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The CPHD Filter With Target Spawning
Daniel S. Bryant, Emmanuel D. Delande, Steven Gehly, Jérémie Houssineau, Daniel E. Clark, and Brandon A. Jones

Abstract—In its classical form, the cardinalized probability hy-
pothesis density (CPHD) filter does not model the appearance of
new targets through spawning, yet there are applications for which
spawning models more appropriately account for newborn objects
when compared to spontaneous birth models. In this paper, we
propose a principled derivation of the CPHD filter prediction step
including spontaneous birth and spawning. A Gaussian Mixture
implementation of the CPHD filter with spawning is then pre-
sented, illustrated with three applicable spawning models on a
simulated scenario involving two parent targets spawning a total
of five objects.

Index Terms—Multi-object filtering, Cardinalized probability
hypothesis density (CPHD) filter, point processes, random finite
sets, Bayesian estimation, target tracking, target spawning.

I. INTRODUCTION

THE goal of the multi-object estimation problem is to jointly
estimate – usually in the presence of clutter, data associa-

tion uncertainty, and missed detections – the time-varying num-
ber and individual states of targets evolving in a surveillance
scene. Commonly known detection and tracking algorithms for
the multi-object problem include joint probabilistic data associ-
ation (JPDA) [1] and multiple hypothesis tracking (MHT) [2].
Relatively new is the multi-object filtering framework known as
finite set statistics (FISST) [3], [4], based on a representation
of the target population as a random finite set (RFS), a specific
case of the more general concept of point process.

Within the FISST framework, the multi-target Bayes filter
proposes an optimal solution to the multi-object estimation prob-
lem. Several approximations of the multi-target Bayes filter have
been proposed to circumvent challenges associated with its com-
plexity, including the probability hypothesis density (PHD) [5]
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and the CPHD [6] filters. The PHD filter propagates the first-
order factorial moment density, or intensity, of the multi-target
RFS, representing the whole population of targets within the
surveillance scene [5]. While computationally inexpensive, the
PHD filter exhibits a high variability in the estimated target num-
ber [4]. The CPHD filter [6] addresses this issue by estimating
the cardinality distribution of the multi-target RFS in addition
to its intensity. Unlike for the PHD filter, the initial presentation
of the CPHD filter does not include a model for target spawning
in the time prediction step. Target spawning refers to instances
where a parent target generates one or more daughter targets and
where the daughter(s) usually remain(s) in close proximity to
the parent for some amount of time following their appearance,
e.g., a fighter jet that launches a missile.

Though the CPHD filter’s model for birth targets has the
potential to address spawning targets [4], there may be cases
where specific spawning models are more applicable. Con-
sider for example the case of tracking resident space objects
(RSOs), natural and artificial Earth orbiting satellites consisting
of active spacecraft, decommissioned payloads, and debris. In
this context, spawning events include the deployment of Cube-
Sats from a launch vehicle [7], [8] and fragmentation events
caused by the unintentional [9] or intentional [10] collision
of objects. Without spawning, the best option may be the use
of diffuse birth regions, however, the volume of space to be
filled requires a potentially intractable number of birth regions
[11]. To improve the CPHD filter’s performance for space-
object tracking, previous research has presented a measurement-
based birth model that leverages an astrodynamics approach
to track initialization for RSOs [12]. While such an approach
may be effective for tracking spawned RSOs, a multi-target fil-
ter that more accurately describes the physical processes that
produce new RSOs through a specific spawning model is ex-
pected to provide better accuracy and faster confirmation of new
objects.

In this paper, we extend the usual CPHD filter [5] with an
arbitrary spawning term and present our results through the par-
tial Bell polynomials [13] to facilitate practical implementation
of the extended CPHD time prediction equation. The incorpo-
ration of spawning models in the context of CPHD filtering
has previously been explored in [14], relying on an intuitive
construction of the filtering equations for Bernoulli or Poisson
spawning models via traditional Bayesian statistics. A technical
report by the same authors additionally presents an overview of
a more principled derivation of the predicted cardinality [15],
whose results match some of our own once their presentation
has been rearranged. While an approximation is made in [14]
to circumvent evaluation of a complex integral for the imple-
mentation of a CPHD filter with a Poisson spawning model, we
present in this paper the CPHD time prediction equation for an
arbitrary spawning process, and then for three specific models
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(Poisson, Bernoulli, zero-inflated Poisson), without necessity
for additional approximations.

Another work deals with CPHD spawning [16] that cites and
forms comparisons with an earlier version of the current article
[17]. The most significant difference between presented results
is that a conclusive analytical expression for the predicted car-
dinality distribution that includes arbitrary birth and spawning
is not provided in [16], i.e., quantities remain requiring further
derivation by the reader, whereas the current article presents con-
clusive, analytical and tractable expressions in Section III-B.
Additionally, while derivations in this article include the ap-
plication of Faà di Bruno’s formula to probability generating
functionals (p.g.fl.s) describing point processes, the approach in
[16] is more comparable to that of the technical report [15] in
that both apply the formula to probability generating functions
(p.g.fs) describing probability mass functions.

The structure of this paper is as follows. Section II presents
the relevant background on point processes and functional dif-
ferentiation, followed by key definitions and properties pertinent
to our results. Section III provides a detailed construction of the
CPHD filter with target spawning, considering several models
of spawning processes. Section IV demonstrates the proposed
concepts through simulation example, and closing remarks are
given in Section V. A pseudo-code for the CPHD cardinality
prediction with spawning is given in Section VI. The proofs of
the results in Section III are given in the Appendix.

II. BACKGROUND

In this section, we introduce the necessary background on
point processes (Section II-A), on p.g.fl.s (Section II-B), on
functional differentiation (Section II-C), and on a few prop-
erties from the application of differentiation in the context of
point processes (Section II-D). Section II-E then provides a
brief description of the general multi-target Bayes filter [3], and
the principled approximation leading to the construction of the
original CPHD filter [6].

A. Point Processes

A point process on some space X is a random variable whose
number of elements and element states, belonging to X, are
random. In the context of multi-target tracking the population
of targets is represented by a point process Φ, on a single-target
state space X ⊆ Rd , whose elements describe individual target
states. A realization of Φ is a vector of points ϕ = (x1 , . . . , xN )
depicting a specific multi-target configuration, where xi ∈ X
describes the d-component state of an individual target (position,
velocity, etc.).

A point process Φ is characterized by its probability dis-
tribution PΦ on the measurable space (X ,BX ), where X =⋃

n≥0 Xn is the point process state space, i.e., the space of all
the finite vectors of points in X, and BX is the Borel σ-algebra
on X [18]. The probability distribution of a point process is
defined as a symmetric function, so that the order of points in
a realization is irrelevant for statistical purposes – for example,
realizations (x1 , x2) and (x2 , x1) are equally probable. In addi-
tion, if the probability distribution is such that the realizations
are vectors of points that are pairwise distinct almost surely,

then the point process is called simple. For the rest of the paper,
all the point processes are assumed simple.1

The probability distribution PΦ is characterized by its pro-
jection measures P

(n)
Φ , for any n ≥ 0. The nth -order projection

measure P
(n)
Φ , for any n ≥ 1, is defined on the Borel σ-algebra

of Xn and gives the probability for the point process to be
composed of n points, and the probability distribution of these
points. By extension, P

(0)
Φ is the probability for the point pro-

cess to be empty. For any n ≥ 0, J
(n)
Φ denotes the nth -order

Janossy measure [20, p. 124], and is defined as

J
(n)
Φ (B1 × . . . × Bn)=

∑

σ (n)

P
(n)
Φ (Bσ1 × . . . × Bσn

) (1a)

= n!P (n)
Φ (B1 × . . . × Bn ), (1b)

where Bi is in BX , the Borel σ-algebra of X, 1 ≤ i ≤ n, and
where σ(n) denotes the set of all permutations (σ1 , . . . , σn ) of
(1, . . . , n).

The probability density pΦ (respectively (resp.) the nth -order
projection density p

(n)
Φ , the nth -order Janossy density j

(n)
Φ ) is

the Radon-Nikodym derivative of the probability distribution
PΦ (resp. the nth -order projection measure P

(n)
Φ , the nth -order

Janossy measure J
(n)
Φ ) with respect to (w.r.t.) some reference

measure. All these quantities provide equivalent ways to de-
scribe the point process Φ. However, a measure-theoretical for-
mulation provides a more general framework that is required
to construct certain statistical properties on point processes that
can be exploited for practical applications; a recent example is
given in [21] for the construction of the regional statistics. For
the sake of generality, the rest of the paper thus uses a measure-
based description.

