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Independent Vector Analysis

* |VA application on iPhone
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[1] N. Ono, “Blind source separation on iPhone in real environment,” in
EUSIPCO 2013, Marrakech, Morocco, 2013.
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Blind Source Separation

“One of our most important faculties
Is our ability to listen to, and follow,
one speaker in the presence of others.
This is such a common experience
that we may call it ‘the cocktail party
problem.” No machine has been
constructed to do just this, to filter
out one conversation from a number Colin Cherry
jumbled together...”. 1914-1979

yaln]
ya[n]
Signal

Properties

yuln]

Differences/Errors

B Loughborough
’ University



Blind Source Separation

Independent component analysis (ICA) is the
central tool for BSS, which is a higher order
statistic method.

ICA has two ambiguities

1. The scaling ambiguity
2. The permutation ambiguity
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Independent Vector Analysis

The cost function for IVA is the Kullback-
Leibler divergence between the joint
probability density function and the product .
of marginal probability density functions of *& -
the individual source vectors [1].
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[2] T. Kim, H. Attias, S. Lee, and T. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE
Transactions on Audio, Speech and Language processing, vol. 15, pp. 7079, 2007.
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Independent Vector Analysis

The natural gradient IVA:
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Original source prior for IVA:

Original score function for IVA:
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Independent Vector Analysis

« Fast fixed point IVA  Auxiliary function based IVA

The cost function: Auxiliary function technique

O = argmineJ(O)
N K
Traserva= 3 (EIF(Y &R = 3 k) (wilk)wi(k) — 1) ) J(©) = mingQ(O,0)
i=1 k=1
é(i +1) = argmingQ(O(i), € )

The updates rules: -
O(i+1) =argmingQ(©.,0(i+ 1))
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Copula Based Dependency Model

 Sklar’s Theorem:.
F(z1,--+,29) = C(Fy(21).- - . F4(2q))

« Copula density function:

B C (uy, -+, uq)
a g -+ ug

c(u)

* The joint probability density function:
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Copula Based Dependency Model

- T copula « T copula density function with four
degrees freedom and 0.7 correlation
coefficient.
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Copula Based Dependency Model

« T copula density function with four « T copula density function with four
degrees freedom and -0.6 correlation degrees freedom and zero correlation
coefficient. coefficient.
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Copula Based Dependency Model

« The calculations of Chi and lamda ¢ Scatter plot and Chi plot of two

for Chi plot [2] iIndependent random variables
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Chi; = (H, —ﬁiéi)/\/ﬂ-u —F)G:(1-aG;)  In Chi plot, if all the points are
between the two lines, it means

lamda; = ASymaz((F; — 0.5)%,(G; —0.5)%) . .
e ma(( )% ) independent, otherwise dependent.

[3] N. L. Fisher and P. Switzer, “Chi-plots for assessing dependence,” Biometrika, vol. 72, pp. 253-2635, 1985.
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Copula Based Dependency Model

Two correlated variables with a t copula  Two uncorrelated variables with a t copula
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Copula Based Dependency Model

The Chi plots of two frequency bins of a speech signal, i.e. 50th and 51th frequency bins, 50th
and 55th frequency bins, 50th and 60th frequency bins, 50th and 100th frequency bins, 50th and
200th frequency bins, 50th and 500th frequency bins.
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IVA with Multivariate Student’s t Source Prior

16

Assuming the marginal distribution for the t copula is a student’s t distribution:

r.(v-EK) (1 . |H,1(f,)|2
VoL (3)

The multivariate student’s t source prior:
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Experimental Results

Different speech signals are selected from the TIMIT dataset, and convolved into mixtures.
The reverberation time RT60 is set to be 200ms.

TABLE I TABLE 11
SEPARATION PERFORMANCE COMPARISON IN SDR SEPARATION PERFORMANCE COMPARISON IN SIR
mixtures | original(dB) | proposed(dB) | improvement(dB) mixtures | original(dB) | proposed(dB) | improvement(dB)
mixture | 18.81 20.12 1.31 mixture 1 20.30 21.43 1.13
mixture?2 15.94 17.26 1.32 mixture?2 17.88 19.00 1.12
mixture3 9.97 11.73 1.76 mixture3 12.08 12.77 0.69
mixture4 11.68 12.40 0.72 mixture4 14.42 14.97 0.55
mixtures 18.80 19.91 1.11 mixture3 20.28 20.95 0.67
mixture6 12.27 18.74 6.47 mixture6 14.08 20.94 6.86
mixture7 8.88 11.10 2.22 mixture7 10.72 12.57 1.85
mixture8 15.57 17.09 1.52 mixture8 16.98 18.77 1.79
mixture9 18.10 19.50 1.4 mixture9 20.14 20.80 0.66
mixture10 | 16.84 19.65 2.81 mixturel10 | 19.53 21.54 2.01

50 different speech mixtures are tested, and the average SDR and SIR improvements are 1.3
dB and 1.1 dB respectively.
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Experimental Results

 Performance in different room environments
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Experimental Results

« Experiments by using real room recordings.

TABLE 111

SEPARATION RATE COMPARISON WHEN USING REAL ROOM RECORDINGS

mixtures | original | proposed

separation rate | 0.0379 0.2515 0.2794
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Conclusions

20

The dependency structure within the frequency domain speech signals was
exploited by introducing copula theory.

The t copula was found suitable to model the inter-frequency dependency, which
was also confirmed by observing the Chi-plot between two frequency bins of a
real speech signal.

A multivariate student's t distribution was constructed by using the t copula density
function and univariate student's t marginal distribution, which was adopted as the
new source prior for the NG-IVA algorithm.

The separation performance was tested in different reverberant room
environments and also by using real room recordings. The average SDR and SIR
iImprovement are approximately 1.3dB and 1.1dB respectively.
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Thanks for your attention!

Questions?

M Loughborough
22 University

& =y



