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Abstract—In this paper, we consider the role that different
information measures play in the problem of decentralised multi–
target tracking. In many sensor networks, it is not possible to
maintain the full joint probability distribution and so suboptimal
algorithms must be used. We use a distributed form of the Prob-
ability Hypothesis Density (PHD) filter based on a generalisation
of covariance intersection known as exponential mixture densities
(EMDs). However, EMD-based fusion must be actively controlled
to optimise the relative weights placed on different information
sources.

We explore the performance consequences of using different
information measures to optimise the update. By considering ap-
proaches that minimise absolute information (entropy and Rényi
entropy) or equalise divergence (Kullback-Leibler Divergence
and Rényi Divergence), we show that the divergence measures
are both simpler and easier to work with. Furthermore, in our
simulation scenario, the performance is very similar with all
the information measures considered, suggesting that the simpler
measures can be used.

Keywords: Multi–sensor multi–target tracking, PHD filter-

ing, exponential mixture densities, generalized covariance

intersection, decentralised fusion.

I. INTRODUCTION

Given their advantages in scalability, reconfigurability and

robustness, sensor networks are becoming very important for

battlefield situation assessment. These networks are composed

of a large number of processing nodes, each with limited

computational, communication and sensing capabilities. Ob-

servations collected locally are combined and fused with one

another and, periodically, fused estimates are distributed to

other nodes in the network. Because the networks can be large,

time varying, and have communication and computational con-

straints, fusion must occur in a distributed manner throughout

the network. These difficulties are compounded when multiple

targets are to be tracked and the number and locations of those

targets are unknown.

Broadly, there are two main challenges. First, the tracks

in each node must be associated with one another. Track-

to-track association problem is considered a special case of

the data association problem, and can be addressed within

the context of multiple hypothesis testing [1]. An alterative

approach that unifies the multi-object tracking problem within

a Bayesian paradigm is to use random sets and Finite Set

Statistics (FISST) [2]. The second problem is that, once

the track-to-track associations have been made, the estimates

from the different tracks will be fused together. However,

the estimates in different nodes are not independent of one

another due to common process noise and previously shared

estimates between the nodes [3]. The optimal solution to this

problem is to divide out common information. However, this

can only be carried out for special classes of probability

distributions (Gaussians) in special network topologies (tree or

fully connected). As a result, practical disributed fusion can

only occur using suboptimal algorithms such as Covariance

Intersection (CI) [4].

Mahler considered the problem of suboptimal distributed

multi-object tracking. He proposed the generalisation of CI is

to use the exponential mixture density (or weighted geometric

mean) [5]. Theoretical [6], [7] and practical analyses [8], [9] of

this generalised form to single target tracking problems have

demonstrated that this generalisation appears sound. However,

the first attempt to apply this generalisation was only carried

out in [10] and [11], where it was shown that several widely-

used multi-object distributions could be readily generalised

to support recursive forms that could be implemented using

a Monte Carlo realisation. However, a fixed value for the

optimisation parameter was used.

In this paper, we continue our investigations into the devel-

opment of tractable distributed algorithms. In particular, we

consider the strategies used to determine the weights assigned

to each distribution when they are fused. Furthermore, we ex-

periment with the use of the algorithm directly with feedback.

The structure of this paper is as follows. The problem

statement and basic notation is introduced in Section II. The

relevance and derivation of different measures is discussed in

Section III. The performance of the algorithm is presented

and assessed in Section IV, and conclusions are drawn in

Section V.

II. PROBLEM STATEMENT

An environment E is observed by a set of sensing platforms

in the sensor network S. Each platform observes a subregion

of E . The physical location and sensing capabilities can

differ from platform-to-platform. Furthermore, network links

can vary. To maximise flexibility and robustness, we assume

a strict locality assumption: each node only requires local
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knowledge of the identity of the neighbours it communicates

with. It is not necessary to store information about the global

configuration of the environment.

