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Abstract—In the investigation of multi-sensor fusion problems,
it is commonly assumed that all the parameters necessary to
transform the information from the sensors to a common frame
are known. Imperfect knowledge of these registration parameters
induce systematic biases which would inhibit the benefits of multi-
sensor fusion. For example, they can result in deterioration of the
target localisation accuracy. We consider the problem of sensor
registration in a distributed setting in which the sensor platforms
propagate random finite set distributions that describe the multi-
object scene using Probability Hypothesis Density (PHD) filters,
and, transmit these posteriors to their neighbours. To find the
respective registration error between two platforms, we propose
a recursive method whereby a posterior distribution on the
registration error is updated upon receiving the incoming multi-
object distribution. The update is performed in a Bayesian
fashion using a likelihood that captures the similarity of the multi-
object scene as determined by the two sensors. In particular, we
utilise the Bhattacharyya distance of multi-object distributions as
a measure of similarity. We demonstrate the proposed method
through a simulation example.

I. INTRODUCTION

Integration of information from different sensors provides

opportunities for improving global situation awareness through

the use of diversity provided by, e.g., different sensing modal-

ities and/or measurements from distinct geo-locations. Suc-

cessful operation of multi-sensor fusion algorithms rely on

the accurate knowledge of the sensor registration parameters

which are used to transform the information to a common de-

scription form. The parameters necessary to characterize such

transformations might include sensor positions and relative

orientations which are, in practice, often inaccurately known

or not known at all.

We consider a distributed multi-sensor setting in which an

unknown and varying number of targets are to be tracked.

Each sensor receives a set of measurements induced by targets

detected with a probability and the surroundings. Together

with the set of targets, these measurements are modelled with

Random Finite Sets (RFSs). For each platform, the problem

of finding the multi-object posterior is addressed through the

use of Finite Set Statistics (FISST) [1]. The celebrated PHD

[2] and Cardinalised PHD (CPHD) [3] filters are examples

of such Bayesian filters with the underlying assumptions that

the targets are distributed in accordance with a multi–object

Poisson and Independent Identicailly Distributed (iid) cluster

distribution respectively.

Each sensor receives its neighbours’ multi-object posteri-

ors and fuses them with its local one using a scheme that

is appropriate for RFS densities. Such a distributed fusion

scheme is described in [4] whereby multi-object posteriors are

combined in a pairwise fashion based on Exponential Mixture

Densities (EMDs). EMDs are weighted geometric means of the

posteriors with a weight parameter ω, which can be selected

using an appropriate information metric [5]. One possible

choice, for example, is to choose ω so that the incoming

and local posteriors have equal Kullback–Leibler divergence

with respect to the fused result. This is similar to selecting

a middle ground between the two posteriors. This strategy

can be realised using Monte Carlo (MC) methods considering

Sequential MC (SMC) PHD/CPHD filters [6].

Such fusion methods, however, implicitly assume that the

arguments of the posteriors (which are sets of state variables

in our case) are in the same coordinate frame. We investigate

the registration problem in which the parameters necessary

for transforming one of the posterior to the other’s reference

frame are inaccurate or unknown. We consider two platforms

and notice that the local and an incoming posterior admit

an observation pair since measurements of neighbours are

not accessible in a distributed setting. This view equivalently

considers the posteriors as random functions of set variables

since the filtering operation is a deterministic operator on the

sensor measurements which are random sets themselves. We

construct a probabilistic model of the problem based on this

treatment and pose the registration problem in a maximum a-

posteriori estimation setting within this model from a Bayesian

perspective.

We assume that the registration parameters evolve according

to a Markov model through time. Consequently, computation

of the marginal parameter posterior can be carried out using
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Bayesian recursions. The parameter likelihood function, how-

ever, cannot be modeled or evaluated in a straightforward fash-

ion. Therefore, we propose a model for this distribution in the

form of the exponential function of a negative distance which,

in a sense, reflects the idea that the correct set of registration

parameters should lead a significant overlap of the posteriors

when one is fixed and the other is transformed accordingly.

