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Polynomial EVD of Parahermitian Matrices
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Abstract—For parahermitian polynomialmatrices, which can be
used, for example, to characterize space-time covariance in broad-
band array processing, the conventional eigenvalue decomposition
(EVD) can be generalized to a polynomial matrix EVD (PEVD).
In this paper, a new iterative PEVD algorithm based on sequen-
tial matrix diagonalization (SMD) is introduced. At every step the
SMD algorithm shifts the dominant column or row of the polyno-
mial matrix to the zero lag position and eliminates the resulting in-
stantaneous correlation. A proof of convergence is provided, and
it is demonstrated that SMD establishes diagonalization faster and
with lower order operations than existing PEVD algorithms.

Index Terms—MIMO systems, parahermitian matrix, parauni-
tary matrix, polynomial matrix eigenvalue decomposition.

I. INTRODUCTION

T HE eigenvalue decomposition (EVD) of conventional
Hermitian matrices plays a central role in DSP, with

applications as diverse as principle component analysis, the
identification of signal subspaces, and blind signal separation.
For some applications, such as MIMO channel decompositions,
the singular value decomposition (SVD) is required, but we
note that this can always be obtained by means of two EVDs.
The EVD is also at the heart of the Karhunen-Loeve transform
(KLT) for optimal data compression [1]. These “classical” EVD
applications are well suited to narrowband signal processing,
where matrices only consist of complex gain factors, or cor-
relations are sufficiently defined by instantaneous covariance
matrices.
When addressing broadband signal processing problems, the

consideration of only instantaneous correlation is suboptimal if
not entirely inappropriate. In the case of a broadband sensor
array, for example, information relating to the angle-of-arrival
is embedded in the relative time delay of each signal rather than
a simple phase shift as in the narrowband case.
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A rather obvious approach to decorrelating the broadband
sensor signals is to use the independent frequency bin (IFB)
method, which splits the broadband spectrum into a number
of narrow frequency bands via the discrete Fourier transform
(DFT); the narrowband data is then processed using the EVD/
SVD. This scheme is also used to achieve spatial multiplexing
in wireless communications [2]. However, drawbacks with this
method are that correlations and phase-coherence between fre-
quency bands are ignored [3].
If the broadband nature of signals is to be accommodated

directly, the relative delays must be carried forward - ideally
through space-time covariance matrices, where each entry is not
just a single correlation coefficient but an entire auto- or cross-
correlation sequence. The corresponding cross-spectral density
(CSD) matrix therefore has Laurent polynomial elements and
takes the form of a polynomial matrix [4], [5]. The subopti-
mality of the EVD in broadband situations is then reflected in its
inability to diagonalize such a polynomial matrix at more than
one time lag.
Generalization of the EVD to polynomial covariance ma-

trices leads to a polynomial EVD (PEVD), which transforms a
parahermitian (PH) matrix into a diagonal polynomial matrix by
means of paraunitary (PU) matrices or lossless filter banks [6].
The PH and PU properties are generalizations of Hermitian and
unitary matrix characteristics to the polynomial case, and will
be formally defined later. The existence of such a decomposi-
tion is not theoretically guaranteed, although suggestions have
been made that any PH matrix can be decomposed with PU ma-
trices of sufficiently high order [7].
Various broadband signal processing tasks can be realized

