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An EVD Algorithm for Para-Hermitian
Polynomial Matrices

John G. McWhirter, Paul D. Baxter, Tom Cooper, Soydan Redif, Associate Member, IEEE, and Joanne Foster

Abstract—An algorithm for computing the eigenvalue decom-
position of a para-Hermitian polynomial matrix is described. This
amounts to diagonalizing the polynomial matrix by means of a
paraunitary “similarity” transformation. The algorithm makes
use of “elementary paraunitary transformations” and constitutes
a generalization of the classical Jacobi algorithm for conventional
Hermitian matrix diagonalization. A proof of convergence is pre-
sented. The application to signal processing is highlighted in terms
of strong decorrelation and multichannel data compaction. Some
simulated results are presented to demonstrate the capability of
the algorithm.

Index Terms—Broadband sensor array, convolutive mixing,
multichannel data compaction, paraunitary matrix, polynomial
matrix eigenvalue decomposition, strong decorrelation.

I. INTRODUCTION

POLYNOMIAL matrices have been used for many years in
the area of control [1]. They play an important role in the

realization of multivariable transfer functions associated with
multiple-input multiple-output (MIMO) systems. Over the last
few years they have become more widely used in the context
of digital signal processing (DSP) and communications [2].
Typical areas of application include broadband adaptive sensor
array processing [3], [4], broadband subspace decomposition
[5], MIMO communication channels [6]–[9], and digital filter
banks for subband coding [10] or data compression [11].

A polynomial matrix is simply a matrix whose elements are
polynomials. It may be viewed equivalently, as a polynomial
with matrix coefficients. In this paper, we will use the term poly-
nomial to include Laurent polynomials which can include neg-
ative powers of the indeterminate variable. We denote a
polynomial matrix in the indeterminate variable by

...

(1.1)
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where , and

(1.2)

Since the leading term of is constant, the effective
order of is . In this paper it is assumed that

. In keeping with the standard notation for linear
systems and signal processing, we have chosen to denote the
indeterminate variable by since this is normally used to
represent a unit delay. Multiplying a polynomial by will
sometimes be referred to as applying a delay. The underscore
notation is used to signify a polynomial or power series (whether
matrix, vector, or scalar). This is to avoid confusion with the
corresponding -transform, which is a function of evaluated
within its region of convergence in the complex plane.

Numerical procedures have previously been developed for a
range of polynomial matrix factorization and reduction opera-
tions such as the Smith–McMillan decomposition [2], [12]. To
date, however, very little attention seems to have been devoted to
polynomial matrix techniques equivalent to the eigenvalue de-
composition (EVD) or singular value decomposition (SVD) for
conventional matrices with scalar elements [13]. The develop-
ment and application of such a technique is the subject of this
paper.

The EVD of conventional Hermitian matrices plays a very
important role in DSP. For example, it is at the heart of the
Karhunen–Loeve transform for optimal data compaction [14]. It
plays a particularly important role in the context of narrowband
sensor array signal processing serving, for example, to separate
the signal and noise subspaces in adaptive beamforming or high
resolution direction finding [14].

In the case of a narrowband sensor array, the propagation
of signals from sources to sensors may be modelled as an
instantaneous mixture of the form where the ma-
trix comprises snapshots of the source sig-
nals (assumed to have zero mean), the matrix con-
sists of the corresponding snapshots received by the sen-
sors and is the mixing matrix. Each element of the
mixing matrix represents a scaling in amplitude, and a phase
shift that accounts for the propagation delay. In the case of in-
stantaneous mixing, the received signals may be decorrelated
by performing the SVD of the data matrix , i.e., by com-
puting a unitary matrix such that
where with

and with . This corresponds to
computing the EVD of the (Hermitian) sample covariance ma-
trix , i.e., performing the unitary diagonalization given by

. Although the SVD computation is prefer-
able in terms of arithmetic precision, the EVD of and
SVD of will be regarded as equivalent for our purposes.

1053-587X/$25.00 © 2007 IEEE



MCWHIRTER et al.: AN EVD ALGORITHM FOR PARA-HERMITIAN POLYNOMIAL MATRICES 2159

The instantaneous mixing model is not suitable for many im-
portant applications. For example, in the case of a broadband
sensor array, the propagation of signals from sources to sen-
sors cannot be modelled by a scalar mixing matrix. A ma-
trix of finite impulse response (FIR) filters is required instead. If
each filter is represented as a polynomial in , corresponding
to its transfer function, the propagation model takes the form of
a polynomial mixing matrix of the type specified in (1.1).
This is often referred to as convolutive mixing [15]. Convolutive
mixing can also be used to model the effects of multipath prop-
agation, which constitutes an important factor in many areas of
sensor array signal processing.

