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A B S T R A C T

The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue decomposition (EVD) to
polynomial matrices. The purpose of this article is to provide a review of the theoretical foundations of the
PEVD and to highlight practical applications in the area of broadband blind source separation (BSS). Based on
basic definitions of polynomial matrix terminology such as parahermitian and paraunitary matrices, strong
decorrelation and spectral majorisation, the PEVD and its theoretical foundations will be briefly outlined. The
paper then focuses on the applicability of the PEVD and broadband subspace techniques — enabled by the
diagonalisation and spectral majorisation capabilities of PEVD algorithms — to define broadband BSS solutions
that generalise well-known narrowband techniques based on the EVD. This is achieved through the analysis of
new results from three exemplar broadband BSS applications — underwater acoustics, radar clutter
suppression, and domain-weighted broadband beamforming — and their comparison with classical broadband
methods.

1. Introduction

Over the last decade, algorithms that extend the eigenvalue
decomposition (EVD) to the realm of polynomial matrices have had a
growing impact on signal processing theory and practice, mainly
because they can be used to solve generalisations of narrowband
problems typically addressed by the EVD, including subspace decom-
position. The extension of EVD to parahermitian (PH) polynomial
matrices, referred to as polynomial matrix EVD (PEVD), gives an
immediate broadband generalisation of the concepts of signal and
noise subspaces, and hence subspace decompositions. Just as principal
component analysis (PCA) based on the EVD is fundamental to most
narrowband BSS formulations, the PEVD can be a powerful tool for
broadband or convolutive blind source separation (BSS).

The classical approach to narrowband BSS begins by exploiting
second-order statistics to generate uncorrelated sequences from nar-
rowband, instantaneously mixed signals by performing principal
component analysis (PCA) [1,2]. PCA is usually obtained through
matrix factorisation by means of a unitary matrix decomposition, such
as the singular value (SVD) or eigenvalue decomposition (EVD) [3,4].
To complete the BSS process, a “hidden” rotation matrix is determined
via on higher-order statistics (HOS), which permutes entries to achieve

spectral coherence across frequency bins. With little or no prior
knowledge and minimal assumptions, a BSS method can often be used
to extract a wanted signal from among interference signals. However,
the wanted signal is in no way accentuated by these underlying
assumptions.

Incorporation of a priori knowledge of the signals into the BSS
problem can be formulated in the framework of signal decompositions
and matrix factorisations, and address statistical dependence, periodi-
city, spectral shape, time coherence or smoothness [5–8]. The goal
often is to estimate a reduced coordinate space, which provides a more
accurate physical representation of the sources or mixing parameters.

The above signal decompositions are based on an instantaneous
mixing model, where the propagation of signals from sources to the
array is modelled as a scalar mixing matrix. However, in many
important applications such as broadband array processing, convolu-
tive mixing — or a matrix of finite impulse response (FIR) filters —
must be used instead. The transfer function of such a matrix of FIR
filters forms a polynomial matrix, which can accurately model effects
such as multipath propagation, or the lag-dependent correlation
between different broadband sensor signals. SVD- or EVD-based
decompositions generally can only decorrelate instantaneously, i.e.,
only for zero lag. Following convolutive mixing, strong decorrelation
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[9] eliminates correlation for all lag values, and can be achieved using a
well-designed matrix of FIR filters.

In the past, broadband BSS has been addressed by performing
narrowband BSS at each frequency bin simultaneously, through
application of the discrete Fourier transform (DFT) — commonly
referred to as independent frequency bin (IFB) processing. However,
coherence restoration is required after BSS via permutation matrices
applied in every bin [10,11]. An alternative is to adopt coherent signal
subspace-related methods, which generally require some prior knowl-
edge of signals, such as direction and fractional bandwidth, to
coherently combine covariance matrices across different bins in order
to create an approximately narrowband problem [12–14].

The formulation and decomposition of polynomial matrices pre-
sents an alternative to these classical broadband BSS approaches.
Polynomial matrices have been used for many years, e.g., in the area of
control [15] or broadband subspace decomposition and adaptive
sensor arrays [16–18]. Various polynomial matrix factorisations have
been addressed, such as the Smith–Macmillan form [19], or poly-
nomial matrix factors that are paraunitary (PU) or lossless [20–33].
Typically, the filter is chosen to optimise a specific objective function
for a known input power spectral density (PSD), such as coding gain
[9,20,23,31,32] for subband coding.

The space–time covariance matrix derived from broadband sensor
data includes auto- and cross-correlation terms, whose symmetries
create the specific form of a parahermitian (PH) polynomial matrix.
The PEVD of such a PH matrix was proposed in [16,25,26], and leads
to a factorisation where a diagonal PH matrix containing the poly-
nomial eigenvalues is pre- and post-multiplied by a PU matrix, or
lossless, filter bank. The existence of such a factorisation based on FIR
PU matrices is not ascertained [19], but suggested that it exists at least
in good approximation [34].

The polynomial eigenvalues of a PEVD represent the power spectral
densities of the strongly decorrelated signals. Depending on the PEVD
algorithm (discussed below), the eigenvalues can be ordered akin to the
singular values of the SVD at every frequency. The ordering of the
spectra in this way is called spectral majorisation [9,26], and is useful
in a number of applications.

