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Aims and Objectives

Handout 1

Source Signal ’
¢.g. Clean Speech

Channel

¢.g. Room Acoustics

Observed Signal

e.g. Reverberant Speech
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Aims and Objectives

Obtaining the Latest Handouts

@ Obtaining the Latest

Handouts
® Module Abstract
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® Description and Learning

Outcomes
@ Structure of the Module
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desired signals

Source 2

Source localisation and blind source separation (BSS). An

example of topics using statistical signal processing.
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Aims and Objectives

Obtaining the Latest Handouts

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module
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MonteCarlo
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Power Spectral Density

Linear Systems Theory

Linear Signal Models

Walls
<4— and other
obstacles

Sound
Source 3

Observer

Source 2 Source 1

Humans turn their head in the direction of interest in order
to reduce inteference from other directions; joint detection,
localisation, and enhancement. An application of probability

and estimation theory, and statistical signal processing.
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Obtaining the Latest Handouts

® This research tutorial is intended to cover a wide range of

Aims and Objectives

SOl aspects which cover the fundamentals of statistical signal
S processing.

@ Description and Learning

o Simeture ofhe Mo ® This tutorial is being continually updated, and feedback is
S welcomed. The hardcopy documents published or online may

differ slightly to the slides presented on the day:.

Probability Theory

Scalar Random Variables

® The latest version of this document can be obtained from the
author, Dr James R. Hopgood, by emailing him at:

Multiple Random Variables

Estimation Theory

. mai | t 0: ] anes. hopgood@d. ac. uk

Linear Systems Review

Stochasic Procesacs (Update: The notes are no longer online due to the desire to
e maintain copyright control on the document.)

Linear Systems Theory

® Extended thanks to the many MSc students over the past 14
years who have helped improve these documents. ,

Linear Signal Models

| Passive Iarget Localisation 1
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Module Abstract

Empirical G ian pdf

Aims and Objectives 2 007"
@ Obtaining the Latest E :
Handouts £
® Module Abstract g0%®
@ Introduction and Overview g 0.04
@ Description and Learning :é
w

Outcomes
@ Structure of the Module

60 70 80 90 100 110 120 130 140

Signal Processing
Data value

Probability Theory

This topic is covered in two parts, which correspond to the two
related lecture modules:

Scalar Random Variables

Multiple Random Variables

Estimation Theory 1. Probability, Random Variables, and Estimation Theory, and

MonteCarlo

2. Statistical Signal Processing.

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Module Abstract

Empirical G ian pdf

Aims and Objectives 5 007F
@
@ Obtaining the Latest go
Handouts £
3 0.05
® Module Abstract I
o
@ Introduction and Overview = 0.04
@ Description and Learning :é
w

Outcomes
@ Structure of the Module

60 70 80 90 100 110 120 130 140

Signal Processing
Data value

Probability Theory

This topic is covered in two parts, which correspond to the two
related lecture modules:

Scalar Random Variables

Multiple Random Variables

Estimation Theory 1. Probability, Random Variables, and Estimation Theory, and

MonteCarlo

2. Statistical Signal Processing.

Linear Systems Review

Stochastc Processes ® Random signals are extensively used in algorithms, and are:

Power Spectral Density

® constructively used to model real-world processes;

Linear Systems Theory

Linear Signal Models

® described using probability and statistics.
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Module Abstract

Empirical G ian pdf
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Signal Processing 60 70 80 90 100 110 120 130 140
Data value

Probability Theory

® Their properties are estimated by assumming:

Scalar Random Variables

Multiple Random Variabes ® an infinite number of observations or data points;

Estimation Theory

® time-invariant statistics.

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Module Abstract

Empirical G ian pdf
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@ Structure of the Module
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Signal Processing
Data value

Probability Theory

® Their properties are estimated by assumming:

Scalar Random Variables

Multiple Random Variabes ® an infinite number of observations or data points;

Estimation Theory

® time-invariant statistics.

MonteCarlo

Linear Systems Review

® In practice, these statistics must be estimated from
Stoctestlc Provesse finite-length data signals in noise.

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Module Abstract

Empirical G ian pdf

Aims and Objectives 5 007F
@
@ Obtaining the Latest go
Handouts £
3 0.05
® Module Abstract I
o
@ Introduction and Overview = 0.04
@ Description and Learning %
£
w

Outcomes
@ Structure of the Module

60 70 80 90 100 110 120 130 140

Signal Processing
Data value

Probability Theory

® Their properties are estimated by assumming:

Scalar Random Variables

Multiple Random Variabes ® an infinite number of observations or data points;

Estimation Theory

® time-invariant statistics.

MonteCarlo

Linear Systems Review

® In practice, these statistics must be estimated from

Stochastic Processe finite-length data signals in noise.
Power Spectral Density
Linear Systems Theory ® Module investigates relevant statistical properties, how they

are estimated from real signals, and how they are used.

Linear Signal Models
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Introduction and Overview

White noise signal
T T T

Transfer Function for Gramophone Horn x10* Correlated noise signal
T - . - : T T T T T T T

leasured Response
— - AR(68) model

Aims and Objectives 2}

@ Obtaining the Latest Al os-
Handouts

@ Module Abstract g o

@ Introduction and Overview

® Description and Learning

Outcomes
@ Structure of the Module

. . —40 5‘0 1(110 15;0 2‘00 2‘50 3(;0 3;0 460 4;)0 500 ] 10‘00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 EO‘DD 9[;00 10000 - 50 5‘0 10‘0 1‘50 2!;0 2;0 3\‘)0 3;0 40‘0 4‘50 500
Signal Processing ime Frequency (Hz) ime
Probability Theory Source Signal > Channel » Observed Signal
e.g. Clean Speech e.g. Room Acoustics e.g. Reverberant Speech
Scalar Random Variables

Multiple Random Variables

Bstimation Theory Signal processing is concerned with the modification or
manipulation of a signal, defined as an
information-bearing representation of a real process, to
the fulfillment of human needs and aspirations.

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
Aims and Objectives implementation, and applications of statistical signal

@ Obtaining the Latest

Handouts proceSSing.

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes
® Structure of the Module

Signal Processing
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Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,

At [0 e implementation, and applications of statistical signal
@ Obtaining the Latest .
° ﬁirtli?l(l):ibstract proce SSlng'

® Introduction and Overview
® Description and Learning
Outcomes

o Structure of the Modle Module Objectives At the end of these modules, a student should
be able to have:

Signal Processing

Probability Theo . o . . .

n 1. acquired sufficient expertise in this area to understand and
e Com s implement spectral estimation, signal modelling,
Muliple Random Variables parameter estimation, and adaptive filtering techniques;

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,

el implementation, and applications of statistical signal

@ Obtaining the Latest .

° ﬁirtli?l(l):ibstract proce SSlng'

@ Introduction and Overview

® Description and Learning

o Structure of the Module Module Objectives At the end of these modules, a student should

be able to have:

Signal Processing

Probability Theory

1. acquired sufficient expertise in this area to understand and
i implement spectral estimation, signal modelling,
Multple Random Variables parameter estimation, and adaptive filtering techniques;

Estimation Theory

2. developed an understanding of the basic concepts and
methodologies in statistical signal processing that provides
the foundation for further study, research, and application
to new problems.

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes
® Structure of the Module

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

® Structure of the Module

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

® Structure of the Module

Signal Processing

3. principles of estimation theory;

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest
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® Module Abstract
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® Structure of the Module

Signal Processing
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Scalar Random Variables 4 . B aye Sian e Stimation the O ry;
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module

Signal Processing

3. principles of estimation theory;

Probability Theory

Scalar Random Variables 4. Bayesian estimation theory;

Multiple Random Variables

Estimation Theory 5. review of Fourier transforms and discrete-time systems;
MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module

Signal Processing

3. principles of estimation theory;

Probability Theory

Scalar Random Variables 4. Bayesian estimation theory;

Multiple Random Variables

Estimation Theory 5. review of Fourier transforms and discrete-time systems;
MonteCarlo

6. linear systems with stationary random inputs, and linear
system models;

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module

Signal Processing

3. principles of estimation theory;

Probability Theory

Scalar Random Variables 4. Bayesian estimation theory;

Multiple Random Variables

Estimation Theory 5. review of Fourier transforms and discrete-time systems;
MonteCarlo

6. linear systems with stationary random inputs, and linear
system models;

Linear Systems Review

Stochastic Processes

Power Spectral Density 7

. signal modelling and parametric spectral estimation;

Linear Systems Theory

Linear Signal Models

| Passive Iarget Localisation 1

- p. 8/199




Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module

Signal Processing

3. principles of estimation theory;

Probability Theory

i 4. Bayesian estimation theory;

Multiple Random Variables

Estimation Theory 5. review of Fourier transforms and discrete-time systems;
MonteCarlo

6. linear systems with stationary random inputs, and linear
system models;

Linear Systems Review

Stochastic Processes

Power Spectral Density 7

. signal modelling and parametric spectral estimation;

Linear Systems Theory

Linear Signal Models 8. an application investigating the estimation of sinusoids in
_Ijmwggg_gmlgm the Fourier transform I
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~ Handout 2
Signal Processing
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Passive and Active Target Localisation

A number of signal processing problems rely on knowledge of
Alms and Objectives the desired source position:

Signal Processing

e ——— 1. Tracking methods and target intent inference.

@ Passive Target Localisation
Methodology
® Source Localization

Stategies 2. Estimating mobile sensor node geometry.

@ Geometric Layout
® Ideal Free-field Model
@ Indirect time-difference of

o 3. Look-direction in beamforming techniques (for example in
© perbolic beast Saues speech enhancement).

® TDOA estimation methods
® GCC TDOA estimation

® generalisd cross 4. Camera steering for audio-visual BSS (including Robot

correlation (GCC)

Processors AUditiOH) .

® Direct Localisation

Methods
® Steered Response Power

Function

® Conclusions 5. SpeeCh diarisation.

® Probability, Random
Variables, and Estimation
Theory

® Passive localisation is particularly challenging.

Probability Theory

Scalar Random Variables

!II]']E lom Variahl |

|
- p. 10/199
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Aims and Objectives

Passive Target Localisation Methodology

Signal Processing

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout

® Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
® Conclusions

@® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

Sensors
(microphones)

xllj‘n] x#n] x[n]  x,[n]

m,

Direct
paths

Sound
Source
s[n]

Ideal free-field model.

® Most passive target localisation (PTL) techniques rely on the
fact that an impinging wavefront reaches one sensor before it
reaches another.

MonteCarlo
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Aims and Objectives

Passive Target Localisation Methodology

Signal Processing

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout

® Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
® Conclusions

@® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

Sensors
(microphones)

xllj‘n] x#n] x[n]  x,[n]

m,

Direct
paths
Sound
Source
s[n]

Ideal free-field model.

® Most PTL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

® Most PTL algorithms are designed assuming there is no

multipath or reverberation present, the free-field assumption.

MonteCarlo
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Aims and Objectives

Source Localization Strategies

Signal Processing

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout

® Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
® Conclusions

@® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)

of a beamformer:

® ]location estimate derived directly from a filtered, weighted,

and sum version of the signal data;

MonteCarlo
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

Aims and Objectives

igmal Processing 1. those based on maximising the steered response power (SRP)

@ Passive and Active Target

e of a beamformer:

@ Passive Target Localisation
Methodology
® Source Localization

Strategies

. o Layout ® ]location estimate derived directly from a filtered, weighted,

® Ideal Free-field Model

e and sum version of the signal data;

Methods
® Hyperbolic Least Squares

Error Function

© TDOA estimation methods 2. techniques adopting high-resolution spectral estimation

® GCC TDOA estimation
® GCC Processors Concepts :
® Direct Localisation

Methods
® Steered Response Power

Function

® Conclusions ® any localisation scheme relying upon an application of the

@® Probability, Random

Variabes, and Estimation signal correlation matrix;

Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

| |
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

Aims and Objectives

igmal Processing 1. those based on maximising the steered response power (SRP)
i of a beamformer:

@ Passive Target Localisation
Methodology

® Source Localization
Strategies

. o Layout ® ]location estimate derived directly from a filtered, weighted,

® Ideal Free-field Model

e and sum version of the signal data;

Methods
® Hyperbolic Least Squares

Error Function

© TDOA estimation methods 2. techniques adopting high-resolution spectral estimation

® GCC TDOA estimation
® GCC Processors Concepts :
® Direct Localisation

Methods
® Steered Response Power

Function

® Conclusions ® any localisation scheme relying upon an application of the

@® Probability, Random

Variabes, and Estimation signal correlation matrix;

Theory

Probability Theory 3

. approaches employing TDOA information:

Scalar Random Variables

Multiple Random Variables

® source locations calculated from a set of TDOA estimates
| Eetimation Theory measured across various combinations of sensors. |

| |
MonteCarlo - p. 12/199




Aims and Objectives

Geometric Layout

Signal Processing

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
® Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
@ Conclusions

® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

s Targets Sensors
% (sound sources) Ol (microphones)

Geometry assuming a free-field model.