In the case of a broadband sensor array or convolutively
mixed signals, the sensor outputs will generally be correlated
with one another. However, they can no longer be decorrelated
using the SVD or EVD, which only measure and remove
instantaneous spatial correlation, i.e., correlation between pairs
of signals sampled at the same instant in time. Following
convolutive mixing, it is necessary to impose decorrelation, not
just at the same time instant for all signals, but over a suitably
chosen range of relative time delays. This is referred to as
strong decorrelation or total decorrelation [10], and a matrix of
suitably chosen filters is required to achieve it.

In this paper we generalize the EVD (and hence the SVD)
to the case of broadband sensor arrays and convolutive mixing
by requiring the strong decorrelation to be implemented using a
paraunitary polynomial matrix. A paraunitary polynomial ma-
trix represents a multichannel all-pass filter and, accordingly, it
preserves the total signal power at every frequency [2]. In order
to achieve strong decorrelation, the paraunitary matrix seeks to
diagonalize a para-Hermitian polynomial matrix by means of
a generalized similarity transformation. This constitutes a nat-
ural generalization of the EVD for scalar Hermitian matrices.
We also present a novel technique, referred to as the second-
order sequential best rotation (SBR2) algorithm, for computing
the required paraunitary matrix using a sequence of “elemen-
tary paraunitary matrices” [16]–[18]. This constitutes a natural
generalization of Jacobi’s EVD algorithm [13] from scalar to
polynomial matrices. It has been proven to converge and is nu-
merically stable by virtue of the fact that the elementary para-
unitary matrices, like elementary plane rotations on which they
are based, are numerically stable.

Our approach is quite distinct from other methods reported to
date. Lambert [4], [19] has addressed the problem of broadband
blind signal separation in the context of convolutive mixing.
He represents the mixing in terms of discrete Fourier trans-
form (DFT) filter matrices as well as polynomial matrices. He
has developed an EVD for polynomial matrices by generalizing
some conventional linear algebra and control techniques from
the complex number field to the field of rational functions. His
method involves the approximate inversion of FIR filters in the
frequency domain and is therefore quite distinct from the one
proposed here.

Regalia and Huang [20] have addressed the problem of
computing a two-channel lossless FIR filter for optimal data
compaction. This leads to the determination of an optimum
paraunitary matrix as required for our polynomial matrix
EVD algorithm in the 2 2 case. Their approach exploits the
fixed degree parameterization proposed by Vaidyanathan [2],
resulting in a difficult nonlinear optimization. However, they
re-formulate the problem using a state space approach and then

propose an iterative solution that avoids the problems of local
minima associated with gradient descent techniques.

Another fairly obvious approach to decorrelating broadband
signals is to reduce the problem to narrowband form, using a
DFT to split the data into narrower frequency bands. A con-
ventional SVD is then used to decorrelate the sensor signals
within each band. However, computing an independent SVD
for each frequency band ignores the relatively small but impor-
tant correlations that may exist between different bands. This
independent frequency band (IFB) approach limits the degree
to which strong decorrelation can be achieved. It can also lead
to a lack of temporal (phase) coherence across the bands, since
the SVD in each band will arrange the output channels in order
of decreasing power irrespective of the ordering in neighboring
bands. These are well-known features of the IFB technique for
space-time adaptive processing in phased array radar [21].

This paper is organized as follows. Section II proposes a gen-
eralization of the EVD, appropriate for para-Hermitian polyno-
mial matrices. The SBR2 algorithm is then presented as a novel
technique for computing the required decomposition and some
simple numerical examples are presented. Section III outlines
how the SBR2 algorithm may be used in the context of DSP—in
particular, how it may be used to implement the strong decorre-
lation of signals from a broadband sensor array by diagonalizing
an estimate of the cross-spectral density matrix. The tendency
of the algorithm to impose spectral majorization [10] on the
strongly decorrelated signals and its relevance to energy com-
paction is also discussed very briefly in Section III. Section IV
presents the results of some computer simulations designed to
demonstrate the capability of the SBR2 algorithm. Section V
contains some brief conclusions and suggests various avenues
for further research.

1) Choice of Notation: Throughout this paper, matrices are
denoted by upper case bold characters and vectors by lower case
bold characters. Regular upper or lower case characters denote
scalar quantities. denotes the element of the matrix in
square brackets. The superscripts , , and denote the com-
plex conjugate, matrix transpose and Hermitian conjugate, re-
spectively. is used to denote the identity matrix. Poly-
nomial matrices and vectors are denoted by underscored bold
upper and lower case characters, respectively. The use of an un-
derscore with scalar quantities denotes a polynomial with scalar
coefficients. Any polynomial (matrix, vector, or scalar) with the
qualifier denotes a polynomial in the indeterminate variable

. The , used as a subscript, denotes complex conjugation
of the coefficients in a polynomial matrix or vector. The use of

above a polynomial matrix or vector denotes the paraconju-
gate. The underscore notation will be extended, where appro-
priate, to include power series or matrices and vectors whose
elements comprise power series. will be used to denote
the Frobenius norm (F-norm) of a polynomial matrix as well
as a matrix with scalar elements. In the case of a polynomial
matrix, is simply the sum of the squared F-norms for all
coefficient matrices.