E is populated by a set of targets. Both the number and

states of the targets are unknown. More formally, the state

of the environment can be written as the set X , where

X = {x1, ..., xn}. Both the number of targets (cardinality,

n) and the state of each target (the i target is xi) are random.

Therefore, X is a random finite set and the estimation problem

is addressed through the use of Finite Set Statistics (FISST).

A. Centralised Multi-Target Bayes Tracking

In principle, FISST provides a single, unified Bayesian

mechanism to handle all aspects of multi-target tracking

including track birth and death, clutter, and data association

ambiguity [2]. We assume that the environment can be mod-

elled as an independent identically distributed (i.i.d) cluster

process. Therefore, the probability density has the form

f(X) = p(n)n!
∏

x∈X

s(x), (1)

where p(n), n = 0, 1, 2, . . . is the cardinality distribution

(distribution over the number of targets) and s(x) is the

localisation distribution (the locations of the targets).

Although this density function has a very convenient form,

the computational costs associated with applying Bayes rule

to it means that it is only practical for a very small number

of targets [2]. On the other hand, recursive forms for the

propagation of the first–order moment of f(X), D(X), can

be computed in linear time from the expression
∫

S

D(x)dx = E{|X ∩ S|}. (2)

In other words, the integral of the PHD over a region S is the

expected number of targets in S [2]. The expectation, which

we use later to compute the information measures, is defined

using the integral

∫

f(X)δX := f(∅) +

∞
∑

n=1

1

n!

∫

f({x1, ..., xn})dx1...dxn.

(3)

For the i.i.d. cluster process, the PHD has the simple form

D(x) = s(x) ·
∞
∑

n=1

n · p(n). (4)

This is known as the Cardinalised Probability Hypothesis

Density (CPHD) filter, and closed form solutions exist for its

prediction and update in a centralised system [2].

B. Optimal and Suboptimal Distributed Fusion

Consider two nodes, arbitrarily labelled i and j, in the

sensor network S. The multi-object density function at each

node at time step k is fi(X|Z1:k
i ) and fj(X|Z1:k

j ) respectively,

where Z1:k
m is the set of all observation information which has

become available to node m = {i, j}. This includes both the

information collected locally and the information propagated

from other nodes.

Using Bayes Rule, the multi-object posterior is [3], [5]

f(X|Z1:k
i ∪Z1:k

j ) =
f(X|Z1:k

i )f(X|Z1:k
j )

f(X|Z1:k
i ∩Z1:k

j )
. (5)

The optimal update is computed from the ratio of the product

of marginal distributions at each node, divided by the distri-

bution conditioned on the information common to both nodes.

The difficulty of applying this equation lies in computing

f(X|Z1:k
i ∩Z1:k

j ). If locality of the sensor network is to be

maintained, the common information can only be computed

for a small number of special cases. Furthermore, it rarely

admits a closed form solution [9].

To overcome the first challenge, Mahler proposed to

generalise Covariance Intersection (CI) to the multi-

modal distributions generated by FISST [5]. Specifically,

he proposed that a suitable suboptimal fusion rule is

f(X|Z1:k
i ∪Z1:k

j )≈fω(X|Z1:k
i , Z1:k

j ), where

fω(X|Z1:k
i , Z1:k

j ) =
f(X|Z1:k

i )(1−ω)f(X|Z1:k
j )ω

∫

f(X|Z1:k
i )(1−ω)f(X|Z1:k

j )ωδX
. (6)

This rule replaces the product of the marginal distributions

with their weighted geometric mean, or Exponential Mixture

Density (EMD) [12]. The EMD rule automatically prevents

double counting in arbitrary network topologies [6] and can

accumulate information [7].