Assuming that f is a non-negative measurable function on X ,
then the integral of f w.r.t. to the measure PΦ can be written in
the following ways:

PΦ(f) =
∫

X
f(ϕ)PΦ(dϕ) (2a)

=
∫

X
f(ϕ)pΦ(ϕ)dϕ (2b)

=
∑

n≥0

∫

Xn

f(x1 , . . . , xn )P (n)
Φ (d(x1 , . . . , xn )) (2c)

=
∑

n≥0

∫

Xn

f(x1 , . . . , xn )p(n)
Φ (x1 , . . . , xn )

× dx1 . . . dxn (2d)

=
∑

n≥0

1
n!

∫

Xn

f(x1 , . . . , xn )J (n)
Φ (d(x1 , . . . , xn)) (2e)

=
∑

n≥0

1
n!

∫

Xn

f(x1 , . . . , xn )j(n)
Φ (x1 , . . . , xn )

× dx1 . . . dxn . (2f)

1An alternative construction of simple point processes as random objects
whose realizations are sets of points ϕ = {x1 , . . . , xN }, in which the elements
are per construction unordered, is also available in the literature [6], [19]. In
this context, a point process is called a RFS.
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Throughout this article the exploitation of the Janossy measures
will be preferred, for they are convenient tools in the context
of functional differentiation (see Section II-C). For the sake of
simplicity, domains of integration will be omitted when they
refer to the full target state space X.

The Janossy measures can also be used directly to exploit
meaningful information on the point process Φ. For example,
central to this article is the extraction of the cardinality distri-
bution ρΦ of the point process, that describes the number of
elements in the realizations of Φ (see Section III):

Example 1 (Cardinality distribution): Consider the function
fn defined as

fn (ϕ) =
{

1, |ϕ| = n,
0, otherwise, (3)

where |ϕ| denotes the size of the vector ϕ. The integral of fn

w.r.t. to PΦ yields the probability ρΦ(n) that a realization ϕ of
the point process Φ has size n and we have, using Eq. (2) (see
[22, p.28]):

ρΦ(n) = PΦ(fn ) (4a)

=
∫

Xn

P
(n)
Φ (d(x1 , . . . , xn )) (4b)

=
1
n!

∫

Xn

J
(n)
Φ (d(x1 , . . . , xn )). (4c)

The function ρΦ is called the cardinality distribution of the point
process Φ. Note that the nth -order projection measure P

(n)
Φ

(resp. the nth -order Janossy measure J
(n)
Φ ) is not a probability

measure, in the general case, for its integral over Xn yields
ρΦ(n) (resp. n!ρΦ(n)).

B. Probability Generating Functionals

The p.g.fl. provides a useful characterization for point process
theory [23] and is defined as follows.

Definition 1 (Probability generating functional [20]): The
probability generating functional GΦ of a point process Φ on
X can be written for any test function h ∈ U(X) as2,3

GΦ(h) =
∫

X

[∏

x∈ϕ

h(x)
]
PΦ(dϕ) (5a)

= J
(0)
Φ +

∑

n≥1

1
n!

∫

Xn

h(x1) . . . h(xn )

×J
(n)
Φ (d(x1 , . . . , xn )). (5b)

The p.g.fl. GΦ fully characterizes the point process Φ, and is a
very convenient tool for the extraction of statistical information
on Φ through functional differentiation (see Section II-C). From
Eq. (5) we can immediately write

GΦ(0) = J
(0)
Φ (= P

(0)
Φ ), (6)

GΦ(1) = 1. (7)

2U(X) is the space of bounded measurable functions u on X satisfying
||u||∞ ≤ 1.

3When ϕ ∈ Xn , n ≥ 0, is a vector of distinct elements on some space
X , the abuse of notation “x ∈ ϕ” is used for “x ∈ χ(ϕ)”, where χ is the
function associating a vector of distinct elements to the set composed of the
same elements.

Operations on point processes (e.g., superposition of two popu-
lations) can be translated into operations on their corresponding
p.g.fl.s. In the context of multi-target tracking, p.g.fl.s provide
a convenient description of the compound population (targets
or measurements) resulting from an operation on elementary
populations.

The superposition operation for point processes describes the
union of two populations Φ1 , Φ2 into a compound population
Φ1 ∪ Φ2 , during which the information about the origin popu-
lation of each individual is lost.

Proposition 1 (Superposition of independent processes [23]):
Let Φ1 and Φ2 be two independent point processes defined
on the same space, with respective p.g.fl.s GΦ1 and GΦ2 . The
p.g.fl. of the superposition process Φ1 ∪ Φ2 is given by the
product

GΦ1 ∪Φ2 (h) = GΦ1 (h)GΦ2 (h). (8)

The Galton-Watson recursion for point processes [23], [24]
describes the evolution of each individual x from a parent pop-
ulation Φp into a population of daughter individuals, indepen-
dently of the other parent individuals but following a common
evolution model described by a process Φe . The resulting daugh-
ter population Φd is then the superposition of all the populations
of daughter individuals.

Proposition 2 (The Galton-Watson recursion [24]): Let GΦp

be the p.g.fl. of a parent process Φp on X, and let GΦe (·|x) be
the conditional p.g.fl. of an evolution process Φe , defined for
every x ∈ X. The p.g.fl. of the daughter process Φd is given by
the composition

GΦd (h) = GΦp (GΦe (h|·)) . (9)

C. Functional Differentiation

To make use of functionals in the derivations presented in
Section III, we require the notion of differentials on functional
spaces. We adopt a restricted form of the Gâteaux differential,
known as the chain differential [25], so that a general chain rule
can be determined [26], [27]. Following this, we describe the
general higher-order chain rule.

Definition 2 (Chain differential [25]): Under the conditions
detailed in [25], the function F on some set H has a chain
differential δF (h; η) at h ∈ H in the direction η if, for any se-
quence ηn → η ∈ H , and any sequence of real numbers θn → 0,
it holds that

δF (h; η) = lim
n→∞

1
θn

(F (h + θnηn ) − F (h)) . (10)

The nth -order chain differential can be defined recursively as

δnF (h; η1 , . . . , ηn ) = δ
(
δn−1F (h; η1 , . . . , ηn−1) ; ηn

)
.
(11)

In the context of this paper, as it may be hinted from Def-
inition 1, the chain differential will be applied to probability
generating functionals on the single-target state space X, which
are functions on the space of test functions U(X).

Applying nth -order chain differentials on composite func-
tions can be an extremely laborious process since it involves
determining the result for each choice of function and proving
the result by induction. For ordinary derivatives, the general
higher-order chain rule is normally attributed to Faà di Bruno
[28]. The following result generalizes Faà di Bruno’s formula
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to chain differentials and allows for a systematic derivation of
composite functions (see [26], [29] for examples of earlier ex-
ploitation in the context of Bayesian estimation).

Proposition 3 (General higher-order chain rule, from [27],
[30]): Under the differentiability and continuity conditions
detailed in [30], the nth -order variation of composition F ◦ G
in the sequence of directions (ηi)n

i=1 at point h is given by

δn (F ◦ G)(h; (ηi)n
i=1)

=
∑

π∈Πn

δ|π |F
(

G(h);
(
δ|ω |G

(
h; (ηi)i∈ω

))

ω∈π

)

, (12)

where Πn = Π({1, . . . , n}) represents the set of partitions of
the index set {1, . . . , n}, and |π| denotes the cardinality of the
set π.

Example 2 (General higher-order chain rule):

δ2(F ◦ G)(h; η1 , η2) = δ2F (G(h); δG(h; η1), δG(h; η2))
︸ ︷︷ ︸

π={{1},{2}}

+ δF
(
G(h); δ2G(h; η1 , η2)

)

︸ ︷︷ ︸
π={{1,2}}

. (13)

Applying nth -order chain differentials on a product of func-
tions follows a more straightforward approach, similar to Leib-
niz’ rule for ordinary derivatives.

