5.85)

or, more simply,

∇θfX (x | θ) ,
∂fX (x | θ)

∂θ
= 0P×1 (K:7.35)

where 0P×1 denotes the P × 1 vector of zero elements. This property is listed in the
next section for further information. If multiple solutions to this exist, then the one that
maximises the likelihood function is the MLE.

There is a slight abuse of notation here, in that x is used to denote both the argument
in fX (x | θ), as well as the given parameter in the likelihood function. However, this
strict distinction is not important here, although it can be useful to be more careful in
advanced work of this nature.
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Figure 5.1: A single parameter MLE that occurs at a boundary, and therefore for which
∂fX(x | θ)

∂θ

∣∣∣
θ=θ̂ml

6= 0. Hence, in this case, a MLE and the MVUE are not necessarily

equal.

5.3.1 Properties of the MLE

New slide 1. The MLE satisfies

∇θfX (x | θ)|θ=θ̂ml
= 0P×1 (T:6.41a)

∇θ ln fX (x | θ)|θ=θ̂ml
= 0P×1 (T:6.41b)

where θ ∈ RP×1. Note that in the case of a scalar parameter, θ, then these
expressions reduce to the simpler form:

∂fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (T:6.10a)

∂ ln fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (T:6.10b)

2. If an MVUE exists and the MLE does not occur at a boundary, then the MLE
is the MVUE. If the MLE occurs at the boundary, then the derivative of the
likelihood function is not necessarily equal to zero, as shown, for example, in
Figure 5.1. An example of such a case is discussed in the tutorial exercises.

PROOF (EQUIVALENCE OF MVUE AND MLE). For clarity and simplicity,
only the proof for the scalar case is given. The extension to parameter vectors is
straightforward. As shown in the derivation of the CRLB, the MVUE satisfies:

θ̂ − θ = K(θ)
∂ ln fX (x | θ)

∂θ
(5.86)

The MLE satisfies

∂fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (5.87)

∂ ln fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (5.88)

Hence, setting θ = θ̂ml and substituting these into one another, gives:

θ̂ − θ̂ml = K(θ̂ml)
∂ ln fX (x | θ)

∂θ

∣∣∣∣
θ=θ̂ml

= 0 (5.89)
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Hence,
θ̂ = θ̂ml (5.90)

�

3. If the pdf, fX (x | θ), of the data x satisfies certain regularity conditions, then
the MLE of the unknown parameter θ is asymptotically distributed (for large
data records) according to a Gaussian distribution:

θ̂ml ∼ N
(
θ, J−1(θ)

)
(5.91)

where J(θ) is known as the Fisher information evaluated at the true value of
the unknown parameter.

From the asymptotic distribution, the MLE is seen to be asymptotically unbiased and
asymptotically attains the CRLB. It is therefore asymptotically efficient, and hence
asymptotically optimal. This, of course, leads to the key question of how large does
the data set need to be for these asymptotic properties to apply.

5.3.2 DC Level in white Gaussian noise
New slideAn example of the maximum likelihood principle begins with the scalar case, and again

deals with a DC level in WGN.

Example 5.6 ( [Therrien:1991, Example 6.1, Page 282]). A constant but unknown
signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)
(5.92)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown signal A.

SOLUTION. Since x[n] = A+w[n], then consider the probability transformation from
w[n] to x[n]. Then it is clear that

fX (x[n] | A) = fW (w[n] | A) = fW (x[n]− A) (5.93)

Moreover, since this is a memoryless system, and w(n) are i. i. d., then so is x[n], and
therefore:

fX (x | A) =
∏
n∈N

fW (x[n]− A) =
1

(2πσ2
w)

N
2

exp

{
−
∑

n∈N (x[n]− A)2

2σ2
w

}
(5.94)

The log-likelihood is given by the logarithm of the likelihood function, and is usually
a simpler function to minimise, at least for distributions which involve exponential
functions. Hence, for this case, the log-likelihood is given by:

ln fX (x | A) = −N
2

ln(2πσ2
w)−

∑
n∈N (x[n]− A)2

2σ2
w

(5.95)
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Differentiating this expression w. r. t. A gives

∂ ln fX (x | A)

∂A
=

∑
n∈N (x[n]− A)

σ2
w

(5.96)

and setting this to zero yields the MLE:

Âml =
1

N

∑
n∈N

x[n] (5.97)
�

This is the sample mean, and it has already been seen that this is an efficient estimator.
Hence, the MLE is efficient. This result is true in general; if an efficient estimator
exists, the maximum likelihood procedure will produce it.

Example 5.7 ( [Kay:1993, Example 7.3, Page 162 ]). The previous example of a DC
level in WGN is considered again, except that in this case, the DC level is assumed to
be positive (A > 0), and the variance of w[n] is now proportional to A. Thus, for
a large value of A, a higher noise power is expected. Thus, the observations may be
modelled as:

x[n] = A+ w[n] where w[n] ∼ N
(
0, Aσ2

w

)
(5.98)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown signal A.

SOLUTION. Following the development of the previous example, the pdf for the
observed data and, equivalently, the likelihood function is given by:

fX (x | A) =
1

(2πAσ2
w)

N
2

exp

{
−
∑

n∈N (x[n]− A)2

2Aσ2
w

}
(5.99)

and thus the log-likelihood function is given by:

ln fX (x | A) = −N
2

ln(2πAσ2
w)−

∑
n∈N (x[n]− A)2

2Aσ2
w

(5.100)

Differentiating the log-likelihood function w. r. t. A gives:

∂ ln fX (x | A)

∂A
= − N

2A
+

4Aσ2
w

∑
n∈N (x[n]− A) + 2σ2

w

∑
n∈N (x[n]− A)2

4A2σ4
w

(5.101)

= − N
2A

+

∑
n∈N (x[n]− A)

Aσ2
w

+

∑
n∈N (x[n]− A)2

2A2σ2
w

(5.102)

and setting this equal to zero produces:

ANσ2
w =

∑
n∈N

{
(x[n]− A)2 + 2A(x[n]− A)

}
(5.103)

A2 + Aσ2
w =

1

N

∑
n∈N

x2[n] (5.104)
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Solving for Â > 0 gives:

Â = −σ
2
w

2
+

√
σ4
w

4
+

1

N

∑
n∈N

x2[n] (5.105)
�

Finally, that Â indeed maximises the log-likelihood function can be verified by
examining the second derivative.

5.3.3 MLE for Transformed Parameter
New slideTheorem 5.3 (Invariance Property of the MLE). The invariance property is

discussed further in [Kay:1993, Theorem 7.2, Page 176] and [Kay:1993, Theorem
7.4, Page 185], for scalar and vector parameters respectively. The following theorem
is presented for vector parameters, and can be simplified accordingly for scalar
parameters. The MLE of the parameter α = g(θ), where g is an r-dimensional
function of the P × 1 parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml) (5.106)

where θ̂ml is the MLE of θ.

The MLE of θ, θ̂ml, is obtained by maximising fX (x | θ). If the function g is not
an invertible function, then α̂ maximises the modified likelihood function p̄T (x | α)
defined as:

p̄T (x | α) = max
θ:α=g(θ)

fX (x | θ) (5.107)
♦

5.4 Least Squares

New slideThe estimators discussed so far have attempted to find an optimal or nearly optimal
(for large data records) estimator by considering the class of unbiased estimators
and determining the one exhibiting minimum variance, the MVUE. An alternate
philosophy is a class of estimators that in general have no optimality properties
associated with them, but make good sense for many problems of interest: the
principle of least squares.

The principle or method of least squares dates back to 1821 when Carl Friedrich
Gauss used the method to determine the orbit of the asteroid Ceres by formulating
the estimation problem as an optimisation problem.

