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Adaptive Filter Algorithms for Accelerated
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Abstract—In many distributed systems, the objective is to
reach agreement on values acquired by the nodes in a network. A
common approach to solve such problems is the iterative, weighted
linear combination of those values to which each node has access.
Methods to compute appropriate weights have been extensively
studied, but the resulting iterative algorithms still require many
iterations to provide a fairly good estimate of the consensus value.
In this study we show that a good estimate of the consensus value
can be obtained with few iterations of conventional consensus
algorithms by filtering the output of each node with set-theoretic
adaptive filters. We use the adaptive projected subgradient method
to derive a set-theoretic filter requiring only local information
available to each node and being robust to topology changes and
erroneous information about the network. Numerical simulations
show the good performance of the proposed method.

Index Terms—Adaptive filters, consensus algorithms, dis-
tributed estimation.

I. INTRODUCTION

I N networks where each node has knowledge of a quantity
of interest, reaching agreement in every node is often nec-

essary. (See [1] for an overview of many applications.) We say
that agreement (or consensus) is achieved when all nodes arrive
at a weighted sum of the initial values acquired by the nodes in
the network (in the following this weighted sum is referred to as
consensus value). Usually, there is no single node with access
to all information in the network, and each node can communi-
cate only with its neighbors. Therefore, a great deal of effort has
been devoted to the study of consensus algorithms in distributed
networks [1]–[16].

In discrete-time systems, a conventional method to reach con-
sensus is the iterative, weighted linear combination of all values
to which a node has access: its own value and those from its
neighbors. By representing the network as a graph, the weights
are the values assigned to the edges of the graph, and they can
be expressed as the entries of what is commonly referred to
as the network matrix. If this matrix satisfies certain properties
[3], the resulting iterative algorithm guarantees that each node
obtains a sequence of estimates converging to the consensus
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value asymptotically. Such matrices are usually obtained with
methods based on the Laplacian matrix of the network graph [1],
but the convergence speed of the resulting iterative algorithm is
often poor. To improve the converge rate, we can cast the choice
of the network matrix as the solution of a convex optimization
problem [3]. However, solving such optimization problems in
distributed networks is not a trivial task or may require global
knowledge of the network topology in every node.

If the above-mentioned linear iterative algorithms are used,
each node can compute the consensus value in finite time by
storing and processing only its own sequence of estimates [7],
[9]. In [7], the consensus value is obtained in each node with
a linear combination of the local past estimates. If every node
has information about the network topology, the optimal linear
combination of past values is readily available. However, knowl-
edge of the topology in every node is a strong assumption, so a
decentralized method to compute the optimal linear combina-
tion has also been devised in [7]. This decentralized approach
requires many re-initializations of the original consensus algo-
rithm with a special set of initial conditions. Alternatively, we
can also run in parallel many instances of the original consensus
algorithm with different initial conditions, but in this case the
amount of data transmitted at each iteration increases. An addi-
tional limitation of this approach is that it has not been proven to
be robust against topology changes during the iteration process.
In turn, the method in [9] requires neither the transmission of
additional information nor re-initializations of the algorithm. It
uses the scalar epsilon algorithm (SEA) applied to the sequence
of estimates in each node. The main disadvantages of this ap-
proach are that it uses all previous estimates and its robustness
against changes in the network topology is questionable [15]. In
addition, the estimated consensus value may fail to exist or may
become numerically large in some iterations [17].

Motivated by the work in [7], we propose a method in which
each node estimates the consensus value by filtering the output
of conventional iterative consensus algorithms with set-theo-
retic adaptive filters. No reinitialization with different initial
conditions is necessary, and combining the method with other
efficient schemes, such as that in [3], is also possible. Con-
sensus is not guaranteed to be achieved in finite time, but we
show that every node is able to improve greatly the estimate
of the consensus value with very few iterations in many prac-
tical situations. In addition, we also prove that the method is
robust against link failures and model mismatches, although in
such cases there may be no gain in applying the set-theoretic
filters. Therefore, the proposed method should be used in sit-
uations where the network is supposed to be fixed, but the al-
gorithm should not collapse in the event of a link failure. We
derive an efficient decentralized set-theoretic filter based on the
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adaptive projected subgradient method [18], [19]. Unlike many
applications involving adaptive filters and diffusion networks,
where the objective is usually to use consensus algorithms to
improve the performance of adaptive filters [20], [21], here the
objective is to use adaptive filters to improve the performance
of consensus algorithms. To the best of the authors’ knowledge,
the latter is also a new application of adaptive filter techniques.