with the help of the PEVD. Its ability to provide a broadband
signal subspace decomposition has been exploited for the sep-
aration of signals from convolutive mixtures. The use of filter-
bank based channel coding as a generalization of block coding
uses a generator polynomial matrix to span the code subspace,
with its complement used as a polynomial parity check ma-
trix to produce a syndrome in the noise-only subspace [8]; here
the PEVD’s identification of subspaces can yield simple de-
signs [9], [10]. In MIMO communications the PEVD can pro-
vide designs for linear [11]–[13] and non-linear [14], [15] pre-
coders and equalizers, extending the EVD’s narrowband opti-
mality [16] to the broadband case. The subspace decomposition
afforded by the PEVD has also been utilized to generalize the
MUSIC algorithm to the case of broadband angle of arrival es-
timation [17], while the strong decorrelation property has been
exploited in pre-processing for broadband beamforming struc-
tures [18] and has enabled the design of optimal subband coders
[19], [20].
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For the calculation of the PEVD, only very limited ideal cases
permit an exact decomposition so in general, PEVD algorithms
have to rely on iterative approaches. An iterative gradient-based
method to diagonalise a PH matrix by means of PU factoriza-
tion is presented in [21], but is limited to 2 2 PH matrices
with a specific structure found in subband coding. Calculation
of a PEVD in the DFT domain is performed in [22], whereby the
order of the PU filter banks must be strictly limited. This fixed
order constraint also applies to a recent DFT-domain approach
in [23], but its relaxation of the spectral majorization and parau-
nitary properties do not necessarily lead to a PEVD as defined in
[6], [19]. A fixed order approximate PEVD (AEVD) algorithm
operating in the time domain was proposed in [24]. It applies
a succession of first-order elementary PU filter stages but does
not necessarily lead to a good approximation.
A family of iterative PEVD algorithms based on the second

order sequential best rotation (SBR2) approach was proposed
previously [6]. In every iteration, SBR2 eliminates the off-diag-
onal element with maximummagnitude (or the dominant off-di-
agonal element) of a PH matrix by means of a PU operation.
The PU operation is not order-constrained, as in the AEVD, and
applies a delay such that the dominant off-diagonal element is
transferred onto the zero-lagmatrix. A Jacobi rotation then elim-
inates that element and transfers its energy onto the main diag-
onal. Because this rotation is applied across all lags, some diag-
onalization efforts of previous steps will be undone; however,
because the dominant off-diagonal element is always targeted,
the algorithm has been proven to converge to a good approxi-
mate PEVD [6], [20], [25].
In performing a delay operation, SBR2-based algorithms

move an entire row and column of the CSD matrix into the
zero-lag matrix, where the Jacobi rotation will only eliminate
the maximum element. In this paper, we propose and inves-
tigate the idea of sequential matrix diagonalisation (SMD)
algorithms, which will not only transfer the energy of the max-
imum element but an entire row and column onto the diagonal,
thereby diagonalizing the zero-lag matrix at every iteration.
Based on an initial version in [25], below we derive an SMD
algorithm which maximizes the energy that is transferred per
column in every step, accompanied by a maximum-element
SMD (ME-SMD) version, which also diagonalizes the zero-lag
matrix at every step but provides a simpler search strategy for a
less effective parameter set. The advantages and contributions
of the proposed method include:
1) The residual off-diagonal energy is reduced due to tar-
geting the dominant column instead of only the largest
off-diagonal element as in the case of SBR2 and applying
an ordered EVD on each iteration instead of the Jacobi
transformation used by SBR2;

2) The matrix diagonalisation is achieved using lower order
PU matrices. This is highly beneficial for a number of ap-
plications, including angle-of-arrival estimation and mul-
tichannel coding.

The paper is organized as follows. Section II provides nota-
tions and definitions used in the remainder of the paper. Iter-
ative PEVD algorithms based on the idea of sequential matrix
diagonalisation are introduced in Section III. Based on a mixing
model in Section IV, which defines a known ground truth for the
PEVD, simulations and results are presented in Section V. Fi-
nally, conclusions are drawn in Section VI.

II. NOTATIONS AND DEFINITIONS

Given a vector of measurements dependent on
discrete time index and with mean , the space-
time covariance matrix

(1)

measures the correlation corresponding to lag , where rep-
resents the expectation operator. Auto-correlation functions of
the measurements in reside along the main diagonal of

, while cross-correlation terms between the different en-
tries of form the off-diagonal terms. Note that due to the
definition in (1), , where denotes Hermi-
tian transpose.
The CSD matrix is obtained by z-transformation of (1),