A salient feature of the method is that no probabilistic assumptions are made about the
data; only a signal model is assumed. The advantage is that it is a simpler procedure to
find a parameter estimate since, for the MVUE and MLE, the pdf must either be known,
or computable from the information in the problem, which makes these estimates
difficult to compute and implement. As will be seen, it turns out that the least-squares
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estimate (LSE) can be calculated when just the first and second moments are known,
and through the solution of linear equations. Hence, the method has a broader range of
possible applications. On the negative side, no claims about optimality can be made,
and furthermore, the statistical performance cannot be assessed without some specific
assumptions about the probabilistic structure of the data.

5.4.1 The Least Squares Approach

New slide Thus far, in determining a good estimator, the focus has been on finding one that is
unbiased and has minimum variance. Hence, it is sought to minimise the average
discrepancy between the estimate and the true parameter value. For unbiased estimates,
this corresponds to minimising the variance of the estimator.

In the least-squares (LS) approach, it is sought to minimise the squared difference
between the given, or observed, data x[n] and the assumed, or hidden, signal or
noiseless data. Here it is assumed that the hidden or unobserved signal is generated
by some model which, in turn, depends on some unknown parameter θ. Due to
observation noise or model inaccuracies, the observation x[n], is a perturbed version
of s[n]. The LSE of θ chooses the value that makes s[n] closest to the observed data
x[n], and this closeness is measured by the LS error criterion:

J(θ) =
N−1∑
n=0

(x[n]− s[n])2 (K:8.1)

where s[n] = s[n;θ] is a function of θ. The LSE is given by:

θ̂LSE = argθ min J(θ) (5.108)

Note that no probabilistic assumptions have been made about the data x[n] and that
the method is equally valid for Gaussian as well as non-Gaussian noise. Of course,
the performance of the LSE will depend on the properties of the corrupting noise, as
well as any modelling errors. LSEs are usually applied in situations where a precise
statistical characterisation of the data or noise process is unknown. They are also
applied when an optimal estimator cannot be found, or may be too complicated to
apply in practice.

5.4.2 DC Level

New slide Again, start by considering an example with a scalar parameter. The case with vector
parameters follows a similar line.

Example 5.8 ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an observed
signal, x[n], is a perturbed version of an unknown signal, s[n], which is modelled as
s[n] = A, for n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown signal A.
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SOLUTION. According to the LS approach, then:

ÂLSE = argA min J(A) where J(A) =
N−1∑
n=0

(x[n]− A)2 (5.109)

Differentiating w. r. t. A and setting the result to zero produces

ÂLSE =
1

N

N−1∑
n=0

x[n] (5.110)
�

which is the sample mean estimator.

This LSE cannot, however, be claimed to be optimal in the MVU sense, but only in
that it minimises the LS error. If it is known that x[n] = A + w[n], where w[n] is
zero-mean WGN, then the LSE will also be the MVUE, but otherwise not.

5.4.3 Nonlinear Least Squares

Example 5.9 (Sinusoidal Frequency Estimation). Again, it is assumed that an
observed signal, x[n], is a perturbed version of an unknown signal, s[n], which is
modelled as

s[n] = cos 2πf0n (5.111)

in which the frequency f0 is to be estimated. The LSE can be found by minimising

J(f0) =
N−1∑
n=0

(x[n]− cos 2πf0n)2 (5.112)
on

In contrast to the DC level signal for which the minimum is easily found, here the LS
error function is highly nonlinear in the parameter f0. The minimisation cannot be
done in closed form. Since the error criterion is a quadratic function of the signal, a
signal that is linear in the unknown parameter yields a quadratic function for J , as in
the previous example. The minimisation is then easily carried out. A signal model
that is linear in the unknown parameter is said to generate a linear least squares
problem. Nonlinear least squares problems are solved via grid searches or iterative
minimisation methods.

5.4.4 Linear Least Squares

New slideAgain, assume that an observed signal, {x[n]}N−1
0 , is a perturbed version of an

unknown signal, {s[n]}N−1
0 , where each of these processes can be written by the

random vectors:

s =
[
s[0] s[1] · · · s[N − 1]

]T and x =
[
x[0] x[1] · · · x[N − 1]

]T (5.113)
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The signal, s[n], can be written as a linear combination of P known functions,
{hk[n]}Pk=1, with weighting parameters {θk}Pk=1; thus:

s[n] =
P∑
k=1

θk hk[n] (5.114)

Writing this in matrix-vector notation, it follows that:
s[0]
s[1]

...
s[N − 1]


︸ ︷︷ ︸

s

=


h1[0] h2[0] · · · hP [0]
h1[1] h2[1] · · · hP [1]

...
... . . . ...

h1[N − 1] h2[N − 1] · · · hP [N − 1]


︸ ︷︷ ︸

H


θ0

θ1
...
θP


︸ ︷︷ ︸

θ

(5.115)

Thus, the unknown random-vector s is linear in the unknown parameter vector θ =
[θ1, · · · , θP ], and can be written as

s = Hθ (K:8.8)

As shown above, H is a known N×P matrix, where N > P , and must be of full rank.
It is referred to as the observation matrix. The LSE is found by minimising:

J(θ) =
N−1∑
n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ) (K:8.9)

This can be written as:

J(θ) = xTx− 2xTHθ + θTHTHθ (5.116)

and using the two identities that:

∂bT a

∂a
= b and

∂aTBa

∂a
=
(
B + BT

)
a (5.117)

then observing in this case B = HTH = BT it follows that

∂J(θ)

∂θ
= −2HTx + 2HTHθ (5.118)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(
HTH

)−1
HTx (K:8.10)

The equations HTHθ = HTx, to be solved for θ̂, are termed the normal equation.

Requiring H to be full rank guarantees the invertibility of HTH. The minimum LS
error is found from Equation K:8.9 and Equation K:8.10:

Jmin = J(θ̂) =
(
x−Hθ̂

)T (
x−Hθ̂

)
(5.119)

=
(
x−H

(
HTH

)−1
HTx

)T (
x−H

(
HTH

)−1
HTx

)
(5.120)

= xT
(
IN −H

(
HTH

)−1
HT
)(

IN −H
(
HTH

)−1
HT
)

x (5.121)
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Now, the matrix A = IN −H
(
HTH

)−1
HT is an idempotent matrix in that it has

the property A2 = A. This follows from noting that:

A2 = IN − 2H
(
HTH

)−1
HT + H

(
HTH

)−1
HT H

(
HTH

)−1
HT︸ ︷︷ ︸

=H(HTH)
−1

HT

= A (5.122)

Hence,
Jmin = xT

(
IN −H

(
HTH

)−1
HT
)

x (K:8.11)

Other forms for Jmin are:

Jmin = xT x− xTH
(
HTH

)−1
HTx (K:8.12)

= xT (x−Hθ) (K:8.13)

5.4.5 Weighted Linear Least Squares

An extension of the linear LS problem is weighted linear least squares. Instead of
minimising Equation K:8.9, an N × N positive definite, and by definition, therefore
symmetric, weighting matrix W, so that

J(θ) = (x−Hθ)T W (x−Hθ) (K:8.14)

If, for instance, W is diagonal with diagonal elements [W]ii = wi > 0, then the LS
error of Equation K:8.1 reduces to:

J(θ) =
N−1∑
n=0

wn (x[n]− s[n])2 (5.123)

The rationale for introducing weighting factors into the error criterion is to emphasise
the contributions of those data samples that are deemed to be more reliable. Hence,
consider again Example 5.8 on page 126, and assume that x[n] = A+w[n], wherew[n]
is a zero-mean uncorrelated noise signal with variance σ2

n; if σ2
n is large compared with

A, then the estimate of the underlying signal s[n] = A from x[n] will be unreliable.
Thus, it would seem reasonable to choose a weighting factor of wn = 1

σ2
n

.

Example 5.10 ( [Kay:1993, Problem 8.8, Page 276]). Find the weighted least
squares estimate of an unknown signal, s[n] = A, from an observed signal x[n], where
the known weighting factors are given by wn = 1

σ2
n

.