II. SEQUENTIAL BEST ROTATION ALGORITHM (SBR2)

A. Polynomial Matrix EVD

In this section we describe a novel algorithm for extending
the EVD from conventional Hermitian matrices with complex
scalar elements to para-Hermitian polynomial matrices. It takes
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the form of a sequential best rotation algorithm [16] but only
involves second order statistics; it is therefore referred to as
SBR2. We begin with some basic definitions and notation.
The paraconjugate of a polynomial matrix is defined
as . Note that in the degenerate case of an
order-zero polynomial matrix, this corresponds to the usual
Hermitian conjugate. A (polynomial) matrix is referred
to as para-Hermitian if it is identical to its paraconjugate, i.e.,
if . A (polynomial) matrix is said to be
paraunitary if

(2.1)

Note that in the degenerate case of order zero, this reduces to a
conventional unitary matrix.

The input to the SBR2 algorithm is a para-Hermitian poly-
nomial matrix, which may be expressed as

(2.2)

where with elements

(2.3)

The latter condition arises from the para-Hermitian property,
which also requires the limits of summation in (1.1) to satisfy

. The objective of the SBR2 algorithm is to
compute a paraunitary matrix such that

(2.4)

where denotes a diagonal polynomial matrix. This clearly
constitutes a generalization of the EVD to polynomial matrices;
in the degenerate case of order zero, it reduces to the definition
of a conventional Hermitian matrix EVD which can, of course,
be computed to very high precision. The role of the unitary ma-
trix in the scalar matrix case is generalized to that of a parau-
nitary matrix. In the context of DSP and linear system theory,
a paraunitary matrix represents the transfer function for a mul-
tichannel lossless filter. The spectral characteristic of a lossless
filter is “all pass,” which means that the combined signal power
at every frequency is invariant to the transformation. The chal-
lenge then, is to compute a paraunitary matrix such that
the polynomial matrix in (2.4) is as close to diagonal as
possible. In general, it will not be possible to achieve exact di-
agonalization because constitutes a FIR filter. However,
if the order of the polynomial elements is sufficiently large, the
diagonalization can be achieved to a very good approximation;
in some cases, relatively low order polynomials suffice. Note
that the decomposition in (2.4) could be carried out in the fre-
quency domain by evaluating the polynomial matrix at
a large number of points on the unit circle, computing the re-
sulting scalar EVD at each frequency, and transforming back to
the time domain. However, irrespective of the number of dis-
crete frequencies selected, this still constitutes a finite approx-
imation and leads to a transformation that is not perfectly pa-
raunitary. The SBR2 algorithm, on the other hand, is designed
specifically to operate in the time domain and computes an FIR
approximation, paraunitary by construction.

In order to ensure that the approximate diagonalization in
(2.4) is carried out over the restricted space of paraunitary
matrices, the SBR2 algorithm uses a suitably parameterized
representation. Vaidyanathan [2] has shown that an arbitrary
paraunitary matrix can be decomposed into a set of rotations
interspersed by delays. More specifically any paraunitary
matrix of degree1 may be written in the form

(2.5)

where is a diagonal matrix with unimodular elements and
denotes a unit delay applied to one row of the (polynomial)

matrix on which it operates from the left; specifically

(2.6)

represents a unitary matrix which may be implemented
as a product of pairwise complex rotations and pa-
rameterized by the corresponding set of rotation angles
[2]. Note that in the degenerate case of degree zero, takes
the form of a single unitary matrix as required for the EVD of
a conventional Hermitian matrix. For the purposes of polyno-
mial matrix EVD, it is necessary to compute a sequence of ro-
tation matrices which minimizes the off-diagonal
elements of the polynomial matrix . Even if the degree
could be established in advance, attempting to optimize the pa-
rameters of a paraunitary matrix in the form of (2.5) is extremely
difficult since the individual rotations cannot be computed inde-
pendently and a multiparameter nonlinear optimization must be
carried out [20].

B. SBR2 Algorithm

In order to simplify the problem we adopt a different formula
for generating the paraunitary matrices. This takes the form

(2.7)

where represents an unspecified number of iterations. Each
term in the product denotes an “elementary paraunitary matrix”
of the form

(2.8)

with specific values being chosen for the parameters , , , ,
as appropriate for each term. In (2.8), denotes a

complex elementary scalar rotation that takes the form of a
unit matrix except for the 2 2 submatrix defined by
the intersection of rows and with columns and . This is
given by

(2.9)

where and denote the cosine and sine, respectively of the
angle . represents an elementary “delay” matrix de-
signed to impose a -fold delay (where ) to the th row
of the polynomial matrix on which it operates (from the left).