Suppose there is a:

® sensor array consisting of N nodes located at positions
m; € R3, fori € {0,...,N — 1},

® )/ talkers (or targets) at positions x;, € R?, for
ke{0,...,M —1}.

MonteCarlo
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Aims and Objectives

Geometric Layout

Signal Processing

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
® Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
@ Conclusions

® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

s Targets Sensors
% (sound sources) Ol (microphones)

Geometry assuming a free-field model.

The TDOA between the sensor node at position m; and m; due
to a source at x; can be expressed as:

X — 1My | — (X — 1INy
T (m,, mjaxk)éTij(Xk):‘ il — | i

C

where c is the speed of the impinging wavefront.

MonteCarlo
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Ideal Free-field Model

® In an anechoic free-field environment, the signal from source
Alms and Objectives k, denoted s (t), propagates to the i-th sensor at time ¢ as:

Signal Processing

@ Passive and Active Target b
Localisation €T ( t ) = ;1. S ( t — T ) . ( t )

@ Passive Target Localisation 7 k 1 k k [ k —|_ 1 k
Methodology

® Source Localization

Stategis where b;;(t) denotes additive noise.

® Geometric Layout
® Ideal Free-field Model
® Indirect TDOA-based

Methods ® Note that, in the frequency domain, this expression becomes:

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

S X (w) = agg Sk (w) €797k + By (w)
@ Direct Localisation

Methods
® Steered Response Power

peered ! ® The additive noise source is assumed to be uncorrelated with
® Conclusions

e the source and noise sources at other sensors.

Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

| |
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Ideal Free-field Model

® In an anechoic free-field environment, the signal from source
Alms and Objectives k, denoted s (t), propagates to the i-th sensor at time ¢ as:

Signal Processing

@ Passive and Active Target b
Localisation €T ( t ) = ;1. S ( t — T ) . ( t )

@ Passive Target Localisation 7 k 1 k k [ k —|_ 1 k
Methodology

® Source Localization

Stategis where b;;(t) denotes additive noise.

® Geometric Layout
® Ideal Free-field Model
® Indirect TDOA-based

Methods ® Note that, in the frequency domain, this expression becomes:

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

S X (w) = agg Sk (w) €797k + By (w)
@ Direct Localisation

Methods
® Steered Response Power

eered ® The additive noise source is assumed to be uncorrelated with
o Random the source and noise sources at other sensors.

Variables, and Estimation

Theory

® The TDOA between the i-th and j-th sensor is given by:

Probability Theory

Scalar Random Variables

Tijk = Tik — Tjk = 1 (m;, m;, Xx)

Multiple Random Variables

Estimation Theory

| |
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Aims and Objectives

amal Processing ® Typically, TDOAs are extracted using the GCC function, or an

e adaptive eigenvalue decomposition (AED) algorithm.

@ Passive Target Localisation
Methodology
® Source Localization

Strategies
® Geometric Layout

® Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
@ Conclusions

® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

|
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Aims and Objectives

amal Processing ® Typically, TDOAs are extracted using the GCC function, or an

@ Passive and Active Target

e adaptive eigenvalue decomposition (AED) algorithm.

@ Passive Target Localisation
Methodology
® Source Localization

Stategie ® A hypothesised spatial position of the target can be used to

® Geometric Layout

o 1deal Free-ield Model predict the expected TDOAs (or corresponding range) at the

@ Indirect TDOA-based

Methods Sensor.

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
@ Conclusions

® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Aims and Objectives

ol Processing ® Typically, TDOAs are extracted using the GCC function, or an
S adaptive eigenvalue decomposition (AED) algorithm.

° II\’/TZ:}il\;edZ?;g;t Lécalisation

e ® A hypothesised spatial position of the target can be used to
ZEZTEEZZEZE’EOdd predict the expected TDOAs (or corresponding range) at the
[} EZ:::;STDOA—based S e nS O r.

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
SENSor.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.

® An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Hyperbolic Least Squares Error Function

® If a TDOA is estimated between two sensor nodes 7 and j,
Aims and Objectives then the error between this and modelled TDOA is
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X — m;| — |x; — my|

T (m;, m;, x3) = T;; (x1) =

Probability Theory C

Scalar Random Variables

® Unfortunately, since 7' (m;, m;, x;) is a nonlinear function of
A o Gl X1, the minimum least-squares estimate (LSE) does not
Etimtion Theory possess a closed-form solution. !
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TDOA estimation methods
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e ion However, GCC-based methods
Theory

Probabiliy Theory ® fail when multipath is high;

Scalar Random Variables

® focus of current research is on combating the effect of

multipath.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
Aims and Objectves function and the adaptive eigenvalue decomposition (AED)
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The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

® The TDOA estimate between two microphones ¢ and j
Tij = arg MAX Ty, /]
® The cross-correlation function is given by
T z; L] = F1 (<I> (eijs) Py ., (eijS))
where the cross-power spectral density (CPSD) is given by

Pray (€77°) = E [X1 (€™77) Xz (e7)]

1T2
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
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@ Conclusions
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® For the free-field model, it can be shown that:
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Processor Name Frequency Function
Cross Correlation 1
1

PHAT

Roth Impulse Response . or

SCOT

Eckart

Hannon-Thomson or ML

where v, ., (e/“%+) is the normalised CPSD or coherence

function
|
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® Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

® However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Steered Response Power Function

The steered beamformer (SBF) or SRP function is a measure of
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Signal Processing relative delays that arise from a hypothesised source location.
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SBF response
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/

2
y—coordinate/m

SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at (2.0, 2.5]m. The grid density is set to 40 mm.
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An example video showing the SBF changing as the source
location moves.

®» Show video!
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To fully appreciate the algorithms in PTL, we need:

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.

4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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How does your answer change when you see more taxis?
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Aims and Objectives
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@ Introduction
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® The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

® this might include radar detection, signal detection,
anomaly detection, parameter estimation, ...

® By considering fundamentals such as the probability of
individual events, we can develop a probabilistic framework
for analysing signals.

® [t is observed that certain averages approach a constant value

as the number of observations increases; and that this value
remains the same if the averages are evaluated over any
sub-sequence specified before the experiment is performed.
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If an experiment is performed n times, and the event A
occurs n 4 times, then with a high degree of certainty, the
relative frequency 74 /n is close to Pr (A), such that:

Pr(A)

Y
Y

nA

n

provided that n is sufficiently large.

Note that this interpretation and the language used is all very

imprecise.
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For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determine a priori without actual experimentation. It

is given by the ratio:

where:

® N is the total number of outcomes,

® and N4 is the total number of outcomes that are favourable
the event A, provided that all outcomes are equally probable.

to

I Linear Systems Theory
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Consider a circle C' of radius r; what is the probability p that the

length /¢ of a randomly selected cord AB is greater than the
length, rv/3, of the inscribed equilateral triangle?

@

Bertrand’s paradox, problem deﬁnltlon
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o Contitonal sobabily 1. In the random midpoints method, a cord is selected by

choosing a point M anywhere in the full circle, and two
end-points A and B on the circumference of the circle, such
that the resulting chord AB through these chosen points has
M as its midpoint.
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Different selection methods.

1. In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

Linear Systems Theory
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) 1. Finally, in the random radius method, a radius of the circle is

chosen at random, and a point on the radius is chosen at
random. The chord AB is constructed as a line perpendicular
to the chosen radius through the chosen point.
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Stochastic Processes

e There are thus three different but reasonable solutions to the

' same-problem.Which-one-isvalid? |
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1. The term equally probable in the definition of probability is

making use of a concept still to be defined!
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2. The definition can only be applied to a limited class of

problems.

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the

probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.
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The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number

assigned to this event:

2. Defining the certain event, .S, as the event that occurs in

every trial, then:

Pr(A) >0

Pr (S)

1
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Alms and Objectives three postulates and on nothing else:

Signal Processing

S 1. The probability Pr (A) of an event A is a non-negative number
® inisoduction assigned to this event:

® Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the PI' ( A) > O

Classical Definition —_—
@ Axiomatic Definition

® Set Theory

© Properes of omate 2. Defining the certain event, .S, as the event that occurs in
he Real Line 1 .
:Zon:itionlelil Probability every trlal) then'

Scalar Random Variables

Pr(S) =1

Multiple Random Variables

Bstimation Theory 3. If the events A and B are mutually exclusive, then:

MonteCarlo

Pr(AUB)=Pr(A)+ Pr(B)

Linear Systems Review

Stochastic Processes

Power Spectral Density
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Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the
second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.
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Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the

second child to get a third, and the third child to get a ninth. As

seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

However, a local statistician lends them a horse so that they have

eighteen. The childrren then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.
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Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the

second child to get a third, and the third child to get a ninth. As

seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

However, a local statistician lends them a horse so that they have

eighteen. The childrren then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.

What is wrong with this story?
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Unions and Intersections ~ are commutative, associative, and
distributive, such that:

AUB=BUA, (AUB)UC=AU(BUC)
AB =BA, (AB)C = A(BC), ABUC)=ABUAC
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Unions and Intersections ~ are commutative, associative, and
distributive, such that:

AUB=BUA, (AUB)UC=AU(BUC)
AB =BA, (AB)C = A(BC), ABUC)=ABUAC

Complements The complement A of a set A C S is the set
consisting of all elements of S not in A:

AUA=S and ANA=AA= {0}
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Unions and Intersections ~ are commutative, associative, and
distributive, such that:

AUB=BUA, (AUB)UC=AU(BUC)
AB =BA, (AB)C = A(BC), ABUC)=ABUAC

Complements The complement A of a set A C S is the set
consisting of all elements of S not in A:

AUA=S and ANA=AA= {0}

Partitions A partition U of a set S is a collection of mutually
exclusive subsets A; of S whose union equates to S

UAZ:S, AimAj:{(D}a i E] = U:[Ala---aAn]

1=1
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De Morgan's Law Using Venn diagrams, it is relatively

straightforward to show

AUB=ANB=AB

and ANB=AB=AUB
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De Morgan's Law Using Venn diagrams, it is relatively

straightforward to show

AUB=ANB=AB and ANnB=AB=AUB

As an application of this, note that:

AU BC

|
N
&

||
|
Y
||
AN
™
C

8
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therefore:

Pr (0)

Impossible Event The probability of the impossible event is 0, and
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therefore:

Pr(0) =0

Complements Since AU A = S and AA = {(}, then :

Pr(A) =1—Pr(A)

Impossible Event The probability of the impossible event is 0, and
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Linear Systems Review

Stochastic Processes

Power Spectral Density

therefore:

Pr(0) =0

Complements Since AU A = S and AA = {(}, then :

Pr(A) =1—Pr(A)

Sum Rule The addition law of probability or the sum rule for

any two events A and B is:

Pr(AUB)=Pr(A)+Pr(B)—-Pr(ANBDB)

Impossible Event The probability of the impossible event is 0, and
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Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write A U B and B as the union of two mutually
exclusive events.

® First, note that

AUB=(AUA)(AUB) =AU (AB)

and that since A (AB) = (AA) B = {0}B = {0}, then A and

A B are mutually exclusive events.
® Second, note that:
B=(AUA)B=(AB)U (AB)

and that (AB) N (AB) = AAB = {0} B = {0} and are
therefore mutually exclusive events.

I Linear Systems Theory

- p. 31/199



Properties of Axiomatic Probability

Example (Proof of the Sum Rule). SOLUTION. Using these two
A allObectives disjoint unions, then:

Signal Processing

ot Pr(AUB)=Pr(AU(AB)) =Pr(A) +Pr(AB)

® Classical Definition of

Pr(B)=Pr ((AB)U (AB)) =Pr(AB)+Pr(AB)

Classical Definition
@ Axiomatic Definition

et Theo o . o vy o o .

S Eliminating Pr (A B) by subtracting these equations gives the
Probabili .

o The RealLine desired result:

@ Conditional Probability

Scalar Random Variables

Pr(AUB) —Pr(B)=Pr(AU (AB)) =Pr(4)—Pr(4B) O

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density
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Example (Sum Rule). Let A and B be events with probabilities
Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.
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Example (Sum Rule). Let A and B be events with probabilities
Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.

SOLUTION. Using the sum rule, that:

Pr(AB)=Pr(A)+Pr(B)-Pr(AUB) > Pr(A)+Pr(B)—-1 = —

which is the case when the whole sample space is covered by
the two events. The second bound occurs since A N B C B and

similarly AN B C A, where C denotes subset. Therefore, it can

be deduced Pr (A B) < min{Pr (A), Pr(B)} = 1/a.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < 29, and their countable unions and intersections.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < 29, and their countable unions and intersections.

To complete the specification, it suffices to assign probabilities to

the events {z < z;}.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < 29, and their countable unions and intersections.

To complete the specification, it suffices to assign probabilities to

the events {z < z;}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.
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If an experiment is repeated n times, and the occurrences or

non-occurrences two events A and B are observed. Suppose that

only those outcomes for which B occurs are considered.
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If an experiment is repeated n times, and the occurrences or

non-occurrences two events A and B are observed. Suppose that

only those outcomes for which B occurs are considered.