SOLUTION. The weighted LS error is given by:

J(θ) =
N−1∑
n=0

1

σ2
n

(x[n]− A)2 (5.124)

Differentiating w. r. t. A, and setting to zero gives:

0 =
N−1∑
n=0

1

σ2
n

(x[n]− A) (5.125)
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Rearranging gives straightforwardly:

ÂLSE =

∑N−1
n=0

1
σ2
n
x[n]∑N−1

n=0
1
σ2
n

(5.126)
�

The general form of the weighted LSE is readily shown to be:

θ̂ =
(
HTWH

)−1
HTWx (K:8.16)

and its minimum LS error is

Jmin = xT
(
W −WH

(
HTWH

)−1
HTW

)
x (K:8.17)

5.5 Bayesian Parameter Estimation

Using the method of maximum likelihood (or least squares) to infer the values of a
parameter has several significant limitations:

1. First, the likelihood function does not use information other than the data itself to
infer the values of the parameters. No prior knowledge, stated before the data is
observed, is utilised regarding the possible or probable values that the parameters
might take. In many applications, a physical understanding of the problem at
hand, or of the circumstances surrounding how an experiment is conducted, can
suggest that some values of the parameters are impossible, and that some are
more likely to occur than others.

There are cases where the maximum-likelihood estimate (MLE) can return
parameter estimates outside the sensible range of the parameters, or outside the
physical constraints of the system under consideration.

2. The likelihood function on its own does not limit the number of parameters in
a model used to fit the data. The number of parameters is chosen in advance,
by the Signal Processing Engineer, but the likelihood function does not indicate
whether the number of parameters chosen is more than necessary to model the
data, or less than needed.

In general, the more parameters used to model the data, the better the model will
fit the data. For example, a data set consisting of N observations can always be
described exactly by a model withN parameters. However, suppose that a model
is used to describe a particular realisation of a stochastic process with no error
by using N parameters to model N observations. If another realisation of that
random process is generated, then a new model is required to describe the new
data with no error. Often the new parameter estimates can be vastly different to
the old parameter set.

This problem arises from the tendency to attempt to over-parameterize the data;
there is clearly a tradeoff between modelling a signal with no error and having
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a more complicated or sophisticated model. With this in mind, model simplicity
is the key to maximising the degree of consistency between parameter estimates
computed from independent realisations of a process.

There are methods to this model order selection problem: these include
final prediction error (FPE), Akaike’s information criterion (AIC), minimum
description length (MDL), Parzen’s criterion autoregressive transfer function
(CAT) and B-Information criterion (BIC). However, it would be preferable to
have a parameter estimation method that explicitly takes into account the fact that
the model order is unknown. Although model selection will not be discussed in
detail in this course, Bayesian parameter estimation is a framework in which it
is consistent and straightforward to consider the model order as simply another
unknown parameter.

5.5.1 Bayes’s Theorem (Revisited)

Suppose N observations, x = {x[n]}N−1
0 , of a random process, x[n, ζ], is denoted by

X(ζ) = {x[n, ζ]}N−1
0 . It is assumed that this process can be assigned a signal model,

Ik, such that it is possible to write down a likelihood function:

Lk (θk; x) = pX|Θk
(x | θk, Ik) (5.127)

where θk is an unknown parameter vector which characterises the k-th signal model,
Ik. Suppose all the knowledge prior to observing the data regarding the probability
of the values of the parameters of model Ik is summarised by the probability density
function, pΘk

(θk | Ik). Then Bayes’s theorem gives:

pΘk|X (θk | x, Ik) =
pX|Θk

(x | θk, Ik) pΘk
(θk | Ik)

pX (x | Ik)
(5.128)

Equation 5.128 is composed of the following terms:

Prior: pΘk
(θk | Ik) summarises all the knowledge of the values of the

parameters θk prior to observing the data;

Likelihood: pX|Θk
(x | θk, Ik), is determined by the signal model Ik;

Evidence: pX (x | Ik), which is the normalising expression in Equation 5.128, is
known as the Bayesian evidence. Since the left hand side (LHS) must
integrate to unity to be a valid pdf, then it follows:

pX (x | Ik) =

∫
Θk

pX|Θk
(x | θk, Ik) pΘk

(θk | Ik) dθk (5.129)

This term is of interest in model selection; in cases where only
one model is under consideration, this term may be considered as a
constant, since it is not a function of the unknown parameters θk.

Posterior: pΘk|X (θk | x, Ik) is the joint posterior pdf for the unknown
parameters θk given the observations x. It summarises the state of
knowledge about the parameters after the data is observed.
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The posterior density may be used for parameter estimation, and various estimators
exist. One common estimator is the value of θk that maximises the posterior pdf:

θ̂k = argθk
max pΘk|X (θk | x, Ik) (5.130)

This is known as the maximum a posteriori (MAP) estimate.

Note that in order to simplify the notation, Bayes’s theorem is frequently written as:

p (θk | x, Ik) =
p (x | θk, Ik) p (θk | Ik)

p (x | Ik)
(5.131)

It is understood in Equation 5.131 that the probability density functions, p ( · | ·), are
identified based on its context. In other-words, it is important to realise that each term
in Equation 5.131 represents a different functional form for the pdfs.

In cases where there is only one model in consideration, Equation 5.131 simplifies
further to:

p (θ | x, I) =
p (x | θ, I) p (θ | I)

p (x | I)
(5.132)

5.5.2 The Removal of Nuisance Parameters

One of the more interesting features of the Bayesian paradigm is the ability to remove
nuisance parameters: these are parameters that are of no interest in the analysis.
Consider a signal model, I, that involves two parameters, α and β. In this case, Bayes’s
theorem may be written as:

p (α, β | x, I) =
p (x | α, β, I) p (α, β | I)

p (x | I)
(5.133)

It might be that it is only of interest to estimate α, and that an estimate of β is
unnecessary. The marginal a posteriori pdf for α can be obtained by marginalising
over the random variable β:

p (α | x, I) =

∫
p (α, β | x, I) dβ

=
1

p (x | I)

∫
p (x | α, β, I) p (α, β | I) dβ

(5.134)

Marginalisation, also known as marginal inference, is an appealing procedure when
the integral in Equation 5.134 can be calculated in closed form. In such cases, the
marginal posterior density is reduced in dimensionality since the parameter β is no
longer present in the term p (α | x, I). Note that marginalisation necessitates a loss of
information; the integration in Equation 5.134 means that all the information about the
value of β is lost.

If the marginal posterior density is used for parameter estimation, then the value of α
that maximises the marginal posterior pdf:

α̂ = argα max p (α | x, I) = argα max

∫
p (α, β | x, I) dβ (5.135)

is known as the maximum marginal a posteriori (MMAP) estimate.
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5.5.3 Prior Probabilities

The selection of prior densities is a highly involved topic for discussion, and is only
briefly mentioned here. A prior density is selected to describe ones state of knowledge,
or lack of it, about the value of a parameter before it is observed.

One can claim to have no knowledge whatsoever about the value of a parameter prior to
observing the data. This state of ignorance may be described by using a prior pdf that
is very broad and flat relative to the likelihood function. The most intuitively obvious
non-informative prior is a uniform density. This prior is typically used for discrete
distributions, or for unbounded real value parameters:

p (θk | Ik) = k (5.136)

where k is a constant. In the case of an uniform prior, parameter estimates obtained
from a MAP estimate are identical to those obtained using maximum likelihood. The
problem with the uniform prior in Equation 5.136 is that is is not normalisable, and is
therefore not a valid pdf.

Prior probabilities are non-informative if they convey ignorance of the parameter
values before observing the data compared with the state of knowledge afterwards.
Therefore, the prior pdf need only be diffuse in relation to the likelihood function.
Thus, to avoid the normalisation problem with the uniform prior, frequently a Gaussian
prior is adopted:

p (θk | Ik) =
1

(2πδ2)
P
2

exp

[
−θ

T
k θk
2δ2

]
(5.137)

where P is the number of parameters inside the vector θk. The parameter δ is known
as a hyper-parameter, and needs to be chosen somehow. To indicate ignorance
of the value of a parameter, δ should be set to a large value. Alternatively, it is
possible to assign another prior to the hyper-parameter δ itself. This hyper-prior will
be characterised by hyper-hyper-parameters.