When the states in both filters can be modelled as i.i.d.

cluster processes, it can be shown that by applying (4) to (6),

fω(X) is an i.i.d. cluster process and its form is [10]

fω(X|Z1:k
i , Z1:k

j ) = pω(n|Z1:k
i , Z1:k

j )n!
∏

x∈X

sω(x|Z1:k
i , Z1:k

j ),

(7)

where the cardinality and localisation probability functions are

pω(n) =
pi(n)(1−ω)pj(n)ω

(∫

X
si(x)(1−ω)sj(x)ω dx

)n

∑∞

m=0 pi(m)(1−ω)pj(m)ω
(∫

X
si(x)(1−ω)sj(x)ω dx

)m

(8)

sω(x) =
si(x)(1−ω)sj(x)ω

∫

X
si(x)(1−ω)sj(x)ω dx

(9)

There are two main challenges to implement these equa-

tions. The first is that they rarely admit a closed form solution.

For example, if si(x) and sj(x) are Gaussian mixture models,

the weighted geometric mean computed in (9) will not, in

general, be another Gaussian mixture model. Although Newton

series expansion can be used to approximate the terms, these

can become numerically unstable unless an extremely high

number of components are used [13]. Therefore, a Monte

Carlo realisation must be used instead [11]. Second, the EMD

update introduces the free parameter ω ∈ [0, 1] which governs

the relative weight applied to the distributions from i and j.

An appropriate choice of ω is important if good performance

is to be achieved. We consider the strategies by which ω can

be selected.



III. CHOOSING THE EMD WEIGHTING PARAMETER

Unlike regular Bayes rule, the EMD update rule is con-

trolled through the choice of ω. The question of choosing ω
has been considered within the context of the CI algorithm.

Several approaches exist. Two broad approaches have been

proposed: those based on maximisation or minimisation of cost

measures, or those based on equalising divergence metrics.

A. Maximisation or Minimisation of a Cost Measure

Most implementations of CI have assumed that ω should

be chosen to maximise or minimise some cost metric of the

update. If the cost metric can be written as J(ω) which is some

function of the update, then the parameter value is given by

ω∗ = arg min
ω∈[0,1]

J(ω). (10)

Choices for J(ω) include the determinant of the covari-

ance matrix, the trace of the covariance matrix, Shannon

entropy [14], or maximise the “peakiness” (the mode) [5].

However, the only analysis which has been carried out has

compared the determinant with the trace, where it is shown

that the determinant generally produces better results.

1) Shannon Differential Entropy: The Shannon Differential

Entropy is perhaps the best-known measure of uncertainty of

a distribution. The larger its value, the greater the uncertainty

in the state estimate. In this case, J(ω) = H(fω(X)), where

H(fω(X)) = −

∫

X

fω(X) ln (fω(X))δX. (11)

Substituting (7) into (11) and expanding the set integral term

as (3), it can be shown that H(fω(X)) is equivalent to [16]

H(fω(X)) = −H(pω(n)) −
∞
∑

n=1

log n!pω(n)

−
∞
∑

n=1

pω(n)H(sω(x))n, (12)

where

H(sω(x)) = −

∫

X

sω(x) log sω(x)dx. (13)

2) Rényi Entropy: The Rényi entropy is a generalisation of

Shannon entropy which makes it possible to emphasise certain

aspects of a distribution, such as its peak or tails [17]. It is

used extensively in active sensor management [18].

The Rényi entropy Hα(fω(X)) is computed from

Hα(fω(X)) =
1

1 − α
log

(
∫

X

fω(X)αδX

)

, (14)

where α > 0 is the free parameter which controls which part

of the distribution to emphasise. For α < 1, the contribution

from the tails (which are low probabilty events) are increased.

For α > 1, the contribution is assigned to the peaks (high

probability events) are increased. In the limit as α → 1, the

Rényi entropy converges to the Shannon Differential Entropy.

By substituting from (7) into (14) and applying the set

integral (3), we find that

Hα(fω(X)) =
1

1 − α
log

(

∞
∑

n=0

(pω(n)n!)
α

n!

