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Abstract—By incorporating a priori knowledge into radar sig-
nal processing architectures, knowledge-aided space-time adap-
tive processing (KA-STAP) algorithms can offer the potential
to substantially enhance detection performance and to combat
heterogeneous clutter effects. In this paper, we develop a KA-
STAP algorithm to estimate directly the interference covariance
matrix inverse rather than the covariance matrix itself, by using
a linear combination of inverse covariance matrices (LCICM),
which leads to an equivalent expression of the combination of
two filters. The computational load is greatly reduced due to the
avoidance of the matrix inversion operation. The performance
of the LCICM scheme can be further improved by applying
a modification. Moreover, adaptive algorithms for the mixing
parameters are developed using affine combinations (AC). Nu-
merical examples show the potential of our proposed algorithms
for substantial performance improvement.

Index Terms—Space-time adaptive processing, Knowledge-
aided, Airborne radar applications, Affine Combination.

I. INTRODUCTION

Following the landmark publication by Brennan and Reed
[1]- [7], space-time adaptive processing (STAP) techniques
have been well developed since 1973. A joint-domain op-
timization of the spatial and temporal degrees-of-freedom
(DOFs) can potentially offer a significant increase in out-
put signal-to-interference-plus-noise-ratio (SINR) for airborne
radar applications. To estimate the covariance matrix R in the
optimal detector [2], the STAP must employ secondary data,
generally taken from range cells adjacent to the cell under
test (CUT). Prior work ( [3] and the references therein) have
focused on algorithms with the underlying assumption that the
training samples are independent and identically distributed
(i.i.d) with the same covariance matrix as the primary data (so
called homogeneous training). However, it is widely under-
stood that the clutter environments are often heterogeneous
(or non-i.i.d) [4], [5], for example, clutter reflectivity varies
spatially and target-like signals frequently reside within the
training data. Thus, merely using the sample covariance matrix
estimate R̂ results in significant output SINR performance
degradation.

To combat the deleterious effects of the heterogeneity in
the secondary data, knowledge-aided (KA) STAP techniques,
which make use of an a priori knowledge of the clutter
covariance matrix, have currently gained significant atten-
tion [6], [8]–[11]. In KA-STAP, two questions have to be
answered: the first is how to derive the prior covariance
matrix from the terrain knowledge of the clutter and how
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to estimate the real interference covariance matrix with the
prior knowledge [6], [8], [9]; the second is how to apply
the covariance matrix estimate in the filtering [10], [11]. A
number of techniques have been shown to result in more robust
detection performance when the limited sample support is
used in highly non-stationary clutter environments. However,
most of the KA-STAP techniques studied previously inevitably
require matrix inversion which has complexity of O(M3),
where M is the dimension of the matrix.

In this paper, we propose a KA-STAP algorithm which
estimates directly the inverse interference covariance matrix
instead of the covariance matrix itself, by using a linear
combination of inverse covariance matrices (LCICM), say the
prior inverse covariance matrix R−1

0 and the sample inverse
covariance matrix estimate R̂−1. The linear combination of
R−1

0 and R̂−1, more precisely, can be expressed as R−1 =
αR−1

0 + βR̂−1. Because the computation of R̂−1 can be
simplified by using the matrix inversion lemma and may be
obtained recursively, our proposed algorithm has consider-
ably lower complexity compared with the scheme proposed
in [9]. Futhermore, [9] needs to substitute R by R̂ under
the assumption of homogeneous training when estimating the
mixing parameter, while our algorithm does not require such
assumption and can be represented as a combination of fil-
ters [12]–[16]. The proposed KA-STAP-LCICM can be further
modified with a combination of two recursive least squares
(RLS) filters with prior knowledge initialization and normal
initialization, respectively, which we refer as the modified
LCICM (MLCICM) scheme. The mixing parameter in the
algorithm can be determined as an affine combination (AC),
making β = 1 − α, where α ∈ R [12], [13]. The simulation
results show significant performance improvement brought by
our LCICM-AC and MLCICM-AC algorithms.

The rest of the paper is organized as follows. In Sec. II, we
briefly describe the problem at hand. Sec. III focuses on the
key principle of the proposed KA-STAP algorithms including
LCICM-AC and MLCICM-AC algorithms and describes the
methods to estimate the mixing parameter. Sec. IV analyses the
complexity of the proposed algorithms in terms of the number
of additions and multiplications. Sec. V presents numerical
examples illustrating the performance improvement of the
proposed algorithm. Finally, conclusions are drawn in Sec. VI.