In this collection of trials, the proportion of times that A occurs,

given that B has occurred, is:

Nm;B_nAB/n_PI‘(AB)
PI(A‘B)N ng  "8/n  Pr(B)

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov
Axioms.
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Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or

female, and it is assumed that each is equally likely.

I Linear Systems Theory

- p. 33/199



Aims and Objectives

Conditional Probability

Signal Processing

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
@ Axiomatic Definition

® Set Theory
@ Properties of Axiomatic

Probability
@ The Real Line

@ Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

I Linear Systems Theory

- p. 33/199



Handout 2
Scalar Random Variables

- p. 34/199



Definition

Aims and Objectives PhYSical
Experiment

Signal Processing

N > R
X,=

Probability Theory

Scalar Random Variables
@ Definition

@ Distribution functions
@ Kolmogorov’s Axioms

X(C)—s > R

@ Density functions
@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

X(G,) +_’ R

x,=4

rule
@ Expectations

@ Properties of expectation

operator AbStract
¢ Moments sample space, S

@ Higher-order statistics
A graphical representation of a random variable for a more
specific example.

real number line

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes
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Definition

A random variable (RV) X ({) is a mapping that assigns a real
Alms and Objectives number X € (—oo, c0) to every outcome ( from an abstract
Signal Processing prObability Space.

Probability Theory

1. the interval { X ({) < x} is an event in the abstract probability
Scalar Random Variables
 Definiton space for every x € R;

@ Distribution functions

® Kolmogorov’s Axioms
@ Density functions

S i 2. Pr(X(¢) = 00) = 0 and Pr (X (¢) = —c0) = 0.

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

® Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes
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@ Expectations

@ Properties of expectation
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Stochastic Processes

Example (Rolling die). Consider rolling a die, with six outcomes
{¢i, € {1,...,6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X (() is given by:

X(C1) =X((3) =X(¢s) =0 and X((2) = X(Ca) = X(G) =1
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| TOwWCT SpeTtrar DTSty

Linear Svstems Theorv

- p. 35/199



Aims and Objectives

Distribution functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

‘ >

The cumulative distribution function.

® The probability set function Pr (X ({) < x) is a function of
the set { X ({) < x}, and therefore of the point x € R.
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: >
)Cl X
The cumulative distribution function.

® The probability set function Pr (X ({) < x) is a function of
the set { X ({) < x}, and therefore of the point x € R.

® This probability is the cumulative distribution
function (cdf), F'x () of a RV X ((), and is defined by:

Fx (z) = Pr(X(¢) < z)
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‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x| is given by:
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‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x| is given by:

® For small intervals, it is clearly apparent that gradients are
important.
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The events { X < x;} and {z; < X < x5} are mutually exclusive
events. Therefore, their union equals {z < x5}, and thus:

Pr(X <z)+Pr(z; < X <x3) =Pr(X < x3)

/wlp(’v) - 1P g <X§:1;2):/

— 00 — 0

p(v) dv

L2

= Pr(:U1<X§:L’2):/ p(v) dv

Z1

Moreover, it follows that Pr (—oo < X < co) = 1 and the
probability of the impossible event, Pr (X < —oco) = 0. Hence,
the cdf satisfies the axiomatic definition of probability.
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® The probability density function (pdf), fx (z) of a RV X ((),
is defined as a formal derivative:

A dFX (ZE)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Ax =~ Fx (r+ Ax)—Fx (z) = Pr(x < X({) < x + Ax)
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Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

® The probability density function (pdf), fx (z) of a RV X ((),

is defined as a formal derivative:

A dFX (ZE)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Ax =~ Fx (r+ Ax)—Fx (z) = Pr(x < X({) < x + Ax)

® It directly follows that:

Fx() = [ ; Fx(v) do

e
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Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

® The probability density function (pdf), fx (z) of a RV X ((),

is defined as a formal derivative:

A dFX (ZE)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Ax =~ Fx (r+ Ax)—Fx (z) = Pr(x < X({) < x + Ax)

® It directly follows that:
Fx(z) = / fx(v)dv

® For discrete-valued RV, use the pmf, p;, the probability that
X ({) takes on a value equal to zp,: p;, = Pr (X (() = x,)
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Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

1 /)

a b 0

A probability density function and its corresponding

@

>
X

a

=

€

%

cumulative distribution function for a RV which is a mixture

of continuous and discrete components.

. o N .
| TOwWCT SpeTtrar DTSty

Linear Svstems Theorv

- p. 38/199



Aims and Objectives

Properties: Distributions and Densities

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

® Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

® Properties of cdf:

lim FX (ZU)

T——00

0,

lim FX (ZU)

T— 00

Fx(x) is a monotonically increasing function of z:

Fx (a) < Fx (b)

if a<b

1
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Properties: Distributions and Densities

® Properties of cdf:

Aims and Objectives

Signal Processing

0<Fx(x)<1l, lim Fx(x)=0, lim Fx(z)=1

Probability Theory Tr—r— 00 Tr—r o0

Scalar Random Variables
® Definition

o Fx (x) is a monotonically increasing function of x:

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions .
and Densities FX (a/> S FX (b) ].f a S b
® Common Continuous RVs

@ Probability transformation
rule

@ Expectations ’ Properties Of pdfs:

@ Properties of expectation

operator
® Moments

® Higher-order statistics

fX($>ZO, /_Oofx(a?)dx:l

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

. o N .
| TOwWCT SpeTtrar DTSty |

- p. 39/199

Linear Svstems Theorv



Properties: Distributions and Densities

® Properties of cdf:

Aims and Objectives

Signal Processing

0<Fx(x)<1l, lim Fx(x)=0, lim Fx(z)=1

Probability Theory Tr—r— 00 Tr—r o0

Scalar Random Variables
® Definition

o Fx (x) is a monotonically increasing function of x:

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions .
and Densities FX (a/> S FX (b) ].f a S b
® Common Continuous RVs

@ Probability transformation
rule

@ Expectations ’ Properties Of pdfs:

@ Properties of expectation

operator
® Moments

® Higher-order statistics

fX($>ZO, /_Oofx(a?)dx:l

Multiple Random Variables

Estimation Theory

® Probability of arbitrary events:

MonteCarlo

Linear Systems Review

N

2
Stochastic Processes Pr (5[71 < X(C) S :UQ) e FX (:U2) — FX (:Ul) — / fX (.CU) d$

I
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Aims and Objectives

Common Continuous RVs

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Uniform distribution

Normal distribution

fx (z)

Cauchy distribution

The Cauchy random variable is symmetric around the value
x = [1x, but its mean and variance do not exist.

1

fx (z) =4

0

ifa <x <y,
otherwise

p
-

(= px)? + 52
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Aims and Objectives

Common Continuous RVs

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Gamma distribution

fx (z) = 0 if z <0,
XA = L aP P le o jf x>0,

Gamma pdf Gamma cdf
0.4 w 1 ‘ ‘
. B =2
0.35¢ — B=25
- = 08'
0.37 B _ 3 |
— B=35
0.25 — B=4 | 0.6l
= =
X 02 =
0.15} 0.4¢
0.1t
0.27
0.05
0 : . : 0
0 2 4 6 8 0

X

The Gamma density and distribution functions, for the
case when « = 1 and for various values of 5.
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Common Continuous RVs

Weibull distribution

Aims and Objectives O

fx (z) = 5

045:155_1 e~

x <0
x>0

Signal Processing

Probability Theory
i Weilbull pdf Weilbull cdf
Scalar Random Variables 1.4 ‘ ‘ ‘ 1
@ Definition —  a=05
@ Distribution functions 120 a=0.75 |
® Kolmogorov’s Axioms a=1 0.8
@ Density functions 1+ a=13
@ Properties: Distributions a= 1' 5
and Densities 0.8 - 0.61
® Common Continuous RVs < <
@ Probability transformation :x LLX
rule 0.6} 0.4+
@ Expectations a=0.5
® Properties of expectation 0.4} a=0.75
operator 0.21 a=1
@ Moments 0.2+ a=1.3
@ Higher-order statistics a=15
0 0 ‘
. . 0 2 0 2
Multiple Random Variables X X

The Weibull density and distribution functions, for the
— case when o = 1, and for various values of the parameter

8.

Estimation Theory

Linear Systems Review

Stochastic Processes
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Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Suppose a random variable Y (() is a function, g, of a random
variable X ({), which has pdf given by fx (z). What is fy (y)?

A
y
y=g(x)

v

The mapping y = g(z), and the effect of the mapping on
intervals.
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Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

® Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Suppose a random variable

Y (¢) is a function, g, of a random

variable X (), which has pdf given by fx (x). What is fy (y)?

X(©)

N

Y(Q)

'

Jx)

Y(Q)=g(X(Q) T

> /0)

The mapping y = g(z).

A
Y
y=g(x)
v
Y
A
ox, ox, ox,
<« > <« > <«
>
X2 -x3 x

The mapping y = g(z), and the effect of the mapping on

intervals.
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Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

A
Y
y=g(x)

v

The mapping y = g(z), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule).  Denote the real roots of
y = g(x) by {z,,, n € N'}, such that

y=g(z1)="---=g(zN)

O |
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Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

A

y
y=g(x)
v
’ :
ox, ox, ox,
> <4 > <
X X X >
/ : 2 ’ X
The mapping y = g(z), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule).  Denote the real roots of
y = g(x) by {z,,, n € N'}, such that

y=g(z1)="---=g(zN)

Then, if the Y (¢) = g(X (()), the pdf of Y (() is given by:
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Probability transformation rule

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions
® Kolmogorov’s Axioms
@ Density functions

@ Properties: Distributions

and Densities

® Common Continuous RVs
@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

B3

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY.
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Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Example (Log-normal distribution).

Let Y = e*, where

X ~ N (0, 1). Find the pdf for the RVY.

SOLUTION. Since X ~ AN (0, 1), then:
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Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY.

SOLUTION. Since X ~ AN (0, 1), then:

]. 1132
— &Z__

fx (z) =

Considering the transformation y = g(x) = e, there is one root,
given by x = Iny. Therefore, the derivative of this expression is

gz =€ =y

® Hence, it follows:

1 _mny?
_fx@) _ -

MO="0w) ~ e

. o N .
| TOwWCT SpeTtrar DTSty

Linear Svstems Theorv

- p. 41/199



Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.
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Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.

Skewness Jx(x) =
- 3rd order statistic

- Measure of asymmetry
- Difference in tails

Mean
- 1st order statistic
- Centre of mass

Kurtosis o Variance

- 4th order statistic - 2nd order statistic

- Measure of s1z - “spread of the pdf”
of tails

>

L X
The four saliant or key features or statistics of the pdf.
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Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

B3

® The expected or mean value of a function of a RV X (() is:

E[X(¢)]

R

x fx (x) dx
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Aims and Objectives

Expectations
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Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

® The expected or mean value of a function of a RV X (() is:

E1X(Q)= [

R

x fx (x) dx

® If X (() is discrete, then its corresponding pdf may be written

in terms of its pmf as:

fx (x) =) prd(z — 1)
k

where the Dirac-delta, §(x — xj ), is unity if x = x, and zero

otherwise.
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Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

® The expected or mean value of a function of a RV X (() is:

E1X(Q)= [

R

x fx (x) dx

® If X (() is discrete, then its corresponding pdf may be written

in terms of its pmf as:

fx (x) =) prd(z — 1)
k

where the Dirac-delta, §(x — xj ), is unity if x = x, and zero

otherwise.

® Hence, for a discrete RV, the expected value is given by:

,ux:/Rfo(x) da::/Rx ;pk(ﬂx—a}k) da::;xkpk
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Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

The expectation operator computes a statistical average by using
the density fx (z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.
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Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

The expectation operator computes a statistical average by using
the density fx (z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.

® If fx (x) is an even function, then px = 0. Note that since
fx (x) > 0, then fx (z) cannot be an odd function.

® If fx (x) is symmetrical about x = a, such that
fx (a—z) = fx (x+a), then ux = a.
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Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

The expectation operator computes a statistical average by using
the density fx (z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.

® If fx (x) is an even function, then px = 0. Note that since
fx (x) > 0, then fx (z) cannot be an odd function.

® If fx (x) is symmetrical about x = a, such that
fx (a—z) = fx (x+a), then ux = a.

® The expectation operator is linear:

ElaX()+p8]=aux+p
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Aims and Objectives

Properties of expectation operator
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Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions
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® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

N

The expectation operator computes a statistical average by using
the density fx (z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.

® If fx (x) is an even function, then px = 0. Note that since
fx (x) > 0, then fx (z) cannot be an odd function.

® If fx (x) is symmetrical about x = a, such that
fx (a—z) = fx (x+a), then ux = a.