(
∫

sω(x)α dx

)n
)

.

(15)

B. Divergence Equality Metrics

Although minimising absolute information measures pro-

vides a baseline, there is an issue with the computational

cost: specifically, the distribution can be highly multimodal

and exhibit significant variation. An alternative approach is

to consider the divergence metrics and the equality between

them. Specifically, suppose that there exists a divergence

measure D(f ||g) which measures the similiarity between two

distributions. We use the squared exponential cost function

JD(ω) = exp
(

−0.5 {D(fω||fi) −D(fω||fj)}
2
)

. (16)

The goal is to find

ω∗ = arg max
ω∈[0,1]

JD(ω), (17)

which occurs when JD(ω∗) = 1.

1) Kullback-Leibler Divergence (KLD): Hurley [14] pro-

posed to use

D(f ||g) =

∫

X

f(X) log

(

f(X)

g(X)

)

δX. (18)

Hurley justified this choice of metric on the grounds that

this can be related to the Chernoff Information which is the

upper bound of classification error in a two-class classifier.

Although the Chernoff Information has a clear justification

for a classification problem, its relevance to distributed fusion

is less clear. We propose two alternative arguments for its

applicability:

1) Performing an update changes the prior distribution to

the posterior distribution. Therefore, it is reasonable

to choose ω to maximise this change, and the KLD

provides a means of quantifying this change. However,

D(fω||fn) is a non-decreasing function of ω [12].

Therefore, simply maximising D(fω||fn) will cause ω
to always take the value 1. Therefore, a strategy which

makes the change the same for both distributions takes

a suitable “middle ground”.

2) From an implementation perspective, the cost metric is

computed from the difference between two functions

whose values monotonically change. Therefore, there is

a single unique maximum and so local optimisation al-

gorithms can be used. However, the global cost functions

(e.g., J(ω) = H(fω(X))) can contain multiple local

minima.

Applying (3) to (18), it can be shown that [16]

D(fω||fi) = D(pω(n)||pi(n)) +
∞
∑

n=1

pω(n)D(sω(x)||si(x))n

(19)



where pω(n) and sω(x) are given by (8) and (9) respectively.

The first term in the right hand side of this equation is the

KLD of the cardinality distribution and its value is directly

computed from

D(pω(n)||pi(n)) =
∞
∑

n=0

pω(n) log

(

pω(n)

pi(n)

)

.

The KLD of the localisation distributions D(sω(x)||si(x))
is computed from

D(sω(x)||si(x)) =

∫

x∈X

sω(x) log

(

sω(x)

si(x)

)

dx

which, after expanding the logarithm, is

=

∫

x∈X

sω(x) log

(

sj(x)ω

si(x)ω

)

dx

−

∫

x∈X

sω(x) log

(
∫

X

si(x)(1−ω)sj(x)ω dx

)

dx

= ω

∫

X

sω(x) (log sj(x) − log si(x)) dx

− log

(
∫

X

si(x)(1−ω)sj(x)ω dx

)

.

The divergence D(fω||fj) has a similar form, but with

pj(n) subsituted for pi(n), sj(x) substituted for si(x), and

(1 − ω) substituted for ω.

2) Rényi Divergence: The Rényi Divergence generalises the

KLD through the use of a free parameter α which can be

used to emphasise particular aspects of the differences between

the distributions which are of interest. Therefore, D(f ||g) =
Rα(f ||g), where

Rα(f(X), g(X)) ,
1

α − 1
log

(
∫

X

f(X)αg(X)(1−α) δX

)

.

(20)

For an i.i.d. cluster process, Ristić et al. proved that [18]

Rα(fω(X)||fi(X)) =
1

α − 1
(21)

log

(

∞
∑

n=0

pω(n)αpi(n)(1−α)

[
∫

X

(sω(x))
α

si(x)1−α dx

]n
)

.

In the next section, we evaluate the information measures

in some simulated scenarios.