(2)

where the relationship between time domain and transform do-
main quantities is abbreviated below as . The
support of is , such that . Note
that dependency on a discrete variable is expressed by square
brackets, while dependency on a continuous variable is indi-
cated by round brackets. The quantity forms a polynomial
matrix, or a polynomial with matrix-valued coefficients [4], [5],
which is parahermitian (PH), i.e., .
Polynomial matrices are denoted by their dependency on , and
by their uppercase boldface slanted notation. The superscript

for a polynomial matrix is taken to mean the Hermitian
transpose of all polynomial coefficient matrices, while the PH
operator implies a Hermitian transpose of each coefficient
matrix and a replacement of by , i.e., a Hermitian trans-
position and time-reversal of the corresponding time domain
quantity.
For a PH , the polynomial EVD (PEVD) [6] takes the

form

(3)

with a diagonal , accomplished by means of decou-
pling by a paraunitary (PU) . The diagonalized

is polynomial, containing on its
diagonal the power spectral densities (PSD) of the strongly
decorrelated signals

(4)

where is of order . Strong decorrelation [19]
implies that the elements , of are mu-
tually decorrelated at all lags, such that

with arbitrary but fulfilling the nec-
essary properties of an autocorrelation sequence. The approx-
imation sign in (3) indicates that a PEVD decomposition with
PU matrices containing only FIR components does not
necessarily exist. However it has been shown that a very close
approximation should be possible by letting the filter order grow
arbitrarily large [7].
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Diagonalisation in (3), or equivalently strong decorrelation in
(4), means that

(5)

Additionally, akin to an ordered EVD [26] with eigen-
values in descending order, the PSDs

, should be arranged such
that at every normalized angular frequency value

(6)

The property defined by (6) is referred to as spectral majoriza-
tion [19].
Paraunitarity of a matrix means that

[5], implementing a lossless filter bank that
conserves energy. As a result, for an arbitrary with finite
energy, in (4), , where is the
-norm of a vector. Note that signal powers of elements of
can be found on the main diagonal of , which below is
referred to as the lag-zero matrix of , such that

(7)

where and is the trace operator.

III. PEVD VIA POLYNOMIAL MATRIX DIAGONALISATION

A. Sequential Matrix Diagonalisation Algorithm

To compute the PEVD iteratively, the SMD algorithm at
each step eliminates the dominant off-diagonal column (row)
entirely, transferring the squared norm of its off-diagonal
elements (off-diagonal energy) onto the main diagonal of the
lag-zero coefficient matrix. The dominant off-diagonal column
is defined as the one for which this value is greatest. Operating
on a CSD matrix , the SMD algorithm starts with a diago-
nalisation of the lag-zero coefficient matrix by means of
its modal matrix i.e., . Note
that although the calculation of is only based on the EVD
of the lag-zero slice , it is subsequently applied to the
coefficient matrices . This initial step corresponds to
the instantaneous decorrelation of any underlying time series
corresponding to .
In the th step, , the SMD algorithm calculates

a transformation of the form

(8)

in which

(9)

The product in (9) consists of an elementary PU delay matrix

(10)

and a unitary matrix , with the result that in (9) is
PU by construction. It is convenient for subsequent discussion
to define an intermediate variable where

(11)

and

(12)

The selection of and in the th iteration depends
on the position of the dominant off-diagonal column (row) in

, as identified by the parameter set

(13)

where

(14)

represents the element in the th row and th column
of while the hat symbol in (14) signifies that the diag-
onal element has been omitted from the regular column norm.
The focus on columns does not restrict the generality of the al-

gorithm, since the PH property of ensures that the set
identified in (13) also represents the dominant row i.e., the th
row at lag . Due to its PH-symmetric form, the shifting
process in (11) moves both the dominant off-diagonal row and
the dominant off-diagonal column into the zero-lag coefficient
matrix and so the modified norm in (14) serves to measure the
total energy moved into the zero-lag matrix .
Since the lag-zero matrix of

is diagonal, the same
property can be imposed on by means of the similarity
transform in (12) provided is chosen to be the modal
matrix obtained from an ordered EVD of .
The iterative process continues for steps, say, until

is sufficiently diagonalized with the dominant off-diagonal
column (row) norm

(15)

where the value of is chosen to be arbitrarily small. This com-
pletes the SMD algorithm and generates an approximate PEVD
given by

(16)

with the PU matrix given by

(17)

To show that the SMD algorithm outlined above performs an
approximate PEVD, we state the following theorem:
Theorem 1 (Convergence of the SMD Algorithm): With a

sufficiently large number of iterations , the sequential diag-
onalisation algorithm approximately diagonalizes and de-
creases the power in off-diagonal elements to an arbitrarily low
threshold .