Proposition 4 (Leibniz’ rule, from [30]): Under the differ-
entiability conditions detailed in [30], the nth -order variation
of the product F · G in the sequence of directions (ηi)n

i=1 at
point h is given by

δn (F · G)(h; (ηi)n
i=1)

=
∑

π⊆{1,...,n}
δ|π |F (h; (ηi)i∈π )δn−|π |G(h; (ηi)i∈π c ), (14)

where πc = {1, . . . , n} \ π denotes the complement of π in
{1, . . . , n}.

Example 3 (Leibniz’ rule):

δ2(F · G)(h; η1 , η2)

= δ2F (h; η1 , η2)G(h)
︸ ︷︷ ︸

π={1,2}

+ δF (h; η1)δG(h; η2)
︸ ︷︷ ︸

π={1}

+ δF (h; η2)δG(h; η1)
︸ ︷︷ ︸

π={2}

+ F (h)δG(h; η1 , η2)
︸ ︷︷ ︸

π={∅}

. (15)

D. Probability Generating Functionals and Differentiation

Key properties of a point process can be recovered from
the functional differentiation of its p.g.fl. Taking the kth -order
variation of GΦ(h) in the directions η1 , . . . , ηk , we have (see,
for example [31, p. 21]),

δkGΦ(h; η1 , . . . , ηk ) =
∑

n≥k

1
(n − k)!

∫

Xn

k∏

i=1

ηi(xi)

×
n∏

i=k+1

h(xi) J
(n)
Φ (d(x1 , . . . , xn )). (16)

It is then useful to consider the cases when we set h = 1 or
h = 0, i.e.,

δkGΦ(0; η1 , . . . , ηk )

=
∫

Xk

η1(x1) . . . ηk (xk )J (k)
Φ (d(x1 , . . . , xk )), (17)

δkGΦ(1; η1 , . . . , ηk )

=
∫

Xk

η1(x1) . . . ηk (xk )M (k)
Φ (d(x1 , . . . , xk )), (18)

where M
(k)
Φ is the kth -order factorial moment measure, defined

as in [18, p. 111].
Assuming that one wishes to evaluate the Janossy and fac-

torial moment measures in some measurable subsets Bi ∈ BX ,
1 ≤ i ≤ k, then they can be recovered from Eqs. (17) and (18)
by setting the directions to be indicator functions4 ηi = 1Bi

,
1 ≤ i ≤ k, so that

δkGΦ(h; 1B1 , . . . , 1Bk
)
∣
∣
h=0 = J

(k)
Φ (B1 × . . . × Bk ),

(19)

δkGΦ(h; 1B1 , . . . , 1Bk
)
∣
∣
h=1 = M

(k)
Φ (B1 × . . . × Bk ).

(20)

The propagation of the first-order factorial moment measure
M

(1)
Φ – also called the intensity measure μΦ – of the multi-target

point process Φ, in a Bayesian context, is a key component of
the construction of both the PHD filter [5] and the CPHD filter
[6]. The density of the intensity measure is called the Probability
Hypothesis Density [5].

E. Multiobject Filtering and the CPHD Filter

The multi-target Bayes filter [3] is the natural extension of the
usual single-target Bayesian paradigm to the multi-target case,
within the FISST framework. The multi-target Bayes recursion
at time step k consists of the time prediction and data update
steps given as follows:

Pk |k−1(dϕ|Z1:k−1) =
∫

X
fk |k−1(ϕ|ϕ̄)Pk−1(dϕ̄|Z1:k−1),

(21)

Pk (dϕ|Z1:k ) =
gk (Zk |ϕ)Pk |k−1(dϕ|Z1:k−1)∫
X gk (Zk |ϕ̄)Pk |k−1(dϕ̄|Z1:k−1)

,

(22)

where Pk |k−1 (resp. Pk ) is the probability distribution of the
predicted multi-target process Φk |k−1 (resp. the posterior multi-
target process Φk ), Zi , 1 ≤ i ≤ k, is the set of measurements
collected at time step i, Z1:i denotes the sequence Z1 , . . . , Zi ,
fk |k−1 is the multi-target transition kernel, and gk is the multi-
target likelihood function. The multi-target transition kernel
fk |k−1 describes the time evolution of the population of targets
since time step k − 1 and encapsulates the underlying models of

4For a measurable subset B ∈ BX , the indicator function 1B is defined as
the function on X such that 1B (x) = 1 if x ∈ B , 1B (x) = 0 otherwise.
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target birth, motion, spawning, and death. The multi-target like-
lihood gk describes the sensor observation process and encapsu-
lates the underlying models of target detection, target-generated
measurements, and false alarms.

The multi-target Bayes recursion is used to propagate the
posterior distribution Pk (·|Z1:k ) that describes the current tar-
get population based on all the measurements Z1 , . . . , Zk col-
lected so far. The CPHD Bayes recursion aims at simplifying
the multi-target Bayes recursion by approximating the predicted
and posterior multi-target processes as independent and iden-
tically distributed (i.i.d.) processes,5 a class of point processes
fully characterized by their cardinality distribution ρΦ and their
intensity measure μΦ [6]. The CPHD filter thus focuses on the
propagation of the posterior cardinality distribution ρk and the
posterior intensity measure μk , rather than the full posterior
probability distribution Pk .

The original construction of the CPHD filter [6] does not con-
sider a target spawning mechanism, and the key contribution of
this paper is to propose its integration in the CPHD time predic-
tion equation (see Section III-B). Note that the data update step
does not involve the target spawning mechanism and is therefore
left out of the scope of this paper. A detailed description of the
data update step can be found in [32].

III. CPHD FILTER PREDICTION WITH SPAWNING

This section covers the derivation of the filtering equations
for the CPHD filter for various target spawning processes.
Section III-A then presents the various models of point pro-
cesses that will be necessary for the construction of the CPHD
filter with spawning in Section III-B.

A. Point Process Models

1) Bernoulli Process: A Bernoulli process Φ is character-
ized by a parameter 0 ≤ p ≤ 1 and a spatial distribution s. It
describes the situation where 1) either there is no object in the
scene, or 2) there is a single object in the scene, with state
distributed according to s. Its projection measures are given by

P
(n)
Φ (B1 × . . . × Bn ) =

⎧
⎨

⎩

1 − p, n = 0,
ps(B1), n = 1,
0, otherwise.

(23)

Proposition 5 (p.g.fl. of a Bernoulli process [4]): The p.g.fl.
of a Bernoulli process Φ with parameter p and spatial distribu-
tion s is given by

GΦ(h) = 1 − p + p

∫

h(x)s(dx). (24)

In the context of target spawning, a Bernoulli model describes
a parent target that may or may not spawn a target at each time
step, i.e., between two successive observation scans. It is thus
adapted to applications where spawning events are rare with
respect to the scan rate of the tracking system, and the operator’s
knowledge about their relative frequency is described by the
parameter p. Note, however, that no more than one target may
be spawned in a single event.

5The definition of an i.i.d. process is given in Section III-A.

2) Poisson Process: A Poisson process Φ is characterized
by a rate λ ≥ 0 and a spatial distribution s. It describes a
population whose size follows a Poisson distribution and
whose individual states are i.i.d. according to s. Its projection
measures are given by

P
(n)
Φ (B1 × . . . × Bn ) = e−λ λn

n!

n∏

i=1

s(Bi). (25)

Proposition 6 (p.g.fl. of a Poisson process [4]): The p.g.fl.
of a Poisson process Φ with rate λ and spatial distribution s
is given by

GΦ(h) = exp
[

λ

(∫

h(x)s(dx) − 1
)]

. (26)

In the context of target spawning, a Poisson model describes
a parent target spawning a group of targets of various size (in-
cluding zero or one) at each time step. It is thus adapted to
applications where several targets are likely to be spawned from
a single spawning event, and the operator’s knowledge about
the number of spawned targets is described by the rate λ. Note,
however, that the frequency of spawning events cannot be de-
scribed independently from their size, since the description of
an “empty” spawning event (i.e., producing no target) is con-
strained by the choice of λ.

3) Zero-Inflated Poisson Process: A zero-inflated Pois-
son process Φ (from [33]) is characterized by a parameter
0 ≤ p ≤ 1, a rate λ ≥ 0, and a spatial distribution s. It describes
a population that is 1) either empty, or 2) non-empty, with size
following a Poisson distribution and whose individual states are
i.i.d. according to s. Its projection measures are given by

P
(n)
Φ (B1 × . . . × Bn ) =

⎧
⎪⎨

⎪⎩

1 − p + pe−λ, n = 0,

pe−λ λn

n !

n∏

i=1

s(Bi), otherwise.