® The expectation operator is linear:
ElaX(()+8]=apux+p

P IfY(()=g{X(()} is a RV obtained by transforming X (¢)
through a suitable function, the expectation of Y (() is:

E[Y(O] 2E[XO) = [ o) fx (@) da

I
[Powepeeteity

Linear Svstems Theorv

~ NS

- p. 43/199



Aims and Objectives
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Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

N

Recall that mean and variance can be defined as:

E[X(0)] = px = / v fx(z) da

R

var [X(Q)] = 0% = / z? fx () dz — p% = E [X*(()] — E2[X(C)]

R

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X" ({)], m € {1, 2} are known.
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Aims and Objectives
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Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

N

Recall that mean and variance can be defined as:

E[X(0)] = px = / v fx(z) da

R

var [X(Q)] = 0% = /Raﬂ fx(z)dz — p% =E [X*(¢)] — E2 [X(¢)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X" ({)], m € {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X ({): the m-th moment of X (() is given by:

o 2 E[X™(¢)] = / 7™ fx(c) do

Note, of course, that in general: E [ X (()] # E™ [ X ({)]-
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Aims and Objectives
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Scalar Random Variables

@ Definition

@ Distribution functions
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@ Density functions
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and Densities
® Common Continuous RVs
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rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Two important and commonly used higher-order statistics that

are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a

distribution. It is a normalised third-order central moment:

RY AR {

X(¢) — px

OXx

and is a dimensionless quantity.

|1 e
o3 X

Negative Skew

Positive Skew

. o N .
| TOwWCT SpeTtrar DTSty

Linear Svstems Theorv

- p. 45/199



Aims and Objectives

Higher-order statistics

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review
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Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

(3 X(¢) — pux : I
/ﬁlg()éE { - :g%{)

and is a dimensionless quantity.

® The skewness is:

(< 0 if the density leans or stretches out towards the left
/’%g?) =<0 if the density is symmetric about u x

| > 0 if the density leans or stretches out towards the right
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B3

Kurtosis measures relative flatness or peakedness of a distribution

about its mean value.
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Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

® It is defined based on a normalised fourth-central moment:
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@ Distribution functions
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® Common Continuous RVs

@ Probability transformation
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@ Expectations

@ Properties of expectation
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® Moments
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Stochastic Processes

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

® It is defined based on a normalised fourth-central moment:

. X(¢) —pux " 1
/fg?)éE { (f)TX } —3:0_4’Y§?)—3
X

This measure is relative with respect to a normal distribution,

which has the property fygf) = 30%, therefore having zero

kurtosis.

. o N .
| TOwWCT SpeTtrar DTSty

Linear Svstems Theorv

- p. 45/199



Handout 3
Multiple Random Variables

- p. 46/199



Aims and Objectives

Abstract

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

@ Independence

® Conditionals and Bayes’s
@ Statistical Description
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A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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A group of signal observations can be modelled as a collection of

Aims and Objectives random variables (RVs) that can be grouped to form a random
Signal Processing VeCtO].‘, or VeCtO].‘ RV.
Probability Theory

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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@ Abstract
i — ® Note that each element of a random vector is not necessarily
o generated independently from a separate experiment.
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® Conditionals and Bayes’s

o Statistical Descripton $» Random vectors also lead to the notion of the relationship
@ Probability Transformation
Rule between the random elements.

@ Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 47/199

Power Spectral Density




Abstract

A group of signal observations can be modelled as a collection of
Aims and Objectives random variables (RVs) that can be grouped to form a random
Signal Processing VeCtO].‘, or VeCtOl‘ RV.

Probability Theory

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Scalar Random Variables

Multiple Random Variables
@ Abstract

i — ® Note that each element of a random vector is not necessarily
o generated independently from a separate experiment.

@ Marginal Density Function
@ Independence
® Conditionals and Bayes’s

o Statistical Descripton $» Random vectors also lead to the notion of the relationship
@ Probability Transformation
Rule between the random elements.

@ Polar Transformation
® Generating WGN samples
@ Auxiliary Variables

S — ® This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 47/199

Power Spectral Density




Aims and Objectives

Definition of Random Vectors

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Physical
Experiment

Outcome

G,

Outcome

G,

Outcome

Gy

A
v

Abstract

Outcome

-

sample space, S

X e ¥,
_[X Yz 1] L

v

- X(G)
- [x2’y2’ ZZ]

X&) e,

________________

ﬁ
I 4
g <
Ra
v

A graphical representation of a random vector.

Power Spectral Density

- p. 48/199



Aims and Objectives

Definition of Random Vectors

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

A real-valued random vector X ({) containing N real-valued RVs,
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A real-valued random vector X ({) containing N real-valued RVs,
Aims and Objectives each denoted by X,,(¢) forn e N ={1,..., N}, is denoted by
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Definition of Random Vectors

A real-valued random vector X ({) containing N real-valued RVs,
Aims and Objectives each denoted by X,,(¢) forn e N ={1,..., N}, is denoted by
Signal Processing the column-vector:
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Scalar Random Variables X(C) — [Xl (C) X2(C> toe XN(C>:|

Multiple Random Variables
@ Abstract

o Definition of Random A real-valued random vector can be thought as a mapping from
Vectors 651 O
L an abstract probability space to a vector-valued, real space RY .

@ Marginal Density Function

.Indeiendence N o .

o Conditonals and Bayes's Denote a specific value for a random vector as:
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation
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@ Auxiliary Variables
® Multivariate Gaussian

Density Function
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Distribution and Density Functions

The joint cdf completely characterises a random vector:
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Fx (x) 2 Pr({Xn(¢) < #n, n € N}) = Pr (X (¢) < )

Erolebilii Lo A random vector can also be characterised by its joint pdf:
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Multiple Random Variables

e Pr ({z, < X,(0) <z, + Az,, n € N'})

Vectors fX (X) — llm
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Functions

@ Marginal Density Function 8 8 a
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Distribution and Density Functions

The joint cdf completely characterises a random vector:

Aims and Objectives

Fx (x) 2 Pr({Xn(¢) < #n, n € N}) = Pr (X (¢) < )

Probability Theory

A random vector can also be characterised by its joint pdf:

Scalar Random Variables

Multiple Random Variables

:gggrzztscignofRandom fX (X) — lim Pr ({xn < Xﬂ(C) S ’CU’I’I, —|_ A.flfn, n E N})
® Distribution and Density Ax—0 Ax 1°°° Az N

Functions

@ Marginal Density Function 8 8 a

® Independence — . F (X)
® Conditionals and Bayes’s a a a X

@ Statistical Description 'CE 1 'CE 2 'CU N

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples Hence, it fO].].OWS :

@ Auxiliary Variables

@ Multivariate Gaussian
Density Function

1 TN X
Estimation Theory FX (X) — / ... / fX (V) d'UN o« . d'Ul — / fX (V) dV
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Distribution and Density Functions

® Properties of joint-cdf:
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
fimeobee random vector Z(() which has two elements and therefore two
Signal rocessing random variables given by X ({) and Y (¢) is given by:

Probability Theory
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Scalar Random Variables ’C[; —|_ 3 O S x) S 1
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Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(() which has two elements and therefore two
random variables given by X (¢) and Y (() is given by:

N

(z+3y) 0<z y<l1
0 otherwise

fz (z) =
Calculate the joint-cumulative distribution function, Fz (z).

SOLUTION. First note that the pdf integrates to unity since:

1

/ fz (z) dz:/ / 5(:15—#33/) dwdy:/ 5 [§w +3:By]
—oo 0 Jo 0 0

dy
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
fimeobee random vector Z(() which has two elements and therefore two
Signal rocessing random variables given by X ({) and Y (¢) is given by:

Probability Theory

Scalar Random Variables -
fz (z) =

Multiple Random Variables
@ Abstract
® Definition of Random

o Disttion and Deasiy Calculate the joint-cumulative distribution function, Fz (z).

Functions

N

(z+3y) 0<z y<l1
0 otherwise
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® Conditionals and Bayes’s . . . .

o Satisical Descripion SOLUTION. First note that the pdf integrates to unity since:
@ Probability Transformation
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® Polar Transformation

® Generating WGN samples 1

® Auxil.iary. Variables. 1 1
bt / fz (z) dz = / / (@ + 3y) du dy = / 5 [§$2 + 3wy] dy
0 0
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y 3y 1 3
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Example ( [Therrien:1992, Example 2.1, Page 20]).
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Scalar Random Variables
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the joint-cumulative distribution function, Fy (z).

Multiple Random Variables
@ Abstract

® Definition of Random

O\S?s:giiltionandDensiW SOLUTION' For X S O Or y S O) fZ (Z) — O, and thus FZ (Z) = O o

@ Marginal Density Function
® Independence

® Conditionals and Bayes’s If O < T S ]_ and O < y S 1, the Cdf iS given by:

@ Statistical Description
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Rule
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Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z) =

S -

(x 4+ 3y)

0<z,y<l1

otherwise

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. Forx < 0ory <0, fz(z) =0, and thus Fz (z)

If0<x<1land 0 < y <1, the cdf is given by:

FZ (Z)

—_

5
1
T2

(x + 3y) dz dy

(:

2

Y +

3xy?

2

=0.
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the joint-cumulative distribution function, Fy (z).

Multiple Random Variables
@ Abstract

® Definition of Random

O\S?s'fgﬁltionandDensity SOLUTION' For X S O Or y S O) fZ (Z) — O, and thus FZ (Z) = O o

Functions
@ Marginal Density Function

® Independence . .

Gt iyt If0<x<1land 0 < y <1, the cdf is given by:
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples
@ Auxiliary Variables f d 7 = :L' 3 ) d T d
@ Multivariate Gaussian Z —|_ y y

Density Function

Estimation Theory T2 3xy? TY
= 3 dy = = | —
/0 2(2+ xy) = 2<2y+ 2 > 7 @+ 3

Linear Systems Review

T Finally, if x > 1 or y > 1, the upper limit of integration for the

|
: corresponding variable becomes equal to L. - p. 49/199 :
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the joint-cumulative distribution function, Fy (z).

Multiple Random Variables
@ Abstract

® Definition of Random

e ey SOLUTION. Hence, in summary, it follows:

Functions
@ Marginal Density Function

® Independence (
® Conditionals and Bayes’s

r<0 or y<o0
@ Statistical Description
.;:i:abﬂity Transformation Ty (:L' + Sy) O < ZE’ y S 1

g O

@ Polar Transformation
OGeneratingWGNtsamples FZ (Z) — < %(IL‘ + 3) O < g5 S 1’ 1 < y
@ Auxiliary Variables
Ol\élultilvarliate C?aussian %(1 —|_ By) O < y S 1, 1 < 35
ensity Function
L1 1<z, y<oo

Estimation Theory
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

Aims and Objectives f ( ) %(x _|_ By) O S :E’ y § ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the joint-cumulative distribution function, Fy (z).

Multiple Random Variables
@ Abstract
® Definition of Random

o ety SOLUTION. The cdf is plotted here:

Functions
@ Marginal Density Function CDF

® Independence

® Conditionals and Bayes’s

I';;;f':;:i:};;((((\ -
m
‘}‘&\\\\\\

@ Statistical Description )
@ Probability Transformation 1. )

Rule
® Polar Transformation

® Generating WGN samples
@ Auxiliary Variables ~
. . ! 054
@ Multivariate Gaussian N '
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

. . . . B o |
! A plot of the cumulative distribufion function. T hiortes |
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
Alms and Objectives marginal pdf describes a subset of RVs from the random vector.
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@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

|
- p. 50/199

Power Spectral Density




Marginal Density Function

The joint pdf characterises the random vector; the so-called

Alms and Objectives marginal pdf describes a subset of RVs from the random vector.
Signal Processing

Probbilty Theory Let k be an M -dimensional vector containing unique indices to
Sealar Random Varables elements in the NV-dimensional random vector X (¢),

Multiple Random Variables

@ Abstract k 1

® Definition of Random

Vectors
@ Distribution and Density k 2

Functions k
@ Marginal Density Function -
® Independence
® Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation k M

Rule
® Polar Transformation
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@ Auxiliary Variables
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Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 50/199

Power Spectral Density




Marginal Density Function

The joint pdf characterises the random vector; the so-called
Alms and Objectives marginal pdf describes a subset of RVs from the random vector.

Signal Processing

Probability Theory Let k be an M-dimensional vector containing unique indices to
Sealar Random Variables elements in the N-dimensional random vector X (),

S0 Dol Vo Now define a M-dimensional random vector, Xy ((), that

P contains the M random variables which are components of X ()
® Disrbition and Densty and indexed by the elements of k. In other-words, if

@ Marginal Density Function
® Independence

® Conditionals and Bayes’s k X

@ Statistical Description 1 k 1 ( C)

@ Probability Transformation
Rule k 2 X k (C )

@ Polar Transformation 2

® Generating WGN samples k = . then X.k (C ) —

@ Auxiliary Variables .

@ Multivariate Gaussian

Density Function k M X ks (C)

Estimation Theory

MonteCarlo

Linear Systems Review
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Marginal Density Function

The marginal pdf is then given by:

Aims and Objectives

©.@) ©.@)

Signal Processin

o Pocba) = [ o[ peGdxo
— 00 _og

Probability Theory

\ .