In particular, we use the Bhattacharyya Distance (BD) of two

multi-object posteriors and the likelihood equals to the Bhat-

tacharyya Coefficient (BC) which reflects the affinity of the

multi-object scenes as described by two sensors. Consequently,

we obtain a recursive Bayesian algorithm which propagates

a distribution on the parameters. Doing that, we exploit the

information from multiple targets on the unknowns which in

turn provides a rapid decrease in error. The update stage of

the recursions, being based on the posteriors rather than the

observations, has the flexibility that it can be used together

with any multi-object filtering scheme including extended-

target tracking filters [7] and Mahler and Clark’s generalised

PHD filters [8].

Previous work on registration includes centralised joint

registration and multi-object estimation of a known number

of targets using SMC methods [9]. In [10], the joint problem

is solved for an unknown number of targets using doubly

stochastic point process models in a centralised fashion.

A maximum likelihood approach has been applied for the

distributed localisation of sensor nodes in a network while

tracking a single target [11]. In this work, we consider

a distributed setting and utilise the RFS framework which

enables us to benefit from multiple target trajectories for

updating the registration parameters. In Section II, the problem

definition and the Bayesian recursive solution are presented.

We introduce our likelihood model for using in the recursions

in Section III. The computation of this likelihood using MC

methods is the subject of Section IV. We demonstrate our

algorithm in an example scenario in Section V and conclude

in Section VI.

II. SENSOR REGISTRATION RECURSIONS

A. Problem Definition

We consider a distributed setting in which a target process

generates an RFS Xn at time n that induces measurement

sets Zn
i and Zn

j on sensors i and j respectively. Sensor j is

translated and rotated with respect to sensor i and we aim

to find these registration parameters denoted by the vector

θn
ij . Registration parameters affect the generation processes

of both nZi and Zn
j which are subsequently filtered using

the operators Fi and Fj to produce multi-object posterior

distributions Pn
i and Pn

j . Being produced by operators acting

on random variables, these posteriors can be treated as random

variables as well. In Fig. 1, the causal interactions of the

variables are illustrated by a Directed Graph. In Fig. 1(a), the

variables in the nth time window is given. The posteriors are

independent of all the other variables given the previous update

and the observations (Fig. 1(b)). As illutrated in Fig. 1(c) and

Fig. 1(d), the target and registration parameter processes are

Markov over time.

In a distributed setting, the multi-target posteriors (Pn
i

and Pn
j ) rather than the raw observations (Zn

i and Zn
j )

are communicated. This treatment enables us to pose the

sensor registration problem as a maximum a-posteriori (MAP)

problem. At time step n, the registration parameters are given

by the maximum of their distribution given the history of target

posteriors:

θ̂n
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θn∈Θ
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where {
(

P k
i , P

k
j

)

}k=1,...,n denotes the history of the posteri-

ors and the registration parameters up to time n. For notational

simplicity, we drop the subscript in the registration parameters

for the rest of the paper and so θn = θn
ij .

B. Recursive Bayesian Solution

The posterior distribution we seek in (1) is the marginal of

the joint posterior, i.e.,

p
(

θn|{
(

P k
i , P

k
j

)

}k=1:n

)

=
∫

· · ·

∫

p
(

θ1, . . . , θn|{
(

P k
i , P

k
j

)

}k=1:n

)

dθ1 · · · dθn−1 (2)

which satisfies the proportionality relation
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The first term on the right hand side of (3) is the joint

registration prior which factorises according to the Markov

model (Fig. 1(d)) as

p(θ1, . . . , θn) = p(θ1)
n

∏

k=2

p(θk|θk−1). (4)

The second term is the joint likelihood and upon realisation

of the Directed Graph in Fig. 1 admits the equality
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for all k = 1, ..., n, we can express this likelihood with the

following factorisation:



(a) (b)

(c) (d)

Fig. 1. Directed Acyclic Graph (DAG) representation for finding the
respective registration parameters between sensor i and j: (a) Conceptual
relationship between set variables, filtering operators, alignment parameters
and posteriors. (b) Temporal evolution of the ith RFS posterior. (c) Temporal
evolution of the multi-object state. (d) Temporal evolution of registration
parameters.
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Substituting (4) and (5) into (3) leads to (6). Exploiting the

Markov assumptions, this can be simplified into a two-step

recursive equation consisting of the prediction
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followed by the update

p
(

θn|{
(

P k
i , P

k
j

)

}k=1:n

)

=

p
(

Pn
i , P

n
j |Pn−1

i , Pn−1
j , θn

)

p
(

θn|{
(

P k
i , P

k
j

)

}k=1:n−1

)

.

(8)

Here p
(

Pn
i , P

n
j |Pn−1

i , Pn−1
j , θn

)

is the registration parameter

likelihood function. We now discuss how this can be devel-

oped.

III. MODELLING THE REGISTRATION PARAMETER

LIKELIHOOD

The likelihood term p(Pn
j , P

n
i |Pn−1

i , Pn−1
j , θn) in the up-

date stage (8) captures the dependency of the posteriors from

sensors i and j with the previous updates and with the

registration parameters. It is not straigthforward to find a

tractable form for this term and evaluate it. Instead, we model

this distribution with an exponential function of a negative

distance metric for the following reasons.

The first issue is that Pn
i and Pn

j are distributions which

describe the same multi-target scene. Had both sensors been

perfectly aligned (and the true value of the respective reg-

istration parameters were zero), they would have converged

Fig. 2. jth multi-object posterior for the hypothetical case that sensor j is

perfectly aligned with sensor i (denoted by P̃ n
j ).

towards the same distributions, subject to the multi-target and

observation dynamics. Let P̃n
j denote the random posterior

under the condition that the true value of the respective

registration θn is the zero vector (as illustrated in Fig. 2).

For this perfect alignment case, we expect Pn
i and P̃n

j to be

closely located with respect to a distance measure. An example

of such a measure is the Bhattacharyya Distance (BD) of two

RFS distributions p(X) and q(X) given by

BD(p(X), q(X)) = − ln

∫

√

p(X), q(X)δX (9)

where the integral term is known as the Bhattacharyya Coef-

ficient (BC) and the set integral is given by

∫

f(X)δX := f(∅) +

∞
∑

n=1

1

n!

∫

f({x1, ..., xn})dx1...dxn.

(10)

It is not easy to achieve a tractable upper bound for the

expected value of BD(Pn
i (X), P̃n

j (X)) over all possible sets

of sensor measurements, nevertheless, we can empirically

show that the greater the misalignment between the sensors

is, the greater the BD between the multi-object posteriors is

on the average. As an example, in Fig. 3, we present the BD

of the posteriors of two sensors in a 2D scenario in which the

registration parameter was the displacement of the two sensors

in the x direction. Each sensor computed its own distribution

from its own sensors, and the BD was computed as a function

of the displacement in the x direction by both sensors. As

can be seen, the BD tends to monotonically increase with the

displacement.

The second issue is that, in a distributed setting, platform

i receives the posterior of platform j, i.e., Pn
j whereas the

similarity of Pn
i is with P̃n

j . Suppose that there exists a

transformation T that reverses the effects of translation and

rotation on Pn
j so that we can compute the jth multi-object

posterior for the hypothetical case that sensor j is perfectly

aligned with sensor i. In other words, suppose that

P̃n
j = T (Pn

j ; θn)
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Fig. 3. Displacement of two sensor platforms along x-axis vs. the Bhat-
tacharyya distance between their posteriors (computed using MC methods
and averaged over 15 simulations in an example scenario).