(27)
Note that a Poisson process is a special case of a zero-inflated
Poisson process in which the parameter p is set to one.

Proposition 7 (p.g.fl. of a zero-inflated Poisson process): The
p.g.fl. of a zero-inflated Poisson process Φ with parameter p,
rate λ, and spatial distribution s is given by

GΦ(h) = 1 − p + p exp
[

λ

(∫

h(x)s(dx) − 1
)]

. (28)

In the context of target spawning, a zero-inflated Poisson
model “inflates” the occurrence of “empty” spawning events
described by a Poisson model. The operator’s knowledge about
the number of spawned targets is described by the rate λ, while
the frequency of the spawning events is described separately
by the parameter p. It is thus adapted to many realistic applica-
tions where single spawning events are rare with respect to the
scan rate of the tracking system, but may produce several targets
(e.g., the tracking of a single Earth orbiting satellite in anticipa-
tion of a fragmentation event, where one would not expect that
it disintegrates into smaller pieces each time it is observed).

4) i.i.d. Process: An i.i.d. process Φ is characterized by a
cardinality distribution ρ and a spatial distribution s. It describes
a population whose size is distributed according to ρ, and whose
individual states are i.i.d. according to s. Its Janossy measures
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are given by

J
(n)
Φ (B1 × . . . × Bn ) = n!ρ(n)

n∏

i=1

s(Bi). (29)

Note that a Poisson process is a special case of i.i.d. process in
which the cardinality distribution ρ is Poisson.

B. Prediction Step

In this section, we propose an alternative expression of the
original CPHD time prediction step [6] in which newborn
targets may originate from either a spawning mechanism or a
spontaneous birth. Note that the assumptions on the posterior
multi-target process from the previous time step, the target
survival mechanism, the spontaneous birth mechanism, and
the target evolution mechanism are identical to the original
assumptions in [6].

Theorem 1 (CPHD with spawning: prediction step): Assum-
ing that, at step k:

� The posterior multi-target process Φk−1 is an i.i.d. process
with intensity measure μk−1 , with cardinality distribution
ρk−1 , and spatial distribution sk−1 ,

� A target in state x at time k − 1 survived to time k with
probability ps,k (x),

� A surviving target in state x at time k − 1 evolved since
time k − 1 according to a Markov transition fs,k (·|x),

� Newborn targets are born, independently from prior tar-
gets, following a process with intensity measure μγ,k , and
cardinality distribution ργ ,k ,

� Newborn targets were spawned from a prior target, in state
x at time k − 1, following a process with intensity measure
μb,k (·|x), and cardinality distribution ρb,k (·|x),

then the intensity measure μk |k−1 and cardinality distribution
ρk |k−1 of the predicted multi-target process Φk |k−1 are given by

μk |k−1(·) =
∫
[
ps,k (x)fs,k (·|x)

+ μb,k (·|x)
]
μk−1(dx)+μγ,k (·), (30)

ρk |k−1(n) =
n∑

q=0

ργ ,k (n − q)
q∑

j=0

Bq,j (b1 , . . . , bq )

×
⎡

⎣
∑

m≥j

m!
q!(m − j)!

ρk−1(m)b0
m−j

⎤

⎦ , (31)

where Bq,j is the partial Bell polynomial [13, p. 412] given by
equation (32) as shown at the bottom of this page and where the

coefficients bi are given by

bi =

⎧
⎪⎨

⎪⎩

∫
p̄s,k (x)ρb,k (0|x)sk−1(dx), i = 0,

i!
∫ [

p̄s,k (x)ρb,k (i|x)
+ ps,k (x)ρb,k (i − 1|x)

]
sk−1(dx), i > 0,

(33)

where p̄s,k (·) ≡ 1 − ps,k (·).
The proof is given in the Appendix. Note that the structure

of the predicted cardinality (31) allows for its efficient com-
putation through an algorithm dedicated to the computation
of partial Bell polynomials. Exploiting the recursive formula
[13, (11.11)], we propose in Section VI an implementation
of the predicted cardinality (31) with a computational cost of
O(n3

max), where nmax is the maximum number of targets con-
sidered for the support of the cardinality distributions. Also, note
that the construction of the predicted intensity (30) is identical
to that of the original PHD filter (see [34], for example).

Corollary 1: The intensity measure μb,k and the coefficients
bi , describing the spawning process in the CPHD prediction
step (30), (31), depend on the modeling choices. Denoting
p̄b,k (·) ≡ 1 − pb,k (·), they are given as follows for various
spawning processes:

a) Bernoulli process, with parameter pb,k and spatial distri-
bution sb,k :

μb,k (·|x) = pb,k (x)sb,k (·|x), (34)

and

bi =

⎧
⎪⎨

⎪⎩

∫
p̄s,k (x)p̄b,k (x)sk−1(dx), i = 0,∫ [
ps,k (x)p̄b,k (x) + p̄s,k (x)pb,k (x)

]
sk−1(dx), i = 1,

2
∫

ps,k (x)pb,k (x)sk−1(dx), i = 2,
0, i > 2.

(35)
b) Poisson process, with rate λb,k and spatial distribution

sb,k :

μb,k (·|x) = λb,k (x)sb,k (·|x), (36)

and

bi =
∫

λi−1
b,k (x)e−λb , k (x)[p̄s,k (x)λb,k (x) + ips,k (x)

]
sk−1(dx),

(37)
for i ≥ 0.

c) zero-inflated Poisson process, with parameter pb,k , rate
λb,k , and spatial distribution sb,k :

μb,k (·|x) = pb,k (x)λb,k (x)sb,k (·|x), (38)

and, equation (39) as shown at the bottom of this page.

Bq,k (x1 , x2 , . . . , xq ) =
∑

k 1 + 2 k 2 + ···+ q k q = q
k 1 + k 2 + ···+ k q = k

q!
k1 !(1!)k1 k2 !(2!)k2 · · · kq !(q!)kq

xk1
1 xk2

2 · · ·xkq
q , (32)

bi =

⎧
⎪⎨

⎪⎩

∫
p̄s,k (x)

[
p̄b,k (x) + pb,k (x)e−λb , k (x)

]
sk−1(dx), i = 0,

∫ [
p̄s,k (x)pb,k (x)e−λb , k (x)λb,k (x) + ps,k (x)

[
p̄b,k (x) + pb,k (x)e−λb , k (x)

]]
sk−1(dx), i = 1,

∫
pb,k (x)λi−1

b,k (x)e−λb , k (x)
[
p̄s,k (x)λb,k (x) + ips,k (x)

]
sk−1(dx), i ≥ 2.

(39)
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The proof is given in the Appendix. Note that the construction
of the predicted cardinality for a CPHD filter with Bernoulli and
Poisson spawning processes was previously explored in [14],
following traditional Bayesian statistics. The results provided
in [14] are not supported by a detailed construction; however,
an earlier work by the same authors [15] proposed a more prin-
cipled derivation of the predicted cardinality through the ex-
ploitation of p.g.fs. It can be shown (a sketch is given in the
Appendix) that the general expression of the predicted cardi-
nality [15, (A.15)] is equivalent to our presentation through
the Bell polynomials in Eq. (31). However, we believe that the
latter facilitates practical implementation of the CPHD filter
with spawning, and allows for a clear presentation of the ex-
act time prediction equation (i.e., without requiring additional
approximations) for specific models of spawning through the
coefficients bi , as illustrated in Corollary 1.

IV. SIMULATION

In this section we illustrate the CPHD filter with spawn-
ing models through a simulation-based scenario. The Gaussian
Mixture (GM) implementation of the CPHD filter is briefly
described in Section IV-A, followed by a description of the
metrics exploited for the analysis of the filter results in Section
IV-B. The scenario and the selection of the filter parameters
are detailed in Section IV-C, and the results are discussed in
Section IV-D.

A. The GM-CPHD Filter With Spawning

Since the incorporation of spawning in the CPHD filtering
process does not affect the data update step, we shall focus
in this section on the specifics of the prediction step for the
GM-CPHD filter with spawning. A description of the usual
GM-CPHD, including the implementation of the spontaneous
birth term, is given in [32].

