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Abstract—In this paper we propose a dictionary learning
method that builds an overcomplete dictionary that is com-
putationally efficient to manipulate, i.e., sparse approximation
algorithms have sub-quadratic computationally complexity. To
achieve this we consider two factors (both to be learned
from data) in order to design the dictionary: an orthonormal
component made up of a fixed number of fast fundamental
orthonormal transforms and a sparse component that builds
linear combinations of elements from the first, orthonormal
component. We show how effective the proposed technique is to
encode image data and compare against a previously proposed
method from the literature. We expect the current work to
contribute to the spread of sparsity and dictionary learning
techniques to hardware scenarios where there are hard limits
on the computational capabilities and energy consumption of the
computer systems.

I. INTRODUCTION

Dictionary learning [1] is a factorization technique intro-

duced in the sparse representation literature [2] that has been

successfully applied in research fields like image processing

[3] and wireless communications [4]. Given a training dataset

with N samples Y ∈ R
n×N , the dictionary learning problem

can be stated as the NP-hard [5], non-convex optimization

problem

minimize
D, X

‖Y −DX‖2F

subject to ‖dj‖2 = 1, 1 ≤ j ≤ m,

‖xi‖0 ≤ s, 1 ≤ i ≤ N,

(1)

for which several efficient algorithms that have been proven to

perform very well in practice have been proposed [6], [7], [8],

[9]. The problem is hard because the objective function is bi-

linear, i.e., both the dictionary D and the sparse approximation

matrix X are unknown, and the constraints are non-convex,

i.e., the ℓ2 equality constraints on the m columns of the

dictionary and the ℓ0 pseudo-norm constraints on the N
columns of X. The size of the dictionary m and the target

sparsity s are provided by the user.

It is impossible to enumerate all the algorithms proposed

to approximately solve (1) (or problems similar to (1)) since

the literature on this subject is already vast. This flurry of

research is one of the reasons why dictionary learning (in all its

variants, with different numerical characteristics and additional

constraints) is seen as such a powerful algorithmic tool.

One downside of constructing a dictionary D from given

data is that, in general, it will lack any specific structure.

Classically, transforms (square and usually orthonormal dic-

tionaries), like the Fourier and wavelet, have been extensively

used in signal processing due to their internal structure that

allows for their use in numerically efficient procedures, i.e.,

O(n log n) complexity.

Previous work in the literature has already studied the possi-

bility of building computationally efficient dictionaries learned

from data. For example, square dictionaries (orthonormal and

general) that are also known as transforms with complexity

O(n log n) have been introduced in [10], [11] and [12]. For

more general dictionaries, previous work has explored several

ways to introduce structure that improves the computationally

complexity of manipulating the dictionary: [13], [14], [15] and

[16] to name a few.

In this paper we will introduce a new method to construct

computationally efficient overcomplete dictionaries. We extend

previous work for learning orthonormal transforms to the non-

orthonormal [11] and overcomplete scenarios and compare

against a similar method from the literature [16]. Given the

sparse representations, we propose a dictionary structure for

which we are able to introduce an optimization procedure

that has polynomial complexity and that is monotonically

decreasing to a local minimum point. We then use image data

to show the coding capabilities of the proposed dictionaries

and how they compare with a competing, similar, method

called the Sparse K-SVD [16] and to the classic K-SVD

algorithm [7].

II. THE PROPOSED DICTIONARY STRUCTURE

We consider the so-called double sparsity dictionary model

[16], [17] that D ∈ R
n×m has the factorization

D = US, (2)

where we have denoted:

• U ∈ R
n×n is an orthonormal matrix that has a factoriza-

tion into g G-transforms as U =
∏g

k=1
Gikjk [18] such

that matrix-vector multiplication between U and a given

vector takes 6g operations.

• S ∈ R
n×m is a sparse matrix with p ≥ 1 non-zero entries

in each of its columns (therefore, there are pm non-zero

entries in S). The columns have unit ℓ2 norm – this

constraint together with the orthonormal U ensure that

all columns of the dictionary D are also ℓ2 normalized,

i.e., since dj = Usj and therefore ‖dj‖2 = 1 because

‖sj‖2 = 1 (as UTU = UUT = I).



Unlike the previous approaches [16], [17], our proposed

optimization problem for learning computationally efficient

dictionaries updates both U and S following:

minimize
U, S, X

‖Y −USX‖2F

subject to U =

g
∏

k=1

Gikjk ,

‖sj‖0 ≤ p, ‖sj‖2 = 1, 1 ≤ j ≤ m,

‖xi‖0 ≤ s. 1 ≤ i ≤ N.