IV. SIMULATION ANALYSIS

A. Scenario

The scenario is illustrated in Figure 1(a) and consists of four

targets with constant velocity motion and two sensor platforms

(i = 0, j = 1) making range–bearing measurements.

The velocity vectors of the targets are given by

[−176.7, 0.0]T , [−220.9, 88.0]T , [176.7, −176.7]T and

[176.7, 0.0]T for targets 1, 2, 3 and 4 respectively. The motion

model does not incorporate any random perturbations in the

target trajectories.

The sensors can detect targets up to a maximum range of

7500m. The measurements are noise corrupted by Gaussian-

zero mean noise sources. The standard deviation of the range

is 3m and bearing is 2◦. In each scan, the number of clutter

returns are Poisson distributed with an intensity λ = 5. Clutter

is uniformly distributed within the detection region. The union

of the time history of measurements is shown in Figure 1(b).

B. Implementation

The sensor platforms employ Sequential Monte Carlo

(SMC) CPHD filters as described in [19]. The PHD is repre-

sented by a set of equally–weighted particles generated from

the posterior localisation distribution si(x|Zi). The multi–

object state estimate from the set of particles is obtained

through a clustering scheme based on the observations [19].

At every time step, each sensor receives the posterior PHD

and cardinality distribution of its neighbour for fusion. To

mimic the effects of a finite bandwidth, the transmitted particle

distribution is approximated by a Gaussian Mixture Models

(GMM) [20]. In our implementation, we use the clustering

scheme from [19] to partition the PHD particles. Each cluster

is replaced by a mean and covariance matching Gaussian

component with the same relative weight.

The fused posterior is regarded as an approximation to the

posterior conditioned on the observations from both of the

sensors and is the best description of the multi–object scene

the fusion platform maintains. Since the EMD rule prevents

double–counting of any recurring information, it can be fed

back to the filter before the prediction step.

After receiving GMM representation of a PHD and a

cardinality distribution from the neighbour, the fusion platform

produces samples from this PHD and performs the relevant

Monte Carlo computations.

1) Monte Carlo methods for estimating the information

measures: Consider equally weighted sets of Ni and Nj par-

ticles Pi and Pj generated from si(x) and sj(x) respectively.

Note that the union of Pi and Pj , i.e.,

PU , Pi ∪ Pj (22)

is a particle set generated by the mixture density given by

sU (x) =
Nisi(x) + Njsj(x)

Ni + Nj

(23)

Therefore, utilisation of PU for Importance Sampling (IS)

estimates corresponds to selecting the proposal distribution as

sU (x) given by (23).

The information measures presented in Section III requires

evaluation of integrals involving si(x) and sj(x). We employ

Importance Sampling methods using sU (x) given by (23)

as well as conventional Monte Carlo integration (Chp. 3 of

[21]) for estimating these values. In order to evaluate the

distributions si(x) and sj(x) at x ∈ Pi or x ∈ Pj during these

computations, we employ observation–based Kernel Density

Estimates [11].



2) Choosing the Value of ω: Since the aim of this paper is to

assess the impact of different choices of cost function rather

than develop highly efficient schemes for choosing ω∗, we

use a simple brute force search strategy. We evaluate the MC

approximations over a fixed set of values for ω ∈ [0, 1]. The

nature of the information measures means that these can be

computed in terms of pi(n), si(x), pj(n) and sj(x). Therefore

it is not necessary to explicitly compute sω(x) given in (9).