1) Filtering Assumptions: We follow the usual assumptions
of the GM-CPHD filter [32] regarding the transition process
from time k − 1 to time k, namely, that the probability of sur-
vival ps,k is uniform over the state space X and the transition
fs,k follows a linear Gaussian dynamical model:

ps,k (·) ≡ ps,k , (40)

fs,k |k−1(·|x) = N (·;Fkx,Qk ), (41)

where N (·;m,P ) denotes a Gaussian distribution with mean
m and covariance P , Fk is a state transition matrix, and Qk is a
process noise covariance matrix.

Regardless of the chosen spawning model (see Theorem 1),
we further assume that the spatial distribution of each spawned
object sb,k can be described as the Gaussian mixture

sb,k (·|x) =
Jb , k∑

j=1

w
(j )
b,kN (·;F (j )

b,k x + d
(j )
b,k , Q

(j )
b,k ), (42)

where d
(j )
b,k is a deviation vector, F

(j )
b,k is a spawning transition

matrix, and Q
(j )
b,k is a spawning noise covariance matrix, for

1 ≤ j ≤ Jb,k , and
∑Jb , k

j=1 w
(j )
b,k = 1. Also, we assume that the

model parameters pb,k , λb,k , when applicable, are uniform over

the state space X:

pb,k (·) ≡ pb,k ,

λb,k (·) ≡ λb,k .
(43)

2) Predicted Intensity: The construction of the predicted in-
tensity μk |k−1 in Eq. (30) follows a similar structure as for the
usual GM-CPHD filter [34]. Assume that the posterior intensity
μk−1 can be written as a Gaussian mixture of the form

μk−1(·) =
Jk −1∑

j=1

w
(j )
k−1N (·;m(j )

k−1 , P
(j )
k−1), (44)

where m
(j )
k−1 (resp. P

(j )
k−1) is the posterior mean (resp. covari-

ance) of the jth component of the mixture. Then the predicted
intensity μk |k−1 can also be written as a Gaussian mixture of
the form

μk |k−1(·) = μs,k |k−1(·) + μb,k |k−1(·), (45)

where the surviving component μs,k |k−1 is the Gaussian mixture

μs,k |k−1(·) = ps,k

Jk −1∑

j=1

w
(j )
k−1N (·;m(j )

s,k |k−1 , P
(j )
s,k |k−1), (46)

with

m
(j )
s,k |k−1 = Fkm

(j )
k−1 , (47)

P
(j )
s,k |k−1 = Qk + FkP

(j )
k−1F

T
k , (48)

for 1 ≤ j ≤ Jk−1 , and the spawning component μb,k |k−1 is the
Gaussian mixture

μb,k |k−1(·) = αb,k

Jk −1∑

j=1

w
(j )
k−1

×
Jb , k∑

i=1

w
(i)
b,kN

(
·;m(j,i)

b,k |k−1 , P
(j,i)
b,k |k−1

)
, (49)

with

m
(j,i)
b,k |k−1 = F

(i)
b,km

(j )
k−1 + d

(i)
b,k , (50)

P
(j,i)
b,k |k−1 = Q

(i)
b,k + F

(i)
b,kP

(j )
k−1(F

(i)
b,k )T , (51)

for 1 ≤ j ≤ Jk−1 , 1 ≤ i ≤ Jb,k , and the scalar αb,k depends on
the spawning model:

αb,k =

⎧
⎨

⎩

pb,k , Bernoulli process,
λb,k , Poisson process,
pb,kλb,k , zero-inflated Poisson process.

(52)

3) Predicted Cardinality Distribution: Due to the assump-
tions presented in Section IV-A1, the coefficients of the Bell
polynomial in Eq. (31) have the simpler form

a) Bernoulli process:

bi =

⎧
⎪⎨

⎪⎩

(1 − ps,k ) (1 − pb,k ) , i = 0,
ps,k (1 − pb,k ) + (1 − ps,k ) pb,k , i = 1,
2ps,k pb,k , i = 2,
0, i > 2.

(53)
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b) Poisson process:

bi = λi−1
b,k e−λb , k [(1 − ps,k ) λb,k + ips,k ] , i ≥ 0.

(54)
c) zero-inflated Poisson process:

bi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − ps,k )
(
1 − pb,k + pb,k e−λb , k

)
, i = 0,

(1 − ps,k ) pb,k e−λb , k λb,k

+ps,k
(
1 − pb,k + pb,k e−λb , k

)
, i = 1,

pb,kλi−1
b,k e−λb , k [(1 − ps,k ) λb,k + ips,k ] , i ≥ 2.

(55)
The predicted cardinality distribution is then computed by the

appropriate substitution of Eqs. (53)–(55) into Eq. (31).

B. Evaluation Metrics

To compare the multi-target state representing the true targets
in the scene – the “ground truth” – and a collection of targets
extracted from the filter’s output, we exploit the optimal sub-
pattern assignment (OSPA) metric [35] for assessing the accu-
racy of multi-object filters. Given two sets X = {x1 , . . . , xm},
xi ∈ X, 1 ≤ i ≤ m, and Y = {y1 , . . . , yn}, yj ∈ X,

1 ≤ j ≤ n, the second-order OSPA distance d
(c)
2 (X,Y )

between X and Y is defined as

d
(c)
2 (X,Y ) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, m = n = 0,
[

1
n

(

min
π∈Πn

m∑

i=1

d(c)(xi, yπ (i))2 +c2(n − m)
)]1/2

, m ≤ n,

d
(c)
2 (Y,X), otherwise,

(56)

with

d(c)(xi, yj ) = min(c, ||xi − yj ||), (57)

where c is the cutoff parameter, and || · || is the usual norm
on X. The OSPA distance is such that 0 ≤ d

(c)
2 (X,Y ) ≤ c;

d
(c)
2 (X,Y ) = 0 indicates that X and Y are identical, while

d
(c)
2 (X,Y ) increases with the discrepancies between X and

Y , taking into account mismatches in number of elements and
element states.

In order to compare the true number of targets in the scene
and a estimated cardinality distribution extracted from the fil-
ter’s output, we exploit the Hellinger distance [36]. Given
two finite cardinality distributions P = (p1 , . . . , pk ) and Q =
(q1 , . . . , qk ), the Hellinger distance dH (P,Q) is

dH (P,Q) =
1√
2

√
√
√
√

k∑

i=1

(
√

pi −√
qi)2 . (58)

Note that in (58), the coefficient 1/
√

2 is included in or-
der to scale the Hellinger distance such that it is bounded as
0 ≤ dH (P,Q) ≤ 1; dH (P,Q) = 0 indicates that P and Q are
equivalent, where as dH (P,Q) → 1, P and Q become increas-
ingly dissimilar.

Fig. 1. Target trajectories. A circle “©” indicates where a trajectory begins,
and a square “�” indicates where a trajectory ends. The large square indicates the
limits of the sensor’s field of view (FoV) and the large dashed circle represents
the 90% confidence region of the Gaussian component of the spontaneous birth
model.

Fig. 2. Collected measurements (gray crosses) and target positions (black
lines). (a) x-axis. (b) y-axis.

C. Scenario and Filter Setup

A point [x, y, ẋ, ẏ] of the single-target state space X ⊂ R4

describes the position and velocity coordinates of an object
in a square surveillance region of size 2000 m × 2000 m. The
simulated multi-target tracking scenario consists of one scan per
second for 100 s, and up to seven targets evolving in the region
with constant velocity. Two targets are present at the beginning
of the scenario and each spawns targets at different times: target
1 spawns two additional targets at t = 15 s and target 2 spawns
three additional targets at t = 25 s. All spawned targets have
a lifespan of 60 s. Fig. 1 shows the trajectories of the targets
cumulated over time, while Fig. 2 illustrates these trajectories
and the collected measurements across time.

The probability of survival ps,k (40) is constant throughout
the scenario, and set to ps,k = 0.99. The target motion model
fs,k |k−1 (41) is set as follows:

Fk =

[
12 Δ12

02 12

]

, Qk = σ2
ν

[
Δ4

4 12
Δ3

2 12

Δ3

2 12 Δ212

]

, (59)
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TABLE I
SPAWN MODEL PARAMETERS

where Δ = 1 s, σν = 5 ms−2 , and 1n (resp. 0n ) denotes the
n × n identity (resp. zero) matrix.