Fixed, nonadaptive filtering techniques have also been shown
to improve the convergence speed of conventional consensus al-
gorithms [6], [11], [15], [16]. However, unlike the method pro-
posed here, the main idea of these techniques is to reshape the
eigenvalues of the network matrix in such a way that the worst
case convergence speed is improved. These algorithms modify
the estimates of the consensus value exchanged by the nodes,
and some of them are not robust against link failures.

The paper is divided as follows. In Section II we review
basic concepts of convex analysis, the adaptive projected sub-
gradient method, and the basic idea of conventional consensus
algorithms. In Section III-A we rederive some of the results in
[7] using basic linear algebra theory, and we also prove that
set-theoretic filters can be used to estimate the consensus value
with low estimation error. In Section III-B we give an example
of a set-theoretic filter derived from the adaptive projected
subgradient method. We study in Section III-C the robustness
of the algorithm against networks with time-varying topologies
and model mismatches. Numerical examples in Section IV
show the performance of the algorithm.

II. PRELIMINARIES

A. Basic Concepts in Convex Analysis

For every vector , we define the norm of by
, which is the norm induced by the Euclidean

inner product for every . For a matrix
, its spectral norm is is

an eigenvalue of , which satisfies
for any vector of compatible size. A set is said to be
convex if for every
and [22], [23]. Let be a nonempty
closed convex set. The metric projection maps

to the uniquely existing vector satisfying
.

A function is said to be convex if
and

(in this case is continuous at every point in ). The
subdifferential of at is the nonempty closed convex set of
all the subgradients of at :

B. Adaptive Projected Subgradient Method

Fact 1: Adaptive Projected Subgradient Method (APSM)
[19].

Let be a sequence of convex
functions and a nonempty closed convex set. For an

arbitrarily given , the adaptive projected subgradient
method produces a sequence by

(1)

where is the subdifferen-
tial of at , and . We quote from [19] some
selected properties of the algorithm.

a) Monotone approximation—Suppose

Then, for every ,
we have .

b) Boundedness, Asymptotic optimality—Suppose

Then is bounded. Moreover, if we spe-
cially use , we have

provided that
is bounded. The parameters are arbitrarily
small positive (real) numbers used to guarantee that no
subsequence of converges to zero or two.

For other properties, including the convergence of ,
the reader is referred to [19].

C. Distributed Consensus

Consider a network with undirected graph given by
, where is the node set and is the

edge set [1], [3], an unordered pair of nodes. If nodes
and can exchange information, then (unlike
some references, here we assume that for every

). The set of neighbors of node is defined by
.

Let be an initial value known by node . An impor-
tant class of iterative diffusion protocols produces a sequence

in every node converging to asymptotic consensus:

(2)

Such a sequence is obtained with the following linear combina-
tion:

(3)

where is a weight satisfying certain properties de-
scribed later in this section and associated with the edge .
If , in the following we assume that . We can
equivalently rewrite (3) as

(4)
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where and the component of
the th row and th column of is . In con-
nected and undirected graphs,1 there always exists a choice of

such that (2) is satisfied for every with the it-
eration in (4), [1], [3], [8]. In such graphs, satisfies the fol-
lowing properties , and

[3], [8], where is the vector of ones.
The value is a measure of the worst-case
convergence speed, so a great deal of effort has been devoted to
devising efficient methods to minimize
[3]. Usually, these algorithms can only guarantee asymptotic
convergence, and the convergence speed can still be poor when
compared to many other existing techniques [5]–[7], [15]. In
particular, the work in [7] proved that achieving consensus in
a finite number of iterations with time-invariant topologies is
possible. If the nodes do not have knowledge about the network
matrix , in each node the algorithm in [7] computes the
consensus value from samples obtained with (4) using dif-
ferent initial vectors . Motivated by this work, in the next
section we show filters that can greatly improve the estimate of
the consensus value in each node without using different initial
vectors .