II. PROBLEM STATEMENT

Consider a pulsed Doppler radar residing on an airborne
platform that consists of an N-element uniformly spaced
linear array antenna. Radar returns are collected in a coherent
processing interval (CPI), which is referred to as the 3-D radar
data-cube shown in Fig. 1(a), where K denotes the number
of samples collected to cover the range interval. A slice of
the CPI data-cube with J × N dimensionality consists of
N × 1 spatial snapshots for J pulses at the range of interest.
It is convenient to stack the matrix column-wise to form the
M × 1,M = JN vector r(i), termed a space-time snapshot
[1].

Detection of targets in clutter involves determining the
correct hypothesis in the CUT,

H0 : r = ν

H1 : r = αst + ν,
(1)

where α is a complex gain and st is the target space-time
steering vector, which is the M × 1 normalized space-time
steering vector in the space-time look-direction. Vector ν
encompasses any undesired interference or noise component
of the data including clutter c, jamming j and thermal noise
n.

The general STAP schematic diagram is shown in Fig. 1(b).
An optimal STAP, in the maximum SINR sense, is given by
ωopt = γR−1st, where γ is an arbitrary scalar and R is
the interference-plus-noise covariance matrix. Normally, since
R is unknown, secondary data {r(k)}Kn=1, which is from K
range cells adjacent to the CUT, is employed to estimate the
covariance matrix by means of the well known formula

R̂ =
1

K

K∑
n=1

r(n)rH(n). (2)

Such estimate can be sufficiently accurate when K is at
least twice as great as M and the training samples are
assumed i.i.d. However, it has been widely recognized that the
clutter environments are often heterogeneous and the impact
of the heterogeneity on the STAP performance loss has been
investigated in [4]. Thus, KA signal processing is becoming
an important technique to combat the heterogeneity [8]. In [6],
[9], the covariance matrix is estimated by combining an initial
guess of the covariance matrix R0, derived from the digital
terrain database or the data probed by the radar in previous
scans, and the sample average covariance matrix estimate in
the present scan R̂, so that

R = αR0 + βR̂. (3)

With the estimated covariance matrix, many STAP algorithms
including data pre-whitening [6], [8] and knowledge-aided
constraints [10] improve clutter mitigation performance. How-
ever, most of these KA-STAP algorithms require a matrix
inversion operation with a complexity of O(M3), which mo-
tivates us to develop a novel KA-STAP with low complexity.
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Fig. 1. (a) The Radar CPI datacube. (b) The STAP schematic.

III. PROPOSED KA-STAP ALGORITHMS

In this section, we describe the principle of the proposed
KA-STAP algorithm using a linear combination of inverse co-
variance matrices (LCICM) and its modification (MLCICM).
Note that in the context, the RLS algorithms under consid-
eration are based on linearly constrained minimum variance
(LCMV) criterion.

A. LCICM Algorithms

The principle of our proposed algorithm is detailed in
this subsection. We consider the inverse covariance matrix
estimate by using an LCICM scheme instead of combining
the covariance matrices themselves, more precisely,

R̃−1(n) = αR−1
0 + βR̂−1(n). (4)

Note that the covariance matrices with time index denote
the time-dependent covariance matrix estimates, while those
without time index denote the actual covariance matrix or fixed
covariance matrix estimates.

The computation of the inverse sample average covariance
matrix can be simplified by the matrix inversion lemma [20]
and obtained recursively by

R̂−1(n+1) = λ−1R̂−1(n)− λ−2R̂−1(n)r(n)rH(n)R̂−1(n)

1 + λ−1rH(n)R̂−1(n)r(n)
,

(5)
where λ is a forgetting factor and R̂−1(0) is initialized with
δIM , δ is a small positive constant and IM is an M × M
identity matrix. Thus, the inverse covariance matrix estimate
can be recursively calculated, which brings a significant re-
duction in the computational complexity. The remaining work
is to effectively estimate the mixing parameter η.

If we multiply the target space-time steering vector st on
both sides of (4), the formula will lead to a combination of
two filters given by

R̃−1(n)st = αR−1
0 st + βR̂−1(n)st, (6)

where for the time being we restrict α, β to be positive as in
[9].