Scalar Random Variables N — M integrals

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo
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Marginal Density Function

The marginal pdf is then given by:

Aims and Objectives

©.@) ©.@)

Signal Processin

o Pocba) = [ o[ peGdxo
— 00 _og

Probability Theory

\ .

Scalar Random Variables N — M integrals

e e e A special case is the marginal pdf describing the individual RV

@ Abstract
® Definition of Random

Vectors X ..
@ Distribution and Density ]
Functions
@ Marginal Density Function
® Independence
® Conditionals and Bayes’s

©.@) )

@ Statistical Description .

@ Probability Transformation fXj (ajj) — c e / fX (X) daj]_ c e da:]_ 1 CZCUJ+1 e d.CIZN
Rule — —

@ Polar Transformation N o Og

® Generating WGN samples v

® Auxiliary Variables N —1 lntegrals

@ Multivariate Gaussian

Density Function

Estimation Theory
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Marginal Density Function

The marginal pdf is then given by:

Aims and Objectives

oo oo

Signal Processin

s Pocba) = [ o[ peGdxo
N =

Probability Theory
Scalar Random Variables N — M integrals
nls s Rl AP A special case is the marginal pdf describing the individual RV

® Definition of Random

Vect X
‘ectors ]:

@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s ©.@) o

@ Statistical Description

@ Probability Transformation fXj (ajj) —_— / c e / fX (X) dx]_ c dx]_]_dxj_|_1 c e d.CIZN
Rule — —

@ Polar Transformation NG o0 Og

® Generating WGN samples v

® Auxiliary Variables N —1 integrals
@ Multivariate Gaussian
Density Function

Bstimation Theory Marginal pdfs will become particular useful when dealing with
Bayesian parameter estimation later in the course.
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(()
Aims and Objectives which has two elements and therefore two random variables
Signal Procesing given by X (¢) and Y (() is given by:

Probability Theory

DN =

Scalar Random Variables XL —|_ 3 O S ZE? S 1
fz (2) = (z + 3y) Y y

0 otherwise

Multiple Random Variables
@ Abstract
® Definition of Random

o Distrbution and Densiy Calculate the marginal-pdfs, fx (x) and fy (y), and their
evmmineniyincin COTresponding marginal-cdfs, Fy (x) and Fy (y).

® Independence

® Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(()
Aims and Objectives which has two elements and therefore two random variables
Signal Procesing given by X (¢) and Y (() is given by:

Probability Theory

Scalar Random Variables _
fz (z) =

Multiple Random Variables
@ Abstract
® Definition of Random

DN =

(z4+3y) 0<uz,y<l
0 otherwise

Vectors

o Distibution and Density Calculate the marginal-pdfs, fx (x) and fy (y), and their
o Marginl Dersity Function corresponding marginal-cdfs, F'x (z) and Fy (y).

@ Independence

) Conclljitionals and Bayes’s

@ Statistical Description

@ Probability Transformation

Rule SOLUTION. By definition:

@ Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

@ Multivariate Gaussian
Density Function

fx (@)= [ fz(z) dy

Estimation Theory R
MonteCarlo
fy ()= | Jfz(2z) dz
Linear Systems Review R
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Marginal Density Function

Example (Marginalisation).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the marginal-pdfs, fx () and fy (y), and their
Ml Kandom erlaes corresponding marginal-cdfs, F'x (z) and Fy (y).

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

® El;rcgtiir(l):lsDensity Function S O LUTI O N o Tak.ing fX (ZU) 9 then :
® Independence

® Conditionals and Bayes’s

@ Statistical Description
@ Probability Transformation f 0

Rule f ( T ) p—
® Polar Transformation X

® Generating WGN samples

r+3y)dy 0<z<1
otherwise

@ Auxiliary Variables
® Multivariate Gaussian |:’
Density Function

Estimation Theory

MonteCarlo
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Marginal Density Function

Example (Marginalisation).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the marginal-pdfs, fx () and fy (y), and their
Ml Kandom erlaes corresponding marginal-cdfs, F'x (z) and Fy (y).

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

® El;rcgtiir(l):lsDensity Function S O LUTI O N o Tak.ing fX (ZU) 9 then :
® Independence

® Conditionals and Bayes’s

@ Statistical Description
@ Probability Transformation f 0

Rule f ( T ) p—
® Polar Transformation X

® Generating WGN samples

r+3y)dy 0<z<1
otherwise

@ Auxiliary Variables
@ Multivariate Gaussian

Density Function which after a simple integration gives:

Estimation Theory

MonteCarlo

1 3
frle)= {2 Fa) Ososl
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Marginal Density Function

Example (Marginalisation).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the marginal-pdfs, fx () and fy (y), and their
Ml Kandom erlaes corresponding marginal-cdfs, F'x (z) and Fy (y).

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

OEI;Cgtiir(l):lsDensityFunction SOLUTION. The Cdf, FX (:E), iS thU.S given by:

® Independence

® Conditionals and Bayes’s

@ Statistical Description

@ Probability Transformation 4
Rule

x <0
fx(qu%)du 0<x<1
fol (u—l—%)du r>1

® Polar Transformation

0
T
v Fx (z) = / fx (w) du= 9 3
— 00 1
2

@ Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 50/199

Power Spectral Density




Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Example (Marginalisation).

fz (z) =

S -

(x 4+ 3y)

0<z,y<l1
otherwise

Calculate the marginal-pdfs, fx () and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).

SOLUTION. The cdf, F'x (), is thus given by:

. 0
Fx()= [ fx(w)du=13
N 1

2

FX (ZE)

\
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Marginal Density Function

Example (Marginalisation).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

Calculate the marginal-pdfs, fx () and fy (y), and their
Ml Kandom erlaes corresponding marginal-cdfs, F'x (z) and Fy (y).

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

 Marginal Density Function SOLUTION. Similarly, it can be shown that:

® Independence
® Conditionals and Bayes’s
@ Statistical Description

2 (3+3y) 0<y<i
0 otherwise

@ Probability Transformation

Rule f ( ) p—
® Polar Transformation Y y

® Generating WGN samples
@ Auxiliary Variables
@ Multivariate Gaussian

Density Function d
dn

Estimation Theory

MonteCarlo

(1+3y) 0<y<1

| Stochastic Processes Y > 1 |

Linear Systems Review

53
).<
~—
<
N——"
|
— e O

| < |
- p. 50/199
Power Spectral Density I_l




Marginal Density Function

Example (Marginalisation).

Aims and Objectives f ( ) %(ZE _|_ By) O S ZE’ y S ]_
ignal Processin Z zZ - 1

Signal Processing 0 otherwise
Probability Theory

Scalar Random Variables

SOLUTION. The marginal-pdfs and cdfs are shown below.

Multiple Random Variables

TR, Marginal PDF, £, (x) Marginal CDF, F, (x)
@ Definition of Random 1.4 . . r 1

Vectors
@ Distribution and Density 1.2t ]

Functions 0.8+t
@ Marginal Density Function 1|
® Independence
® Conditionals and Bayes’s 0.6

- o -~ 0.87¢ 1 =
@ Statistical Description X X
@ Probability Transformation X L><
0.6} 1 04t

Rule -
@ Polar Transformation
® Generating WGN samples 0.4
@ Auxiliary Variables 0.2 0.2
@ Multivariate Gaussian ’

Density Function

0 L 0 L L
-0.5 0 0.5 1 15 -0.5 0 0.5 1 15

Estimation Theory

The marginal-pdf, fx (x), and cdf, Fx (x), for the RV, X (¢).

MonteCarlo
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Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Example (Marginalisation).

(z+3y) 0<z,y<1

otherwise

fz (z) =

S -

SOLUTION. The marginal-pdfs and cdfs are shown below.

Marginal PDF, t (y) Marginal CDF, F. (y)

2 1
0.8}
15}
_ 06}
> >
= 1 >
0.4}
0.5+
0.2
0 - 0 - -
-0.5 0 0.5 1 15 -0.5 0 0.5 1 15

The marginal-pcif, fy (y), and cdf, Fy (y), f01: the RV, Y (()
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Independence

Two random variables, X;(¢) and X5(() are independent if the
i ol events { X1(¢) < x1} and {X2(¢) < z2} are jointly independent;
Signal Processing that is, the events do not influence one another, and

Probability Theory

Scalar Random Variables Pr (Xl (C) < a1, X2(C) < xQ) = Pr (Xl (C) < 5131) Pr (XQ(C> < 372)

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function
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Independence

Two random variables, X;(¢) and X5(() are independent if the
i ol events { X1(¢) < x1} and {X2(¢) < z2} are jointly independent;
Signal Processing that is, the events do not influence one another, and

Probability Theory

Scalar Random Variables Pr (Xl (C) < a1, X2(C) < xQ) = Pr (Xl (C) < 5171) Pr (XQ(C> < 372)

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors This then implies that

@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s F (:E T ) — F (:E ) F (:E )
@ Statistical Description Xl 7X2 1 ? 2 Xl 1 X2 2
@ Probability Transformation

Fxuxs (@1, 22) = fx, (21) Fx, (22)
@ Polar Transformation Xl ’X2 1 ? 2 Xl 1 X2 2
® Generating WGN samples
@ Auxiliary Variables
@ Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
Alms and Objective of conditional probabilities; what is the probability of a random
Signal Pocessing vector Y ((), given the random vector X (().

Probability Theory

Scalar Random Variables

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion

Aims and Objectives of conditional probabilities; what is the probability of a random
Signal Pocessing vector Y ((), given the random vector X (().
Probability Theory

— The conditional pdf of Y ({) given X (() is defined as:

Multiple Random Variables

@ Abstract fXY (X, y)
® Definition of Random fY X ( | X) f—
Vectors | y f X ( X )
@ Distribution and Density
Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 52/199

Power Spectral Density




Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y ((), given the random vector X (().

The conditional pdf of Y ({) given X (() is defined as:

Jy|x (ylx)= fx;;(é;).’}’)

If the random vectors X (¢) and Y (¢) are independent, then the
conditional pdf must be identical to the unconditional pdf:
fyix (¥ | x) = fy (y). Hence, it follows that:

fxy (x,y) = fx (%) fy (¥)
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Conditionals and Bayes’s

Since

Aims and Objectives

Signal Processing

fxy (x,y) = fyx (¥] %) fx (%) = fx)y (x| ¥) fy (¥) = fyx (v, x)

Probability Theory

Scalar Random Variables

it follows

Multiple Random Variables
@ Abstract

i ey (x| y) = Frx (1) fx (9
e X[y \X]1Y)=

@ Marginal Density Function f Y (y )

® Independence

® Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review
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Conditionals and Bayes’s

Since

Aims and Objectives

Signal Processing

fxy (x,y) = fyx (¥] %) fx (%) = fx)y (x| ¥) fy (¥) = fyx (v, x)

Probability Theory

Scalar Random Variables

it follows

Multiple Random Variables
@ Abstract

i ey (x| y) = Frx (1) fx (9
e X[y \X]1Y)=

@ Marginal Density Function f Y (y )

® Independence

® Conditionals and Bayes’s

@ Statistical Description Since f‘Y‘ (Y) Can be eXpreSSed aS:

@ Probability Transformation

Rule
® Polar Transformation

Fe )= [ v (xoy)dx= [ e (v 120 fx () dx

@ Multivariate Gaussian
Density Function

Estimation Theory then it fOIIOWS

MonteCarlo

P

Linear Systems Review

f (x| y) = fY|X(Y\X)fX( )
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Statistical Description

Statistical averages are more manageable, but less of a complete
Alms and Objective description of random vectors.

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo
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Statistical Description

Statistical averages are more manageable, but less of a complete
Alms and Objective description of random vectors.

Signal Processing

® With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

Probability Theory

Scalar Random Variables

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo
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Statistical Description

Statistical averages are more manageable, but less of a complete
Alms and Objective description of random vectors.

Signal Processing

® With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

Probability Theory

Scalar Random Variables

® However, it is important to understand that multiple RVs leads

T — to the notion of measuring their interaction or dependence.
i This concept is useful in abstract, but also when dealing with
@ Distribution and Density . . .

Sy stochastic processes or time-series.

@ Marginal Density Function
® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review
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Statistical Description

Mean vector The mean vector is the first-moment of the random
Alms and Objectives vector, and is given by:

Signal Processing

Probability Theory E [X 1 (C)] HXy
Scalar Random Variables Ux = E [X (C )] — . — .

Multiple Random Variables
® Abstract E [XN (C):I ILLXN

® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review
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Statistical Description

Mean vector The mean vector is the first-moment of the random
Alms and Objectives vector, and is given by:

Signal Processing

Probability Theory E [X 1 (C)] HX,
Scalar Random Variables Ux = E [X (C )] — —

Multiple Random Variables
® Abstract E [XN (C):I ILLXN

® Definition of Random

Vectors
@ Distribution and Density

S Correlation Matrix The second-order moments of the random

@ Marginal Density Function

e vector describe the spread of the distribution. The

® Conditionals and Bayes’s . o . B
o Stadstca Deseripion autocorrelation matrix is defined by:
@ Probability Transformation

Rule
® Polar Transformation — -

® Generating WGN samples f”‘Xl Xl o o fr'Xl XN

@ Auxiliary Variables
@ Multivariate Gaussian A

Deasity Functin Rx = E [X (¢) X" (¢)] =

Estimation Theory

TXNnX: 7 TXNXN |

MonteCarlo

Linear Systems Review
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Statistical Description

Correlation Matrix The diagonal terms

Aims and Objectives

Signal Processing TX, X, L 1D |Xz(<.>|2 ’ 1 E {]_, S N}

Probability Theory

Scala Random Variabes are the second-order moments of each of the RVs, X;(().