The sensor’s probability of detection is uniform over the sen-
sor’s FoV, and set at a constant value of 0.95 throughout the
scenario. Each target-generated measurement consists of the tar-
get’s coordinate position with an independent Gaussian white
noise on each component, with a standard deviation of 10 m.
Spurious measurements are modeled as a Poisson point process
with uniform spatial distribution over the state space and an
average number of clutter per unit volume of 12.5 × 10−6 m−2,
that is, an average of 50 clutter returns per scan over the surveil-
lance region.

For the sake of comparison, the usual GM-CPHD filter [32]
with spontaneous birth and no spawning is implemented as well.
The spontaneous birth model is Poisson, with a constant rate of
0.025 per time step (which yields, over the 100 s of the scenario,
an average of 2.5 newborn targets). The spatial distribution is
modeled with a single Gaussian component, centered on the
sensor’s FoV as illustrated in Fig. 1.

The spatial distribution of the spawning (42) is identical for
the three considered models. We assume no spawned target
deviation vectors, and a standard deviation of 12 units is set on
each component of the spawning noise covariance, i.e.,

Fb,k =
[
12 02
02 12

]

, db,k = 0, Qb,k =
[

σ2
b12 02
02 σ̇2

b12

]

,

(60)
where 0 denotes the null vector in X, σb = 12 m, and σ̇b =
12 ms−1 .

The parameters of the three spawning models are set as fol-
lows. The zero-inflated Poisson model assumes one spawning
per parent target during the scenario with an average of 2.5
daughter targets per spawning event, thus pb,k and λb are set to
0.01 and 2.5, respectively. Relative to the zero-inflated Poisson
model, the Poisson model is set to yield a similar spawning in-
tensity thus its λb,k is set to 0.025, whereas the Bernoulli model
is set to yield a similar spawning frequency so its pb,k is set to
0.01. These parameters are also presented in Table I.

It is interesting to note that neither the Poisson nor the
Bernoulli models are equipped to capture the nature of the
spawning events occurring in this scenario, since, per construc-
tion, the Poisson model is a poor match for spawning events
occuring at unknown dates and the Bernoulli model is a poor
match for spawning events creating more than one daughter
target. The zero-inflated Poisson model possesses a greater flex-
ibility and should be able to cope with a wider range of spawning
situations; in any case, it is expected to yield better performances
on the scenario presented in this paper.

To maintain tractability, GM components are truncated with
threshold T = 10−5 , pruned with maximum number of compo-
nents Jmax = 100, and merged with threshold U = 4 (see [34]
for more details on the pruning and merging mechanisms). Ad-

Fig. 3. MAP estimate of the number of targets (averaged on 500 runs).

ditionally, the maximum number of targets is set to Nmax = 20
to circumvent issues with infinitely tailed cardinality distribu-
tions [32].

D. Simulation Results

The proposed spawning models and the birth model are im-
plemented with the GM-CPHD filter, and compared over 500
Monte Carlo (MC) runs of the multi-target scenario described
in Section IV-C.

The MAP estimate of the number of targets is plotted in Fig. 3,
along with the true number of targets in the scene. The results
suggest that the spawning models provide a better estimate of
the number of targets and, in particular, converge faster to the
true number of targets following the appearance of new targets
in the scene. This is expected, because the scenario does not
feature any spontaneous but only spawning-related births, and
thus in this context spawning models are a better match than the
birth model.

Among the three spawning models, the zero-inflated Poisson
converges the fastest following the appearance of new targets,
while the Bernoulli model converges the slowest. This is ex-
pected, for the zero-inflated Poisson model provides the best
match to the spawning events occurring in this scenario. Note
in particular that the Bernoulli model may not consider the ap-
pearance of more than one daughter per spawning event, and
must therefore stage the multiple-target appearances across sev-
eral successive time steps; in other words, the Bernoulli is ill-
adapted to “busy” events where targets appear simultaneously.
Note also the slight overestimation shown by the Poisson model
when the true number of target is stable. Per construction, the
Poisson model is well-equipped for the simultaneous appear-
ance of an arbitrary number of spawned targets at any time step,
but it fails at coping with “quiet” periods where no spawning
occurs because, unlike the zero-inflated Poisson model, it does
not temper the Poisson-driven spawning with a probability of
spawning. In other words, the Poisson model is ill-adapted to
the spawning events shown in this scenario.

Note that all models – spawning and birth – follow the same
mechanism for target deaths and yield much closer perfor-
mances when target disappearances occur.

Similar conclusions can be drawn from the comparisons of the
OSPA distances shown in Fig. 4. All models show error spikes
at times of spawning (t = 15 s, t = 25 s) and death (t = 76 s,
t = 86 s), however, the spawning models recover more quickly
than the birth model, and have consistently lower errors.

The quality of the estimation of the number of targets pro-
posed by the four models is further illustrated in Fig. 5, where
the Hellinger distance between the cardinality distribution prop-
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Fig. 4. OSPA distance (averaged on 500 runs). (a) Position. (b) Velocity.

Fig. 5. Hellinger distances (averaged on 500 runs). (a) Predicted cardinality.
(b) Updated cardinality.

agated by each model and the “ideal” cardinality distribution
(i.e., a distribution in which all the mass is concentrated on the
true number of targets).

The results in Fig. 5 allow a more refined analysis of the
proposed models. All the models yield poor estimates imme-
diately after a change in the true number of targets,6 but the
zero-inflated Poisson model converges the fastest following a
target birth/death and it converges to the best estimate during
periods where the number of target is stable. The Poisson model
converges faster than the Bernoulli model, but to a worse es-
timate: this is expected, since the Poisson model is ill-adapted
to “quiet” periods while the Bernoulli model is ill-adapted to
“busy” events (see discussion above on Fig. 3).

As expected, the updated cardinality distributions are consis-
tently more accurate than the predicted cardinality distributions
since they benefit from the processing of an additional measure-
ment batch.

6Recall from Eq. (58) that the Hellinger distance dH is such that 0 ≤ dH ≤ 1.

V. CONCLUSION

The motivation for the work presented in this paper is the
resolution of multi-object detection and tracking problems in
which newborn objects are spawned from preexisting ones.
To this end, the construction of a CPHD filter in which the
appearance of newborn targets is modeled with a spawning
mechanism rather than spontaneous birth is proposed, based on
a principled derivation procedure within the FISST framework.

A GM implementation of the CPHD filter with spawning
is then presented, considering three different models for the
spawning mechanism based on a Bernoulli, a Poisson, or a
zero-inflated Poisson process. The three resulting filters are
then illustrated, analyzed, and compared to a usual CPHD filter
with spontaneous birth but no spawning, on the same simulated
scenario involving two parent targets spawning a total of five
daughter targets. Results show that a spawning model, appropri-
ately chosen for a given application, can provide better estimates
than a spontaneous birth model.

VI. ALGORITHMS
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APPENDIX

A. Proof of Theorem 1

For the sake of simplicity, the time subscripts will be omitted
throughout the proof when there is no ambiguity.

1) Predicted p.g.fl.: Let us focus first on the p.g.fl. Gk |k−1
of the predicted multi-target point process Φk |k−1 . Each parent
target in the population, represented by the prior point process
Φk−1 , generates daughter targets in the predicted population in
two ways:

� a daughter target stemming from the (eventual) survival of
the parent target, represented by a survival point process
Φs ,

� a population of daughter spawned from the parent target,
represented by a spawning point process Φb .

Using Eq. (8), and denoting by Gs (resp. Gb ) the p.g.fl. of
the survival (resp. spawning) point process, we can describe the
evolution of a parent target with state x ∈ X with a compound
process with p.g.fl.