Proof: To prove Theorem 1, a number of norms need to be
defined:

(18)
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(19)

(20)

(21)

where denotes Frobenius norm and is the th
diagonal element of . Note that is invariant under
a delay matrix as in (11), i.e.,

(22)

and that is invariant under a unitary operation, i.e.,

(23)

Further, is invariant under the application of a PU
such that

(24)

The off-diagonal norm of the th column at lag is given
by

(25)

With step (11), this energy is transferred onto both the th
column and th row of the lag zero slice , such that its
total off-diagonal energy is

(26)

In the following rotation step with , this energy is trans-
ferred onto the main diagonal such that and
therefore

(27)

exploiting (22), while the overall energy, , remains
constant.
Due to (27), increases monotonically with iter-

ation index . Because is invariant over iterations
due to (24) and forms an upper bound

(28)

must have a supremum ,

(29)

It follows that for any there must be an iteration number
for which and so the increase

, at any subsequent stage must satisfy

(30)

Hence, for any , there must be an iteration by which
is bounded by .

Note that while monotonically increases with
the iteration index, the value of in the SMD algorithm does
not necessarily decrease monotonically. Each similarity trans-
formation is computed with reference to elements of the lag
zero slice , and is guaranteed to increase by
driving the dominant column vector to zero. However, non-zero
lag elements of the polynomial matrix , where the same
unitary matrix is being applied, can increase the norm of a mod-
ified column , while reducing the sum of the squares
of the diagonal elements. As a result, at the next iteration
could be larger than .
The SMD algorithm does not seek to reduce the on-diagonal

coefficients for non-zero values of , let alone drive them to
zero. In the context of strong decorrelation, this would corre-
spond to temporal whitening of the decorrelated signals, which
is often highly undesirable and cannot occur as the result of a PU
transformation due to the fact that the total PSD is preserved.
It is important to realize that the order of the PU matrices will

grow due to the shift operations which are applied. The order
necessary to achieve an approximate decomposition cannot be
determined prior to applying the SMD algorithm and much of
the growth in order which occurs in practice involves coeffi-
cient matrices with negligibly small elements. The use of an ap-
propriate truncation procedure, as described in [6] for SBR2, is
strongly recommended to curtail unnecessary growth in order.

B. Maximum Element SMD (ME-SMD) Algorithm

This section addresses a lower-cost approximation of the
SMD algorithm with respect to the search strategy in each
iteration step, compared to the SMD algorithm proposed in
Section III.A. The SMD algorithm’s search for the maximum
norm of modified columns is replaced by the search for the
dominant off-diagonal element, hence the term maximum ele-
ment SMD (ME-SMD) algorithm. While the search is similar
to SBR2, the entire shifted column in the lag zero matrix will
subsequently be eliminated in SMD fashion.
The modified search strategy can be expressed by replacing

the norm in (14) by the norm, such that the search for the
optimum parameter set performed at every iteration becomes

(31)

This parameter may differ from the one determined by the SMD
algorithm, since the maximum element targeted by (31) is not
necessarily contained in the column with the maximum norm as
found by the SMD algorithm according to (13).
Thus, the element search in the th step is more akin to the

SBR2 algorithm, which also picks the largest off-diagonal ele-
ment. However, in the subsequent rotation step, ME-SMD di-
agonalizes , whereas SBR2 only eliminates the domi-
nant off-diagonal element of . The convergence of the
ME-SMD algorithms is covered by the following theorem:
Theorem 2 (Convergence of the ME-SMD Algorithm): With

a sufficiently large number of iterations , the ME-SMD algo-
rithm approximately diagonalizes and decreases the power
in off-diagonal elements to an arbitrarily low threshold .