An initial iterative scheme to approximate the PEVD, the second
order sequential best rotation (SBR2) algorithm [26], has triggered
similar or related efforts [28–33,35–40]. SBR2 has been proven to
converge [26,31], and found to approximate the ideal PEVD very
closely [34]. A coding-gain based version of SBR2 (SBR2C) was shown
to offer improved convergence in [31].

More recently, the sequential matrix decomposition (SMD) and
maximum-element (ME-SMD) algorithms [33] have shown superior
convergence due to their advanced energy transfer ability, as compared
to other iterative algorithms. The multiple-shift variant of the ME-SMD
in [36] has shown marked improvement in convergence speed com-
pared to SMD.

The SMD and SBR2 algorithms have been successfully applied to a
number of broadband extensions of narrowband problems, tradition-
ally addressed by the EVD, including, e.g., broadband array processing
[41–47], channel coding [48], broadband communications [49], spec-
tral factorisation [50], convolutive BSS [42,46], and the design of FIR
PU filter banks for subband coding [31,32]. The recent parallelisation
of SBR2 in [35], for field programmable gate arrays, has enabled
application of SBR2 to real-time problems using embedded processing
[51].

The advantage of polynomial matrix decompositions over IFB
processing lies in the natural ability of broadband decomposition
algorithms to preserve and exploit the coherence of signals.

As a particular example of applying the PEVD to convolutive BSS
with prior knowledge, in [42] a broadband extension to the narrow-
band semi-blind signal approach in [52] has been performed. The
broadband equivalent method used some prior information about the
direction of sources acquired by a broadband array was embedded to

achieve an enhanced separation of sources. This can be combined with
other broadband approaches, such as polynomial MUSIC [44,45], to
estimate the prior knowledge that can then be passed to the BSS
problem.

The aim of this paper is twofold: (i) provide an overview of
polynomial matrix factorisation and (ii) discuss applications in the
area of broadband BSS. In Section 2, the PEVD and related funda-
mental concepts, such as paraunitarity, strong decorrelation and
spectral majorisation, are introduced. In Sections 3 and 4, we present
solutions and new results to three important problems via a PEVD-
based broadband beamformer and domain-weighted PEVD. The re-
sults are compared to classical methods, which contrast the natural
ability of broadband subspace decomposition algorithms to preserve
and exploit the coherence of signals. Lastly, conclusions are drawn in
Section 5.

2. Polynomial matrix eigenvalue decomposition

2.1. Notation

In this paper matrices and vectors are represented by bold upper-
case and bold lowercase characters, e.g., X and x, respectively. An
element of X is denoted by xjk. Complex conjugation, matrix transposi-
tion and Hermitian transposition are indicated by the superscripts *, T
and H, respectively. A p p× (complex-valued) Hermitian matrix

R ∈ p p× has the property R R= H; a unitary matrix U ∈ p p× has the
property U U UU I= = p

H H , where Ip is the p p× identity matrix.
Polynomial matrices are polynomials with matrix-valued coeffi-

cients, or matrices with polynomial elements [15,19]. An n q× poly-
nomial matrix in the indeterminate variable z−1 is denoted by

∑A z τ zA( ) = [ ] ,
τ t

t
τ

=

−

1

2

(1)

where a z a τ z( ) = ∑ [ ]ij τ t
t

ij
τ

=
−

1
2 , t t≤1 2, τ ∈ and a τ[ ] ∈ij , is an element

of τA[ ]. Hence, coefficient matrices of A z( ) can be written as
t tA A[ ],…, [ ]1 2 ; e.g., the coefficient matrix of lag zero (lag-zero coefficient

matrix) is denoted A[0]. Note that the effective order of A z( ) is t t−2 1. A
transform pair as in (1) is abbreviated as A z τA( ) •—∘ [ ]. Also note that
parentheses express dependency on continuous variables, while square
brackets denote dependency on discrete variables.

2.2. Space–time covariance matrix

It is well-known that instantaneous spatial correlation, i.e., correla-
tion between pairs of signals sampled at the same instant in time, can
be removed using the EVD and SVD [4]. Therefore, the SVD (or EVD)
can be used to decorrelate instantaneous mixtures, e.g., for the case of
narrowband sensor arrays. However, convolutively mixed signals, or
signals derived from a broadband sensor array, cannot be decorrelated
in this way. The sensor-weight values required to correct for the time
delay between sensors are different for different frequencies. Frequency
dependent weights can be realised using FIR filters, which form a
frequency dependent response for each sensor signal in order to
compensate the phase difference for the different frequency compo-
nents. The sensors thus sample the propagating wave field in both
space and time.

Hence, in order to express the signals at the sensors, we modify the
well-known instantaneous-mixing (or narrowband) model to take
account of this process

ηt t t tx A s[ ] = [ ]* [ ] + [ ], (2)

where the asterisk denotes multi-input multi-output (MIMO) convolu-
tion [51], Aτ zA[ ]∘—• ( ) is the p q× mixing matrix of FIR filters a t[ ]ij

and ts[ ] ∈ q and η t[ ] represent independent source and noise signals.
The signals tx[ ] will generally be correlated over multiple time lags,
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so that the space–time covariance matrix,

τ t t τR x x[ ] = { [ ] [ − ]} ∈ ,p pH × (3)

will generally not be diagonal for all τ, where {·} denotes the
expectation operator. It follows that the cross-spectral density (CSD)
matrix, R z τR( ) •—○ [ ], will also not be diagonal. It can be shown that
the CSD matrices of the signal and noise sources are both diagonal
because of the independence assumption.