(3)

The benefit of the proposed method is that the resulting

dictionary is computationally efficient to manipulate, i.e., DTy

(which is essential to building the sparse approximation of y

in the dictionary D [8]) takes

Nnew = 2pm+ 6g, (4)

operations instead of the classic Nold = 2nm. In order to keep

the new dictionary efficient (linear computational complexity)

we consider parameters p = O(1) and g = O(n), i.e., p ≪ g
and in fact, in the results section, we keep p ∈ {2, 3} only.

Using this structure of the dictionary we now explain how

the components U and S and the representations X are

updated.

A. The update of U

We consider that the orthonormal U has a factorization as

U =

g
∏

k=1

Gikjk = Gi1j2 . . .Gigjg , (5)

where each Gikjk is a G-transform as defined in [11]:

Gikjk =













Iik−1

∗ ∗
Ijk−ik−1

∗ ∗
In−jk













∈ R
n×n, (6)

where we denote the non-trivial part of Gikjk as

G̃ikjk =

{[

ck sk
−sk ck

]

,

[

ck sk
sk −ck

]}

∈ R
2×2, c2k + s2k = 1.

(7)

With this structure and with S, X and Gitjt , t 6= k fixed,

our goal is to update each Gikjk sequentially by solving

minimize
Gikjk

∥

∥

∥

∥

∥

1
∏

t=k−1

GT
itjt

Y −Gikjk

g
∏

t=k+1

GitjtSX

∥

∥

∥

∥

∥

2

F

. (8)

The objective function is of the form ‖Yk −GikjkXk‖
2
F and

this problem has been studied in [11] where a procedure of

finding the optimum Gikjk is described. Briefly, the optimum

Gikjk is found by studying the spectral properties of 2 × 2
sub-matrices of Zk = YkX

T
k to deciding the indices (ik, jk)

and then solving an orthonormal Procrustes problem [19] for

these indices to construct G̃ikjk .

B. The update of S

We consider that the sparse matrix S ∈ R
n×m has column

structure as

S =
[

s1 s2 . . . sm
]

, (9)

where for each column sj we have the sparsity constraints

‖sj‖0 = p and the ℓ2 normalization ‖sj‖2 = 1 for j =
1, . . . ,m. We will use the same idea of sequential updated,

this time column by column. With U and X fixed, consider

the development of the objective function in (3)

‖Y −USX‖2F = ‖UTY − SX‖2F

= ‖UTY −
[

s1 s2 . . . sm
]

X‖2F

=

∥

∥

∥

∥

∥

∥

UTY −

m
∑

i=1,i 6=j

six
T
i − sjx

T
j

∥

∥

∥

∥

∥

∥

2

F

= ‖Rj − sjx
T
j ‖

2
F ,

(10)

where xT
i is the ith row of X and we have denoted Rj the

residual when updating the jth column of S. Let us denote

by Ij the set of indices of the non-zero entries of sj (the

support of size p of the column) which is fixed throughout the

iterations of the algorithm and with Jj the set of indices of

the non-zero entries on xT
j (i.e., the columns of X that use the

jth atom of the dictionary). With this notation we have that

‖Rj − sjx
T
j ‖

2
F = ‖RIj ,Jj

− sIj ,jx
T
j,Jj

‖2F , (11)

where sIj ,j ∈ R
p×1, xT

j,Jj
∈ R

1×|Jj | and RIj ,Jj
∈ R

p×|Jj |

is the residual matrix restricted only to its non-trivial rows

and columns. This is now a rank-1 update problem that can

be easily solved via the singular value decomposition. The

constraint ‖sj‖2 = 1 is implicitly obeyed since the singular

vector sIj ,j has ℓ2 norm one. This type of update is the

regular one used in the K-SVD [7] and Sparse K-SVD [16]

algorithms (the rank-1 decomposition restricted by the set Jj)

but adapted to the case when the dictionary atom is sparse

(and we know the sparsity level p and the location of the non-

zero entries). For example, the Sparse K-SVD approach has a

more sophisticated update scheme (which basically amounts to

an OMP algorithm followed by an ℓ2 normalization) for each

atom in S because it uses a fixed U (usually a well known

numerically efficient transform like the DCT or wavelet). Since

we are updating U as well, we can fix the sparsity pattern

in S and only update its values. The advantage is that the

resulting numerical algorithm performs the singular values

decomposition over a variable of size p instead of size n
and avoids the OMP procedure to update the columns sj .