Gc(h|x) = Gs(h|x)Gb(h|x). (61)

In addition, a population of newborn targets is generated in-
dependently of the prior targets, represented by a spontaneous
birth process Φγ whose p.g.fl. is denoted by Gγ . Exploiting the
Galton-Watson equation (9), we may finally write

Gk |k−1(h) = Gk−1(Gc(h|·))Gγ (h) (62a)

= Gk−1(Gs(h|·)Gb(h|·))Gγ (h). (62b)

2) Predicted Intensity: Let us now focus on the expression
of the predicted intensity μk |k−1 . For that, let us fix an arbitrary
measurable subset B ∈ BX . The expression of the intensity
evaluated in B can be recovered from the first derivative of the
p.g.fl. Gk |k−1 using Eq. (20):

μk |k−1(B) = δGk |k−1(h; 1B )
∣
∣
h=1 (63a)

= δ
(
Gk−1(Gc(h|·))Gγ (h); 1B

)∣
∣
h=1 (63b)

Using the product rule (14) it becomes

μk |k−1(B) = δ
(
Gk−1(Gc(h|·)); 1B

)∣
∣
h=1 Gγ (1)

︸ ︷︷ ︸
=1

+ Gk−1(Gc(1|·))
︸ ︷︷ ︸

=1

δGγ (h; 1B )|h=1 (63c)

Using the definition of the p.g.fl. (5a) then yields

μk |k−1(B) = δ

(∫

X

[∏

x∈ϕ

Gc(h|x)
]

Pk−1(dϕ); 1B

)∣
∣
∣
∣
h=1

+δGγ (h; 1B )|h=1 (63d)

=
∫

X
δ

(∏

x∈ϕ

Gc(h|x); 1B

)∣
∣
∣
∣
h=1

Pk−1(dϕ)

+δGγ (h; 1B )|h=1 (63e)

From the product rule (14) it follows that

μk |k−1(B) =
∫

X

∑

x∈ϕ

[

δGc(h|x; 1B )
∣
∣
∣
∣
h=1

∏

x̄∈ϕ
x̄ �=x

Gc(1|x̄)
︸ ︷︷ ︸

=1

]

× Pk−1(dϕ) + δGγ (h; 1B )|h=1 (63f)

Using the product rule (14) on Gc(·|x) = Gs(·|x)Gb(·|x) then
yields

μk |k−1(B) =
∫

X

∑

x∈ϕ

[

δGs(h|x; 1B )
∣
∣
h=1 Gb(1|x)

︸ ︷︷ ︸
=1

+ Gs(1|x)
︸ ︷︷ ︸

=1

δGb(h|x; 1B )
∣
∣
h=1

]

× Pk−1(dϕ) + δGγ (h; 1B )|h=1 (63g)

Using Eq. (20) we introduce the intensity μs (resp. μb , μγ ) of
the survival (resp. spawning, spontaneous birth) process and we
obtain:

μk |k−1(B) =
∫

X

∑

x∈ϕ

[μs(B|x)+μb(B|x)]Pk−1(dϕ) +μγ (B)

(63h)
Which becomes, using Campbell’s theorem [37, p. 271]:

μk |k−1(B) =
∫

[μs(B|x) + μb(B|x)] μk−1(dx) + μγ (B).

(63i)
Note that the validity of the expression of the predicted in-
tensity above is not restricted to specific models for the prior
process Φk−1 . As such, the construction of the predicted in-
tensity is identical in the case of the PHD filter with spawning
(see Mahler’s original proof in [5]). Let us now focus on the
explicit expression of the intensity measure μs . Since the sur-
vival process is assumed Bernoulli with parameter ps(·) and
spatial distribution fs(·|·), we can exploit Eq. (20) to retrieve
the intensity μs through the expression of the p.g.fl. Gs given
by Eq. (24):

μs(B|·) = δGs(h|·; 1B )|h=1 (64a)

= δ

(

1 − ps(·) + ps(·)
∫

h(x)fs(dx|·); 1B

)∣
∣
∣
∣
h=1

(64b)

= ps(·)fs(B|·). (64c)

3) Predicted Cardinality: Let us now focus on the expres-
sion of the predicted cardinality ρk |k−1 . From Eq. (4) the cardi-
nality distribution of an arbitrary point process can be retrieved
through its Janossy measures; let us then compute the predicted
nth -order Janossy measure J

(n)
k |k−1 evaluated at the neighbor-

hood of a collection of n arbitrary points y1 , . . . , yn . Using
Eq. (19) yields

J
(n)
k |k−1(d(y1 , . . . , yn ))

= δnGk |k−1(h; 1dy1 , . . . , 1dyn
)
∣
∣
h=0 (65a)

= δn (Gk−1(Gc(h|·))Gγ (h); 1dy1 , . . . , 1dyn
)|h=0 (65b)
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Applying the product rule (14) then gives

J
(n)
k |k−1(d(y1 , . . . , yn ))

=
∑

τ⊆{1,...,n}
δ|τ |(Gk−1(Gc(h|·)); (1dyi

)i∈τ )
∣
∣
h=0

×δn−|τ |Gγ (h; (1dyi
)i∈τ c )

∣
∣
h=0 (65c)

Using Eq. (19) on the instantaneous birth process then gives

J
(n)
k |k−1(d(y1 , . . . , yn ))

=
∑

τ⊆{1,...,n}
C|τ |(d(yi)i∈τ )J (n−|τ |)

γ (d(yi)i∈τ c ), (65d)

where

C|τ |(d(yi)i∈τ ) = δ|τ |(Gk−1(Gc(h|·)); (1dyi
)i∈τ )

∣
∣
h=0 , (66)

and where J
(n−|τ |)
γ is the (n − |τ |)th -order Janossy measure of

the instantaneous birth process.
We shall now detail the expression of the quantity Cq , eval-

uated at the neighborhood of a collection of q arbitrary points
z1 , . . . , zq . Applying the general chain rule (12) yields

Cq (d(z1 , . . . , zq ))

= δq (Gk−1(Gc(h|·)); 1dz1 , . . . , 1dzq
)
∣
∣
h=0 (67a)

=
∑

π∈Πq

δ|π |Gk−1

(
Gc(h|·);

(
δ|ω |Gc(h|·; (1dzi

)i∈ω )
)

ω∈π

)∣∣
∣
∣
h=0

.

(67b)

Developing the predicted p.g.fl. Gk−1 through Janossy measures
with Eq. (2) then gives

Cq (d(z1 , . . . , zq )) =
∑

π∈Πq

∑

m≥|π |

1
(m − |π|)!

×
∫

Xm

|π |∏

i=1

δ|ωi |Gc(h|xi ; (1dzj
)j∈ωi

)
∣
∣
∣
∣
h=0

×
m∏

i= |π |+1

Gc(0|xi)J
(m )
k−1 (d(x1 , . . . , xm )). (67c)

Since the prior process is assumed i.i.d., we can substitute the
expression given by Eq. (29) to the prior Janossy measures J

(m )
k−1

and obtain

Cq (d(z1 , . . . , zq ))

=
∑

π∈Πq

∑

m≥|π |

m!
(m − |π|)!ρ(m)Cπ (d(z1 , . . . , zq )),

(67d)

where

Cπ (d(z1 , . . . , zq )) =
∫ |π |∏

i=1

δ|ωi |Gc(h|xi ; (1dzj
)j∈ωi

)
∣
∣
h=0

×
m∏

i= |π |+1

Gc(0|xi)
m∏

i=1

s(dxi) (68a)

=
(∫

Gc(0|x)s(dx)
)m−|π |

×
∏

ω∈π

(∫

δ|ω |Gc(h|x; (1dzi
)i∈ω )

∣
∣
h=0s(dx)

)

. (68b)

Recall from Eq. (61) that Gc(h|x) = Gs(h|x)Gb(h|x); using
the product rule (14) on Eq. (68b) then yields

Cπ (d(z1 , . . . , zq )) =
(∫

Gs(0|x)Gb(0|x)s(dx)
)m−|π |

×
∏

ω∈π

(∫ ∑

ν⊆ω

δ|ν |Gs(h|x; (1dzi
)i∈ν )

∣
∣
∣
∣
h=0

× δ|ω |−|ν |Gb(h|x; (1dzi
)i∈ω\ν )

∣
∣
∣
∣
h=0

s(dx)
)

. (69)

Now, from the derivation shown in Eq. (64), we see that:

δ|ν |Gs(h|x; (1dzi
)i∈ν )

∣
∣
h=0 =

⎧
⎨

⎩

1 − ps(x), ν = ∅,
ps(x)fs(dzi |x), ν = {i},
0, |ν| > 1.