Recall that multiplication by a nonzero constant does
not affect the performance of the algorithm. Let us define
then ω(n) = γR̃−1(n)st, ω0 = γR−1

0 st and ω1(n) =
γR̂−1(n)st, with γ = (α+β)−1. With this choice, we obtain
from (6)

ω(n) = α′ω0 + β′ω1(n), (7)
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Fig. 2. Diagram of the proposed KA-STAP algorithms. The upper-branch
filter ω0(n) is fixed in the LCICM scheme and adaptive in the MLCICM
scheme. The lower-branch filter, ω1(n), is adaptive in both schemes.

where α′ = α
α+β and β′ = β

α+β . Noting that α′ + β′ = 1, we
can reduce the number of parameters to estimate by defining
η = α′, so that

ω(n) = ηω0 + (1− η)ω1(n). (8)

Let us consider the AC case, where η can be any real
number [12], [13]. A diagram of the proposed KA-STAP
algorithm is shown in Fig. 2, where for LCICM the filter ω0

is fixed. Thus, the mixing parameter η can be optimized in the
sense of minimizing the output power. The optimum mixing
parameter which minimizes the cost function L(η) is given by

ηo = argmin
η

L(η) = argmin
η

E
{|ωH(n)r(n)|2} . (9)

By equating to zero the gradient of the cost function L(η)
with respect to η, we get

ηo =
�
{
sHt E

[
(R̂−1(n)−R−1

0 )r(n)rH(n)R̂−1(n)
]
st

}

sHt E
[
(R−1

0 − R̂−1(n))r(n)rH(n)(R−1
0 − R̂−1(n))

]
st
.

(10)
where �{·} denotes the real part of a complex value. To
simplify this expression, we need the following assumption.

A-1: If λ ≈ 1, in steady-state it holds that R̂(n)−1 ≈
(E{R̂(n)})−1.
This assumption is widely used in adaptive filtering [18], [19],
and holds because for large λ the variance of R̂(n) is small
in steady-state. Under A-1, we can write

lim
n→∞ ηo ≈

�
{
sHt (E{R̂(n)}−1 −R−1

0 )RE{R̂(n)}−1st

}

sHt (R−1
0 − E{R̂(n)}−1)R(R−1

0 − E{R̂(n)}−1)st
.

(11)
However, because R in (11) is unknown, we need an adaptive
algorithm to estimate η in real time, which is presented in the
following section.

B. MLCICM Algorithm

Motivated by the idea of combining two adaptive filters,
we can modify the LCICM scheme for further improvement.
The only difference between the LCICM and the MLCICM
schemes is that ω0(n) is fixed over time in the LCICM
case while it is adaptive using the RLS algorithm in the
MLCICM scheme, but with a different initial condition. As
shown in Fig. 2, the two component filters are both adaptive
in the MLCICM scheme. In this case, we initialize the first

component filter using the RLS algorithm with the inverse
prior covariance matrix R−1

0 and the second component filter
using the RLS algorithm with a scaled identity matrix.

The combination of two adaptive filters ω0(n) and ω1(n)
is given mathematically as

ω(n) = η(n)ω0(n) + (1− η(n))ω1(n), (12)

where ω1(n) is obtained exactly as in (5) in the LCICM case
and ω0(n) can be calculated by using

ω0(n) = R̂−1
0 (n)st,

R̂−1
0 (n+ 1) = λ−1

0 R̂−1
0 (n)− λ−2

0 R̂−1
0 (n)r(n)rH(n)R̂−1

0 (n)

1 + λ−1
0 rH(n)R̂−1

0 (n)r(n)
,

(13)

where λ0 is the forgetting factor for the first component filter
using the RLS algorithm, R̂−1

0 (0) is initialized with R−1
0 .

Similar to the LCICM scheme, we also can get the optimum
mixing parameter by equating to zero the gradient of the cost
function L(η) with respect to η. The solution is given by

ηo =
�

{
sHt

[
E{R̂(n)}−1 − E{R̂0(n)}−1

]
RE{R̂(n)}−1st

}

sHt

[
E{R̂(n)}−1 − E{R̂0(n)}−1

]
R

[
E{R̂(n)}−1 − E{R̂0(n)}−1

]
st

.

(14)

Note that if we try to evaluate the limit of ηo as n → ∞
using assumption A-1, we would get a 0/0 indetermination,
since in steady-state both filters will converge to the same
steady-state value (the initial conditions will be forgotten),
and the any value of η would give the same performance.
This is not a problem for our algorithm — in practice, η
will simply stop adapting when the filters reach steady-state.
Compared with the LCICM scheme, which can guarantee that
the initial performance of the scheme is not worse than that
of the fixed filter R−1

0 st, the benefit of the modified scheme
is that the first component filter is adapted starting with R−1

0

so that the initial performance is further improved. However,
the conventional RLS algorithm converges to the steady-state
much faster than the RLS algorithm with special initialization.
The overall performance of the scheme will combine the
benefits of both filters and outperform both of them.