1The degree of a polynomial matrix in the indeterminate z is defined as
the number of delays needed to implement it as the transfer function of an FIR
filter. This is not the same as the order which is the highest power of z in the
polynomial matrix.
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It takes the form of a polynomial identity matrix except for the
element which is , i.e.,

(2.10)

The paraunitary matrix is elementary in the sense that it in-
volves an elementary rotation and a simple delay, but it does not
necessarily have degree one. It can be seen that any polynomial
matrix generated according to (2.7) is paraunitary since each
term is paraunitary. However, the degree is no longer certain.

The SBR2 algorithm seeks to generate a paraunitary matrix
according to (2.7) by calculating and applying an iterative se-
quence of elementary paraunitary matrices designed to approx-
imately diagonalize according to (2.4). Each stage of the
iterative process applies a single elementary paraunitary matrix,
chosen to eliminate the dominant off-diagonal polynomial co-
efficient. It is clearly analogous to a single step of the classical
Jacobi algorithm for diagonalizing conventional Hermitian ma-
trices, but generalizes the concept to para-Hermitian polynomial
matrices.

The algorithm begins by locating the dominant off-diagonal
coefficient of the input polynomial matrix , i.e., the off-di-
agonal coefficient whose magnitude is greatest. If the domi-
nant coefficient is not unique, any dominant coefficient may be
chosen. Assume that this is the coefficient where ,
and denote its magnitude by . Note that the search
may be restricted to the upper off-diagonal elements due to the
para-Hermitian property defined in (2.3). The specific values
, and that define the dominant coefficient are now used

to specify the corresponding parameters of the first elementary
paraunitary matrix in (2.7). In accordance with (2.4), the ele-
mentary delay matrix is applied first to generate the transformed
polynomial matrix

(2.11)

The effect of this transformation is to shift the dominant co-
efficient to the coefficient plane of order zero so that

. The diagonal elements
are not affected.

The parameters and of the elementary rotation matrix
are now chosen to drive the dominant coefficient

to zero. More specifically, they are chosen such that

(2.12)

This condition is satisfied when

(2.13)

and

(2.14)

Equation (2.14) has multiple solutions any of which may be se-
lected. The order of the two output channels depends on the

choice. Using the basic arctangent function to compute leads
to the conventional choice of inner rotations [13], i.e., solutions
in the range . However, the four quadrant arc-
tangent is preferred since it generally leads to output channels
which are ordered in terms of decreasing power.

Having computed the values of and , the elementary rota-
tion matrix is used to perform the transformation

(2.15)

Note that this involves all terms in the relevant polynomial ele-
ments. It should be clear that the polynomial matrices and

are related by a generalized similarity transformation of
the form

(2.16)

where constitutes an elementary paraunitary matrix of the
type defined in (2.8). The generalized similarity transformation
in (2.16) constitutes one stage of the SBR2 algorithm, designed
to zero the dominant off-diagonal coefficient of .

The algorithm continues by making the substitution
and repeating the process outlined above, i.e., applying

a new elementary paraunitary transformation of the form given
in (2.16) designed, this time, to zero the most significant off-di-
agonal coefficient of the updated polynomial matrix . This
iterative process is repeated until the magnitude of the dominant
off-diagonal coefficient of the polynomial matrix is sufficiently
small. The SBR2 algorithm is guaranteed to converge in this
respect, and a proof of this important property is given below.
Assuming iterations, the result will be a generalized similarity
transformation of the form

(2.17)

where is the product of elementary paraunitary ma-
trices as expressed in (2.7) and is approximately diag-
onal. The compound transformation is clearly parauni-
tary by construction.

In order to explain the basic rationale behind the SBR2 al-
gorithm, we define the following measures for the polynomial
matrix :

(2.18)

These are, respectively, the squares of: the trace norm at ;
the F-norm at ; the off-diagonal F-norm at ;
and . Similarly, we define and

for and . Note the following:

is invariant to the application of an elementary delay
matrix;
is invariant to the application of an elementary
rotation;
is invariant to the application of an elementary rotation
or delay matrix;

and .



2162 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007

After applying the delay matrix to generate
in the procedure outlined above, we have and

with new values for and . The effect of applying the
rotation matrix in the procedure outlined above is

to reduce by an amount where . By con-

struction, this is the maximum value of taken over all
off-diagonal coefficients in . Since is unchanged by the
application of , it follows that

(2.19)

The result of each iteration is to increase by which con-
stitutes twice the magnitude squared of the greatest off-diagonal
polynomial coefficient. The proof of convergence now follows
quite simply. Since increases monotonically and is bounded
from above by , which is constant, it must have a supremum

. It follows that for any there must be an iteration number
, say, for which and so the increase in at

any subsequent stage must satisfy . In
other words, for any there must be an iteration by which
the maximum off-diagonal polynomial coefficient is bounded
(in magnitude squared) by .