Proof: The proof is based on the fact that in each itera-
tion, the ME-SMD algorithm transfers at least as much energy
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Fig. 1. Source model of independent Gaussian sources with innovation fil-
ters and convolutive mixing matrix leading to observa-
tions , followed by a PU processor with the aim to generate strongly
decorrelated outputs .

as SBR2 onto the main diagonal of . Therefore, the on-di-
agonal energy grows monotonically and at least as fast as for
SBR2. Following on from the proof of convergence for SBR2
in [6], the ME-SMD algorithm also converges.

IV. MULTICHANNEL CONVOLUTIVE MIXING MODEL

A. Source Model

The model for a convolutive mixing system is depicted in
Fig. 1. The first stage of this model consists of mutually uncor-
related stochastic processes , which emerge
from innovation filters of order . These innovation
filters are excited by uncorrelated, zero mean unit variance com-
plex Gaussian processes , such that the cross-
correlation

(32)

The individual PSDs of the signals are therefore

with the Fourier transform of the th
innovation filter. This innovation model is fairly general, but
excludes the generation of signals with line spectra [1].
The source vector , obtained by arranging the

source signals , has a diagonal space-time
covariance and PSD matrix

, due to (32). With forming the inputs
to a convolutive mixing matrix of
order , its outputs are organized in a
vector , with covariance and
CSD matrix

(33)

which is entirely based on the innovation filters
, and the convolutive mixing matrix in Fig. 1.

B. Optimum Decomposition

In order to know the ground truth for the optimum PEVD
of in (33), two conditions are imposed on the realization
of the model in Fig. 1 w.r.t. the simulations and results to be
presented in Section V:
1) the PSDs of source signals , are spectrally
majorized; and

2) the convolutive mixing matrix is a PU system.

The spectral majorization helps with some of the metrics to
be defined in Section V, and does not restrict our analysis. The
paraunitarity of is an idealizing assumption; however, sug-
gestions in [7] that any PH matrix can be decomposed into
a PEVD with PU matrices of sufficient order means that the
source model implementation below is restricted only by lim-
iting the order but not the PU property of the mixing matrix.
With the above selection, can be decomposed

into a PEVD with equality in (3) by using the PU matrix
. When applied as in Fig. 1 with the outputs

organized in a vector , this leads to a diagonalized
, which is spectrally

majorized according to (6) such that the diagonal elements

(34)

i.e., the upper part of matches , with the remaining
diagonal entries being zero.

C. Spectrally Majorized Innovation Filters

With moving average (MA) models
of order , spectral majorization requires

. Starting with unma-
jorized filters characterized by an arbitrary unit-norm
coefficient vector and setting , gain
factors can be found such that ,
satisfy spectral majorization. The dynamic PSD range of this
basic model can be adjusted with the parameter set .

D. Paraunitary Mixing Matrix

Arbitrary PU matrices of a defined order
can be generated, following a proof in [5], using a concate-

nation of a unitary and arbitrary PU first order
components

(35)

(36)

based on random unit-norm vectors .

V. SIMULATIONS AND RESULTS

A. Performance Metrics

Two metrics are defined below, which are normalized such
that they can be consistently applied and averaged across en-
sembles of simulations. It is assumed that the decomposition
of as defined for the source model in (33) is decomposed
according to Section III, where represents the diagonal-
isation effort at the th iteration according to (12).
1) Normalized Off-Diagonal Energy: The SMD algorithms

minimize the energy residing in the off-diagonal elements of
a PH matrix. The off-diagonal energy that remains at the th
iteration is

(37)
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where the modified vector and its norm are defined in
(14). This can be normalized by the total energy,

, recalling the invariance of the norm under
PU operations, such that

(38)

The logarithmic metric takes into account that
covariance matrices already contain quadratic terms.
2) Normalized Coding Gain: Based on the powers of the

signals in Fig. 1, the coding gain, which for its maxi-
mization requires diagonalisation and spectral majorization of

[19], is measured as the ratio of arithmetic and geometric
mean of channel variances. At the th iteration, this variance is

for the th channel, such that the coding gain is

(39)

Note that the trace

(40)

forming the numerator of (39), is invariant under PU operations.
The optimum coding gain is achieved if fulfils (34),

therefore defining the optimum coding gain

(41)

in dependency of the innovation filter coefficient vectors ,
whereby . In (41), it is assumed that

to avoid . With (41) and (39), the normal-
ized coding gain

(42)

arises, such that serves as a measure of how
well the approximate PEVD algorithms perform independently
of any specific source model.