III. PROPOSED ALGORITHM

Before deriving efficient set-theoretic filters, we first prove
through the use of a line matrix, defined in Section III-A, that
there exists a finite impulse response filter that can compute the
consensus value in every node from the values obtained with
the iteration in (3) (cf. Theorem 1).2 Then, also in Section III-A,
we show that, if a node does not have enough information to
compute an optimal filter, a sequence of filters satisfying certain
properties can be used to estimate the consensus value with pos-
sibly low estimation error (cf. Theorem 2). Section III-B shows
that such a sequence can be generated with the adaptive pro-
jected subgradient method, and Section III-C proves that the fil-
ters are robust against topology changes and/or erroneous infor-
mation about the network.

A. On the Existence of Linear Filters

Definition 1: A matrix is said to be compatible with the
graph if , the component of the th column and
th row of , satisfies whenever .

Definition 2: The line matrix of
is the matrix defined by .3

The name line matrix stems from the fact that, if we treat
the matrices and as points in an dimensional Hilbert
space, then a line matrix of is a point lying on the line passing
through both and . An important property of line matrices
is that, if is a matrix compatible with the graph , the line

1Connected graphs are graphs in which there is a path passing through all
nodes.

2This proof has been first shown in [7]. Here we present an alternative deriva-
tion of some results in [7]. This alternative derivation is fundamental to the new
results that follow.

3Line matrices with the restriction � � � � � have been used in [11] (but the
terminology “line matrix” has not been used). One of the main contributions of
the work in [11] is the optimal choice (in some sense) of a fixed line matrix that
should replace��� in the iteration in (4).

matrix of is also compatible with the graph for every
.

Lemma 1: Let be a matrix compatible with the
graph , where ( denotes the car-
dinality of the set ). Assume that satisfies the conditions for
average consensus in undirected graphs:

, and . Then there exists a sequence
of line matrices of such that the iteration

reaches consensus in finite time:
for every , where is the number

of distinct eigenvalues of , excluding the eigenvalue one.
Proof: The proof is given in Appendix I.

Lemma 1 can be easily extended to directed graphs as long as
is nondefective (in such a case, we can also consider complex

matrices and/or weighted-average consensus). From an imple-
mentation point of view, using a line matrix of instead of

itself amounts to changing the weights that node assigns
to its neighbors in the iteration in (3). Therefore,
if the topology is known by all nodes, they can use the above
lemma to compute the consensus value in finite time by ex-
changing and keeping only current estimates . In contrast,
the result in [7, Sect. III]—which uses the final value theorem
of the -transform—requires from each node also the storage of
past values . Knowledge of the topology in every node is
a strong assumption, so in the following we focus on the case
where the nodes do not have more information other than an
upper bound of the number of nodes, and the resulting algo-
rithm also requires storage of past values .

The following theorem shows that, to compute the consensus
value in finite time, we can alternatively filter obtained
with (4) in each node instead of using a sequence of line ma-
trices.

Theorem 1 (On the Existence of Linear Filters): Assume the
conditions in Lemma 1. In addition, let be a fixed integer
with . For every , define by

(recall
that and that ). Then
the convex set defined by

(5)

is nonempty. Intuitively, the set is the set of linear filters
that can compute the consensus value for

every initial condition in every node by filtering any
consecutive samples of the local information .

Proof: The proof is given in Appendix II.
(The previous theorem can be straighforwardly extended to

the case where the matrix is complex and nondefective.)
Theorem 2: Consider the assumptions in Theorem 1 and

choose a matrix satisfying the conditions for average con-
sensus. Denote the consensus value by

, where is
obtained with the iteration in (4). In node , let

be a sequence of filters used to estimate the
consensus value from for according to

. The estimation error in node at time
is defined by . Assume that the following
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conditions are satisfied: i) at any time instant
and ii) for every .
Then:

a) Asymptotic optimality—Consensus is achieved asymptot-
ically, i.e., .

b) Upper bound of the estimation error–For given
, an upper bound of the estimation error

is , where is an
upper bound of the sequence associated with the
initial condition . (Note that because, due to
the choice of converges to ). Therefore,
as is monotone nonincreasing for every
(condition ii)), the upper bound of the estimation error is
also monotone nonincreasing.

Proof: The proof is given in Appendix III.
Remark 1: On Theorem 2.