Note that the value of does not necessarily decline mono-
tonically. Each rotation is computed with reference to elements
in the coefficient-plane of order zero in , and is guaran-
teed to increase by driving the (maximized) off-diagonal el-
ement to zero, thus reducing . However, in any other plane of
the polynomial matrix , where the same rotation is being
applied, it could have the effect of increasing the magnitude of
the off-diagonal element while reducing the sum of the squares
of the diagonal elements. As a result, the dominant off-diagonal
element, taken over all values of , could be larger at the start
of the next iteration. Note also, that the difference between
and the supremum of will generally be nonzero. The algo-
rithm does not seek to reduce the on-diagonal coefficients for
nonzero values of , let alone drive them to zero. In the context
of strong decorrelation, as discussed in Section III, this would
correspond to temporal whitening of the decorrelated signals,
which is often highly undesirable and cannot occur as the result
of a paraunitary transformation (which preserves the total power
spectral density).

It is important to realize that the order of the polynomial ma-
trix , and the corresponding paraunitary matrix , will
grow as the number of iterations in the SBR2 algorithm in-
creases. This is a natural consequence of using an FIR filter to
compute the decomposition in (2.4). In practice, the order of the
polynomials can grow much larger than is necessary to achieve
a good approximation, leading to an increase in the computa-
tional load and corresponding slowing of the algorithm. How-
ever, the growth of may be reduced very effectively by
truncating the highest order coefficient matrices at each iteration
such that the sum of the squares of all discarded coefficients is a
very small fraction of the total initial value represented by .
This has been achieved in practice by applying the following
“trim” function:

trim (2.20)

where is the largest positive integer such that
. Note that, since still increases

monotonically and is bounded from above by the initial value
of , this procedure does not invalidate the proof of con-
vergence given above. Furthermore, the modulus squared of
the biggest off-diagonal coefficient which could be lost due
to the truncation, is bounded by times the number of
iterations. Growth in the order of the paraunitary matrix
may be controlled in a similar manner, bearing in mind that it
is not para-Hermitian. Since the computation of (which
could be performed after the main iterative process) has little
effect on the speed of the algorithm, the procedure will not be
specified here. A brief summary of the basic SBR2 algorithm
is given in Table I.

The proof of convergence given for the SBR2 algorithm
shows that the off-diagonal coefficients tend uniformly to zero.
However, since the order of the polynomials can increase, this
does not imply that the off-diagonal F-norm tends to zero. From
a mathematical point of view, it would be much better to have
a proof of convergence based on the F-norm but we have not
succeeded in finding one. Nonetheless, the form of convergence
proved here is quite powerful in its own right. We know that
the sum of the squares of the off-diagonal elements is bounded
by . Furthermore, since the maximum off-diagonal el-
ement can be made arbitrarily small in magnitude, the criterion
for convergence could be specified in terms of the smallness
of relative to . In the context of strong decorrelation,

constitutes a lower bound for the maximum zero-lag
autocorrelation value, so the form of convergence proved above
is consistent with the essential objective for that particular
application.

C. Worked Examples

We will now illustrate the operation of the SBR2 algorithm
by means of some simple but insightful examples. In the first
example, the algorithm was applied to the para-Hermitian ma-
trix given by

(2.21)

In seven iterations, it converged to produce the factorization
given by

(2.22)

The final value of was zero (to computational precision). The
value of increased from 3.0000 to 3.8200 which, in this case,
is equal to the value of . This reflects the fact that the sum of
the squares of the diagonal elements of was also zero
except in the coefficient-plane of order zero. Since is
paraunitary, the inverse decomposition is given very simply by

. When this computation was car-
ried out, the F-norm of the difference between the result ob-
tained and the original matrix was also zero (to compu-
tational precision). This example is particularly simple in the



MCWHIRTER et al.: AN EVD ALGORITHM FOR PARA-HERMITIAN POLYNOMIAL MATRICES 2163

TABLE I
SUMMARY OF THE SBR2 ALGORITHM

sense that the matrix can be reduced to a scalar matrix
by initially applying two successive delay transformations of
the type specified in (2.11). The problem then reduces to one of
standard Jacobi diagonalization. Note, however, that this “trick”
is not exploited by the SBR2 algorithm which performs a strict
sequence of alternating delay and rotate operations as speci-
fied previously. The sequence of rotations applied during this
process was, not surprisingly, identical to the sequence of rota-
tions computed when applying the Jacobi algorithm to the re-
duced scalar matrix. Despite the simplicity of this example, it
is worth bearing in mind that the same decomposition would be
much more complicated if carried out in the frequency domain.