The matrix R z eR( ) | = ( ) ∈z e
jΩ p p

=
×jΩ is Hermitian for all normal-

ised frequencies Ω. Equivalently, we say that the polynomial matrix is
parahermitian (PH): R Rz z z( ) = ( ) ∀∼

, where R z( )∼
is the paraconjugate

of R z( ), i.e., R Rz z( ) = * ( )∼ T −1 , and the asterisk denotes complex conjuga-
tion of the polynomial coefficients. Note that in the case where R z( ) is
of order zero, paraconjugation becomes Hermitian conjugate.

2.3. Polynomial eigenvalues and eigenvectors

In order to decompose the space–time covariance matrix τR[ ] of (3)
in an analogous fashion to the EVD, the role of the EVD unitary matrix
[3,4] must be generalised to the polynomial case. To this end, we
require a matrix of filters that are lossless: the total power at every
frequency is invariant under the transformation. In linear system
theory, this type of system is termed a lossless (all-pass) MIMO system
[19]. In terms of polynomial matrices, we need a polynomial matrix to
be paraunitary (PU). A polynomial matrix is PU iff
H H H Hz z z z I( ) ( ) = ( ) ( ) =͠ ͠ p. Equivalently, H z eH( ) | = ( ) ∈z e

jΩ p p
=

×jΩ

is unitary Ω∀ , which is clearly energy preserving.
For PU matrices H z( ) comprising FIR components, the CSD matrix

R z( ) can be decomposed as

H R Hz z z z σ z σ z σ zΣ( ) ≈ ( ) ( ) ( ) = diag{ ( ), ( )… ( )},͠ p1 2 (4)

where σ z σ τ v t v t τ( ) •—∘ [ ] = { [ ] *[ − ]}i i i i are the polynomial eigenva-
lues of R z( ) and the row of H z( ) are the “polynomial eigenvectors” of
R z( ). Here v t[ ]i denote the signals after transformation by H z( ).

We use the approximation sign in (4) to indicate that a PEVD
factorisation with FIR PU matrices does not necessarily exist; however,
Icart and Comon have shown that a very close approximation is
possible with arbitrarily large filter orders [34].

The decomposition in (4) represents a generalisation of the EVD to
polynomial matrices, namely polynomial matrix EVD (or PEVD). Note
that (4) becomes the EVD of a Hermitian matrix for a zero-order R z( ).
The notion of a unitary matrix for scalar matrices is extended to that of
a PU matrix.

2.4. Strong decorrelation and spectral majorisation

A set of signals v t[ ]i has the strong (total) decorrelation property if
the signals are decorrelated for all relative time delays — not just at the
same time instant for all signals. That is,

 v t v t τ{ [ ] [ − ]} = 0,i j (5)

for all t τ, and i j≠ [9]. If the diagonalising PU matrix τH[ ] of (4) is
applied to the signals tx[ ] in (2), i.e.,

t t tv H x[ ] = [ ]* [ ], (6)

then the transformed signals will be strongly decorrelated. In other
words, if H z( ) diagonalises the PH matrix R z( ), it will also impose
strong decorrelation.

The problem of finding a PU matrix with the aim of imposing strong
decorrelation occurs in many other applications besides convolutive
BSS, such as in the design of filter banks for subband coding [9,31,32].

The PU matrix H z( ) in (4) can be designed such that the set of
power spectra σ e{ ( )}i

jΩ , where σ e σ z( ) = ( )|i
jΩ

i z e= jΩ, of the transformed
signals v z( ) satisfies spectral majorisation [9]:

σ e σ e σ e Ω π π( ) ≥ ( ) ≥ ⋯ ≥ ( ), ∀ ∈ [− , ).jΩ jΩ
p

jΩ
1 2 (7)

Note that (7) is the polynomial analogue to an ordered EVD [3] or the
way singular values are ordered by the SVD.

As an example of spectral majorisation via a PU matrix, consider
the power spectra, γ e( )i

jΩ , for three arbitrary signals, shown in Fig. 1(a).
These signals clearly do not satisfy the spectral majorisation property
in (7). However, processing these signals with an appropriately
designed PU matrix yields the spectrally majorised PSDs, σ e( )i

jΩ , as
shown in Fig. 1(b).

In addition, a PU matrix H z( ) can be found so that the transformed
signals satisfy energy compaction: σ σ[0] ≥ [0]i i+1 , where

σ v t[0] = {| [ ]| }i i
2 . Thus, the total spectral power in the first trans-

formed signal v z( )1 is maximised, and the total spectral power in each
of the remaining signals is maximised successively. This property
implies spectral majorisation (in (7)), and is directly analogous to the
singular value ordering for the narrowband case.

Spectral majorisation is a very important property in applications
such as broadband beamforming and BSS. This is because spectrally
majorised signals tend to have most of the related (correlated) signal
energy focused in as few channels as possible [26,41]. This property is
very useful when the aim is to identify the signal subspace, as in
broadband subspace decomposition.

In Sections 3 and 4, we show how the spectral majorisation and
energy compaction properties are of paramount importance in achiev-
ing broadband BSS for signals derived from sensor arrays.