1) At time , the estimate of the consensus value obtained with
the original consensus algorithm in (3) is the same as that
obtained by applying the filter to
in every node . The upper bound of the estimation error
given in Theorem 2(b) is monotone nonincreasing, so, if
the first filter of the sequence is set to , then we see that
the upper bound of the estimation error is always less or
equal than that of the original consensus algorithm in (3).
In addition, Theorem 2(a) shows that such an approach is
asymptotically optimal, i.e., the estimation error converges
to zero.

2) Note that there is no guarantee that estimate of the con-
sensus value is improved with the proposed approach. In
addition, the upper bound in Theorem 2(b) may not be tight
depending on the initial filter . However, in the fol-
lowing we show that, by devising a sequence of filters with
decreasing distance to every and with satis-
fying properties also met by any , the estimate of
the consensus value is improved in many practical cases.
Intuitively, we can expect good estimates because, in each
iteration, tries to reproduce more accurately the be-
havior of , the filter able to compute the consensus
value in finite time. Set-theoretic filtering is a common ap-
proach to devise such filters .

B. Set-Theoretic Adaptive Filters for Distributed Consensus

As discussed in Remark 1, by filtering the output of con-
ventional consensus algorithms in (3), the estimate of the con-
sensus value is asymptotically optimal and potentially improved
in every iteration. Here we show how to produce a sequence

satisfying conditions i) and ii) of Theorem 2 using only
local information available to each node. The basic idea is to
design supersets of (constructed with local information and
corresponding to the expected behavior of any ) and
use the adaptive projected subgradient method to generate a se-
quence approaching the intersection of the supersets.

Condition i) of Theorem 2 defines the following hyperplane:

(6)

a closed convex set. We will prove later that every also
belongs to (cf. Lemma 2). To find a closed convex set defined

by the local information (see Theorem 1), we first note that
, which corresponds to a hyperplane requiring

knowledge of the consensus value .
To remove the dependence on , we use the difference vector

which satisfies for every
, and . In the following, we normalize

to mitigate numerical problems when approaches
zero. More precisely, we use

(7)

where is arbitrarily small. Note that the equality
still holds with this normalization. There-

fore, for , we can also use hyperplanes defined by

(8)

which are fully characterized with only local available informa-
tion.

Lemma 2: For the iteration with satis-
fying the conditions for average consensus, we have that

for every and , where the
scalar is as defined in Theorem 1.

Proof: Theorem 1 shows that in (5) is nonempty.
Thus, by definition, any satisfies

for any initial condition
and . In particular, let .

By construction, satisfies , which shows
that for and . Therefore,

, and thus , which, together
with (8), shows that .

The proposed algorithm approaches (asymptotically) a point
in the intersection of and a suitable selection of sets .
The next theorem shows that, condition ii) of Theorem 2 can be
satisfied with set-theoretic filters derived from the adaptive pro-
jected subgradient method applied to a sequence of cost func-
tions based on and .

Theorem 3: In node and at time , define a convex function
such that whenever be-

longs to and a suitable selection of sets .
Applying the adaptive projected subgradient method to
with a step size within the range , we have that

for every . In addi-
tion, if the step size satisfies and
the subgradients produced by the iteration in (1)
are bounded, then .

Proof: From Lemma 2, we know that every filter
belongs to the intersection of any combination of sets
and . Consequently, we have that , and the proof
is an immediate consequence of Fact 1(a)–(b) in Section II-B.

Note that, once cost functions meeting the properties in The-
orem 3 are designed, we can set in (1) to so that both
conditions i) and ii) of Theorem 2 are satisfied with filters de-
rived with the adaptive projected subgradient method. Next, we
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give a particular sequence of cost functions, but many others are
possible.

1) Constrained Affine Projection Algorithm (CAPA): At time
, define the following set, which combines sets

and at the same time:

(9)

where
, and is the

number of past vectors that should be stored in memory for
the computation of . (Lemma 2 shows that the set is
nonempty.)

Hence, at time and in node , we can use the cost
function defined by

(10)

A subgradient of the function in (10) is [19]

(11)

Applying (10) and (11) to the scheme in (1) with (to
force condition (i) of Theorem 2), after some simple manipula-
tions we arrive at

(12)

where is the step size,
is the projection of onto ,

(13)

is the projection of onto [22], and denotes the
Moore–Penrose pseudo-inverse [24, Sec. 5.5.4]. Note that
the algorithm in (12) resembles the affine projection algo-
rithm (APA) [19], [25]–[29].