3) Sampling from the EMD: After ω∗ is found, the cardi-

nality distribution pω∗(n) is constructed using (8). We approx-

imate sω∗(x) by using Importance Sampling and resampling

methods to approximate Pω∗ = {x|x ∼ sω∗(x)}. Using

Importance Sampling and resampling methods based on the

particle set PU given by (22) and the corresponding proposal

distribution sU (x) given by (23). Note that the importance

sampling weights of particles x(k) generated from a proposal

distribution q(x) in order to represent a distribution p(x) are

given by ζ(k) = p(x(k))/q(x(k)). We substitute sω(x) given

by (9) and sU (x) given by (23) in place of p(x) and q(x)
respectively, and obtain the importance sampling weights for

particles x
(k)
U ∈ PU to represent sω(x) as

ζ
(k)
U ∝

si

(

x
(k)
U

)(1−ω)

sj

(

x
(k)
U

)ω

Nisi

(

x
(k)
U

)

+ Njsj

(

x
(k)
U

) (24)

After resampling PU with {ζ
(k)
U }, samples generated ap-

proximately from sω(x) are obtained.

C. Results

1) Choosing the EMD Weighting Parameter: In order to

select the best ω that specifies the EMD of the fusion

rule (the EMD weighting parameter), we use the minimum

Rényi Entropy and Rényi divergence equality criteria ( Sec-

tion III). Let us consider the Rényi divergence Rα for α =
0.25, 0.5, ..., 1.75. For each α, the average ω∗ specifying the

EMD at platform 0 is given in Figure 2(a). It is apparent

that if α1 < α2 < α3 holds, the corresponding best ω
satisfies min(ω∗

1 , ω∗
3) < ω∗

2 < max(ω∗
1 , ω∗

3). As α increases,

the variation in ω∗ decreases and the average shows a steady

behaviour. The average ω∗ at platform 1 for the case in which

sensor 0 transmits its results to this platform is given in

Figure 2(b). The complementary behaviour of ω∗ in the sense

that ω∗s at a particular time step in Figure 2(a) and Figure 2(b)

respectively adds to 1 demonstrates the consistency of the

underlying computations.

The average ω∗ for the Rényi Entropy minimisation crite-

rion is given in Figure 3(a) and (b). First, we observe that

this criterion exhibits a high deviation in comparison to the

divergence equality results. Second, the ω∗ values do not show

the complementary behaviour and do not sum to one. This

suggests that the nodes do not operate in a symmetric manner

with respect to one another, suggesting potential issues with

numerical robustness.

To illustrate the behaviour of the divergence equality crite-

rion, Figures 4(a) and (b), shows the Rényi divergences from

fω to f0 (Rα(fω(X)||f0(X))) and f1 (Rα(fω(X)||f1(X)))

(a) Example scenario.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
4

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

(b) Observations collected in a typical run.

Figure 1. (a) Example scenario: Two range–bearing sensors (red stars)
observe four targets (black dots) for 40 time steps. The blue dots indicate
the initial target positions. At time step 20, the tracks of targets 1 and 2
cross at rendezvous point 1, and, targets 3 and 4 meet at rendezvous point
2 at time step 30. (b) Example observations of sensors 0 and 1 in Cartesian
coordinates superpositioned for 40 steps (indicated by black and blue crosses,
respectively).

for different values of α. Note the non–decreasing behaviour

of Rα(fω(X)||f0(X)) with respect to ω (and, similarly, the

non–decreasing behaviour of Rα(fω(X)||f1(X)) with 1− ω)

as discussed in Section III-B. As α is increased, the divergence

exhibits a higher rate of increase. For a given value of α, the

EMD parameter ω∗ is the intersection of the corresponding

curves in Figure 4(a) and (b) and it is unique.

Figures 5(a)–(c), plot typical performance functions con-

structed for the Rényi divergence equality criterion for α = 0.5
(Hellinger distance), α = 1.0 (KLD) and α = 1.5 respectively,

in a way similar to (16) at both platforms 0 and 1. The

complementary nature of the EMD parameters for platforms 0
and 1 manifest itself with the corresponding extrema located at

values adding to 1. In Figure 5(d), we present the normalised

(Shannon) Entropy of the EMD versus ω which presents

the lack of this complementary nature with the minimum

Entropy criterion. In addition, note that there is a local

extremum approximately at ω = 0.8 for fusion at platform 0
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(a) Average ω∗ for fusion at platform 0
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(b) Average ω∗ for fusion at platform 1.