almost surely. We model the likelihood using the negative

exponential of the BD between the transformed posterior and

Pn
i , i.e.,

p(Pn
j , P

n
i |Pn−1
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j , θn) ∝ exp(−BD(Pn

i , P̃
n
j ))

∝
∫
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j (X); θn)δX (11)

One way of finding P̃n
j given the realisation of the regis-

tration parameters θ1, . . . , θn is to transform the observation

sequence Z1
j , ..., Z

n
j to the coordinate frame of sensor i and

then filter them. Since platform i does not have access to

these observations, it might not be possible to compute P̃n
j

only by using the posterior sensor j outputs (Pn
j ) using its

observations. Nevertheless, an approximate computation of P̃n
j

can be carried out through inverse rotation and translation

of the arguments of Pn
j which can be assumed to have

removed the effects of θn approximately. Suppose that θn is

a tuple of a spatial translation vector θn
T and Euler angles

θn
E = (ψ, θ, φ) (or, rotation angles in the x − y, y − z and

x − z planes respectively), i.e., θn = (θn
T , θ

n
E). Then, we

approximate the transformed posterior with

P̃n
j ({x1, . . . , xN}) ≈ |Rθn

E
| (12)

Pn
j ({R−1

θn

E

(x1 − θn
T ), . . . ,R−1

θn

E

(xN − θn
T )})

where Rθn

E
is the Directional Cosine Matrix for θn

E and

|Rθn

E
| = 1 is its determinant.

After substituting from (12) into (11), the registration pa-

rameter likelihood model is obtained as

p(Pn
j , P

n
i |Pn−1
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which will be used within the Bayesian registration recursions

given by (7) and (8).

IV. REALISATION VIA MONTE CARLO METHODS

The realisation of the registration recursions given in (7)

and (8) with the registration parameter likelihood model given

in (13) will be carried out using sequential Monte Carlo

(SMC) methods. In particular, we use a Sampling/Importance

Sampling scheme similar to the Bootstrap filter [12]. We begin

with M samples from a prior distribution on the parameters

p(θ1), i.e., {θ1,(1), ..., θ1,(M)} such that θ1,(i) ∼ p(θ1). At time

step k, the likelihood model (13) is evaluated for each sample

θk,(i) generated from the prediction density given by (7). These

quantities are denoted by ζk,(i) and given two posteriors P k
i

and P k
j , they are found using Monte Carlo methods details

of which are discussed later in this section. After finding

ζk,(i) for each parameter point θk,(i) , Importance Sampling

{(ζk,(i), θk,(i))}M
i=1 yields samples generated approximately

from the required posterior given by (8).

For the rest of this section, we discuss approximate compu-

tation of the likelihood model using MC methods. We consider

multi-object posteriors outputby adaptive birth process driven

CPHD filters [13]. At time k, the RFS distribution of platform

i is a cluster processes given by

pk
i (X|Z1:k) = κk

i (N |Z1:k)N !
∏

x∈X

sk
i (x|Z1:k) (14)

Here, N = |X| is the cardinality of the random set variable X .

κi is a distribution over non-negative integers enumerating the

probability of number of targets and known as the posterior

cardinality distribution. si is the posterior intensity function

localising the targets. The SMC realisation of the CPHD filter

propagates particles generated from si for representing the

localisation density:

Sk
i , {x

(p)
k }P

p=1 where x
(p)
k ∼ si

The localisation density κi is stored in an array of chosen

length.

The coordinate transformation of the cluster posterior from

sensor j then involves only the transformation of its intensity

function, or the localisation density, i.e.,

s̃k
j (x) = sk

j (R−1
θn

E

(x− θn
T )).