Often a prior is chosen for mathematical convenience. In many situations, the
likelihood function has an exponential form. For the ease of analysis, the prior density
can be chosen to be conjugate to the likelihood function so that the posterior density
is of the same functional form as the likelihood. In general, however, it is desirable to
convey all prior knowledge in a prior density function; this is problem specific, and is
discussed in many many research texts.

5.5.4 General Linear Model

The general linear model has previously been introduced in the discussion on the
method of least squares. Any data that may be described in terms of a linear
combination of basis functions with an additive Gaussian noise component satisfies
the general linear model. Suppose that the observed data may be described by a signal
model of the form:

x[n] =
P∑
p=1

ap gp[n] + e[n] , where 0 ≤ n ≤ N − 1 (5.138)
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and gp(n) is the value of a time-dependent model or basis function evaluated at time
index n, and e[n] is WGN with variance σ2

e : thus, e[n] ∼ N (0, σ2
e). Consider writing

Equation 5.138 for all values of n:
x[0]
x[1]

...
x[N − 1]


︸ ︷︷ ︸

x

=


g1[0] g2[0] · · · gP [0]
g1[1] g2[1] · · · gP [1]

...
... . . . ...

g1[N − 1] g2[N − 1] · · · gP [N − 1]


︸ ︷︷ ︸

G


a0

a1
...
aP


︸ ︷︷ ︸

a

+


e[0]
e[1]

...
e[N − 1]


︸ ︷︷ ︸

e

(5.139)
In other-words, Equation 5.138 may be written as:

x = G a + e (5.140)

where x is anN×1 vector of observations, e is anN×1 vector of i. i. d. Gaussian noise
samples, G is a N × P matrix, and a is a P × 1 vector of parameters. The columns of
matrix G are the basis functions evaluated at each time index, and the basis functions
themselves are a function of some unknown parameters θ. For example, the basis
functions might be sinusoids, and θ denotes the frequencies of these sinusoids.

The vector-matrix equation in Equation 5.140 is linear in the parameter vector a; hence,
the model in Equation 5.140 is often called the LITP model. Now, consider finding
the likelihood function p (x | θ, a, σ2

e , I), where θ is the unknown parameter vector
of the basis functions that form the matrix G. The probability density function for the
noise vector is given by:

p
(
e | σ2

e

)
=

1

(2πσ2
e)

N
2

exp

[
−eTe

2σ2
e

]
(5.141)

Now, suppose that G is not a function of the observations x; the probability
transformation from the random vector e to the random vector x is linear, and has
unity Jacobian. Hence, the likelihood function for the observations is given by:

p
(
x | θ, a, σ2

e , I
)

=
1

(2πσ2
e)

N
2

exp

[
−(x−G a)T (x−G a)

2σ2
e

]
(5.142)

where I indicates all the known information in the chosen signal model. Now, suppose
that the aim is to infer the values of the parameters of the basis functions, θ, without
inferring the values of the nuisance parameters, namely the linear parameters, a, and
the variance of the white noise, σ2

e . The Bayesian methodology is thus applied. First
some priors are required for the variance and the linear parameters.

The variance term is known as a scale parameter and is a measure of scale or
magnitude. A vague non-informative prior that is usually assigned to scale parameters
is the inverse-Gamma density; the reason for this is not discussed here. Therefore:

p
(
σ2
e

∣∣ αe, βe) = IG
(
σ2
e

∣∣αe, βe) =

{
0 if σ2

e < 0,
αβee

Γ(βe)
(σ2

e)
−(βe+1)

e
−αe
σ2e if σ2

e ≥ 0,
(5.143)
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Note that αe and βe are hyper-parameters. Further, for linear parameters, it is usual
to apply a vague Gaussian prior similar to that in Equation 5.137:

p
(
a | σ2

e , I
)

= N
(
a
∣∣ 0, δ2σ2

eIP
)

=
1

(2πδ2σ2
e)

P
2

exp

[
− aTa

2δ2σ2
e

]
(5.144)

where IP is the P×P identity matrix. Note that the prior p (a | σ2
e , δ, I) is conditional

on σ2
e ; the choice of this prior allows both σ2

e and a to be marginalised analytically. The
hyper-parameters δ, αe, βe are all assumed to be known.

Using Bayes’s theorem, the posterior density for all the parameters θ, a, σ2
e is given

by:
p
(
θ, a, σ2

e

∣∣ x, I
)
∝ p

(
x | θ, a, σ2

e , I
)
p
(
θ, a, σ2

e

∣∣ I) (5.145)

where the evidence term is considered as a constant and therefore omitted, and ∝
indicates proportionality. The prior term factorises as:

p
(
θ, a, σ2

e

)
= p (θ) p

(
a | σ2

e

)
p
(
σ2
e

)
(5.146)

where the dependence on the model I has been dropped for convenience. Thus, the
joint posterior density is given by:

p
(
θ, a, σ2

e

∣∣ x, I
)
∝ p (θ)

1

(2πσ2
e)

N
2

exp

[
−(x−G a)T (x−G a)

2σ2
e

]

× 1

(2πδ2σ2
e)

P
2

exp

[
− aTa

2δ2σ2
e

]
αβee

Γ(βe)

(
σ2
e

)−(βe+1)
e
−αe
σ2e

(5.147)

Since the observations and hyper-parameters are known, and therefore constant from
the perspective of the posterior density, then after some manipulation, this may be
written as

p
(
θ, a, σ2

e

∣∣ x, I
)
∝ p (θ)

(σ2
e)

N+P
2

+βe+1
exp

[
−

aT
(
GTG + δ−2IP

)
a− 2xTGa + xTx + 2αe

2σ2
e

]
(5.148)

The linear parameters a can be marginalised out using the identity:∫
RP

exp

{
−1

2

[
α + 2yTβ + yTΓy

]}
dy =

(2π)
P
2

|Γ| 12
exp

{
−1

2

[
α− βTΓ−1β

]}
(5.149)

To perform this, set y = a, Γ = 1
σ2
e

(
GTG + δ−2IP

)
, α = xTx+2αe

σ2
e

, and β =

− 1
σ2
e
GTx, so that

p
(
θ, σ2

e

∣∣ x, I
)

=

∫ ∞

−∞
p
(
θ, a, σ2

e

∣∣ x, I
)
da (5.150)

∝ p (θ)√
det
∣∣GTG + δ−2IP

∣∣ (σ2
e)
R+1

exp

[
−

xTx + 2αe − xTG
(
GTG + δ−2IP

)−1
GTx

2σ2
e

]
(5.151)
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where R = N+2βe
2

. Finally, the variance can be marginalised using the fact that the
inverse-Gamma pdf implies:

1 =

∫ ∞
0

IG
(
σ2
∣∣α, β, ) dσ2 =

∫ ∞
0

αβ

Γ(β)

(
σ2
)−(β+1)

e−
α
σ2 dσ2 (5.152)

and therefore: ∫ ∞
0

(
σ2
)−(β+1)

e−
α
σ2 dσ2 =

Γ(β)

αβ
(5.153)

Hence, this gives the marginal a posterior pdf for the parameters θ as

p (θ | x, I) =

∫ ∞
0

p
(
θ, σ2

e

∣∣ x, I
)
dσ2

e

∝ p (θ)

[
xTx + 2αe − xTG

(
GTG + δ−2IP

)−1
GTx

]−(N2 +βe)√
det
∣∣GTG + δ−2IP

∣∣
(5.154)

The MMAP estimate can be found by maximising this expression with respect to the
parameters θ which are implicitly incorporated in the basis matrix G.