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review
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Statistical Description

Correlation Matrix The diagonal terms

Aims and Objectives

Signal Processing TX, X, L 1D |:|Xz(<.>|2:| ’ 1 E {]_, S N}

Probability Theory

Scala Random Variabes are the second-order moments of each of the RVs, X;(().

Multiple Random Variables
@ Abstract

o Definition of Randomn The off-diagonal terms

Vectors
@ Distribution and Density

Functions

rx.x; = E [ X(O)X; Q)] =rk,x,, 177

® Conditionals and Bayes’s
@ Statistical Description

® Probabilty Transtormtion measure the correlation, or statistical similarity between the

Rule

@ Polar Transformation RVS X’L (C ) and X ] (C) o

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review
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Aims and Objectives

Statistical Description

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Correlation Matrix The diagonal terms

are the second-order moments of each of the RVs, X;(().

rx.x, 2 E [|X,L-(§)|2] L die{l,... N}

The off-diagonal terms

rx.x; =B [X;(Q)X}

J

(C)] :T§(ina 1 F£ ]

measure the correlation, or statistical similarity between the
RVs X;(¢) and X, (().

If the X;(¢) and X;(() are orthogonal then their correlation

IS zero:

Power Spectral Density
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Aims and Objectives

Statistical Description

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Covariance Matrix The autocovariance matrix is defined by:

VX1X1

| TX N X

Power Spectral Density

- p. 53/199



Statistical Description

Covariance Matrix The autocovariance matrix is defined by:

Aims and Objectives

Signal Processing - =
. fYX1X1 ,YXlXN

Probability Theory A H

Scalar Random Variables I‘X — E |:(X (C) N MX) (X (C) N MX) :| -

Multiple Random Variables ’YX N X 1 e ’YX N X N

® Abstract - -

® Definition of Random
Vectors

@ Distribution and Density The diagonal termS

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s é 2 . ‘ i ( C‘ ) . ‘ 2 . {
@ Statistical Description ,qu, Xz T O-XZ T E |: X'I/ ILLXz Y v E 1 )’
@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples are the variances of each of the RVs, X;(().

@ Auxiliary Variables

Nj

~

@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 53/199

Power Spectral Density




Statistical Description

Covariance Matrix The off-diagonal terms

Aims and Objectives

Signal Processing

vxix, 2B [(Xi(C) — px.) (X5(C) — px,)”

x % . :
er'Xj T MXll’LXJ _ ,YXleW ? # j

Probability Theory

Scalar Random Variables

Multiple Random Variables

i measure the covariance X;(¢) and X, ().

® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

|
- p. 53/199

Power Spectral Density




Statistical Description

Covariance Matrix The off-diagonal terms

Aims and Objectives

Signal Processing

T 28 [(XG(0) - mx) (K5(0) = px,)]

i L * c 0
Scalar Random Variables - /r.)(z)(_7 T /’l/XllLl/XJ _ ,YXJX17 v # j

Probability Theory

Multiple Random Variables

i measure the covariance X;(¢) and X, ().

® Definition of Random

Vectors
@ Distribution and Density
Functions
@ Marginal Density Function
® Independence

It should also be noticed that the covariance and correlation

® Conditionals and Bayes’s

o matrices are positive semidefinite; that is, they satisfy the
() 5(1)111:1’ Transformation re ]- ation S :

® Generating WGN samples
@ Auxiliary Variables
@ Multivariate Gaussian

Density Function aH RX a Z O

Estimation Theory

all I'sxa >0

MonteCarlo

Linear Systems Review

for any complex vector a.

| Stochastic Processes |

| |
- p. 53/199

Power Spectral Density




Statistical Description

Theorem (Positive semi-definiteness).  PROOF. Consider the sum of
Aims and Objectives RVS ;

Signal Processing

Probability Theory

Scalar Random Variables

Y(Q) =D an Xn(¢) =a" X(¢) O

Multiple Random Variables
@ Abstract

inition of Random T T
e WHETe X(C) = [X 1(Q) oo Xw (O] and a = [al o aN}
Functions

o Marginal Density Functon is a arbitrary vector of coefficients.

® Independence

® Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 53/199

Power Spectral Density




Aims and Objectives

Statistical Description

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Theorem (Positive semi-definiteness).

RVs:

Y

C) — Zan Xn(C) =a’ X(C)

T
where X () = [Xl(g) XN(C)] and a = [al
is a arbitrary vector of coefficients.

PROOF. Consider the sum of

T
aN}

The variance of Y (¢) must, by definition, be positive, as must its
second moment. Considering the second moment, then:

E [Y*(C)]

—E [a” X(()X(¢)"

— aTE [X(C) X(()T] a=alRya>0

[]

Power Spectral Density

- p. 53/199



Statistical Description

Example (Valid correlation matrix).  Determine whether the following
islan 0} e is a valid correlation matrix:

Signal Processing

Probability Theory R O 1
X p—

Scalar Random Variables 2 3

Multiple Random Variables M
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

|
- p. 53/199

Power Spectral Density




Statistical Description

Example (Valid correlation matrix).  Determine whether the following

instonlebtnes is a valid correlation matrix:

Signal Processing

Probability Theory O 1
Rx =

Scalar Random Variables 2 3

Multiple Random Variables

® Abstract
e SOLUTION. This is not a valid correlation matrix as it is not
R symmetric, which is a requirement of a valid correlation matrix.

Marginal Density Function T
o ndeoondene In otherwords, Ry # Rx.

® Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 53/199

Power Spectral Density




Statistical Description

Example (Valid correlation matrix).  Determine whether the following
islan 0} e is a valid correlation matrix:

Signal Processing

Probability Theory R 1 2
X p—

Scalar Random Variables 2 1

Multiple Random Variables M
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

|
- p. 53/199

Power Spectral Density




Statistical Description

Example (Valid correlation matrix).  Determine whether the following

instonlebtnes is a valid correlation matrix:

Signal Processing

Probability Theory 1 2
Rx =

Scalar Random Variables 2 1

Multiple Random Variables
@ Abstract

® Definiton of Random SOLUTION. Writing out the product I = a’ Rxa gives:

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s ]_ 2 Y
@ Statistical Description I = | /8
@ Probability Transformation

Rule 2 1 5
® Polar Transformation -

® Generating WGN samples

@ Auxiliary Variables Qv _|_ 2 /B
@ Multivariate Gaussian a /B
200+

=a(a+28)+ 8 2a+ f)
= o’ +4af+ 4

|G s e look to complete the square I

Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| |
- p. 53/199

Power Spectral Density




Aims and Objectives

Statistical Description

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Example (Valid correlation matrix).
is a valid correlation matrix:

SOLUTION. Writing out the product I = a’ R ya gives:

I ==a%+2a8+ %2 +2ap
complete‘trhe square

= (a+8)° +2a8
N——

always positive

Noting the term 2a3 is not always positive, then selecting
a = —f3, it follows that I = —2a? < 0. Hence, Ry is not
correlation matrix.

Determine whether the following

Power Spectral Density

- p. 53/199



Statistical Description

The autocorrelation and autocovariance matrices are related,
Alms and Objectives and it can easily be seen that:

Signal Processing

Probability Theory FX £ K [X (C) — [,LX] [X (C) — [,LX]H = RX — [,LX[,L)Ig

Scalar Random Variables

Multiple Random Variables
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

|
- p. 53/199

Power Spectral Density




Statistical Description

The autocorrelation and autocovariance matrices are related,
Alms and Objectives and it can easily be seen that:

Signal Processing

Probability Theory FX = K [[X (C) — l’l’X] [X (C) — [,LX]H] = RX — [,LX[,L)Ig

Scalar Random Variables

In fact, if ux = 0, then I'x = Rx.
Multiple Random Variables

@ Abstract
® Definition of Random

Vectors

o istrbution and Densit If the random variables X;(¢) and X,(¢) are independent, then

Functions

® Marginal Density Function they are also uncorrelated since:

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

rx.x; = B [Xi(Q) X;(0)] = E [Xi(OIE [ X7 (C)]
= X

® Generating WGN samples

e . — *
@ Auxiliary Variables — /,L X /,L X
/l: .
J

@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 53/199

Power Spectral Density




Statistical Description

The autocorrelation and autocovariance matrices are related,
Alms and Objectives and it can easily be seen that:

Signal Processing

Probability Theory FX = K [[X (C) — [,LX] [X (C) — [,LX]H] = RX — [,LX[,L)IE

Scalar Random Variables

In fact, if ux = 0, then I'x = Rx.
Multiple Random Variables

@ Abstract
® Definition of Random

Vectors

o istrbution and Densit If the random variables X;(¢) and X,(¢) are independent, then

Functions

® Marginal Density Function they are also uncorrelated since:

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

rx,x; = B [X:(0) X;()"] = E [X:(O) E [ X7 ()]
= x, =0

® Generating WGN samples .

@ Auxiliary Variables —

@ Multivariate Gaussian //LXl /LX J ’YXZ
Density Function

Estimation Theosy Note, however, that uncorrelatedness does not imply
MenteGaslo independence, unless the RVs are jointly-Gaussian.

Linear Systems Review

| Stochastic Processes |

| |
- p. 53/199

Power Spectral Density




Aims and Objectives

Statistical Description

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

Cross-correlation is defined as

Rxy 2 E [X ()Y (Q)] = :

Power Spectral Density

- p. 53/199




Statistical Description

Cross-correlation is defined as

Aims and Objectives

Signal Processing —

Probability Theory

E[X1(OY7 ()] -+ E[X1(¢)Y(<)]
Scalar Random Variables RXY = K [X (C) YH(C)} — .
T T E[XN(OY(Q)] - E[Xn()Y(C)]

@ Abstract -
® Definition of Random

Vectors
@ Distribution and Density

pbut Cross-covariance is defined as

@ Marginal Density Function
® Independence

® Conditionals and Bayes’s
@ Statistical Description

.;(;:abmtymnsformanon 'y =0 [{X (C) — Mx} {Y(C) - H'Y} }

® Polar Transformation

® Auxiliary Variables = RXY - ll:X I'L-IY{

@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |
|

|
- p. 53/199

Power Spectral Density




Statistical Description

Cross-correlation is defined as

Aims and Objectives

Signal Processing —

Probability Theory

E[X1(OY7 ()] -+ E[X1(¢)Y(<)]
Scalar Random Variables RXY = K [X (C) YH(C)} — .
T T E[XN(OY(Q)] - E[Xn()Y(C)]

@ Abstract -
® Definition of Random

Vectors
@ Distribution and Density

pbut Cross-covariance is defined as

@ Marginal Density Function
® Independence

® Conditionals and Bayes’s
@ Statistical Description

.;(;:abmtymnsformanon 'y =0 [{X (C) — Mx} {Y(C) - H'Y} }

® Polar Transformation

® Auxiliary Variables = RXY - ll:X I'L-IY{

@ Multivariate Gaussian
Density Function

Estimation Theory ® Uncorrelated if T'xy =0 = Rxy = pxpil.

MonteCarlo

Linear Systems Review ’ Orthogonal if RXY = O-

| Stochastic Processes |
|

|
- p. 53/199

Power Spectral Density




Probability Transformation Rule

Theorem (Probability Transformation Rule).  The set of random
Aims and Objectves variables X (¢) = {X,(¢), n € N'} are transformed to a new set
Signal Processing Of RVS, Y(C) — {Yn(C)’ n E N}, USing the tranSformationS:

Probability Theory

Stk Eenlir Ve Yn (C) = gn (X (C ) ) y n € N

Multiple Random Variables <>
@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Generating WGN samples

® Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes |

| |
- p. 54/199

Power Spectral Density




Probability Transformation Rule

Theorem (Probability Transformation Rule).  The set of random
Aims and Objectves variables X (¢) = {X,(¢), n € N'} are transformed to a new set
Signal Processing Of RVS, Y(C) — {Yn(C)7 n E N}, USing the tranSformationS:

Probability Theory

Stk Eenlir Ve Yn (C) = gn (X (C ) ) y n € N

T — Assuming M -real vector-roots of the equation y = g(x) by
.5:222011 of Random {Xm’ m E M}’

@ Distribution and Density

Functions
@ Marginal Density Function

® Independence — (X ) = 5 0 0 = (Xn [)
® Conditionals and Bayes’s y g 1 g

@ Statistical Description

@ Probability Transformation

Rule then the joint-pdf of Y({) in terms of (i. t. 0.) the joint-pdf of

® Polar Transformation

® Generating WGN samples X_ (C ) IS :

® Auxiliary Variables
@ Multivariate Gaussian
Density Function

M
Estimation Theory fY (y> _ Z { !)]( (Xm) <>

MonteCarlo m= 1

Linear Systems Review

The Jacobian is defined in the notes, but is the usual definition!

| Stochastic Processes |

| |
- p. 54/199

Power Spectral Density




Polar Transformation

Consider the transformation from the random vector

e C(() = [X(Q), Y(Q)] 10 P(() = [(C), 0(C)]7, where

Signal Processing

Probability Theory
r(¢)

Scalar Random Variables

VX2(C) +Y2(C)

Y (¢)
Multiple Random Variables 9 ( C ) — aI'Ct al
@ Abstract )K (C )

® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
@ Polar Transformation

® Generating WGN samples

@ Auxiliary Variables

® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

| Stochastic Processes

|
- p. 55/199

Power Spectral Density




Polar Transformation
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Generating WGN samples

It is often important to generate samples from a Gaussian
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Generating WGN samples
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The density of a RV that is one function Z(¢) = g(X(¢), Y (()) of
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| Stochastic Processes

The density of a RV that is one function Z(¢) = g(X(¢), Y (()) of
two RVs can be determined by choosing a auxiliary variable.