In the computation of pseudo-inverses, we should treat as zero
singular values less than some pre-defined threshold because
the presence of very small singular values can cause numerical
problems in finite precision arithmetic [24, p. 258].4 A problem
caused by this truncation is that the filters can be moved away
from the set when computing the projection onto

. As shown in Theorem 2, under very mild conditions, filters
belonging to are asymptotically optimal, so in practice we
should always use the projection in (12), even if it is not
theoretically necessary (e.g., when ).

The computational complexity of the algorithm is dominated
by the computation of the SVD of . Without exploiting
any structure present in , we can compute the SVD with

4By noticing that ��� ��� ��� � �� � �, where � � is
the matrix of zeros, we conclude that we cannot avoid the presence of arbitrarily
small singular values.

flops5 [24,
Sec. 5.4.5], so in large networks the computational cost of the
proposed method may be prohibitive. However, Section III-C
shows that, if the algorithm can be applied, the consensus value
is often obtained with great accuracy. In terms of memory re-
quirements, we need to keep samples in the
memory of each node.

C. Robustness Against Topology Changes and/or Model
Mismatches

So far we have assumed networks with fixed topology and
knowledge of an upper bound for in every node. However,
in many scenarios (e.g., wireless sensor networks) links can
fail due to reachability problems, jammers, moving obstacles,
etc. [14]. The next theorem shows that, if one or both assump-
tions fail, the consensus value estimated by the proposed method
is at least asymptotically optimal. This property contrasts with
many existing algorithms, which do not guarantee the conver-
gence of the estimate in time-varying networks (examples are
given in [15]).

Theorem 4: Suppose that the iteration

...

is able to reach consensus asymptotically, i.e.,
, where is a time-varying ma-

trix compatible with the network at time .6 Assume that the se-
quence of filters ( and ) is bounded and
satisfy . Then consensus is achieved asymptoti-
cally, i.e., , where

and
.

Proof: The proof is almost identical to that of Theorem 2(a)
and is omitted for brevity. Note that the length of the vectors
do not have any relation with the number of network nodes .

Remark 2: On Theorem 4.
A subtle but important difference between Theorems 2 and 4

is the boundedness of the sequence . In the former theorem,
the boundedness is a consequence of the fact that the sequence

(for fixed ) is monotone nonincreasing; in
the latter, the boundedness is explicitly assumed because there
may be no fixed filter that can provide the consensus value in
every node for every initial condition. To force the boundedness
of the sequence in every situation, we can replace (12) with

(14)

where is a closed convex set
and is an arbitrarily large number. However, as is

5The projection onto � ��� can be equivalently expressed and implemented in
many different ways due to the presence of the pseudo-inverse in (12). Some of
these alternative ways may avoid the computation of the SVD, but the numerical
robustness of the algorithm against finite precision arithmetic and rank deficient
matrices is usually decreased (see [30] and the references therein).

6This is not an unrealistic assumption [14].
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arbitrarily large, in Section IV we show that in practice the set
in (14) may not be necessary.

IV. NUMERICAL SIMULATIONS

A. Simulation Parameters

In the following, in each realization every node starts with
a random number with uniform distribution between 0
and 100.7 The performance of interest is the global mean square
error (MSE), defined by ,
where for

, and for (because the filters are
only defined for ). Ensemble average curves are obtained
by averaging the results of 1000 realizations.

We compare the proposed CAPA algorithm with the eigen-
value shaping filter (ESF) in [6, eq. (27)] and indicate the pa-
rameters of the algorithms as follows.

• The CAPA algorithm is succeeded by two numbers sepa-
rated by hyphens. The first number shows the filter length,
and the second number is the value in (9). The pseudo-
inverse in (12) was computed with the pinv function of
MATLAB (R2007a) with the default tolerance. In addition,
the algorithm is initialized with the vector

in every node in every realization; the step size is
is set to one in every node; and the difference vectors in (7),
which compose all but one column of , use .

• The ESF filter is succeeded by a number representing the
value in [6, eq. (27)].

Both the CAPA and ESF algorithms use same matrix defined
by

(15)

where

( is the component of the th row and th column of the
matrix .) This matrix has been originally proposed in [6].