It can be shown that the total input signal power, for all frequencies,
is invariant under a PU transformation [19]. A PU operation cannot
attenuate or amplify the power across channels, it can only redistribute
it, thus maintaining the physical significance of the power of output
signals.

2.5. Approximating the PEVD

All PEVD algorithms presented in the literature to date are
suboptimal since they can only approximate the PEVD. They can also
be viewed as blind methods in the sense that they use minimal a priori
information about the signal sources. The only information used by
these algorithms is the space–time covariance matrix τR[ ] in (3),
which, in practice, is estimated using a finite window of N samples of
the input signal tx[ ]. The accuracy of this estimate is therefore crucial
for the accuracy of the PEVD. Assuming zero-mean signals, an estimate
of the space–time covariance matrix in (3) is given by

Fig. 1. Example of spectral majorisation: signal spectra that (a) do not have and (b) have
the spectral majorisation property.
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 ∑τ
N

t τ tR x x[ ] ≜ 1 [ ] [ − ]
t

N

=0

−1
H

(8)

and

 ∑R z τ zR( ) ≜ [ ]
τ W

W
τ

=−

−

(9)

is the estimated CSD matrix.
It is assumed that  τR[ ] ≅ 0 for τ W| | > [26]; for broadband signals,

 τR[ ] is negligibly small, if τ| | is large compared to the coherence time. In
practice, W is often measured experimentally. We also assume that

tx[ ] = 0 for values of t outside the sample interval. It can be shown that
the polynomial matrix R z( ) is PH by construction.

Iterative PEVD algorithms such as those of the SBR2 [25,26,31,37]
and SMD families [33,36] may be used to find a PU matrix H z( ) such
that

 H R H Dz z z z( ) ( ) ( ) = ( ),͠ (10)

where D z( ) is approximately diagonal; more specifically,

D z d z d z d z( ) ≈ diag{ ( ), ( )… ( )},p1 2 (11)

where d z d τ v t v t τ( ) •—∘ [ ] ≅ { [ ] *[ − ]}i i i i . The lossless FIR filter H z( )
then produces an output tv[ ] according to (6). It can be shown that, to a
good approximation, the signals tv[ ] are strongly decorrelated.

In Sections 3.3 and 4, we demonstrate, via simulation results, the
effectiveness of suboptimal PEVD algorithms as a solution to broad-
band BSS.

3. Broadband BSS using second-order statistics

Consider the problem of recovering a broadband desired signal by a
sensor array in the presence of a broadband interference signal and
noise, as illustrated for the two-sources, two-sensors case in Fig. 2. The
received broadband signals, tx[ ], may be described as convolutive
mixtures of the source signals, ts[ ], as in (2).

A broadband beamformer can be used to steer the beam created by
a sensor array toward the desired signal. Range-bearing plots can then
be produced using the beamformer output, from which the target's
location can be gathered.

3.1. Broadband conventional beamforming

The broadband conventional beamformer (CBF) or tapped delay
line (TDL) beamformer is designed to use prior knowledge to bring the
desired signal to broadside. A block diagram of the broadband CBF is
shown in Fig. 3. Prior information about the direction-of-arrival (DoA)

of the desired signal and the sensor array is used to specify an estimate
of the required pre-steering for the desired signal.

The pre-steering can be expressed as a polynomial vector, a z( )s , and
is an estimate of the true pre-steering polynomial vector. The required
pre-steering can be found by computing the paraconjugate of the sth
column vector in A z( ) of (2), i.e., a z( )∼

s . The vector a z( )s describes the
necessary filters for bringing sensor contributions due to the desired
signal onto broadside. The action of a z( )s is to form a beam toward the
direction of the desired signal. The pre-steered signals are given by

t t tv A x[ ] = [ ]* [ ], (12)

where  t tA a[ ] = diag{ [ ]} ∈s
p p× and  at za [ ] ∘—• ( )s s .

The sidelobes of the broadband CBF are fixed relative to the sensor
array, however the location of any unwanted signal is not predictable
beforehand, and will differ depending on the scenario. For this reason,
it is necessary to use a beamformer that will adapt based on the
characteristics of any unwanted signals it must mitigate.

In addition to the desired signal, measurements made at the array
will, in general, contain other forms of interferences, such as reverbera-
tion (reflections from stationary scatterers at various locations) and
jamming signals, both direct-path and scattered. Since the lengths of
the paths that these signals have to travel differ significantly, and
because they differ from element to element of the sensor array, it is
impossible to characterise the propagation of the signals by a phase and
amplitude change. Consequently, adaptive broadband processing tech-
niques are employed to mitigate these interferences.

3.2. PEVD based broadband BSS

The PCA can perform most of the signal separation if the total
power of the desired signal across all the channels differs significantly
from the unwanted signals. In the same way, broadband BSS is possible
using just a PEVD stage provided the spectra of the signals are different
[42,43,46,53]. An estimate of the desired signal is obtained by
projecting the mixed signals onto the estimated broadband signal
subspace.

Two important features of the SBR2 and SMD algorithms are their
very strong tendency to produce signals that satisfy spectral majorisa-
tion and their ability to perform power compaction, concentrating as
much power into as few channels as possible [26]. These properties
enable it to be used for estimating broadband signal and noise
subspaces, i.e., broadband subspace decomposition.