It is important to realise that the expression in Equation 5.154 is a function of the
basis parameters θ only. This means that there is no need to know about the standard
deviation, σ2

e , nor the values of the linear parameters to infer the values of θ. Moreover,
since the integrals in the marginalisation process have been performed analytically, the
dimensionality of the parameter space has been reduced for each parameter integrated
out. This reduction of the dimensionality is a property of Bayesian marginal estimates
and is a major advantage in many applications.

Example 5.11 (Frequency estimation). An application of the general linear model
is in frequency estimation. Suppose that a signal, s[n], is modelled as the sum of
sinusoids:

s[n] =
P∑
p=1

(ap sinωp n+ bp cosωpn) (5.155)

where the coefficients {ap, bp}P1 are the amplitudes, {ωp}P1 are the frequencies, and P
is the model order. As usual, it is implicitly assumed that the sampling period T = 1
and that the frequencies {ωp}P1 are normalised to between 0 and π. The signal, s[n], is
observed in white Gaussian noise (WGN) with unknown variance σ2

e :

x[n] = s[n] + e[n] =
P∑
p=1

(ap sinωp n+ bp cosωpn) + e[n] (5.156)

This model can be written in the linear in the parameters (LITP) form by defining the
matrix:

G =


0 1 0 1 · · · 0 1

sinω1 cosω1 sinω2 cosω2 · · · sinωP cosωP
sin 2ω1 cos 2ω1 sin 2ω2 cos 2ω2 · · · sin 2ωP cos 2ωP

...
...

...
... . . . ...

...
sin `ω1 cos `ω1 sin `ω2 cos `ω2 · · · sin `ωP cos `ωP

 (5.157)



5.5. Bayesian Parameter Estimation 137

where ` = N − 1. Hence, with the parameter vector defined as:

a =
[
a1 b1 a2 b2 · · · aP bP

]T (5.158)

the marginal a posterior pdf for the unknown frequencies {ωp}P1 is given by:

p
(
{ωp}P1

∣∣ x
)
∝ p

(
{ωp}P1

) [xTx + 2αe − xTG
(
GTG + δ−2I2P

)−1
GTx

]−(N2 +βe)√
det
∣∣GTG + δ−2I2P

∣∣
(5.159)

on
where the parameter vector, a, is of dimension 2P , and therefore the size of G is
N × 2P .

The MMAP estimate can be found by maximising this w. r. t. the frequencies {ωp}P1 .
Note that the hyper-parameters and a prior for {ωp}P1 must also be chosen; typically, a
uniform prior on ωp between 0 and π will be sufficient.

5.5.4.1 Model Selection using Bayesian Evidence

Next, the Bayesian evidence term is considered:

pX (x | Ik) =

∫
Θk

pX|Θk
(x | θk, Ik) pΘk

(θk | Ik) dθk (5.160)

This term can be used to select signal models and noise statistics appropriate to the
observed data. To clarify, in this equation, Θk is the parameter space, and Ik denotes
the structure of the k-th model. The term Ik represents the joint assumption of both
the noise statistics and the signal model; together, this is called the data model. It
is important to note that the integral in Equation 5.160 is the likelihood multiplied by
the prior integrated over all the parameters in that data model. In the case of discrete
distributions, the integration simplifies to a summation.

Consider a set of competing possible data models labelled {Ik}M1 proposed to describe
a given set of observations. Bayes’s theorem can be used to find the posterior density
of each model given the data:

pI|X (Ik | x) =
pX|I (x | Ik) pI (Ik)

pX (x)
(5.161)

where the probability of the observations is given by:

pX (x) =
M∑
k=1

pX|I (x | Ik) pI (Ik) (5.162)

If all the models are equally likely a priori, then

pI (Ik) =
1

M
(5.163)

July 16, 2015 – 09 : 45



138 Estimation Theory

Therefore, the posterior probability of a model is given by the relative evidence:

pI|X (Ik | x) =
pX|I (x | Ik)
M∑
k=1

pX|I (x | Ik)
(5.164)

This expression constitutes the evidence framework for the selection of signal models.
It is important to realise that in terms of real data, the correct data model may not be
in the set chosen. It is only possible to compare the candidate models that have been
considered to determine which models are more plausible.



6
Monte Carlo Methods

This handout discusses the problem of generating sequences of random numbers or
variates, for use in numerical simulations, including Monte Carlo integration and
optimisation.

6.1 Introduction
New slideMany signal processing problems can be reduced to either an optimisation problem or

an integration problem:

Optimisation: involves finding the solution to

θ̂ = arg max
θ∈Θ

h(θ) (6.1)

where h(·) is a scalar function of a multi-dimensional vector of
parameters, θ. Typically, h(·) might represent some cost function,
and it is implicitly assumed that the optimisation cannot be calculated
explicitly. An example of a complicated optimisation problem might
be finding the maximum of the equation:

h(x) = (cos 50x+ sin 20x)2 , 0 ≤ x ≤ 1 (6.2)

This function is plotted in Figure 6.1.

Integration: involves evaluating an integral,

I =

∫
Θ

f(θ) dθ, (6.3)

139
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Figure 6.1: Plot of the function in Equation 6.2.

that cannot explicitly be calculated in closed form. For example, the
Gaussian-error function:

Φ(t) =

∫ t

−∞

1√
2π
e−

θ2

2 dθ (6.4)

Again, the integral may be multi-dimensional, and in general θ is a
vector.

Optimisation and Integration Some problems involve both integration and
optimisation: a fundamental problem is the maximisation of a
marginal distribution:

θ̂ = arg max
θ∈Θ

∫
Ω

f(θ, ω) dω (6.5)

The reader is encouraged to honestly consider how many problems they solve reduce
to either an integration or an optimisation problem.

6.1.1 Deterministic Numerical Methods
New slide There are various deterministic solutions to the optimisation and integration problems.

A browse through [Press:1992, Chapters 4 and 10], for example, reveals a variety of
well-known approaches:

Optimisation: 1. Golden-section search and Brent’s Method in one dimension;

2. Nelder and Mead Downhill Simplex method in
multi-dimensions;

3. Gradient and Variable-Metric methods in multi-dimensions,
typically an extension of Newton-Raphson methods.
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Integration: Most deterministic integration is only feasible in one-dimension, and
many methods rely on classic formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced
abscissas at which the function is evaluated. These methods tend to
use Gaussian quadratures and orthogonal polynomials. Splines are
also used.
Unfortunately, these methods are not easily extended to
multi-dimensions.

Some examples of deterministic numerical solutions to these problems are considered
in Section 6.1.1.1 and Section 6.1.1.2.

6.1.1.1 Deterministic Optimisation

New slideThe Nelder-Mead Downhill Simplex method simply crawls downhill in a
straightforward fashion that makes almost no special assumptions about your function.
This can be extremely slow, but in some cases, it can be robust.

Gradient methods are typically based on the Newton-Raphson algorithm which
solves the equation∇h(θ) = 0. For a scalar function, h(θ), of a vector of independent
variables θ, a sequence θn is produced such that:

θn+1 = θn −
(
∇∇Th (θn)

)−1 ∇h (θn) (6.6)

Numerous variants of Newton-Raphson-type techniques exist, and include the steepest
descent method, or the Levenberg-Marquardt method.

The primary difficulty in evaluating Equation 6.6 is the computation of the Hessian
term∇∇Th (θn). However, it is not crucial to obtain an exact estimate of the Hessian
in order to reduce the cost function at each iteration. In fact, any positive definite matrix
will suffice, and often a matrix proportional to the identity matrix is used.

The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm, for example, constructs
an approximate Hessian matrix by analyzing successive gradient vectors, and by
assuming that the function can be locally approximated as a quadratic function in the
region around the optimum.