We also show the results obtained with the original consensus
algorithm in (4) without any filters. For the iteration in (4), two
matrices are considered: i) the matrix used by the CAPA and
ESF algorithms and ii) the optimal matrix , the solution of
the convex optimization problem [3]

7In our simulations, the relative performance of the compared algorithms was
similar with different initialization assumptions (Gaussian random variables,
etc.). Note that in this section a random variable and its realization have the
same notation.

which was solved with , a package for specifying and
solving convex programs [31], [32].

Next, we show the performance of the algorithms with dif-
ferent parameters in different scenarios.

B. Static Networks

1) Rings: In Fig. 1, we show a network with a ring topology
and the corresponding performance of the algorithms. The orig-
inal iterative consensus algorithm in (4) with the matrix de-
fined in (15) and a ring topology is slow in general because
the second largest eigenvalue (in magnitude) of is close to
one [4].8 In such a case, we can see that the ESF-0.1 algo-
rithm does not improve the estimate of the consensus value (by
changing the parameter , only marginal performance gains are
obtained when compared to in [6, eq. (27)]). In contrast,
the set-theoretic filters greatly improve the estimate of the con-
sensus value, providing even better performance than the orig-
inal iterative algorithm with the optimal matrix . This is
an important observation because the set-theoretic filters do not
use global information about the network topology. Note that in
this example the minimum filter length to satisfy the conditions
of Theorem 1 (and thus of Theorem 3) is . Therefore,
the filters of the CAPA algorithm in Fig. 1 have sufficient length.

In Fig. 2, we show the performance of the CAPA algorithm
with different memory sizes and filter lengths. In Fig. 2(a) we
fix the memory size and modify the filter length; in Fig. 2(b) we
fix the filter length and modify the memory size. The parameters
of the simulation are identical to those in Fig. 1.

For , the conditions for the existence of an op-
timal filter in Theorem 1 are violated, thus there may be no
fixed filter able to provide the consensus value in every node
for every initial value . Such a case is exem-
plified by the CAPA-4-3 algorithm in Fig. 2(a). However, as
shown in Theorem 4, asymptotic convergence is expected (see
also Remark 2), and this fact is also confirmed experimentally
in Fig. 2(a). The CAPA-12-3 and CAPA-20-3 algorithms show
that overestimating the filter length can reduce the convergence
speed and increase the computational complexity.

As shown in Fig. 2(b), the performance of the algorithm
can improve when more information is used at each iteration
(i.e., when the memory size increases). By comparing the
CAPA-20-19 and CAPA-20-9 algorithms, we see that in this
example the former is using redundant sets as the
performance of both algorithms is almost identical. However,
the optimal memory size can be difficult to determine a priori,
so as a general rule we should use as much information as
possible. In practice, the computational power of each node
limits the memory size.

2) Random Networks: We use a random network similar to
that in [15], which in turn is based on the random geographic
graph model in [33]. In each realization of the simulation,
we randomly distribute 20 nodes with uniform distribution on
a square grid with unit area. Nodes with distance less than

are neighboring nodes. We discard graphs not

8Note that the second largest eigenvalue of��� is a measure of the worst case
convergence rate of the original consensus algorithm in (4), [3].
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Fig. 1. Ring with 20 nodes. (a) Topology. (b) Transient performance of the
algorithms.

fully connected because consensus cannot be achieved in such
cases. Fig. 3 shows the performance of the algorithms.

In this scenario, the ESF algorithm is able to improve greatly
the estimate of the consensus value with low computational
complexity. By increasing the parameter in [6, eq. (27)], from
0.1 to 0.9 in 0.1 increments, the value appeared to give
the best performance for the ESF algorithm. However, the per-
formance of the ESF algorithm is relatively sensitive to fairly
small changes in , and this fact can be seen by comparing the
ESF-0.8 algorithm with the ESF-0.6 and ESF-0.7 algorithms.
The ESF algorithm is based on a fixed filter, and a good value
for can be difficult to find without additional information about
the network. When the network topology is unknown, the pro-
posed algorithm is a good alternative because its adaptive na-
ture can usually find good filters for any given network. Note

Fig. 2. Performance of the proposed algorithm in a network with 20 nodes and
ring topology. (a) Fixed memory size and different filter lengths. (b) Fixed filter
length and different memory sizes.