Now suppose that the PSD of the desired signal is very different
from that of the interference signal. Then the approximately diagona-
lised CSD matrix in (10) and (11) can be partitioned as

D Nz d z d z z( ) = diag{ ( ), ( ), ( )},1 2 (13)

where d z( )1 and d z( )1 tend to be related to the strongest and second
strongest source signals, respectively, and N z d z d z( ) = diag{ ( ), … ( )}p3
is associated with the sources of noise. This constitutes broadband
subspace decomposition; a block diagram representation of this
procedure is provided in Fig. 4.

The polynomial eigenvectors of R z( ) in (9) constitute the rows of
H z( ) which span tx[ ]. It is usually assumed that the three subspaces
relating to d z( )1 , d z( )2 and N z( ) are orthogonal [4,12,41]. Estimation of
the source signal is then achieved by orthonormal projection of the data
onto the subspace associated with the desired signal, thus

t t ts H B v^[ ] = [− ]* * [ ],H (14)

where B is termed a blocking matrix [41,46], which is designed to
block the contributions from the interference signal. For example, let
d z( )1 correspond to the source signal and d z( )2 an interference signal.
Then the required projection is given by

B 0= diag{1, }, (15)

where 0 is a p1 × vector of zeros. On the other hand, if the desiredFig. 2. Block diagram representation of the convolutive mixing model.

S. Redif et al. Signal Processing 134 (2017) 76–86

79



signal is very weak compared to the interference, which is often the
case for many practical problems, then a more appropriate blocking
matrix is

B 0= diag{0, 1, }. (16)

The operation in (14) can be viewed as being analogous to the PCA
stage in BSS [1], and thus performing second-order broadband BSS on
convolutively mixed signals. Note, however, that it does not perform
unmixing in the conventional sense of compensating for the mixing
imposed by the mixing matrix τA[ ] in (2). Instead, it represents
separation of the broadband signals from noise, such that the noise
power in tŝ [ ] is less than that in tx[ ] of (2). The procedure outlined here
constitutes PEVD-based broadband BSS.

There are a number of applications where PEVD-based broadband
BSS can be employed. In the following we consider its application to
known problems in sonar detection and radar clutter mitigation.

3.3. PEVD based broadband adaptive beamforming

Application of a broadband adaptive beamformer (ABF) to the
problem outlined in Section 3.1 can yield better performance. The ABF

can modify the directivity of the sensor array such that the target return
is detected, and interferences and noise are suppressed.

As we have already discussed, the PEVD-based broadband BSS
system in Fig. 4 can be used as part of an ABF system with the aim of
mitigating interference and noise. A possible PEVD-based ABF is
shown in Fig. 5. The PEVD-based broadband ABF comprises three
stages:

1. Interference mitigation: The PEVD-based broadband BSS described
above is applied to suppress the effects due to interferences and
noise. Estimates of the broadband signal subspace (signal plus noise
subspace) and the noise subspace (interference plus noise subspace)
of the input signals are obtained. Projection of the sensor signals
onto the estimated broadband signal subspace results in a significant
reduction of energy due to the interference. The output signals from
this process are ‘cleaned’ versions of the sensor signals.

2. Matched filtering: A receive filter that is matched to the desired
signal is employed in order to further enhance the desired signal

Fig. 3. Block diagram of the broadband CBF – tapped-delay line beamformer.

Fig. 4. Flowchart of the power-based broadband BSS using PEVD.

Fig. 5. Block diagram of a PEVD-based broadband ABF.
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[54]. For example, in underwater acoustics, a broadband pulsed
chirp signal is usually used, so in this case the receive filter is chosen
such that it is matched to the transmitted chirp signal [55].

3. Broadband conventional beamforming: The output signals from the
matched filter are likely to be spread over a wide frequency
bandwidth. A pre-steering network is required to focus the phased
array beam towards the direction of the desired signal. This can be
achieved with the broadband CBF of Fig. 3.

3.4. Example problem I – underwater acoustics

Consider the scenario where a submarine is to be located using a
towed array, as depicted in Fig. 6. The desired signal received by a
passive array is a reflection from the target of the acoustic source signal
transmitted from the towed active array. The reflected signal is a
Doppler-shifted version of the source signal. The passive array also
receives different time-delayed and attenuated versions of the source
signal from different paths due to a reverberant (multipath) environ-
ment. This is usually in the presence of a strong broadband (jamming)
signal produced by the submarine for concealment purposes; this
signal may also be received from different paths. The objective then is
to determine the range and bearing of the target in this severe
environment given measurements from the passive array.

The propagation of the signal sources to the passive array sensors
may be represented in the form of (2). The polynomial mixing matrix
A z( ) describes the convolutive nature of the channel, as well as
encoding the contributions of the source signal to each sensor.

In order to test the PEVD-based broadband ABF described in
Section 3.3, we have performed some computer simulations using real
trials data gathered from a towed array of p=40 hydrophones. The
transmitted signal was a pulsed linear period modulated (LPM) signal
with a pulse length of 0.25 s and a pulse repetition interval (PRI) of
15 s. For each PRI's worth of data a power response (range-bearing
intensity map) of the beamformer was produced. The data is for the
case where a broadband source was used and a continuous-wave (CW)
jamming signal was present. Note that, typically, there were two (man-
made) sources, i.e., q=2: one corresponding to the pulsed LPM and the
other related to the CW tone. However, there were sections of data
where the jammer was switched off, in which case the transmitted LPM
signal was the only artificial source.