Therefore, the update of S is fast and ensures a monotonic

decrease in the objective function of (3).

In the initialization of the proposed method we set and

fix the sets Ij and are careful to ensure that there is an

(approximate) uniform distribution of the non-zero indices

from {1, n}, i.e., each index appears approximately pmn−1

times.



Algorithm 1 – F–DLA. Fast Dictionary Learning.

Input: The dataset Y ∈ R
n×N , the number of G-transforms

g in the structure of U, the number of atoms in the dictionary

m, the number of non-zero entries p in each column of the

sparse component of the dictionary, the target sparsity s and

the number of iterations K.

Output: The overcomplete dictionary D ∈ R
n×m factored as

D = US constrained as in (3) and the sparse representations

X ∈ R
m×N such that ‖Y −USX‖2F is reduced.

Initialization:

1) Perform the economy size singular value decom-

position of the dataset Y = UΣVT and keep the

orthonormal component U.

2) Establish the sets Ij (the p non-zero indices of

each columns sj of S) and initialize sj on this sup-

port from a standard Gaussian distribution. Normalize

sj = sj‖sj‖
−1

2 .

3) With U and S fixed, compute the sparse represen-

tations X = OMP(U,S,Y, s).

Iterations 1, . . . ,K:

1) Update U: with S and X fixed, for k = 1, . . . , g
update the new Gikjk , with all other transforms fixed,

such that (8) is minimized.

2) Update S: with U and X fixed, for j = 1, . . . ,m
establish the sets Jj (the indices of the elements in the

dataset Y that use the atom dj), construct the residual

matrix RIj ,Jj
and perform a rank-1 factorization using

the singular value decomposition to update sj and xT
j

following (11).

3) Update X: with U and S fixed, compute the sparse

representations X = OMP(U,S,Y, s).

C. The update of the sparse representations X

To construct the sparse representations X ∈ R
m×N we use a

Batch Orthogonal Matching Pursuit (Batch-OMP) [8] for each

element yi, i = 1, . . . , N of the dataset. To use the Batch-

OMP [8] we have to compute the projections DTY and the

Gram matrix of the dictionary G = DTD. Using the structure

we consider for the dictionary we reach that

DTY = STUTY, (12)

which is done efficiently since UTY takes 6gN operations

while the multiplication with the sparse matrix ST takes

2pmN operations and for the Gram matrix we have that

G = DTD = STUTUS = STS, (13)

which can be computed in less than pm(m − 1) operations,

since each column of S has sparsity p and we only need to

compute the upper triangle of G.

D. The initialization

The optimization problem in (3) is non-convex due to both

its objective function and the constraints. The optimization

sub-problems we defined in the previous sub-section solve for

several components in the original problem in a local sense

(once component is optimized as the others are kept fixed).

Therefore, a good initialization [20] is crucial to ensuring

that the whole procedure converges to a solution with a

low objective function value. There are three components to

discuss: U, S and X – but we are concerned mostly with the

first two, as X follows immediately by sparse approximation

techniques if the overall dictionary D is known.

A singular value decomposition of the dataset can produce

Y = UΣVT and we can keep the orthonormal basis U for

our purposes. Of course, this matrix does not have an explicit

representation in terms of g G-transforms. The sparse matrix S

is initialized randomly. For each p-sparse column sj we decide

its support Ij randomly and its initial values drawn from the

standard Gaussian distribution. With these two components

given, the sparse representations X follow immediately via

the OMP.

Alternative initialization mechanism could use a sparse

representation X given for example by the classic K-SVD

algorithm (or other algorithms) and the U given by the singular

value decomposition and based on these optimize over the

S. At this point, the quality of the initialization can only be

measured experimentally by numerical simulation.

E. Putting it all together: the proposed method

The proposed method, detailed in Algorithm 1, is composed

of three blocks: update the orthonormal component U by

updating each G-transform in its structure, update the sparse

component S column by column and update the sparse repre-

sentations X.

For p = 1 and m = n the proposed method reduces to the

Gg–DLA algorithm in [11] while for g = 0 and p = n it

reduces to the K-SVD algorithm [7].