Fig. 3. Transient performance of the algorithms in a random network with 20
nodes.
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Fig. 4. Robustness against model mismatches.

that even the CAPA-10-9 algorithm, which uses a filter with not
necessarily adequate length, can provide good performance.

C. Dynamic Networks

In Fig. 4, we show a random network with nodes
where in the first iteration the network topology is generated ac-
cording to the description given in Section IV-B-2 (the topology
changes in different realizations). In successive iterations, we
assume that each link fails with probability 0.2. Link failures are
equivalent to removing the corresponding edges of the graph,
and those failures are independent in different iterations. In each
iteration, the matrix in (4) is replaced by a time-varying ma-
trix , recomputed according to (15) with the parameter
set to .9 Fig. 4 shows the performance obtained by
filtering the estimates with the CAPA algorithm in each
node. There may be no gain in applying the proposed algorithm
in fast time-varying networks, but the estimates in all nodes ap-
proach the consensus value (see also Theorem 4 and Remark
2). Note that, in this scenario, some different methods for ac-
celerated consensus do not guarantee convergence [9] (some
methods even consider time-varying topologies). The robust-
ness of the CAPA algorithm stems from the fact that the esti-
mates exchanged by the nodes, which are expected to converge
asymptotically, are not modified.

V. FINAL REMARKS

We have shown that, by filtering the output of the original
consensus algorithm in (4) with set-theoretic adaptive filters, an
accurate estimate of the consensus value can be obtained with
very few iterations. Therefore, schemes optimizing the network
matrix , which often requires global information, may not be
necessary. (However, the application of such schemes does not
exclude their combination with set-theoretic filters). The adap-
tive filters are fully decentralized (the only information required
by each node is an upper bound of the number of nodes in the

9See [14] for the possible range of �. In the simulations in this section, the
relative performance of the algorithms was not sensitive to the choice of �.

network) and can provide good performance even with topolo-
gies and network matrices that do not work well with other ex-
isting methods. Finally, also unlike some existing approaches,
the proposed algorithm is robust against topology changes and
model mismatches.

APPENDIX I
PROOF OF LEMMA 1

Proof: Without loss of generality, assume that the eigen-
value decomposition of is given by , where

with eigenvalues in nonin-
creasing order. The matrix diagonalizes , hence it also di-
agonalizes the line matrix for every ,:

where
. Define the set of distinct eigenvalues of (in

no particular order and excluding the eigenvalue one) by
, and let .

Note that, for each time index , we are setting to zero at least
one different diagonal component of (except for the first
component, which is one by construction). Therefore, we have
the following equality:

By using ,
we arrive at

where in the second line we expanded the iteration
recursively. From the above equation we conclude

that because, for is the
eigenvector associated with the eigenvalue .

APPENDIX II
PROOF OF THEOREM 1

Proof: To prove that is nonempty, we could use the re-
sults in [7]. However, in this study we use the concept of line
matrices, and the proof that comes naturally from basic
linear algebra theory. Let the values be a sequence
such that consensus is achieved with the iteration

in finite time for every , where is a
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line matrix of (Lemma 1 guarantees the existence of such a
sequence ). Without loss of generality, assume that

, where . Therefore,

(16)

where the eigenvalue decomposition of is given by
. Using the definition of line ma-

trices and the fact that , we arrive at

where the scalars can be computed from
(in turn, the sequence can be com-

puted from the eigenvalues of ). Equation (17) im-
plies that satisfies

for every ,
and initial condition , which shows that is nonempty.
Note that is not necessarily unique. Indeed, for sufficiently
large and , both and

belong to .10

APPENDIX III
PROOF OF THEOREM 2

Proof:
a) For fixed , the sequence is monotone

nonincreasing (by assumption) and bounded below
, so it converges and is bounded

above, i.e., there exists such that .
Define by

10We can easily show that the � is convex as follows. Let ��� and ��� be
any two vectors belonging to �. Define ��� � by ��� �� ���� � ���
����� , where � � ��� �	. Then ��� ��� ��	 � ���� ��� ��	��������� ��� ��	 �
������ �����	 for every � � ��� �	, which shows that ��� � �, and thus � is
convex.

. Using the Cauchy–Schwartz inequality and the fact
that at any time instant, we deduce

as .
b) For , we know that . Therefore,

by the Cauchy–Schwartz inequality,

which is valid for every . In particular, at time ,
choose and the proof is complete.
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