6.1.1.2 Deterministic Integration

New slideNumerical computation of the scalar case of the integral in Equation 6.7 can be done
using simple Riemann integration, or by improved methods such as the trapezoidal
rule. For example, the

I =

∫ b

a

f(θ) dθ, (6.7)
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where θ is a scalar, and b > a, can be solved with the trapezoidal rule using

Î =
1

2

N−1∑
k=0

(θk+1 − θk) (f(θk) + f(θk+1)) (6.8)

where the θk’s constitute an ordered partition of [a, b]. Another formula is Simpson’s
rule:

Î =
δ

3

{
f(a) + 4

N∑
k=1

f(θ2k−1) + 2
N∑
k=1

h(θ2k) + f(b)

}
(6.9)

in the case of equally spaced samples with δ = θk+1 − θk.

6.1.2 Monte Carlo Numerical Methods
New slide Monte Carlo methods are stochastic techniques, in which random numbers are

generated and use to examine some problem.

6.1.2.1 Monte Carlo Integration

New slide Consider the integral,

I =

∫
Θ

f(θ) dθ. (6.10)

Defining a function π(θ) which is non-zero and positive for all θ ∈ Θ, this integral
can be expressed in the alternate form:

I =

∫
Θ

f(θ)

π(θ)
π(θ) dθ, (6.11)

where the function π(θ) > 0, θ ∈ Θ is a probability density function (pdf) which
satisfies the normalised expression:∫

Θ

π(θ) dθ = 1 (6.12)

It can now be seen that Equation 6.57 can be viewed as an expectation of the function
h(θ) = f(θ) π(θ)−1 over the pdf of π(θ). In other-words, Equation 6.57 becomes

This may be written as an expectation:

I = Eπ
[
f(θ)

π(θ)

]
(6.13)

This expectation can be estimated using the idea of the sample expectation, and leads
to the idea behind Monte Carlo integration:

1. Sample N random variates from a density function π(θ),

θ(k) ∼ π(θ), k ∈ N = {0, . . . , N − 1} (6.14)
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2. Calculate the sample average of the expectation in Equation 6.13 using

Î =
1

N

N−1∑
k=0

f(θ(k))

π(θ(k))
≈ Eπ

[
f(θ)

π(θ)

]
(6.15)

This technique is known as importance sampling because the function f(θ) is
sampled with the density π(θ), thereby giving more importance to some values of
f(θ) than others.

6.1.2.2 Stochastic Optimisation

New slideThere are two distinct approaches to the Monte Carlo optimisation (here,
maximisation) of the objective function h(θ):

θ̂ = arg max
θ∈Θ

h(θ) (6.16)

The first method is broadly known as an exploratory approach, while the second
approach is based on a probabilistic approximation of the objective function.

Exploratory approach This approach is an exploratory method in that it is concerned
with fast explorations of the sample space rather than working with the
objective function directly.
For example, Equation 6.16 can be solved by sampling a large number,
N , of independent random variables, {θ(k)}, from a pdf π(θ), and
taking the estimate:

θ̂ ≈ arg max
{θ(k)}

h
(
θ(k)
)

(6.17)

Typically, when no specific features regarding the function h (θ), are
taken into account, π(θ) will take on a uniform distribution over Θ.
Although this method converges as N →∞, the method is very slow:
one can usually do better by finding a density π(θ) that is related to
h (θ), but this requires some additional insight into the function h (θ).

Stochastic Approximation • The Monte Carlo EM algorithm

A more sophisticated approach to stochastic exploration is based on the deterministic
gradient-based methods. A modified form of Equation 6.6 is:

θn+1 = θn + Gn∇h (θn) (6.18)

where Gn is a sequence which may approximate the Hessian of h (θn) in order to
ensure the algorithm converges.
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6.1.2.3 Implementation issues

Monte Carlo methods rely on the assumption that is is possible to simulate samples or
variates {θ(k)} from the density π (θ).

The next sections address how such samples can be obtained.

6.2 Generating Random Variables

New slide This section discusses a variety of techniques for generating random variables from a
different distributions.

6.2.1 Uniform Variates
New slide The foundation underpinning all stochastic simulations is the ability to generate a

sequence of independent and identically distributed (i. i. d.) uniform random variates
over the range (0, 1]. All random variates are generated using techniques that assume
uniform random variates are available.

Random variates are pseudo or synthetic and not truly random since they are usually
generated using a recurrence of the form:

xn+1 = (a xn + b) mod m (6.19)

This is known as the linear congruential generator. For the purposes of generating
random variates, it is importance that knowledge of a particular set of variates gives
no discernible knowledge of the next variate drawn provided that the transformation
in Equation 6.19 is unknown. Of course, given the sample x0, and the parameters
{a, b, m}, the samples {x1, . . . , xn} are always the same.

However, suitable values of a, b and m can be chosen such that the random variates
pass all statistical tests of randomness.

6.2.2 Transformation Methods
New slide It is possible to sample from a number of extremely important probability distributions

by being able to sample from the simplest of distribution functions, namely the uniform
density, and then applying various probability transformation methods. Assuming that
it is possible to sample from the uniform distribution, this section gives an overview of
the methods for obtaining variates from other well-known distributions.

Beyond the basic definitions of random variables (RVs), the fundamental probability
transformation rule forms the basis of most of the methods described in this section.

Theorem 6.1 (Probability transformation rule). Denote the real roots of y = g(x)
by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN) (6.20)
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Then, if the Y (ζ) = g[X (ζ)], the pdf of Y (ζ) in terms of the pdf of X (ζ) is given by:

fY (y) =
N∑
n=1

fX (xn)

|g′(xn)|
(6.21)

where g′(x) is the derivative with respect to (w. r. t.) x of g(x).

PROOF. The proof is given in the handout on scalar random variables.

6.2.3 Generating white Gaussian noise (WGN) samples

Recall that the probability transformation rule takes random variables from one
distribution as inputs and outputs random variables in a new distribution function:

Theorem 6.2 (Probability transformation rule (revised)). If {x1, . . . xn} are
random variables with a joint-pdf fX (x1, . . . , xn), and if {y1, . . . yn} are random
variables obtained from functions of {xk}, such that yk = gk(x1, x2 . . . xn), then the
joint-pdf, fY (y1, . . . , yn), is given by:

fY (y1, . . . , yn) =
1

|J(x1, . . . , xn)|
fX (x1, . . . , xn) (6.22)

where J(x1, . . . , xn) is the Jacobian of the transformation given by:

J(x1, . . . , xn) =
∂(y1, . . . yn)

∂(x1, . . . xn)
(6.23)
♦

One particular well-known example is the Box-Muller (1958) transformation that
takes two uniformly distributed random variables, and transforms them to a bivariate
Gaussian distribution. Consider the transformation between two uniform random
variables given by,

fXk (xk) = I0,1 (xk) , k = 1, 2 (6.24)

where IA (x) = 1 if x ∈ A, and zero otherwise, and the two random variables y1, y2

given by:

y1 =
√
−2 lnx1 cos 2πx2 (6.25)

y2 =
√
−2 lnx1 sin 2πx2 (6.26)

It follows, by rearranging these equations, that:

x1 = exp

[
−1

2
(y2

1 + y2
2)

]
(6.27)

x2 =
1

2π
arctan

y2

y1

(6.28)
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The Jacobian determinant can be calculated as:

J(x1, x2) =

∣∣∣∣∣ ∂y1∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣ =

∣∣∣∣∣ −1
x1
√
−2 lnx1

cos 2πx2 −2π
√
−2 lnx1 sin 2πx2

−1
x1
√
−2 lnx1

sin 2πx2 2π
√
−2 lnx1 cos 2πx2

∣∣∣∣∣ =
2π

x1

(6.29)
Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π
e−y

2
1/2

] [
1√
2π
e−y

2
2/2

]
(6.30)

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus covering the range
of real numbers. This is the product of y1 alone and y2 alone, and therefore each y is
i. i. d. according to the normal distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution
in order to obtain samples that have the same pdf as a Gaussian random variable.