B. Simulation Scenario

The scenario considered here is for independent
sources and sensors. The order of the innovation fil-
ters and PU mixing matrices are and , respec-
tively. This leads to an 8 8 CSD matrix of order
, such that the corresponding space-time covariance matrix

. Results are averaged across an ensemble
of randomly generated source models whose dynamic range
is limited to realistic values of around 30 dB.

C. Convergence Comparison

The evolution of off-diagonal energy over the iteration
steps of the various algorithms is shown in Fig. 2. We see that
the ensemble medians for SMD-type algorithms

Fig. 2. Ensemble medians for normalized off-diagonal energy ac-
cording to (38), and confidence intervals containing 90% of the ensemble
probes.

converge significantly faster than for SBR2 [6] and SBR2C
[20]—the convergence curves are separated by several standard
deviations of the ensemble, as evidenced by the confidence
intervals within which 90% of the ensemble results fall. This
gain is due to the enhanced transfer of off-diagonal energy in
every step.
Fig. 2 shows that the two algorithm groups (SMD and SBR2)

indeed behave quite differently. Of the SMD algorithms,
ME-SMD, with its slightly reduced cost, initially converges
slower, but attains a better convergence at higher iteration
steps, with very similar ensemble distributions according to
quartiles and 5th percentiles. Of the SBR2 algorithms, SBR2
minimizes the dominant off-diagonal element at every step, and
so performs better than SBR2C, which optimizes the coding
gain instead.
The normalized coding gain for algorithms operating on

the ensemble for the scenario are characterized in Fig. 3.
Ultimately, all algorithms asymptotically approach a normal-
ized coding gain of unity. Interestingly, the proposed SMD
algorithms converge significantly faster than SBR2C [20].
Notice that the performance of SBR2 and SBR2C reverses
when considering the ensemble average normalized coding
gain, since this metric matches the cost function optimized by
SBR2C [20].

D. Spectral Majorization

Spectral majorization, unlike diagonalisation, was not proven
for the iterative PEVD algorithms in [6], [20] and Section III,
but is targeted by the way off-diagonal energy is transferred
at every iteration step. Fig. 4 shows the on-diagonal PSDs of

for the various algorithms after iteration steps
when applied to a single ensemble probe of the scenario. For
simplicity of the graphs, only the first four of the eight channels
are shown, with the ground truth underlaid in grey. Results from
both SMD and ME-SMD are spectrally majorized, with devia-
tions from the ground truth spectrum only for low-power bands.



REDIF et al.: SEQUENTIAL MATRIX DIAGONALIZATION ALGORITHMS 87

Fig. 3. Ensemble average of the normalized coding gain according to
(42) versus iteration index for the scenario considered.

In comparison, SBR2 and SBR2C have not fully achieved spec-
tral majorization yet and show some deviations even for higher
powered bands.
The PSDs of diagonal elements of after it-

erations are shown in Fig. 5. Most algorithms have converged to
a spectrally majorized solution that closely matches the ground
truth, shown by the spectrum underlaid in grey. Notice that, for
ME-SMD, SBR2 and SBR2C, the lowest subbands are not spec-
trally majorized in Figs. 5(b), (c) and (d), respectively. In con-
trast, the SMD algorithm produces PSDs that satisfy the spectral
majorization property.