/fWZ e dw_Z/fXY nym)dw

| (Zms Ym)|

Example (Sum of two Rvs). If X ({) and Y (¢) have joint-pdf
fxv (z, y), find the pdf of the RV Z({) = a X ({) + bY (() -

SOLUTION. Use as the auxiliary variable the function
W () =Y (¢). The system z = ax + by, w = y has a single
solution at z = 2=2% ¢ = w.

Thus:
1 — b
__/fXY(Z wa’LU)dw i
\a| R a
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Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.

For a real random vector, this density function has the form:

1 1 T
N T €XpP 9 (X — px) Fxl (x — px)
(2m)=2 |I'x|?

fx (x) =

where N is the dimension of X (), and X (¢) has mean pu and
covariance I'x. It is often denoted as:

fx (x) :N(X ‘ Hx FX)

| Stochastic Processes |

| |
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
dntandlobrotve because of its many important properties.
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
dntandlobrotve because of its many important properties.
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. If the components of X (¢) are mutually uncorrelated, then
i they are also independent.

@ Distribution and Density

Functions
@ Marginal Density Function

® Independence 3. A linear transformation of a normal random vector is also

® Conditionals and Bayes’s
@ Statistical Description no rm al .
@ Probability Transformation

Rule

® Polar Transformation This is a particularly useful, since the output of a linear system

® Generating WGN samples
e ol subject to a Gaussian input is also Gaussian.
Density Function

Rstimation Theory 4. If X (¢) and Y (¢) are jointly-Gaussian, then so are their
MonteCarlo marginal-distributions, and their conditional-distributions.
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® Thus far, have assumed that either the pdf or statistical values,

such as mean, covariance, or higher order statistics,
associated with a problem are fully known.
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® Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

® In most practical applications, this is the exception rather than
the rule.
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® Thus far, have assumed that either the pdf or statistical values,

such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

® In most practical applications, this is the exception rather than

the rule.

® The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.
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® Thus far, have assumed that either the pdf or statistical values,

such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

® In most practical applications, this is the exception rather than

the rule.

® The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.

® This handout will consider the problem of Parameter

Estimation. This refers to the estimation of a parameter that

is fixed, but is unknown.
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Consider the set of N observations, X = {z[n]}) ~', from a
random experiment; suppose they are used to estimate a
parameter 6 of the process using some function:

0=0[x]=0[{z[n]

N-—-1
0

]
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Consider the set of N observations, X = {z[n]}) ~', from a
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Consider the set of N observations, X = {z[n]}) ~', from a
random experiment; suppose they are used to estimate a
parameter 6 of the process using some function:

0= 01X =6 [{z[n]}) ]
The function 0 [X] is known as an estimator whereas the value

taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, 0, that should be as close to the
true value of the parameter, 6, as possible.

Linear Systems Review

- p. 61/199



Aims and Objectives

Properties of Estimators

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
® Maximum Likelihood

Estimation
@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
@ DC Level

® Linear Least Squares

| MonteCarlo

Consider the set of N observations, X = {z[n]}) ~', from a
random experiment; suppose they are used to estimate a
parameter 6 of the process using some function:

0 =01X] =0 [{z[n]}g ']

The function 0 [X] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, 0, that should be as close to the
true value of the parameter, 6, as possible.

Since 6 is a function of a number of particular realisations of a
random outcome (or experiment), then it is itself a RV, and thus
has a mean and variance.
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A /W) B = Efu]-u
E<—>-

>

i 0
Here, the pdf of the estimated value, i, is biased away from

the true value, ;. However, the spread of the estimated value
around the true value is small.
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- p. 62/199



Aims and Objectives

What makes a good estimator?

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

@ Variance of estimator

@ Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood

Estimation
@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
@ DC Level

® Linear Least Squares

| MonteCarlo

i)

var[p] = E[(u-E[n])’]

, ————D

j U

Here, the pdf of the estimated value, /i, is centered on the
true value, ;.. However, the spread of the estimated value

around the true value is very large.
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The bias of an estimator 6 of a parameter 6 is defined as:

BO) A E

A

0

— 0

Linear Systems Review
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The bias of an estimator 6 of a parameter 6 is defined as:

LE | -0

. The normalised bias is often used:

B(9)

er(0) £ B(6) - % — 1,

—= 0
0 0 70

Example (Biasness of sample mean estimator).

iy — o Zn ; " 2[n] biased?

SOLUTION. No, since
X N-1
Eliu] =E |% a5 @

Is the sample mean,

Linear Systems Review
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Variance of estimator

The variance of the estimator 6 is defined by:

o

war [

(\}

6

éE[

A

0 —E

|

A

0

|

|

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may

result in an increase in bias.
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Variance of estimator

The variance of the estimator 6 is defined by:

(\}

var [é] o 2 E [

0-E |

|

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may

result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.
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The variance of the estimator 6 is defined by:

war [

(\}

T4

éE[

A

0 —E

|

A

0

|

|

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.

The normalised standard deviation is defined by:

Linear Systems Review
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Minimising variance can increase bias. A compromise criterion is

the mean-squared error (MSE):
A A 2 A
MSE() = E Ua ~ 9‘ ] — o2 + |B(0)?

The estimator Oysg = Oyise |X'] which minimises MSE(@) is the
minimum mean-square error:

éMSE = argé min MSE(é)

Linear Systems Review
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Minimising variance can increase bias. A compromise criterion is
the mean-squared error (MSE):

N ~ 2 ~
MSE(4) = E Ua - 9‘ ] — o2 + |B(0)?

The estimator Oysg = Oyise |X'] which minimises MSE(@) is the
minimum mean-square error:

éMSE = argé min MSE(é)
This measures the average mean squared deviation of the

estimator from its true value.

® Unfortunately, adoption of this natural criterion leads to
unrealisable estimators; ones which cannot be written solely
as a function of the data.
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If the MSE can be minimised when the bias is zero, then clearly

the variance is also minimised. Such estimators are called
minimum variance unbiased estimators (MVUEs).
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If the MSE can be minimised when the bias is zero, then clearly
the variance is also minimised. Such estimators are called
MVUE:s.

® MVUE possess the important property that they attain a
minimum bound on the variance of the estimator, called the
Cramér-Rao lower-bound (CRLB).
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Theorem (CRLB - scalar parameter).  If

X(¢) = [2[0,¢], -+, [N —1,¢]]" and fx (x| 6) is the joint
density of X(() which depends on fixed but unknown parameter
9, then the variance of the estimator 6 is bounded by:

var [é] > !

2
Jln fx(x]0)
= | ()
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| MonteCarlo

Theorem (CRLB - scalar parameter).

z[0,¢], -

X(¢)

If
., z[N —1,¢]]" and fx (x| ) is the joint

density of X(() which depends on fixed but unknown parameter

9, then the variance of the estimator 6 is bounded by:

1

E

[(31nfx(x|9)

)

Alternatively, it may also be expressed as:

var [HA] > —

1

2|

02 1In fx (x|0)

002

|
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| MonteCarlo

Theorem (CRLB - scalar parameter).

z[0,¢], -

X(¢)

If

., z[N —1,¢]]" and fx (x| ) is the joint

density of X(() which depends on fixed but unknown parameter

9, then the variance of the estimator 6 is bounded by:

1

E

[(31nfx(x|9)

)

Alternatively, it may also be expressed as:

The function In fx (x| 0) is called the log-likelihood of 6.

var [HA] > —

1

2|

02 1In fx (x|0)

002

|
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| MonteCarlo

Theorem (CRLB - scalar parameter).  If

X(¢)

z[0,¢], -

., z[N —1,¢]]" and fx (x| ) is the joint

density of X(() which depends on fixed but unknown parameter

9, then the variance of the estimator 6 is bounded by:

1

E

[(31nfx(x|9))2]
00

Alternatively, it may also be expressed as:

Furthermore, an unbiased estimator may be found that attains

var [HA] > —

1

02 1In fx (x|0)
e

the bound for all 0 if, and only if, (iff)

Oln fx (x| 0)

<
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Consistency of an Estimator

If the MSE of the estimator,

Aims and Objectives

Signal Processing MSE(QA) — [|é . 9|2] _ 0_92 4+ |B(é)|2

Probability Theory

s G approaches zero as the sample size N becomes large, then both
e v the bias and the variance tends toward zero.

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
@ Consistency of an Estimator
® Maximum Likelihood

Estimation
@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
@ DC Level

® Linear Least Squares

| MonteCarlo |
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| MonteCarlo

If the MSE of the estimator,
MSE(f) = E |10 - 02| = o2 + | B()?

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

® Thus, the sampling distribution tends to concentrate around
0, and as N — oo, it will become an impulse at 6.
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| MonteCarlo

If the MSE of the estimator,
MSE(f) = E |10 - 02| = o2 + | B()?
approaches zero as the sample size N becomes large, then both

the bias and the variance tends toward zero.

® Thus, the sampling distribution tends to concentrate around
0, and as N — oo, it will become an impulse at 6.

® This is a very important and desirable property, and such an
estimator is called a consistent estimator.
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Maximum Likelihood Estimation

The joint density of the RVs X (¢) = {z[n, (]}{' ', which depends
on fixed but unknown parameter 0, is fx (x| 0).

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

@ Variance of estimator

® Mean square error
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@ Properties of the MLE
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| MonteCarlo

|
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noise
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Approach
@ DC Level
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| MonteCarlo

The joint density of the RVs X (¢) = {z[n, (]}{' ', which depends
on fixed but unknown parameter 0, is fx (x| 0).

® This same quantity, viewed as a function of the parameter
when a particular set of observations, X is given, is known as
the likelihood function.
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noise
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| MonteCarlo

The joint density of the RVs X (¢) = {z[n, (]}{' ', which depends
on fixed but unknown parameter 0, is fx (x| 0).

® This same quantity, viewed as a function of the parameter
when a particular set of observations, X is given, is known as
the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter 6,

denoted by éml, is defined as that value of 8 that maximises
fx (x]0).
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| MonteCarlo

The joint density of the RVs X (¢) = {z[n, (]}{' ', which depends
on fixed but unknown parameter 0, is fx (x| 0).

® This same quantity, viewed as a function of the parameter
when a particular set of observations, X is given, is known as
the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter 6,
denoted by 0.,,;, is defined as that value of # that maximises

fx (x] 0).

The MLE for 0 is defined by:

A

01 (x) = arge max fx (x| 6)

Note that since 6,,,(x) depends on the random observation
vector x, and so is itself a RV.
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1. The MLE satisfies

Vofx (x| 0)lg_g , =0px1

ml

Voln fx (x| 0)|g_p  =0px1
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1. The MLE satisfies

Vofx (x| 0)lg_g , =0px1
Voln fx (x| 0)|g_p  =0px1

ml

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

4 /(x|0)

>
eMLE 0

A single parameter MLE that occurs at a boundary
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Properties of the MLE

1. The MLE satisfies

Aims and Objectives

Signal Processing

Vofx (x| 0)lg_g , =0px1

Voln fx (x| 0)|g_p  =0px1

ml

Probability Theory

Scalar Random Variables

Multiple Random Variables

aton Theons 2. If an MVUE exists and the MLE does not occur at a boundary,
® Inuoduction then the MLE is the MVUE.