In Fig. 7(a), we show responses of the broadband CBF applied with
12 uniformly spaced taps. Each plot is of range versus bearing obtained
by processing the data from a single PRI. From the response of the
broadband CBF we see that it is ineffective at localizing the target,
especially when a broadband jamming signal is present (right). The
jamming signal appears at a single bearing (left hand side plot), but is
spread over a large bandwidth, thus hiding the target return. The
striation is due to leakage through the sidelobes of the broadband CBF
response as the beam is scanned through azimuth.

The performance of the PEVD-based broadband ABF when applied
to the aforementioned sonar problem (Fig. 6) was evaluated by
computer simulation and some results are presented here. In
Fig. 7(b), we show the range-bearing intensity map that results from
processing the data from a single PRI with the PEVD-based algorithm.
Here the PEVD was obtained using the SBR2 algorithm. Also included
in the figure is the response of an IFB approach [56] in Fig. 7(c).

A striking result is that the effects caused by the jamming signal and
reverberation are considerably attenuated with both the PEVD-based
broadband ABF and the IFB approach for the problem considered. For
the case where a jamming signal is present (right hand plots), the
highest intensity points on the range-bearing maps correspond to the
target. For this data set, the PEVD-based broadband ABF method
appears to have suppressed the effects of the jamming signal and the
reverberation slightly more than the IFB approach. Interestingly, in the
case where there is no jamming signal, the target appears clearer for
the plots generated using the PEVD-based broadband ABF compared
to the IFB method. This is because PEVD-based broadband ABF is able
to mitigate the effects due to the reverberation slightly better than the
IFB approach.

It has been shown that the effects due to the reverberation may be
further attenuated by re-application of the PEVD-based broadband BSS
stage in Fig. 4 to the cleaned sensor signals.

3.5. Example problem II – radar clutter suppression

In Fig. 8, an important example of the radar clutter suppression
problem is illustrated. Simulation data was generated for this scenario.
A moving radar device carrying an antenna some distance above a
terrain surface is used to detect an airborne target. The radar antenna
is both a transmitter and a receiver oriented forward towards the
direction of travel. Regular successive pulse transmissions are made
illuminating the area of terrain bounded by the antenna beam.
However, the rough terrain surface within the beam scatters the pulse
energy, a proportion of which is received back at the antenna after a
time delay. The scattered return energy is termed clutter or backscatter.

The aim is to accurately estimate the DoA and Doppler frequency of
the target in the presence of strong and dispersive backscatter from the
ground.

To this end, we applied the PEVD-based broadband ABF described
in Section 3.3 to simulated data, employing SMD to achieve the
factorisation in (10).

The role of the broadband beamformer is to adaptively suppress the
radar clutter with little or no prior knowledge of the target signal or the
clutter. In this light, it may be viewed as performing (second-order)
BSS of broadband (convolutively mixed) signals. An estimate of the
DoA and Doppler frequency of the target is then obtained with the
application of a broadband CBF.

Our simulations were for three different scenarios each with a
target in the presence of clutter and additive white Gaussian noise; the
signal-to-noise ratio (SNR) of the target return in all of the datasets was
0 dB. The target DoA is from an azimuth bearing of +16.7° and an
elevation angle of −3.8°. The datasets correspond to the following three
simulated scenarios:

1. The target return is clear of the clutter in terms of Doppler shift at a
higher Doppler frequency (∼60 kHz) than the clutter.

2. The target return is in the sidelobe clutter at a lower Doppler
frequency than the clutter at ∼46 kHz.

3. The target return is in the mainbeam clutter with the same Doppler
frequency as the clutter, which is ∼54 kHz.

The simulated data is for a moving radar antenna with a 37 element
irregular array operating in a high pulse repetition frequency (PRF)
mode. The PRF=263.8 kHz (2638 pulses) and there are four range
gates. For all datasets, the same clutter signal was used and the SNR of

Fig. 6. Example of sonar detection.
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the clutter was much greater than that of the target return. The target
and clutter models used to produce the synthetic data are realistic,
detail for which is beyond the scope of this paper.

In a practical radar system, the range of the target is tracked over
time, therefore, the range gate that contains the target return is known
a priori. The data from this range gate is collected for processing only.
The attitude and height of the moving radar are unknown and its range
to the target is also unknown.

In Figs. 9–11, graphs of azimuth versus Doppler frequency are
shown, which are referred to as angle-Doppler, or bearing-Doppler,
maps. For each figure, three angle-Doppler maps are shown; each is for
a different elevation angle. The bar to the right of each plot relates the
intensity of the returns to the colours used in the plot; the colour red
signifies a strong return, whereas blue indicates a weak return. The
graphs shown are from images that have been decimated by ten (in the
frequency domain) and concentrated in the Doppler range 0–100 kHz.

As observed for the problem in Section 3.4, analysis of the broad-
band CBF for this problem revealed that, for all three datasets, all of the

Fig. 7. Range-bearing plots for the (a) broadband CBF, (b) PEVD-based broadband ABF and (c) IFB approach applied to data with reverberation present and (left) no jamming signal
and (right) with a strong jamming signal present.