Equivalently, the representation of s̃k
j (x) using the particle set

Sk
j is obtained by applying the transformation to each particle

separately. In other words

S̃k
i , {x̃

(p)
k }P

p=1 where x̃
(p)
k = R

−1
θn

E

(x
(p)
k − θn

T )

The BC modeling the likelihood of concern for two cluster

processes can be found by substituting from (14) and the RHS

of (13) into (10) as

BC(pi(X), pj(X)) =
∞
∑

N=0

√

κi(N)κj(N)ZN (15)

Z =

∫

X

√

si(x)sj(x) dx. (16)

We consider IS evaluation of Z for which we need a

distribution with heavier tails compared to s0.5
i (x)s0.5

j (x)/Z
[14]. Non-degenerate mixtures of si(x) and sj(x) are such

proposal densities and the particle set

SU , Si ∪ Sj (17)

is constituted of PU = Pi + Pj samples from such a mixture

density given by

sU (x) =
Pisi(x) + Pjsj(x)

Pi + Pj

(18)

Using SU , the IS estimate [14] of Z is given by

ẐIS ,
∑

x∈SU

√

si(x)sj(x)

Pisj(x) + Pjsj(x)
(19)

Here, we substitute Kernel Density Estimates ŝi(x) and

ŝj(x) in (19) which we obtain through a regularised form of

the SMC CPHD filter and obtain a computationally feasible

estimate of Z as

Ẑ ,
∑

x∈SU

√

ŝi(x)ŝj(x))

Piŝi(x) + Pj ŝj(x)
. (20)
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Fig. 4. Two sensors (black and blue dots) observing 4 moving targets
(magenta lines) initially located at the circled positions.
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Fig. 5. Performance of the recursive registration algorithm in the example
scenario: Normalised error in (a) translation, and, (b) azimuth angle, for
PD = 1.0, 0.9 and 0.8 (blue solid, black dashed and magenta dash-dot lines
respectively).

For estimating the BC which is the proposed likelihood to

use in the update equation (8), we substitute from (20) into

(15) together with the finite arrays storing κi(N) and κj(N).

V. EXAMPLE

In this section, we demonstrate the proposed sensor registra-

tion method in an example multi-target scenario in which two

range-bearing sensors observe 4 targets moving with constant

velocity (and slight process noise) for 50 time steps (Fig. 4)

in 2-D. The standard deviations in range and bearing are 3 m.

and 1◦ respectively. The clutter is Poisson with rate λ = 10.

One of the sensors (the black sensor) is located at the origin

with a bearing aligned with the y-axis. The second sensor (the

blue sensor) is located at [500, 1000]T on the x-y plane with

a bearing angle of 3◦ with respect to the first one.

The first sensor receives the second sensor’s multi-object

posterior output by SMC CPHD filtering and estimates the

position and the bearing using the proposed approach together

with the Mean Squared Error estimator1. In Fig. 5, normalised

error in translation given by eT ,

∥

∥

∥
θT − θ̂T

∥

∥

∥
/ ‖θT ‖ and in

azimuth angle given by eE ,

∥

∥

∥
θE − θ̂E

∥

∥

∥
/ ‖θE‖ where θE =

ψ and for probability of detection PD = 1.0, 0.9 and 0.8. It is

seen that the recursions lead to a rapid decrease in the error

consistently for different qualities of sensor measurements.

1We assume that the MSE estimate approximately equals to the MAP
estimate which, in our case, holds as after the convergence the parameter
posterior tends to be convex.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a recursive Bayesian solution to

the sensor registration problem in a distributed fusion setting.

We introduced a model for the parameter likelihood given

multi-object posteriors from platforms running PHD filters.

This approach provides us the advantages of exploiting from

multiple target constellations which lead to a rapid decrease

in error, and, making it possible to use various types of

PHD filters under registration uncertainties. Possible future

directions include empirical investigation of the convergence

properties. Another direction involves improving the accuracy

of the algorithm as well as the convergence properties by

deploying a stochastic tempering stage and a Markov Chain

MC move step in the update stage similar to that used in [13].
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