In the second example, the SBR2 algorithm was applied to
the para-Hermitian matrix

(2.23)

Note that the scalar reduction trick does not apply in this case.
For ease of graphical presentation, all coefficients in this ex-
ample were chosen to be real. A negative value was assigned to
the (3, 3) element so that the constant coefficient matrix is not
positive definite. The trim function defined in (2.20) was applied
to the updated polynomial matrix after each iteration
with . The equivalent, nonsymmetric trim function
was applied to the paraunitary matrix generated in the
process. In this case, the SBR2 algorithm converged as shown
in Fig. 1, reaching a level where in 23 iterations. The
F-norm of the off-diagonal elements of the approximately di-
agonalized polynomial matrix was 1.8 , which is
clearly very small compared to
and also the value of which increased from 1.73 to 2.45.

Fig. 1. Convergence of SBR2 algorithm for the example in (2.23).

The algorithm generated the polynomial matrices (of
order 4) and (of order 6) depicted in Figs. 2 and 3, respec-
tively. When the polynomial matrix was reconstructed by
computing the inverse decomposition , the
F-norm of the error matrix was . The same result was
obtained using only the diagonal component of . Clearly,
for this example, an excellent approximate decomposition can
be achieved using polynomial matrices of very modest order.
It is worth noting that when the computation was performed
without applying the trim function, the algorithm took 37 itera-
tions to converge to the same level. The order of the polynomial
matrix grew to 224 but the vast majority of higher order
terms were either zero, or negligibly small. The corresponding
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Fig. 2. Diagonalized polynomial matrix obtained using SBR2 algorithm for
example in (2.23).

Fig. 3. Paraunitary matrix obtained using SBR2 algorithm for example in
(2.23).

paraunitary matrix was of order 111 and the F-norm of
the reconstruction error matrix was .

III. APPLICATION TO SIGNAL PROCESSING

A. Strong Decorrelation

The SBR2 algorithm was originally developed for the pur-
pose of generating a lossless (stable, all-pass) filter bank to
decorrelate the signals received by a broadband sensor array. As
mentioned in the introduction, strong decorrelation is required
in the case of broadband signals. In other words, the decorre-
lation must be achieved over a suitable range of relative time
delays. Assuming the signals have zero mean, the space-time
covariance matrix is given by

E (3.1)

and we denote the individual elements as

E (3.2)

The cross-spectral density matrix for a given frequency corre-
sponds to evaluating the power series

(3.3)

at a point on the unit circle (where it is assumed to converge). In
general, the received signals are correlated, so will not
be diagonal and hence will not be diagonal.

In practice, an estimate of the cross-spectral density matrix
must be generated from the received data. This is typically given
by a polynomial covariance matrix of the form

(3.4)

where

(3.5)

It is assumed that for . This reflects the
fact that for broadband signals, the space-time correlation func-
tion is negligibly small if is large compared to the coherence
time. In practice, the value of is often measured experimen-
tally. It is assumed that and also that for
values of outside the sample interval . It follows that

, and so the polynomial matrix

is para-Hermitian by construction.
The SBR2 algorithm, as presented in Section II, may be used

to generate a paraunitary matrix s.t.

(3.6)

where is approximately diagonal; more specifically,

(3.7)

The lossless filter represented by is then applied to the
received signals to produce the transformed sequence ac-
cording to

(3.8)

where and denote the algebraic power series

(3.9)

By analogy with (3.3), the transformed cross-spectral density
matrix is given by

(3.10)
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where

E (3.11)

and we denote the individual elements by

E (3.12)

To a good approximation, the signals are strongly decorre-
lated since

(3.13)

and, hence, is estimated by

(3.14)

It follows that is given approximately by

(3.15)

where

E
(3.16)

Note that the paraunitary matrix can be applied to the re-
ceived signals stage by stage during the SBR2 computa-
tion. At the th stage, the elementary paraunitary matrix
contributing to (2.7) may be applied to the transformed signals
produced as a result of the first stages, in order to gen-
erate the output data from stage . This constitutes a sequence
of pairwise delay and rotate operations since each elementary
paraunitary matrix only affects two of the signal channels. Note,
also, that the polynomial covariance matrix in (3.14) is updated
as part of the SBR2 algorithm and does not need to be recom-
puted from the transformed data. The effectiveness of SBR2 as
a technique for strong decorrelation is illustrated by means of
the simulation results in Section IV.

B. Spectral Majorization and Power Compaction

By direct analogy with the narrowband case, the decorrelated
output signals produced by the SBR2 algorithm may be num-
bered in decreasing order of their estimated powers. Noting,
from (3.16), that

E (3.17)

the output signals are ordered such that

(3.18)

This amounts to ordering them in terms of their total estimated
spectral power. Because the cross-spectral density matrix trans-
forms according to (3.13), and the matrix is paraunitary,
it can be shown that

trace trace

trace (3.19)

Setting then reveals the well-known property that the
combined power of the received signals at every frequency is
invariant to a paraunitary transformation [2], and hence that the
total signal power is invariant. A paraunitary transformation can
redistribute the spectral power between channels, but it cannot

increase or decrease it. Without this property, the power of the
output signals would have no physical significance.