III. RESULTS

In this section we present numerical experimental results

on image data to validate the proposed approach. We use

image data since in this case we know of computationally

efficient transforms (like the DCT [21]) that perform very

well in terms of representation performance, i.e., the objective

function of (1). To measure this performance we use the

relative representation error of the dictionary D defined as

ǫ = ‖Y −DX‖2F ‖Y‖−2

F (%). (14)

The test dataset Y ∈ R
n×N consists of 8 × 8 non-

overlapping image patches from popular test images often used

in the image processing literature (pirate, peppers, boat etc.)

with their means removed and normalized Y = Y/255. We

have n = 64 and N = 12288.

Fig. 1 shows the evolution of the representation error with

each iteration. For the Sparse K-SVD approach the conver-

gence is fast (in just a few iterations) while F-DLA (due

to the higher number of degrees of freedom) has a slower

convergence. We show results for g = 128 since for this value

the orthonormal component U has the same computational

complexity as the DCT used in the Sparse K-SVD. Then Fig.



0 10 20 30 40 50
5

10

15

20

25

30

35

Iteration

R
e

la
ti
v
e

 r
e

p
re

s
e

n
ta

ti
o

n
 e

rr
o

r 
(%

)

F−DLA, g = 85

F−DLA, g = 128

F−DLA, g = 170

F−DLA, g = 256

Sparse K−SVD

SK−SVD

0 10 20 30 40 50
5

10

15

20

25

30

35

Iteration

R
e

la
ti
v
e

 r
e

p
re

s
e

n
ta

ti
o

n
 e

rr
o

r 
(%

)

F−DLA, g = 85

F−DLA, g = 128

F−DLA, g = 170

F−DLA, g = 256

Sparse K−SVD

SK−SVD

0 10 20 30 40 50
5

10

15

20

25

30

35

Iteration

R
e

la
ti
v
e

 r
e

p
re

s
e

n
ta

ti
o

n
 e

rr
o

r 
(%

)

F−DLA, g = 85

F−DLA, g = 128

F−DLA, g = 170

F−DLA, g = 256

Sparse K−SVD

SK−SVD

Fig. 1: Evolution of the relative representation error for 50 iterations of the proposed algorithm and the competing Sparse

K-SVD approach [16] for a dictionary D ∈ R
n×m with m ∈ {64, 128, 256} (from left to right) for p = 2 and s = 4. We show

the SK-SVD approach [9] as reference.
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Fig. 2: Relative representation error achieved by dictionaries

created via the proposed F-DLA for various m and g for fixed

p = 3 and s = 4.

2 shows the representation error against the dictionary size m
and number of G-transforms g. The figure shows the trade-

off between these two degrees of freedom: for g = 85 and

m ∈ {192, 256} the representation performance is very similar

despite the difference in the number of atoms since the new

extra atoms are constrained by the same number of degrees of

freedom.

Fig. 3 shows the objective function of the dictionary learning

problem against the computational complexity of operating

the dictionary in sparse approximation algorithms, i.e., matrix-

vector multiplication. F-DLA achieves the best trade-offs when

compared with the Sparse K-SVD approach. We observe that

the gap between these two approaches, in representation per-

formance, increases with the computational complexity. Also

notice that we incur a doubling in computational complexity

to close the gap between the representation error of the best

dictionaries designed via F-DLA and SK-SVD. For reference

we also show the complexity of using a non-structured square

dictionary build with SK-SVD.

A general conclusion that might be drawn from Fig. 3 is

that the DCT dictionary is well suited for smooth image data
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Fig. 3: Relative representation error of the dictionaries D ∈
R

n×m versus their matrix-vector computational complexity

DTy when designed via the F-DLA and Sparse K-SVD [16]

with the DCT basic dictionary for m ∈ {64, 128, 192, 256}
and g ∈ {85, 128, 170, 256}. For reference we also show

the general dictionary D ∈ R
n×n designed by SK-SVD [9].

Sparsity parameters are set to s = 4 and p ∈ {2, 3, 4, 6, 8}.

and (at least for the cost of n log n degrees of freedom) no

substantial improvement in the representation error can be

achieved. We note that a full, general, dictionary D, i.e., full

nm degrees of freedom, can further reduce the representation

error of course at the cost of full computational complexity.

IV. CONCLUSIONS

In this paper we propose a dictionary learning algorithm

that builds structured overcomplete dictionaries that are com-

putationally efficient when used in sparse approximation al-

gorithms. We show that the proposed method outperform

previous methods from the literature that build structured over-

complete dictionaries on image data. We provide a potential

solution to bridge the gap between the classic, computationally

efficient, transforms such as the discrete cosine transform and

unstructured overcomplete learned dictionaries.
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