E. Computational Complexity

To assess the complexity of calculating the above decom-
positions for the given scenario, the ensemble-averaged nor-
malized off-diagonal power is shown versus the elapsed
system time in Fig. 6. The ensemble was simulated on a
cluster of desktop personal computers each with Intel Dual-Core
3.20 GHz processor and 4 GB RAM. This graph is obtained
by recording both normalized off-diagonal energy and
elapsed system time as a function of the iteration index ,
which then permits to relate to .
It is evident that the SMD type algorithms have a consid-

erably higher computational complexity than the SBR2-family
counterparts, which is due to the necessity to apply a full uni-
tary matrix for every lag of rather than just a simple
Givens rotation in the case of SBR2, which never involves the
processing of more than two rows and columns. The extra cost
of the SMD algorithms goes towards unlocking performance re-
gions in terms of reduction of that are inaccessible to
SBR2-type algorithms.
The ME-SMD algorithm has been motivated in Section III.B

as an alternative to SMD with a somewhat reduced cost. In
Fig. 6(a) this reduction is not directly evident; in parts this may
be as the implementations are not optimized w.r.t. the simula-
tion environment or processor platform. Another reason why
ME-SMD does not show a consistent reduction in complexity
of SMD can be justified from the order of the extracted PU filter
banks, which will be discussed next.

Fig. 4. PSDs of the first four on-diagonal polynomials of after 50
iterations with (a) SMD, (b) ME-SMD, (c) SBR2 [6] and (d) SBR2C [20], ap-
plied to an ensemble probe of the specified scenario, with ideal PSDs underlaid
in light shading.

F. Application Cost

Once calculated, the cost of applying the decompositions
reached by different algorithms relates directly to the order of
the extracted PU matrix that, for example, can be applied
as the processor in Fig. 1. Therefore, ensemble medians for
the normalized off-diagonal energy versus the order of
the PU filter banks required to achieve this decomposition are
shown in Fig. 6(b). The curves are obtained by recording the
PU matrix order at each iteration , which is then related to the
corresponding normalized off-diagonal energy . Note the
high orders observed for the PU filter banks, which is due to
the high order of the CSD matrix to be decomposed.
The SMD algorithms offer a consistently lower cost for

applying the PU matrix compared to the SBR2 family of
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Fig. 5. PSDs of on-diagonal polynomials of after 200 iterations with
(a) SMD, (b) ME-SMD, (c) SBR2 [6] and (d) SBR2C [20], applied to an en-
semble probe of the scenario considered, with ideal PSDs underlaid in light
shading.

algorithms. Particularly for suppression of off-diagonal energy
below dB, SMD algorithms attain this performance with
a reasonable order compared to SBR2-type algorithms, which
are unable to reach this performance region. Comparing SMD
and ME-SMD algorithms, the ME-SMD version requires on
average a slightly higher order, which in turn means a higher
complexity per iteration step, as a unitary matrix has to be
applied at every lag of .

VI. CONCLUSION

Different from previous iterative PEVD algorithms, which
only eliminate the maximum (SBR2) or normalized maximum
(SBR2C) off-diagonal element at every iteration step, we have
proposed a new class of algorithms, termed sequential matrix

Fig. 6. Ensemble median normalized off-diagonal energy versus (a)
ensemble median elapsed system time and (b) PU filter bank order.

diagonalisation (SMD), that clears all off-diagonals of the
zero-lag matrix. As a result, more energy is transferred onto
the main diagonal per iteration, leading to a significantly faster
convergence in terms of normalized off-diagonal energy.
However, since the unitary matrix that re-diagonalizes the

zero-lag matrix is no longer sparse, its application to matrices
at all lags significantly increases complexity. Without any im-
plementation tricks, the algorithm is significantly more complex
than the SBR2 family. However, two interesting and important
advantages of the SMD algorithms have been demonstrated:
1) SMD algorithms can, within a reasonable number of itera-
tion steps, attain a suppression of off-diagonal energy that
previous algorithms were not capable of delivering;

2) as simulations have demonstrated, SMD-based decompo-
sitions are achieved with significantly shorter paraunitary
filter banks, which are less costly to apply.

In terms of applications, these advantages are expected to bring
a significant impact to subspace-based methods such as [17],
[18], where enhanced diagonalisation will achieve a better sep-
aration of subspaces, while subspace projections, such as for the
generator and parity check polynomial matrices in [10], can be
performed with lower order paraunitary filters at reduced com-
putational cost.
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