We have observed that the SBR2 algorithm has a very
strong tendency to produce spectrally majorized output signals,
thereby compacting the maximum power into the least number
of signal channels [10]. This is exemplified by the results in
Section IV. Two signals and are said to be spectrally
majorized if

(3.20)

In other words, the expected power in is greater than that
in at every frequency. This additional feature of the al-
gorithm is attributed to the fact that it imposes a monotonic in-
crease in, and often maximizes, the value of as defined in
(2.18). is a convex function of the (estimated) output signal
powers and, in the context of orthonormal filterbanks,
Akkarakaran and Vaidyanathan [22] have shown that optimizing
such a cost function corresponds to generating a principal com-
ponent filterbank (PCFB) which ensures both spectral majoriza-
tion and optimal power compaction. Note, however, that there is
no guarantee that the SBR2 algorithm will always maximize
and thereby achieve spectral majorization. In fact it is easy to see
that two signals in nonoverlapping subbands (or two different si-
nusoids), while not spectrally majorized, will be strongly decor-
related from the outset, so the SBR2 algorithm can make no
further improvement. However, situations such as this seem to
represent unstable fixed points for the algorithm; they rarely
occur in practice and can be circumvented by means of very
small perturbations.

IV. COMPUTER SIMULATED RESULTS

We consider a situation in which the signals
emitted from statistically independent broadband sources are
received by an array of sensors (where ) over a convo-
lutive channel. In this case, the received signals may
be represented by a convolutive mixing model of the form

(4.1)

where , and represents
a Gaussian noise process with variance . The convolutive
mixing process may also be written in the form

(4.2)

where , , and again denote algebraic power series
of the form given in (3.9) and

(4.3)

As a result of the mixing process in (4.2), the received sig-
nals will generally be correlated over multiple time lags.
Accordingly, their cross-spectral density matrix, given by

(4.4)
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Fig. 4. Polynomial covariance matrix for three mixed signals generated from
2 i.i.d source signals at 5.3 dB SNR.

will not be diagonal. However, once an estimate of has
been generated according to (3.5), a paraunitary transformation
may be computed using the SBR2 algorithm and applied to the
received signals in order to generate strongly decorrelated
outputs as in (3.6) and (3.8).

In order to demonstrate the effectiveness of the SBR2 algo-
rithm, we first present the results of a simple computer simu-
lation in which it was assumed that and . The
mixing process was represented by a 3 2 polynomial matrix

whose entries comprised order-5 FIR filters with coeffi-
cients drawn randomly from a uniform distribution in the range

. The source signals took the form of independent iden-
tically distributed (i.i.d.) sequences for which each sample was
assigned the value with probability 1/2. Gaussian random
noise was added to each simulated sensor output with ,
which corresponds to a signal-to-noise ratio (SNR) of 5.3 dB.
The SNR for this experiment, is simply given by where

. The number of samples, , used to
estimate the space-time covariance matrix in (3.5) was chosen
to be 1000. The correlation window parameter, , as defined
in (3.4), was set to 10, although 5 would have been sufficient
to reflect the statistics of the data and the order of the mixing
matrix.

The polynomial covariance matrix computed from
the received signals for one specific realization is plotted
in Fig. 4. The SBR2 algorithm was applied to diagonalize this
matrix using the trim function in (2.20) with . As
shown in Fig. 5, the algorithm converged in 68 iterations to a
point where . The value of can be driven
much lower by setting a tighter convergence bound but the ad-
ditional iterations are of no benefit here, due to the levels of
noise and statistical error estimating from 1000 data
samples. The order of the resulting diagonal matrix in this
case was 26. The corresponding paraunitary matrix was
of order 31 and is illustrated in Fig. 6. When the decomposi-
tion was inverted using the computed polynomial matrices
and , the F-norm of the error matrix was 1.2 compared to
a total value of 35.84. The computed matrix was used to

Fig. 5. Convergence of SBR2 algorithm for diagonalization of polynomial co-
variance matrix in Fig. 4.

Fig. 6. Paraunitary matrix produced by SBR2 algorithm to diagonalize poly-
nomial matrix in Fig. 4.

generate transformed signals as indicated in (3.8) and the
polynomial covariance matrix estimated from those sig-
nals was effectively diagonal as shown in Fig. 7. The F-norm of
the off-diagonal elements of this matrix was 1.66 compared to
the total F-norm of 35.31. A more appropriate statistical mea-
sure of the strong decorrelation properties of was de-
rived by computing the expected polynomial covariance ma-
trix which relates to the case
of unit power, i.i.d. signals transmitted over the same convolu-
tive channel in the absence of receiver noise. The F-norm of the
off-diagonal elements of this matrix was found to be 3.82 com-
pared to . This indicates that good strong
decorrelation has been achieved in the true statistical sense.