Fig. 8. Example of radar detection.
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apparent power was due to backscatter from the ground, the maximum
of which was 1011. These results are not shown here.

The power response of the proposed PEVD-based broadband ABF
to the input sensor signals, for all three data-set types, was analysed. In
graphs (a), (b) and (c) of the figure, we show bearing-Doppler maps for
elevation angles (a) −15°, (b) 0° (boresight), and (c) +15°, respectively.

For Fig. 9 it can be deduced that the algorithm has suppressed most
of the clutter energy. In particular, notice the reduction in clutter
energy at ∼50 kHz for an azimuth and elevation angle of, respectively,
∼7° and 0o (i.e., boresight); in general, a reduction in clutter power of
∼20 dB was achieved. With our prior knowledge of the location of the
target, it is easy to see whether the algorithm has been able to extract
the target return. We observe that there is a concentration of energy at
a Doppler frequency of 60 kHz that coincides with the target azimuth
and elevation angles of +16.7° and −3.8°, respectively. This cannot be
energy due to backscatter since clutter does not exist in this azimuth-
elevation plane for the given Doppler frequency. Therefore, we may
deduce from this that the energy concentration is related to the target
echo.

A similar level of success has been obtained after processing dataset
type (2) – see Fig. 10. In Fig. 11, we show the results for the most
difficult simulated scenario (3) (a target in the presence of mainbeam
clutter). Here, there is very little or no energy related to the target
return, that is, the proposed algorithm cannot distinguish the target
echo from the backscatter.

Note that in situations where no prior knowledge of the target
location is available, it would be difficult to say with any certainty that
the observed target return in Figs. 9 and 10 is the target, since there is
still a great deal of clutter power that the algorithm has failed to

remove. However, knowledge about the target's speed is usually
available, and so assumptions regarding the required Doppler can be
made, which would improve target DoA estimates.

It has to be said that it was never expected that the proposed
method would remove the clutter completely since it is operating
blindly. At this stage, our PEVD-based broadband ABF is considered as
a possible pre-processing stage to post-Doppler space–time adaptive
processing.

In conclusion, we can say that in some cases the proposed
technique can provide a good level of clutter suppression. However,
the target echo cannot be identified with any degree of certainty
because our results contain a significant amount of clutter residue.
Further processing is required in order to achieve accurate localisation
of the target. A possible idea for future work would be to investigate the
performance of the PEVD-based broadband ABF with Doppler filter-
ing: the isolation of the Doppler bin of interest before narrowband
beamforming is applied.

4. PEVD based broadband BSS using prior knowledge

Algorithms for BSS typically do not exploit prior information about
the desired signal nor do they make assumptions that focus attention
on the desired signal. As was demonstrated in Section 3, if the spectra
of the source signals are different, then the PEVD carries out most of
the separation. One way of incorporating prior knowledge into the
PEVD-based BSS method of Section 3.2 is to emphasise the desired
signal over the unwanted signals by utilizing prior information about
the desired signal.

Fig. 9. Angle-Doppler maps related to the output signals from the PEVD-based broad-
band ABF for elevation angles (a) −15°, (b) 0°, and (c) +15°. The target can be correctly
identified at a higher Doppler frequency than the clutter and at boresite elevation; some
target return energy is also apparent at negative elevation angles. (For interpretation of
the references to colour in this figure, the reader is referred to the web version of this
paper.)

Fig. 10. Angle-Doppler maps related to the output signals from the PEVD-based
broadband ABF for elevation angles (a) −15°, (b) 0°, and (c) +15°. Target can be
correctly identified in the sidelobe clutter (for negative elevation angles) at a lower
Doppler frequency than the clutter. (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this paper.)
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4.1. Domain-weighted broadband ABF

Different from the scheme shown in Fig. 5, the domain-weighted
PEVD (DW-PEVD) [42] exploits knowledge about the desired-signal
DoA in order to create a desired signal that is distinct from unwanted
(interference) signals. This is achieved by manipulating the desired
signal's energy.

With reference to the block diagram of DW-PEVD in Fig. 12, a fixed
beamformer, such as the broadband CBF in Section 3.1, is applied as a
first stage in order to bring the desired signal to broadside. As with the
last stage of the PEVD-based broadband ABF, knowledge about the
antenna and the DoA of the desired signal can be used to perform pre-
steering for the desired signal.

A generalised sidelobe canceller (GSC) beamformer as in [57] is
then applied, which comprises a quiescent vector and a blocking
matrix. A suitable quiescent vector designed to pre-steer the signals
to the desired DoA is applied, producing a primary channel. The
quiescent vector is used to compact power due to the desired signal at
broadside into the primary (first) channel; so most of the power related
to the desired signal is contained in the primary channel. The columns
of the blocking matrix are designed as an orthonormal basis, spanning
the quiescent-vector null space, which define a set of p−1 auxiliary
channels.

The primary-channel signal is scaled by a domain-weighting
constant μ ∈ . Provided we have prior knowledge of the DoA of the
desired signal, we can ‘scale-up’ the primary-channel signal with μ > 1.
This is the strategy adopted in our experiments to follow – see Section
4.2. Note that the case μ=1 corresponds to the unmodified PEVD with
no prior directional information. Also note that the domain-weighting
can be a filter, designed to exploit the temporal characteristics of the

desired signal, e.g., a matched filter. However, the performance of such
a method may depend to a significant extent on the accuracy of
information regarding the acoustic environment.