(70)
Therefore, Eq. (69) simplifies as follows:

Cπ (d(z1 , . . . , zq )) =
(∫

p̄s(x)Gb(0|x)s(dx)
)m−|π |

×
∏

ω∈π

(∫

p̄s(x)δ|ω |Gb(h|x; (1dzi
)i∈ω )

∣
∣
h=0s(dx)

+
∫∑

i∈ω

ps(x)fs(dzi |x)δ|ω |−1Gb(h|x; (1dzj
)j∈ω\i)

∣
∣
h=0s(dx)

)

,

(71a)

Which becomes, using Eq. (19):

Cπ (d(z1 , . . . , zq )) =
(∫

p̄s(x)J (0)
b (x)s(dx)

)m−|π |

×
∏

ω∈π

(∫

p̄s(x)J (|ω |)
b (d(zi)i∈ω |x)s(dx)

+
∫ ∑

i∈ω

ps(x)fs(dzi |x)J (|ω |−1)
b (d(zj )j∈ω\i |x)s(dx)

)

,

(71b)
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where J
(|ω |)
b is the |ω|th -order Janossy measure of the spawning

process. Exploiting Eq. (4), it follows from Eq. (71b) that

∫

X q

Cπ (d(z1 , . . . , zq )) =
(∫

p̄s(x)ρb(0|x)s(dx)
)m−|π |

×
∏

ω∈π

|ω|!
∫

[p̄s(x)ρb(|ω||x)

+ ps(x)ρb(|ω|−1|x)]s(dx) (72a)

= b
m−|π |
0

∏

ω∈π

b|ω |, (72b)

where the coefficients bi are defined by

bi =

{∫
p̄s(x)ρb(0|x)s(dx), i = 0,

i!
∫

[p̄s(x)ρb(i|x) + ps(x)ρb(i − 1|x)] s(dx), i > 0.

(73)
Exploiting Eq. (72b), it follows from Eq. (67d) that

∫

X q

Cq (d(z1 , . . . , zq ))

=
∑

π∈Πq

∑

m≥|π |

m!
(m − |π|)!ρ(m)bm−|π |

0

∏

ω∈π

b|π |. (74)

We may finally retrieve the scalar ρk |k−1(n) through Eq. (4):

ρk |k−1(n) =
1
n!

∫

Xn

J
(n)
k |k−1(d(y1 , . . . , yn )) (75a)

=
∑

ν⊆{1,...,n}

1
(n − |ν|)!

∫

Xn −|ν |
J (n−|ν |)

γ (d(yi)i∈ν c )

× (n − |ν|)!
n!

∫

X |ν |
C|ν |(d(yi)i∈ν )

(75b)

=
n∑

q=0

(
n

q

)

ργ (n − q)
(n − q)!

n!

×
∑

π∈Πq

∑

m≥|π |

m!
(m − |π|)!ρ(m)bm−|π |

0

∏

ω∈π

b|ω |

(75c)

=
n∑

q=0

ργ (n − q)
∑

π∈Πq

∑

m≥|π |

m!
q!(m − |π|)!

×ρ(m)bm−|π |
0

∏

ω∈π

b|ω |. (75d)

Using the definition of the Bell polynomial (32) then yields
the desired result.

B. Proof of Corollary 1

For the sake of simplicity, the time subscripts will be omitted
throughout the proof when there is no ambiguity.

1) Predicted Intensity: Let us first focus on the explicit ex-
pression of the intensity measure μb of the spawning process in

Eq. (30), depending on the modeling choices for the spawning
process.

a) Bernoulli process with parameter pb(·) and spatial distri-
bution sb(·|·): Using the same construction as in Eq. (64) we
have immediately

μb(B|·) = pb(·)sb(B|·). (76)

b) zero-inflated Poisson process with parameter pb(·), rate
λb(·) and spatial distribution sb(·|·): Exploiting Eq. (28) yields

μb(B|·)
= δGb (h|·; 1B )|h=1 (77a)

= δ

(

p̄b(·)+pb(·) exp
[

λb(·)
(∫

h(x)sb(dx|·)−1
)]

; 1B

)∣
∣
∣
∣
h=1

(77b)

= pb(·)λb(·)δ
(∫

h(x)sb(dx|·) − 1; 1B

)∣
∣
∣
∣
h=1

× exp
[

λb(·)
(∫

sb(dx|·) − 1
)]

︸ ︷︷ ︸
=0

(77c)

= pb(·)λb(·)sb(B|·). (77d)

2) Predicted Cardinality: Let us now detail the expression of
the coefficients bi of the Bello polynomial in Eq. (33), depending
on the modeling choices for the spawning process.

a) Bernoulli process with parameter ps(·) and spatial distribu-
tion fs(·|·): From the description of the Bernoulli process (23)
it follows that

ρb(n|x) =

⎧
⎪⎨

⎪⎩

p̄b(x), n = 0,

pb(x), n = 1,

0, otherwise.

(78)

Thus, the coefficients bi in Eq. (33) become

bi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫
p̄s(x)p̄b(x)s(dx), i = 0,

∫
[ps(x)p̄b(x) + p̄s(x)pb(x)] s(dx), i = 1,

2
∫

ps(x)pb(x)s(dx), i = 2,

0, i > 2.

(79)

b) zero-inflated Poisson process with parameter pb(·), rate
λb(·), and spatial distribution sb(·|·): From the description of
the zero-inflated Poisson process (27) it follows that

ρb(n|x) =

{
p̄b(x) + pb(x)e−λb (x) , n = 0,

pb(x)e−λb (x) λb (x)n

n ! , otherwise.
(80)

Thus, the coefficients bi in Eq. (33) become

bi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
p̄s(x)

[
p̄b(x) + pb(x)e−λb (x)

]
s(dx), i = 0,

∫ [
p̄s(x)pb(x)e−λb (x)λb(x)
+ ps(x)

[
p̄b(x) + pb(x)e−λb (x)

] ]
s(dx), i = 1,

∫
pb(x)λi−1

b (x)e−λb (x)

[p̄s(x)λb(x) + ips(x)] s(dx), i ≥ 2.
(81)



BRYANT et al.: CPHD FILTER WITH TARGET SPAWNING 1337

C. Comparison of Expressions [15, (A.15)] and Eq. (31)

The construction of the predicted cardinality in [15] relies on
the derivation of p.g.fs, describing the cardinality distribution
of specific processes, through the Faà di Bruno’s general chain
formula for usual derivatives (more information on p.g.fs in
the context of multi-object filtering can be found in [3], [5]).
The connection between the two expressions can be established
through the version of Faà di Bruno’s formula involving partial
Bell polynomials [13, p.420], i.e.,

dn

dxn
F
(
G(x)

)

=
n∑

k=0

F (k)(G(x)
)
Bn,k

(
G(1)(x), . . . , G(n)(x)

)
, (82)

where F,G denote some suitable functions. Substituting
Eq. (82) in [15, (A.9)] yields

1
q!

dq

dxq
Gk−1(g(x))

=
1
q!

q∑

j=0

G
(j )
k−1

(
g(x)

)
Bq,j

(
g(1)(x), . . . , g(q)(x)

)
, (83)

where

g(x) =
∫
[
p̄s,k (x) + ps,k (x)x

]
Gb,k (x|x)sk−1(dx),

g(i)(x) =
∫
[
p̄s,k (x)G(i)

b,k (x|x) + ips,k (x) (84)

×G
(i−1)
b,k (x|x)

]
sk−1(dx), (85)

where i ≥ 1, and where Gk−1 (resp. Gb,k ) denotes the p.g.f of
the prior (resp. spawning) process. (Note that, for the sake of
simplicity, we use the same notation for the p.g.f and p.g.fl. of a
process, though the quantities are different in nature.) Following
[15, (A.7)], we then have

1
n!

dn

dxn
Gk |k−1(x)

∣
∣
∣
∣
x=0

=
n∑

q=0

ργ ,k (n − q)
1
q!

q∑

j=0

G
(j )
k−1

(
g(0)

)

×Bq,j

(
g(1)(0), . . . , g(n)(0)

)
, (86)

where Gk |k−1 denotes the p.g.f of the predicted process. Using
basic calculus properties on p.g.fs, we have

G
(j )
k−1

(
g(0)

)
=

∑

m≥j

m!
(m − j)!

ρk−1(m)
(
g(0)

)m−j
(87a)

=
∑

m≥j

m!
(m − j)!

ρk−1(m)bm−j
0 . (87b)

Also, from Eq. (85) we have

g(i)(0) =
∫
[
p̄s,k (x)G(i)

b,k (0|x) + ips,k (x)G(i−1)
b,k (0|x)

]

×sk−1(dx) (88a)

= i!
∫
[
p̄s,k (x)ρb,k (i|x) + ips,k (x)ρb,k (i − 1|x)

]

×sk−1(dx) (88b)

= bi, (88c)

where i ≥ 1. Substituting Eq. (87b) and Eq. (88c) into
Eq. (86), the predicted cardinality [15, (A.15)] then takes the
form (31).
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