C. Mixing Parameter Estimation

In this subsection, an adaptive algorithm is developed to
estimate the mixing parameter η(n). Here, we borrow the ideas
from [13] which deal with the adaptation of η(n) for an AC of
two adaptive filters. It should be remarked that our adaptation
of η is derived based on the minimum variance (MV) criterion
for complex systems, which is an extension of previous results
that dealt only with real variables.

For the adaptation of the mixing parameter η(n), we use a
gradient descent method to minimize the output power of the
overall filter, say p(n) = |y(n)|2, where y(n) is the output of
the overall filter which is a function of η(n), given by

y(n) = η(n)y0(n) + [1− η(n)]ŷ1(n), (15)

where y0(n) = ωH
0 r(n) and ŷ1(n) = ω̂H

1 (n)r(n) are the
outputs of the two component filters at time n. Here, we



develop the adaptive algorithm for AC of filters where the
mixing parameter η is any real number. We can directly update
η(n) via the equation

η(n+ 1) = η(n)− μη

2[ση + q(n)]

∂p(n)

∂η(n)
, (16)

where μη is a step size, ση is a small positive constant and
q(n) can be expressed by

q(n+ 1) = (1− λq)|y0(n)− ŷ1(n)|2 + λqq(n), (17)

where λq is a forgetting factor. It was shown that better
behavior is obtained by the normalized adaptation of the
mixing parameter and the selection of λq is simple [13].
Because η should be a real number, we have to modify the
recursion of [13]. Expanding the cost function, we obtain

|y(n)|2 =
∣∣∣η(n)[y0(n)− ŷ1(n)] + ŷ1(n)

∣∣∣
2

=η(n)2|y0(n)− ŷ1(n)|2

+ 2η(n)�
{
[y0(n)− ŷ1(n)]ŷ1(n)

∗
}
+ |ŷ1(n)|2,

(18)

where (·)∗ denotes the complex conjugate. Differentiating (18)
with respect to η, we obtain

∂p(n)

∂η(n)
=
∂|y(n)|2
∂η(n)

=2η(n)|y0(n)− ŷ1(n)|2

+ 2�
{
[y0(n)− ŷ1(n)]ŷ1(n)

∗
}
.

(19)

Thus, the adaptation of η(n) in (16) can be rewritten as

η(n+ 1) =η(n)− μη

ση + q(n)

{
η(n)|y0(n)− ŷ1(n)|2

+ �{[y0(n)− ŷ1(n)]ŷ1(n)
∗}}.

(20)

To obtain an analytical expression for the optimum mixing
parameter ηo(n) at steady-state, we apply the usual approx-
imation of slow learning, i.e., we assume that η(n) varies
much slower than ŷ0(n)− ŷ1(n), so that these variables may
be assumed independent of each other [13], [17]. Using this
approximation, we obtain

lim
n→∞E{η(n)} ≈ −E{�{(ŷ0(n)− ŷ1(n))ŷ

∗
1(n)}}

E{|ŷ0(n)− ŷ1(n)|2} . (21)

We expand the right hand side (RHS) of (21) in terms of the
LCICM scheme as follows

− E{�{[ωH
0 r(n)− ωH

1 (n)r(n)]rH(n)ω1(n)}}
E{|ωH

0 r(n)− ωH
1 (n)r(n)|2}

=−
E
{
�{[sHR−1

0 − sHR̂−1(n)]r(n)rH(n)R̂−1(n)sH}
}

E
{
[sHR−1

0 − sHR̂−1(n)]r(n)rH(n)[R−1
0 s− R̂−1(n)s]

}

=
�
{
sHt E

[
(R̂−1(n)−R−1

0 )r(n)rH(n)R̂−1(n)
]
st

}

sHt E
[
(R−1

0 − R̂−1(n))r(n)rH(n)(R−1
0 − R̂−1(n))

]
st

=ηo,
(22)

TABLE I
COMPUTATIONAL COMPLEXITY OF ALGORITHMS.