Figure 2. (a) The average ω∗ specifying the EMD obtained using the Rényi
divergence equality criterion for α = 0.25, 0.5, 0.75, 1.00, 1.25, 1.50 and
1.75 (denoted by R0.25, H , R0.75, D, R1.25, R1.50 and R1.75 respectively
noting that R0.5 is the Hellinger distance and R1.00 is the KLD). The solid
lines indicate the average whereas the dash–dotted lines are the ±1 standard
deviation boundaries. (b) Similar results for fusion at sensor platform 1. The
results are averaged over 30 runs.

demonstrating non–unimodality of this criterion as mentioned

in Section III-B1 for motivating the use of divergence equality.

2) Performance comparison: The performance of the in-

dividual filter outputs and the fusion results are compared

using the Optimal Subpattern Assignment (OSPA) distance

(over the space of finite sets) [22] between the multi–object

state estimates obtained with an observation based clustering

scheme from the PHDs [19], and the true multi–target state.

The OSPA error is composed of a penalty for the cardinality

difference, i.e., the difference in the number of elements of

the two sets, and a localisation distance.

The improvement in the target localisation is assessed using

the OSPA localisation distance. In Figure 6(a), we present

the localisation error for the CPHD filter of sensor 0 together

with EMD fusion performed by this platform using divergence

equality for α = 0.5, 1.0, 1.5. The fused cluster distribution fω

exhibits a significant improvement in the localisation perfor-

mance which is consistent for different values of α. Similar

results for fusion at platform 1 (using the posterior transmitted

from platform 0) is presented in Figure 6(b). Let us compare

Figure 6(a) and Figure 6(b) for time steps between 14 and 23
corresponding to targets 1 and 2 first approaching and then

diverging (over Region 1 in Figure 1(a)). Sensor 1 resolves

the target locations better than sensor 0. One reason for the

relatively lower localisation performance with high variance at
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(b) Average ω∗ for fusion at platform 1.

Figure 3. (a) The average ω∗ specifying the EMD obtained using the
minimum Rényi Entropy criterion for α = 0.5, 1.0, 1.5 and 2.0 (note that
R1.0 is the Shannon Entropy denoted here by H). The solid lines indicate
the average whereas the dash–dotted lines are the ±1 standard deviation
boundaries. (b) Similar results for fusion at sensor platform 1. The results
are averaged over 30 runs.

sensor 0 is the effect of multi–object state estimation through

clustering based on the observations, for which sensor 1 is

more advantegous.

In Figure 7(a) and (b), we present the average localisation

error for the minimum Rényi Entropy criterion. Note that

the performance is similar to that of the divergence equality

criterion. Comparing Figure 6(b) and Figure 7(b) around time

steps 20 and 30 (when target crossings occur), the entropy

minimisation yields a higher variation in performance.
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Figure 4. Rényi divergence curves (computed at time step 28 by platform 0):
The divergence estimates (a) from fω(X) to f0(X), and (b) from fω(X)
to f1(X) for α = 0.05, 0.1, ..., 0.95, 1.05, 1.1, ..., 5 (black curves). Note
that for α = 1, the Rényi divergence is singular with a limit approaching to
the Kullback–Leibler Divergence. The α values to which the coloured curves
correspond can be seen in the legends.



Table I
TIME AVERAGE OF EMPIRICAL OSPA CARDINALITY ERROR STANDARD

DEVIATION.