It is evident from Fig. 7 that the SBR2 algorithm has con-
centrated most of the output power into and most of the
remaining power into . Furthermore, the power of is
comparable to the receiver noise power given by . The power
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Fig. 7. Polynomial covariance matrix for the three transformed signals pro-
duced using paraunitary matrix in Fig. 6.

compaction properties of can also be judged more reli-
ably from the expected polynomial covariance matrix as defined
above. This reveals that , , and

demonstrating that the algorithm has achieved a
very effective broadband subspace decomposition whereby al-
most all of the i.i.d. signal power is confined to the first two
output channels. The power spectral density of the output sig-
nals is shown in Fig. 8(b) which demonstrates that approx-
imate spectral majorization has also been achieved. The cor-
responding plots for the mixed signals prior to applying
SBR2 are shown for comparison in Fig. 8(a).

In order to demonstrate how the SBR2 algorithm handles
larger scale problems, the computer simulation described above
was repeated for the case of five i.i.d. signals and ten sensors
( , ) using the same criterion for convergence and
the same SNR (5.3 dB). When the resulting polynomial covari-
ance matrix , of dimension 10 10, was diagonalized
using SBR2 with the same trim factor , the algo-
rithm converged in 616 iterations to achieve very good strong
decorrelation as shown in Fig. 9. This increase in the number
of iterations, by approximately one order of magnitude, is con-
sistent with the number of polynomial matrix elements , in-
creasing from 9 to 100. In this case, the computed polynomial
matrices and were of order 34 and 65, respectively.

V. COMMENTS AND CONCLUSION

In this paper, we have presented the SBR2 algorithm for
computing the EVD of a para-Hermitian polynomial matrix.
It constitutes a novel generalization of the classical Jacobi
algorithm for computing the EVD of conventional Hermitian
matrices and has been shown to converge after sufficient it-
erations. An alternative version, based on the cyclic-by-rows
Jacobi algorithm [13], has also been developed but was found
to offer little advantage in most circumstances. The SBR2 algo-
rithm can also be used to compute the SVD of a more general
polynomial matrix representing, for example, the convolutive
mixing process inherent in a MIMO communication channel.
By analogy with the case of conventional matrices, the SVD of
a general polynomial matrix may be derived by carrying

(a)

(b)

Fig. 8. (a) Power spectral densities of the three mixed signals associated with
Fig. 4. (b) Power spectral densities of the three transformed signals associated
with Fig. 7. Solid line: output 1; Broken line: output 2; Dashed line: output 3.

out the EVD of the para-Hermitian matrices (to
obtain the left hand polynomial singular vectors) or
(to obtain the right hand polynomial singular vectors). This
technique has been used successfully to design orthogonal
space-time channels for optimal data transmission over a simu-
lated MIMO channel and the results will be reported in a future
publication.

In principle, the concept of an elementary paraunitary ma-
trix as introduced in this paper, could be used to generalize
other, more sophisticated, EVD or SVD algorithms for applica-
tion to polynomial matrices. An obvious objective is to develop
an algorithm for direct computation of the polynomial matrix
SVD without forming the products or as
suggested above. Elementary paraunitary transformations could
also be used to generate polynomial matrix versions of other
important numerical procedures such as the QR decomposition,
which is often used in narrowband array processing. Significant
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Fig. 9. Convergence of SBR2 algorithm in the case of ten mixed signals gen-
erated from five i.i.d. source signals at 5.3 dB SNR.

progress has been made on this topic but further discussion is
beyond the scope of this paper.

In this paper, we have only attempted to indicate the relevance
of the SBR2 algorithm to signal processing in the context of
strong decorrelation and energy compaction. However, it could
have as wide a range of applications for convolutive (broad-
band) sensor array signal processing as the conventional EVD
or SVD algorithm does for instantaneous (narrowband) sensor
array signal processing. It has already been applied successfully
to data obtained from real sensor arrays in a number of appli-
cation areas including sonar and seismology. However, discus-
sion of the specific applications and results is beyond the scope
of this paper. It has also been adopted successfully by other re-
searchers for the purpose of designing oversampled filterbanks
for channel coding [23] and for second order blind signal sep-
aration, applied to polarized signals from a three-axis seismic
sensor array using quaternion (hypercomplex) arithmetic [24].

In conclusion, the purpose of this paper was to outline a novel
technique based on some highly original ideas which seem to
have great potential for sensor array signal processing. By virtue
of its novelty, the paper raises numerous interesting and impor-
tant questions which require more detailed theoretical research.
For example: can a stronger proof of convergence be obtained
for SBR2? Could a suitably modified cost function lead to an
alternative algorithm with stronger convergence? Under what
circumstances can a good decomposition be guaranteed using
polynomial matrices of reasonable order? Can other algorithms
from numerical linear algebra be extended to polynomial ma-
trices in this way? The authors hope that this paper will stimu-
late other researchers to address some of these questions or, at
least, try the SBR2 technique for themselves.
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