Algorithm
Number of operations per snapshot

Additions Multiplications
Conventional RLS 6M2 − 8M + 3 6M2 + 2M + 2

Stoica et al.’s scheme M3 + 3M M3 + 4M2 + 3M + 3

LCICM-AC 6M2 − 8M + 10 6M2 + 2M + 10

MLCICM-AC 12M2 − 16M + 13 12M2 + 4M + 12

TABLE II
RADAR SYSTEM PARAMETERS

Parameter Value
Antenna array Sideway-looking array (SLA)
Carrier frequency (fc) 1 GHz
Transmit pattern Uniform
PRF (fr) 1000 Hz
Platform velocity (v) 75 m/s
Platform height (h) 9000 m
Clutter-to-Noise ratio (CNR) 40 dB
Elements of sensors (N ) 10
Number of Pulses (J) 8

which is identical to the optimum mixing parameter that we
derived in (10). Similarly, we can expand the RHS of (21) in
terms of the MLCICM scheme and obtain again (22), where
R0 is replaced by R̂0(n).

IV. COMPLEXITY ANALYSIS

Here, we compare the computational complexity of our
proposed algorithms with that of Stoica et al.’s [9] in terms of
the number of additions and multiplications per snapshot. The
comparison of the complexity is detailed in Table I. Note that
the complexity of LCICM-AC algorithm is slightly lower than
that of a conventional RLS algorithm since the computation
of ω0 and ω1 is simpler than what would be required for
RLS, given that st is fixed) and the complexity of MLCICM-
AC algorithm is twice as much. Since computing R−1 with
a Gauss-Jordan technique requires M3 multiplications and
M3 − 2M2 +M additions [20], the complexity of Stoica et
al.’s scheme is O(M3) additions and multiplications.

V. NUMERICAL EXAMPLES

In this section we assess the proposed KA-STAP-LCICM
algorithms in an airborne radar application under certain
heterogenous clutter conditions. The parameters of the radar
platform are shown in Table II. We assume that the clutter-to-
noise-ratio (CNR) is fixed at 40 dB and there is no jammer.
Assuming that the calibration-on-clutter is known, the prior
clutter covariance matrix can be calculated using these radar
parameters. To model the heterogenous clutter, the spectral
variation is introduced and target-like signals are Poisson-
seeded over 300 training snapshots [4], [8]. We investigate
the SINR performance against the number of snapshots for our
proposed algorithm and the behavior of the mixing parameter
η. In the simulation, the filter ω̂ is implemented by using the
recursive least squares (RLS) algorithm with λ = 0.998. The
parameters for the adaptive algorithm adjusting η(n) are set
as λq = 0.5, ση = 0.1 and μη = 0.1. All presented results are
averages over 1000 independent Monte-Carlo runs.
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Fig. 3 shows the SINR performance against the number of
snapshots for our proposed algorithms. We compare them with
component filters and Stoica et al.’s scheme [9]. The curves
show that our proposed MLCICM-AC algorithm outperforms
Stoica et al.’s scheme almost 1.5dB at the steady-state and
converges as quickly as Stoica et al.’s scheme. Note that the
proposed MLCICM-AC algorithm has twice the complexity of
a conventional RLS filter, which is still much less that that of
Stoica et al.’s scheme. We also note that the proposed LCICM-
AC scheme performs better than each component filters with
computational complexity as low as a single RLS filter. In
Fig. 4, we plot ensemble-average estimates of E{η(n)} and
E{α(n)} for our proposed schemes and Stoica et al.’s scheme.
Note however that these parameters have different meanings,
since η(n) is the mixing parameter for the affine combination
of inverse matrices and α(n) is the mixing parameter for the
convex combination of matrices. We also note that the mixing
parameter η for the LCICM scheme converges to a steady-
state value close to 0 and behaves quite differently than η for
the MLCICM scheme, although they are both adapted with
the normalized algorithm based on the MV criterion.

VI. CONCLUSIONS

In this paper, we have developed a KA-STAP algorithm to
estimate the inverse interference covariance matrix rather than
the covariance matrix itself by using the proposed LCICM
scheme and combat the heterogeneous clutter effects. The
computational load has been greatly reduced due to the avoid-
ance of the matrix inversion operation. The LCICM scheme
has been modified to improve convergence and steady-state
performance. Moreover, adaptive algorithms for the mixing
parameters have been developed for affine combinations in
complex systems based on minimum variance criterion. Nu-
merical examples have shown the potential of our proposed
LCICM-AC and MLCICM-AC algorithms for substantial per-
formance improvement.
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