An iterative PEVD algorithm is then applied to strongly decorrelate
a set of signals comprising the auxiliary channel and the emphasised
signals. In [42], the SBR2 algorithm was successfully used for this
purpose.

Different from existing methods for robust broadband ABF, the
DW-PEVD is based on a shift of paradigm away from adaptive noise
cancellation toward broadband BSS. The adaptive filtering stage of
DW-PEVD is not based on least-squares power minimisation, and so
distinct from the GSC, which relies heavily on the availability of correct
calibration information. Any signal separation performed by DW-
PEVD is done by transferring components of the desired and unwanted
signals between channels using a PU transformation, thus conserving
the total energy.

The basic philosophy behind DW-PEVD is to provide an extra
degree-of-freedom represented by an appropriate choice of emphasis
transformation to explore the region between the PEVD, which is
entirely blind, and a fixed delay-and-sum beamformer which, being
non-adaptive, relies entirely on prior knowledge of the steering vector.

4.2. Example problem – sensor arrays

To demonstrate the performance of DW-PEVD, results from
numerical simulation of a broadband sensor array problem are
presented here. We model a desired signal impinging on a uniform
linear array in the presence of an interferer. The array is composed of
omnidirectional sensors, where p=10, with half-wavelength spacing.
The DoA of the desired and interference signals are, respectively, −30°
and +20°. An error in array calibration was introduced in the form of a
mismatch of +3° in the array response for the desired signal.

The desired signal was modelled as a pulse-shaped, zero-mean,
quaternary phase shift keying (QPSK) signal, of which 2000 samples
were used. The same model was used to produce the interference
signal, except for the application of a different pulse shape. Sensor
noise was modelled by zero-mean, unit variance complex Gaussian
processes. Both the desired and interference signals had an SNR of
0 dB.

In our experiments, PEVD factorisation was achieved using either
the SMD or SBR2C algorithms in [33,31], respectively; the algorithms

Fig. 11. Angle-Doppler maps related to the output signals from the PEVD-based
broadband ABF for elevation angles (a) −15°, (b) 0°, and (c) +15°. There is no clear
indication of a target from these results. The target return should be at the same Doppler
frequency as the clutter and at a positive azimuth angle. (For interpretation of the
references to colour in this figure, the reader is referred to the web version of this paper.)

Fig. 12. Block diagram representation of the domain-weighted PEVD method.
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were allowed to run for 50 iterations. A scalar domain-weighting was
applied as the primary enhancement, using only μ=1 or μ=2.

The power response of the overall system in Fig. 12 — convolution
of all transformations from sensors to the PEVD — is shown, for three
experiments, in Figs. 13–15. Each plot in a figure shows the power of
the beam (beampatterns), for different azimuthal angles of arrival and
frequency. The top two plots of each figure are the beampatterns for the
first and second rows of the transform matrix, respectively, for the
whole DW-PEVD system. The third plot is an average beampattern
over the rows 3 to p of the matrix. The bar to the right of each plot
indicates power level in dBs; white signifies the highest power level,
whereas black indicates the lowest power.

Fig. 13 is for the case where no primary enhancement was used, i.e.,
μ=1. It is clear that the unweighted DW-PEVD cannot perform a good
level of signal separation since there is considerable leakage of the look-
direction signal into the second channel and the interference signal into
the first channel. This is consistent with the theory presented earlier in
this section.

In Fig. 14, we show beampatterns for the beamformer with a
primary enhancement setting of μ=2 for the same scenario. We can see
that the DW-PEVD has designed a first beam which points to the
desired signal; the second beam, which is orthogonal to the first, is
designed to point in the direction of the interferer. The other beams are
orthogonal to the first two beams, as is indicated by very low
intensities.

We see that varying the value of μ provides an additional degree-of-

freedom for achieving good signal separation, and hence interference
suppression. Simulation results from assessing the influence of μ have
revealed that the DW-PEVD performance has very little dependence on
μ at large SNRs. These results are not provided here – the reader is
referred to [41] for a thorough characterisation.

In Fig. 15, beampatterns for a beamformer based on the subband-
coding variant of SBR2, or the SBR2C algorithm, with a setting of μ=1,
for the same scenario, is shown. Notice that even though there is no
emphasis on the primary channel, the algorithm does fairly well in
separating the two signals, whilst also correctly identifying each signal's
DoA.

The improved performance is due to the fact that SBR2C is
proportionately equally sensitive to changes in any of the signals
[31,41]. While systems with a priori knowledge will usually perform
better, the SBR2C-based system is able to recover the signals and their
DoAs without this knowledge.

5. Conclusions

The overarching goal of this paper has been to build intuition and
insight into the important field of polynomial matrix decompositions
and its relevance to broadband BSS while leaving the detail to
references.

Sample applications in the areas of broadband BSS and beamform-
ing have been presented along with solutions and new results to three
important problems via a polynomial EVD based broadband beamfor-
mer and a domain-weighted polynomial EVD. The results have been
compared to those of classical broadband methods, which highlights
the suitability of the polynomial EVD to the problem of broadband BSS.
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