Regular CPHD Filter of platform 0 5.39187

Filter w/ feedback from EMD using H 3.96837

Filter w/ feedback from EMD using KLD 3.96837

Fusion of the feedback filter and sensor 1 using H 0.858884

Fusion of the feedback filter and sensor 1 using KLD 1.44549

Fusion of the usual CPHD filter and sensor 1 using H 5.52667

Fusion of the usual CPHD filter and sensor 1 using KLD 5.52186

We also consider feeding fω back to the filter at platform

0 (Section IV-B). We run separate CPHD filters at platform

0 each receiving feedback from fω obtained by using the

divergence equality criterion and one of α = 0.5, 1.0. In

Figure 6(c), the OSPA localisation errors of filters receiving

feedback are given in comparison with the regular CPHD filter

and the fusion results. The filters with feedback exhibit an

improved localisation performance as expected and the fusion

results are on a par with those in Figure 6(a).

The benefits of the feedback scheme is better understood

comparing the empirical standard deviation of the OSPA car-

dinality error averaged over time as an indicator of immunity

to the effects of clutter. In Table I, we present this quantity

for a regular CPHD filter at platform 0 and filters receiving

feedback from the fusion using different divergences together
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Figure 5. Performance functions J(ω) based on information measures vs.
ω for a typical step:
(a) J(ω) = exp(−0.5(R0.5(fω(X), f0(X)) − R0.5(fω(X), f1(X)))2),
(b) J(ω) = − log (|D(fω(X)||f0(X)) − D(fω(X)||f1(X))| + 1),
(c) J(ω) = exp(−0.5(R1.5(fω(X), f0(X)) − R1.5(fω(X), f1(X)))2),
(d) J(ω) = H(fω(X))/ maxω∈[0,1] |H(fω(X))|, computed at platform 0
(blue curves) and platform 1 (red curves).
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(a) Fusion at platform 0.
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(b) Fusion at platform 1.
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(c) Fusion at platform 0 with feedback.

Figure 6. Average OSPA localisation error between the true multi–target
states and the multi–object state estimates obtained from (a) CPHD filter 0
(black solid line), and EMD Fusion performed at platform 0 using the Rényi
divergence with α = 0.5(H),1(D) and 1.5 ( the dash–dotted lines stand for
±1 standard deviation and the average is over 30 runs), (b) CPHD filter 1
and Fusion performed at platform 1 using divergences similar to those in (a),
(c) CPHD filter 0 with feedback from the Fusion (using the Rényi divergence
with α = 0.5(H) and 1(D) represented by the magenta and red solid lines
respectively) and the EMD result at platform 0 (dashed blue and green lines).

with the fusion results. The persistence of the cardinality

output by filter 0 is improved by the feedback scheme and

exhibits a potential of better immunity to the effects of clutter.

In addition, when the feedback filters are fused, the resulting

cluster process exhibit lower cardinality error variance.

V. CONCLUSION

In this paper, we have considered the problem of choosing

the cost function which underlies the optimisation problem in

suboptimal distributed fusion. We have presented a series of

equations to derive different forms, and we have compared the

results on an example. The results suggest that, as predicted

by the theory, divergence measures are better-behaved from an

optimisation perspective. Furthermore, the overall performance

using equality of the divergence measures criteria are very
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(a) Fusion at platform 0.
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(b) Fusion at platform 1.

Figure 7. Average OSPA localisation error between the true multi–target
states and the multi–object state estimates obtained from (a) the CPHD filter
0 (black solid line), and the EMD Fusion at platform 0 using the minimum
Rényi Entropy criterion with α = 0.5, 1.0(Shannon Entropy) and 1.5 ( the
dash–dotted lines stand for ±1 standard deviation and the average is over 30
runs), (b) CPHD filter 1 and Fusion performed at platform 1 using divergences
similar to those in (a).

similar to those when the entropy reduction criterion is used.

The results also suggest that picking a fixed value of ω =
0.5 leads to good performance and, in this case, suggests that

optimisation is not required.

One possible explanation for these results is that there is a

high degree of heterogeneity in the state estimates contained at

each node. Future work will explore this further by examining

more variations in the types and kinds of sensors used, varying

the degree of overlap region, and changing the frequency with

which nodes communicate with one another.
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