Example 6.1 (MSc. Exam Question, 2005). 1. Let U be a random variable
generated from a uniform pdf on the interval [0, 1], such that

fU (u) =

{
1, if 0 ≤ u ≤ 1

0, otherwise

Show the random variable X = − 1
λ

logU has an exponential distribution with
parameter λ, where logU is the natural logarithm of U .

2. Let Y be a Beta random variable with parameters α and 1−α, where 0 ≤ α < 1,
such that it has pdf:

fY (y) =

{
1

B(α,1−α)
yα−1 (1− y)−α , 0 ≤ y ≤ 1

0, otherwise

where B(a, b) is the Beta function.

The independent random variablesX , from part 1, and Y are transformed to give
two new random variables W = X and Z = XY .

Show that the joint-pdf of W and Z is given by:

fWZ (w, z) =

{
λ

B(α, 1−α)
e−λw zα−1 (w − z)−α , if (w, z) ∈ R

0, otherwise

and write down the regionR over which the density is non-zero.

3. Hence, show that the marginal-pdf of the random variable Z is Gamma
distributed. Use the substitution g = λ(w − z) where appropriate.

You may assume that the Beta function may be written as:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
where Γ(p) =

∫ ∞
0

xp−1 e−x dx on

is the Gamma function with Γ(1) = 1.
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4. Suppose two random number generators are available, one which generates
samples from a uniform distribution, and the other from a beta distribution.

Describe an algorithm that generates random samples from a Gamma
distribution.

SOLUTION. 1. The transformation X = g(U) = − 1
λ

logU for 0 ≤ u ≤ 1 has a
single root:

u =

{
e−λx if x ≥ 0

0 otherwise
(6.31)

The derivative of the function X = g(U) for 0 ≤ u ≤ 1 is given by:

g′(u) =
dg(u)

du
= − 1

λu
(6.32)

Hence, noting that the pdf for the RV U is uniform, then the pdf for X is:

fX (x) =
N∑
n=1

fU (un)

|g′(un)|
=

{
1
1
λu

= λu if 0 ≤ u ≤ 0

0 otherwise
(6.33)

which gives the desired exponential distribution with pdf:

fX (x) =

{
λe−λx if x ≥ 0

0 otherwise
(6.34)

2. Consider the transformation from the two RVs X and Y to the two new random
variables W = X and Z = X Y . In this case, the probability transformation
rule for two random variables is required. This is a straightforward extension of
the scalar case, but the Jacobian needs to be evaluated:

J =
∂(w, z)

∂(x, y)
=

∣∣∣∣∂w∂x ∂w
∂y

∂z
∂x

∂z
∂y

∣∣∣∣ =

∣∣∣∣1 0
y x

∣∣∣∣ = x = w (6.35)

Moreover, note that there is one root of the transformation, and this is given by:

x = w and y =
z

w
(6.36)

Since X and Y are independent RVs, the joint-pdf of W and Z is therefore:

fWZ (w, z) =
1

J
fXY (x, y) =

1

w
fX (w) fY

( z
w

)
(6.37)

Note that if x < 0, then fX (x) = 0. Moreover, if y < 0 or y > 1, then
fY (y) = 0. Thus, z varies between 0 × w and 1 × w. Thus, the regions of
non-zero probability density is shown in Figure 6.2
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Figure 6.2: Region of non-zero probability density

Substituting for fX (x) and fY (y) in the non-zero region gives:

fWZ (w, z) =
1

w
λe−λw

1

B(α, 1− α)

( z
w

)α−1 (
1− z

w

)−α
(6.38)

=
λ

B(α, 1− α)
e−λw zα−1w−α

(
w − z
w

)−α
(6.39)

which gives the desired result:

fWZ (w, z) =

{
λ

B(α,1−α)
e−λw zα−1 (w − z)−α w ≥ 0 and 0 ≤ z ≤ w

0 otherwise
(6.40)

3. The marginal-pdf of Z is given by integrating over w:

fZ (w) =

∫ ∞
z

fWZ (w, z) dw (6.41)

The limits of this integration are obtained by looking back at Figure 6.2, and
considering the values of w for a fixed value of z. Hence, for z > 0,

fZ (z) =

∫ ∞
z

λ

B(α, 1− α)
e−λw zα−1 (w − z)−α dw (6.42)

=
λ

B(α, 1− α)
zα−1

∫ ∞
z

e−λw (w − z)−α dw (6.43)

Making the substitution g = λ(w − z), such that when w = z, g = 0, and when
w →∞, g →∞. Further, dg = λ dw. Therefore,

fZ (z) =
λ

B(α, 1− α)
zα−1

∫ ∞
0

e−(g+λ z)
(g
λ

)−α dg

λ
(6.44)

=
λα

B(α, 1− α)
zα−1 e−λ z

∫ ∞
0

e−g g−α dg (6.45)

Finally, using the identities given in the question:

B(α, 1− α) =
Γ(α)Γ(1− α)

Γ(1)
where Γ(1− α) =

∫ ∞
0

x1−α−1 e−x dx

(6.46)
where Γ(1) = 1, then it follows that:

fZ (z) =
λα

Γ(α)Γ(1− α)
zα−1 e−λ z Γ(1−α) =

λα

Γ(α)
zα−1 e−λ z, z ≥ 0 (6.47)

and zero otherwise, which, using the definition given in the notes, is a Gamma
distribution with parameters λ and α: fZ (z) = Γ(z |λ, α).
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Figure 6.3: A simple derivation of the inverse transform method

4. To generate a Gamma random variable, assuming that a uniform and beta random
number generators are available, the algorithm is thus:

(a) Generate random variate, u, between 0 and 1 from uniform generator.

(b) Generate variate, y, from the beta generator with parameters α, 1− α.

(c) Calculate x = − 1
λ

log u.

(d) Calculate product z = xy; z is a variate from a Gamma distribution with
parameters λ and α. �

Note, in the above example, a Beta generator is required. It is possible to generate Beta
random variates when the distribution has integer parameters using order statistics.

6.2.4 Inverse Transform Method
New slideThere are various ways of deriving the inverse transform method, but a straightforward

approach follows a similar line to the derivation of the probability transformation rule.

Referring to Figure 6.3, suppose that X(ζ) and Y (ζ) are RVs related by the function
Y (ζ) = Π(X(ζ)). The function Π(ζ) is monotonically increasing so that there is only
one solution to the equation y = Π(x), and this solution is denoted byx = Π−1(y).

Writing the probability transformation rule in an inverted form:

fX (x) =
dΠ(x)

dx
fY (y) (6.48)

Now, suppose Π(x) only takes on values in the range [0, 1], and that Y (ζ) ∼ U[0, 1] is a
uniform random variable. If the function Π(x) is the cumulative distribution function
(cdf) corresponding to a desired pdf π (x), then since π(x) and Π(x) are related by the
equation

π(x) =
dΠ(x)

dx
(6.49)

it follows that
fX (x) = π(x), where x = Π−1(y) (6.50)
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Figure 6.4: Rejection sampling

In otherwords, if
U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x) (6.51)

Example 6.2 (Exponential variable generation). If X(ζ) ∼ Exp(1), such that
π(x) = e−x and Π(x) = 1 − e−x, then solving for x in terms of u = 1 − e−x gives
x = − log(1 − u). Therefore, if U(ζ) ∼ U[0, 1], then the RV from the transformation
X(ζ) = − logU(ζ) has the exponential distribution (since U(ζ) and 1−U(ζ) are both
uniform).

6.2.5 Acceptance-Rejection Sampling

New slide For most distributions, it is often difficult or even impossible to directly simulate
using either the inverse transform or probability transformations. If if the distribution
could be represented in an usable form, such as a transformation or as mixture,
it would in principle be possible to exploit directly the probabilistic properties to
derive a simulation method; unfortunately, it is not usually possible to make such
representations.

Thus, acceptance-rejection sampling is a flexible class of methods that relies on the
simpler requirement of finding a density p (x) from which it is easy to sample from,
where Mp (x) > π (x).

The basic idea of acceptance-rejection sampling is shown in Figure 6.4. It is desired to
sample from the distribution π (x) which cannot be sampled from using the transform
methods above. However, assume it has been possible to find a proper density p (x)
and a constant M such that Mp (x) > π (x). This is shown in Figure 6.4 as a generous
envelope around the desired function. For simplicity of explanation, assume that M =
1.

Imagine now that a sample variate X has been drawn from the density p (x). This
sample has been drawn with probability Pg δx where Pg = p (X). However, if the
sample were really to have been drawn from the desired distribution, it should have
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probability Pπ δx where Pπ = π (X). Hence, on average, you would expect to have
too many variates that take on the value X by a factor of

u(X) =
Pp
Pπ

=
p (X)

π (X)
(6.52)

Thus, to reduce the number of variates that take on a value of X , simply throw away a
number of samples in proportion to the amount of over sampling. This throwing away
of samples is also called discarding samples, or rejecting samples.

Rather than drawing a large number of samples and discarding a certain proportion,
the accept-reject method will accept a sample with a certain probability given by:

Pa = Pr (accept variate X) =
π (X)

Mp (x)
(6.53)

This leads to the full accept-reject algorithm which takes the form:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ Pa = π(X)
Mp(x)

;

3. Otherwise, reject and return to first step.

6.2.5.1 Envelope and Squeeze Methods

New slideA problem with many sampling methods, which can make the density π (x) difficult
to simulate, is down to the complexity of the function π (x) itself; the function may
require substantial computing time at each evaluation.

It is possible to reduce the algorithmic complexity of the accept-reject algorithm by
looking for another computationally simple function, q (x) which bounds π (x) from
below.

In the case that the proposed variate X satisfies q (X) ≤ π (X), then considering the
probability of acceptance in the accept-reject algorithm the proposed variate X should
be accepted when U ≤ q(X)

Mp(x)
, since this also satisfies U ≤ π(X)

Mp(x)
. This is shown

graphically in Figure 6.6.

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x)

;

3. Otherwise, accept X if U ≤ π(X)
Mp(x)

;

4. Otherwise, reject and return to first step.

By construction of a lower envelope on π (x), the number of function evaluations is
potentially decreased by a factor of

Pπ̄ =
1

M

∫
q (x) dx (6.54)

which is the probability that π (x) is not evaluated.
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Figure 6.5: Envelope Rejection sampling

6.2.6 Importance Sampling

New slide The problem with accept-reject sampling methods is finding the envelope functions
and the constant M . This difficulty can easily be resolved if the eventual application
of the samples is considered, rather than considering the sampling process as an end
to-itself.

The simplest application of importance sampling is in Monte Carlo integration.
Suppose that is is desired to evaluate the function:

I =

∫
Θ

f(θ) dθ. (6.55)

In principle, this integral can be solved by drawing samples from the density f(θ) and
finding those values of θ that lie in the region of integration: θ ∈ Θ. In other words,
an empirical average of I is:

Î =
1

N

N−1∑
k=0

IΘ

(
θ(k)
)
, where θ(k) ∼ f(θ) (6.56)

where IA (a) is the indicator function, and is equal to one if a ∈ A and zero otherwise.

It is often difficult to sample directly from f(θ), and in any case, there are other
problems with the estimator in Equation 6.56. A best estimate is as follows:

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫
Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]
, (6.57)

leads to an estimator based on the sample expectation;

Î =
1

N

N−1∑
k=0

f(θ(k))

π(θ(k))
(6.58)
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6.2.7 Other Methods
New slide Include:

• representing pdfs as mixture of distributions;

• algorithms for log-concave densities, such as the adaptive rejection sampling
scheme;

• generalisations of accept-reject;

• method of composition (similar to Gibbs sampling);

• ad-hoc methods, typically based on probability transformations and order
statistics (for example, generating Beta distributions with integer parameters).

6.3 Markov chain Monte Carlo Methods
New slideIn the previous chapter on sampling random variables, the variates are drawn from an

independent process.

A Markov chain is the first generalisation of an independent process, where each state
of a Markov chain depends on the previous state only.

6.3.1 The Metropolis-Hastings algorithm

New slideThe Metropolis-Hastings algorithm is an extremely flexible method for producing a
random sequence of samples from a given density.

Metropolis-Hastings explores the parameter space of the density π (x) by means of
a random walk. Unlike the accept-reject algorithm, each new sample is proposed as
a random perturbation of a previously accepted variate. The Metropolis-Hastings
algorithm is as follows, given a previously drawn sample X(k):

1. Generate a random sample from a proposal distribution: Y ∼ g
(
y | X(k)

)
.

2. Set the new random variate to be:

X(k+1) =

{
Y with probability ρ(X(k), Y )

X(k) with probability 1− ρ(X(k), Y )
(6.59)

where the acceptance ratio function ρ(x, y) is given by:

ρ(x, y) = min

{
π (y)

g (y | x)

(
π (x)

g (x | y)

)−1

, 1

}
≡ min

{
π (y)

π (x)

g (x | y)

g (y | x)
, 1

}
(6.60)

This calculation is represented graphically in Figure 6.6.
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Figure 6.6: Graphical representation of the Metropolis-Hastings algorithm.

6.3.1.1 Gibbs Sampling

New slide
Gibbs sampling is a Monte Carlo method that facilitates sampling from a multivariate
density function, π (θ0, θ1, . . . , θM) by drawing successive samples from marginal
densities of smaller dimensions.

Using the probability chain rule,

π
(
{θm}Mm=1

)
= π

(
θ` | {θm}Mm=1,m 6=`

)
π
(
{θm}Mm=1,m 6=`

)
(6.61)

The Gibbs sampler works by drawing random variates from the marginal densities
π
(
θ` | {θm}Mm=1,m 6=`

)
in a cyclic iterative pattern.

This proceeds as follows assuming the components are initialised with values
θ

(0)
0 , θ

(0)
1 , . . . , θ

(0)
M

First iteration:

θ
(1)
1 ∼ π

(
θ1 | θ(0)

2 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)
θ

(1)
2 ∼ π

(
θ2 | θ(1)

1 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)
θ

(1)
3 ∼ π

(
θ3 | θ(1)

1 , θ
(1)
2 , θ

(0)
4 , . . . , θ

(0)
M

)
...

...

θ
(1)
M ∼ π

(
θM | θ(1)

1 , θ
(1)
2 , θ

(1)
4 , . . . , θ

(1)
M−1

)
(6.62)
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Second iteration:

θ
(2)
1 ∼ π

(
θ1 | θ(1)

2 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)
θ

(2)
2 ∼ π

(
θ2 | θ(2)

1 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)
θ

(2)
3 ∼ π

(
θ3 | θ(2)

1 , θ
(2)
2 , θ

(1)
4 , . . . , θ

(1)
M

)
...

...

θ
(2)
M ∼ π

(
θM | θ(2)

1 , θ
(2)
2 , θ

(2)
4 , . . . , θ

(2)
M−1

)
(6.63)

k + 1-th iteration:

θ
(k+1)
1 ∼ π

(
θ1 | θ(k)

2 , θ
(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)
θ

(k+1)
2 ∼ π

(
θ2 | θ(k+1)

1 , θ
(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)
θ

(k+1)
3 ∼ π

(
θ3 | θ(k+1)

1 , θ
(k+1)
2 , θ

(k)
4 , . . . , θ

(k)
M

)
...

...

θ
(k+1)
M ∼ π

(
θM | θ(k)

1 , θ
(k)
2 , θ

(k)
4 , . . . , θ

(k)
M−1

)
(6.64)

At the end of the j-th iteration, the samples θ(j)
0 , θ

(j)
1 , . . . , θ

(j)
M are considered to be

drawn from the joint-density π (θ0, θ1, . . . , θM).
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