@ Properties of Estimators

® What makes a good Af)((-x| e)

estimator?
@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
® Maximum Likelihood

stimation >
° Eroperties of the MLE eMLE 0
O U el white Gassin A single parameter MLE that occurs at a boundary

® MLE for Transformed
Parameter

® Least Squares 3. MLE is asymptotically distributed according to a Gaussian

® The Least Squares

Approach distribution:

@ DC Level
® Linear Least Squares

A
| MonteCarlo H

~ AN (. _J- 1N |
v \ N/

|
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Aims and Objectives

DC Level in white Gaussian noise

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
® Maximum Likelihood

Estimation
@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
@ DC Level

® Linear Least Squares

| MonteCarlo

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

z[n] = A + w|n]

where w[n] ~ N (0, o7,)

X

forn e N ={0,..., N — 1}. Calculate the MLE of the unknown

signal A.
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but

Aims and Objectives unknown signal is observed in additive WGN. That is,
Signal Processing
Probability Theory ZE[’R] — A —|_ w[n] Where w[n] ~ N <O7 0-’121})

Scalar Random Variables

forn e N ={0,..., N — 1}. Calculate the MLE of the unknown
signal A.

Multiple Random Variables

Estimation Theory

@ Introduction
@ Properties of Estimators

© What makes a good SOLUTION. Since this is a memoryless system, and w|n| are
e o i. i. d., then so is x[n], and therefore:

® Mean square error
® Cramer-Rao Lower Bound

[ Cons.istency.of arn Estimator N Z N (ZE [n] L A) 2
aximum Likelihood

:gg(t)ﬁ:ii;?:ftheMLE In fX (X ‘ A) - ? 111(27-‘-0-’3)) B = 20-2

® DC Level in white Gaussian w

noise
® MLE for Transformed

Parameter Differentiating this expression w. r. t. A and setting to zero:

@ Least Squares
® The Least Squares

Approach
@ DC Level A 1

@ Linear Least Squares Aml — — Z 6 [n] |:’

| MonteCarlo n EN |

| |
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® The Least Squares
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@ DC Level
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| MonteCarlo

Theorem (Invariance Property of the MLE).  The MLE of the parameter
o = g(0), where g is an r-dimensional function of the P x 1
parameter 6, and the pdf, fx (x| ) is parameterised by 8, is
given by

OAﬂml — g(éml) <>

where 0,,; is the MLE of 6.
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| MonteCarlo

Theorem (Invariance Property of the MLE).  The MLE of the parameter
o = g(0), where g is an r-dimensional function of the P x 1
parameter 6, and the pdf, fx (x| ) is parameterised by 8, is
given by

&ml — g(éml)

where 0,,; is the MLE of 6.

The MLE of 8, 0,,;, is obtained by maximising fx (x| 0). If the
function g is not an invertible function, then & maximises the
modified likelihood function pr (x| ) defined as:

pr(x| @)= max_fx (x| 0) o
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Least Squares

The estimators discussed so far have attempted to find an
Aims and Objectives optimal or nearly optimal (for large data records) estimator for
Signal Processing example, the MVUE.

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

@ Variance of estimator

® Mean square error
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@ Properties of the MLE

® DC Level in white Gaussian

noise
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Parameter
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® Linear Least Squares

| MonteCarlo

|
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® The Least Squares

Approach
@ DC Level

® Linear Least Squares

| MonteCarlo

The estimators discussed so far have attempted to find an

optimal or nearly optimal (for large data records) estimator for

example, the MVUE.

$ An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make

good sense for many problems of interest: the principle of
least squares.
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| MonteCarlo

The estimators discussed so far have attempted to find an

optimal or nearly optimal (for large data records) estimator for

example, the MVUE.

$ An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make

good sense for many problems of interest: the principle of
least squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.
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@ DC Level
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| MonteCarlo

The estimators discussed so far have attempted to find an

optimal or nearly optimal (for large data records) estimator for

example, the MVUE.

$ An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make

good sense for many problems of interest: the principle of
least squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.

® As will be seen, it turns out that the LSE can be calculated
when just the first and second moments are known, and
through the solution of linear equations.
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Approach
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| MonteCarlo

In the least-squares (LS) approach, it is sought to minimise the

squared difference between the given, or observed, data x|n| and

the assumed, or hidden, signal or noiseless data.
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| MonteCarlo

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x|n| and the
assumed, or hidden, signal or noiseless data.

® Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter 6.

Linear Systems Review

- p. 73/199



Aims and Objectives

The Least Squares Approach

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
® Maximum Likelihood

Estimation
@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
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® The Least Squares

Approach
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| MonteCarlo

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x|n| and the
assumed, or hidden, signal or noiseless data.

® Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some

unknown parameter 6.

® The LSE of 0 chooses the value that makes s[n| closest to the

observed data z|n|, and this closeness is measured by the LS

error criterion:

N

n

1

™ (ol = sln])’

J@)=>_

0
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The Least Squares Approach

Signal Processing
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Estimation Theory

@ Introduction
@ Properties of Estimators
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@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
® Maximum Likelihood

Estimation
@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
@ DC Level

® Linear Least Squares

| MonteCarlo

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x|n| and the

assumed, or hidden, signal or noiseless data.

® Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some

unknown parameter 6.

® The LSE of 0 chooses the value that makes s[n| closest to the

observed data z|n|, and this closeness is measured by the LS

error criterion:

The LSE is given by:

N-1

70)= Y (aln] - s[n])?

n=0

0,55 = arg, min J(0)
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Aims and Objectives
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@ Introduction
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® What makes a good

estimator?
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® Maximum Likelihood
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@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
@ DC Level

® Linear Least Squares

| MonteCarlo

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x|n|, is a perturbed version of an unknown
signal, s|n|, which is modelled as s[n] = A, for

neN ={0,..., N — 1}. Calculate the LSE of the unknown
signal A.
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
e o v observed signal, x|n|, is a perturbed version of an unknown

Signal Procesing signal, s|n|, which is modelled as s[n] = A, for

— neN ={0,..., N — 1}. Calculate the LSE of the unknown
signal A.

Scalar Random Variables

Multiple Random Variables

SOLUTION. According to the LS approach, then:

Estimation Theory

@ Introduction
@ Properties of Estimators
® What makes a good

estimator?
@ Bias of estimator

N—1
. . 1 . 2
@ Variance of estimator — — _
S Arpsgp = arg, min J(A) where J(A) = E (x[n] — A)
® Cramer-Rao Lower Bound n—= O

® Consistency of an Estimator

® Maximum Likelihood

Estimation

® Properties of the MLE Differentiating w. r. t. A and setting the result to zero produces

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

1 N—1
@ The Least Squares ALSE p— N E €T [n] |:’
n=0

Approach
@ DC Level

® Linear Least Squares

|MonteCarlo M;hj@h ].S the Sample mean ecfimqfnr |
LUUOCALALALIAINAGCUJ Le I
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
A o i parameter vector 6 = [0,, --- , 0p] :

Signal Processing

Probability Theory S — H 0

Scalar Random Variables

The LSE is found by minimising:

Multiple Random Variables

Estimation Theory N-—-1

el J(0) = |z[n] — s[n]|* = (x — HO)" (x — HO)

® What makes a good

estimator? n=0
@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
® Maximum Likelihood

Estimation
@ Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
@ DC Level

@ Linear Least Squares
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Parameter
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Thus, the unknown random-vector s is linear in the unknown
parameter vector @ = [0, --- , Op]| :

s=H®O

The LSE is found by minimising:

7(0) =Y laln] - s[nlf* = (x  HO) (x - HO)

Setting the gradient of J(0) to zero yields the LSE:

. —1
0, qp = (HTH) Hx
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® Cramer-Rao Lower Bound
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noise
® MLE for Transformed

Parameter
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Approach
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| MonteCarlo

Thus, the unknown random-vector s is linear in the unknown

parameter vector @ = [0, --- , Op]| :

s=H®O

The LSE is found by minimising:

N-1

J(0) =) |z[n] - s[]|” = (x — HO)" (x — HO)

n=0

Setting the gradient of J(0) to zero yields the LSE:

. —1
0, qp = (HTH) Hx

The equations H . HO = H” x, to be solved for 6, are termed the

normal equation.
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Aims and Objectives

Introduction

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

@ Introduction
® Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
@ Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Methods
® The Metropolis-Hastings

aleorithm
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@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
| ® Markov chain Monte Carlo

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation: involves finding the solution to

A

0 = arg max h(6)
0co

where A (-) is a scalar function of a multi-dimensional vector
of parameters, 6.

® Typically, ~(-) might represent some cost function, and it
is implicitly assumed that the optimisation cannot be
calculated explicitly.

' Methods
® The Metropolis-Hastings

aleorithm
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Introduction

Many signal processing problems can be reduced to either an
Alms and Objectives optimisation problem or an integration problem:

Signal Processing

Probability Theory

Integration: involves evaluating an integral,

Scalar Random Variables

Multiple Random Variables I p— / f (0 ) d 0 3
©

Estimation Theory

e that cannot explicitly be calculated in closed form.
® Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
@ Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods
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® Acceptance-Rejection
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|
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:
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Estimation Theory
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Variables
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® Transformation Methods
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Methods
@ Importance Sampling

® Other Methods
| ® Markov chain Monte Carlo

Integration: involves evaluating an integral,

T- /@ 1(6) o,

that cannot explicitly be calculated in closed form.

® For example, the Gaussian-error function:

t 1 ,
O(t) = / \/%e_% do

Again, the integral may be multi-dimensional, and in general
0 is a vector.

Methods
® The Metropolis-Hastings

aleorithm
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Introduction

Many signal processing problems can be reduced to either an
Alms and Objectives optimisation problem or an integration problem:

Signal Processing

L Optimisation and Integration ~ Some problems involve both

Scalar Random Variables integration and optimisation: a fundamental problem is the
Miliple Random Varizbles maximisation of a marginal distribution:

Estimation Theory

MonteGarto 0 = arg max / f(0, w)dw

@ Introduction 0co Q

® Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
@ Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
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Methods
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® Other Methods
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|
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Function h(x) = (cos 50x + sin 2Ox)2
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Independent Variable, x

Plot of the function h(z) = (cos 50z + sin 202)°, 0 < z < 1.

OO

There are various deterministic solutions to the optimisation and

integration problems.

Methods
® The Metropolis-Hastings
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Methods
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® Other Methods
| ® Markov chain Monte Carlo

Optimisation: 1. Golden-section search and Brent’s Method in one
dimension;

2. Nelder and Mead Downhill Simplex method in
multi-dimensions;

3. Gradient and Variable-Metric methods in
multi-dimensions, typically an extension of
Newton-Raphson methods.

Methods
® The Metropolis-Hastings

aleorithm

- p. 78/199



Aims and Objectives

Deterministic Numerical Methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

@ Introduction
® Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
@ Monte Carlo Integration
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Variables
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® Transformation Methods

@ Inverse Transform Method
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Sampling

® Envelope and Squeeze

Methods
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® Other Methods
| ® Markov chain Monte Carlo

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;
2. standard and extended Simpson’s and Trapezoidal rules;
3. refinements such as Romberg Integration.

Unfortunately, these methods are not easily extended to
multi-dimensions.

Methods
® The Metropolis-Hastings

aleorithm
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Variables
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® Transformation Methods

@ Inverse Transform Method
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Methods
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® Other Methods
| ® Markov chain Monte Carlo

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;
2. standard and extended Simpson’s and Trapezoidal rules;
3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced
abscissas at which the function is evaluated.

® These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.

Unfortunately, these methods are not easily extended to
multi-dimensions.

' Methods
® The Metropolis-Hastings

aleorithm
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Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls
Aot s downhill in a straightforward fashion that makes almost no
Signal Processing special assumptions about your function.

Probability Theory

® This can be extremely slow, but it can be robust.

Scalar Random Variables

Multiple Random Variables

Estimation Theory
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Gradient methods are typically based on the Newton-Raphson
algorithm which solves Vh(0) = 0.

® For a scalar function, h(@), of a vector of independent
variables 0, a sequence 0,, is produced such that:

Methods
® The Metropolis-Hastings

aleorithm
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Deterministic Optimisation

Gradient methods are typically based on the Newton-Raphson
Alms and Objectives algorithm which solves Vh(0) = 0.

Signal Processing

® For a scalar function, h(@), of a vector of independent
variables 0, a sequence 0,, is produced such that:

Probability Theory

Scalar Random Variables

o s 0,1 =0, — (VVTh(6,)) " Vh(6,)

Estimation Theory

Numerous variants of Newton-Raphson-type techniques exist,

MonteCarlo
imoducion and include the steepest descent method, or the
[ g[:ttehr(r)r?;istic Optimisation Levenberg -Marquardt methOd .

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
® Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method
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The integral

I:/abf(e)de,

where 6 is a scalar, and b > a, can be solved with the trapezoidal

rule using

where the 6;’s constitute an ordered partition of |a, b].

I =

1
2

S (Onss — 00) (F(08) + (Osn)
k=0

Methods
® The Metropolis-Hastings
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Deterministic Integration

The integral

Aims and Objectives

Signal Processing

Probability Theory

I:/abf(e)de,

Scalar Random Variables

where 6 is a scalar, and b > a, can be solved with the trapezoidal
rule using

Multiple Random Variables

Estimation Theory

MonteCarlo N 1 N _ 1
S I=5 3 (Brsr—0%) (F(0r) + f (1))
Methods 2 k:O

@ Deterministic Optimisation

@ Deterministic Integration
® Monte Carlo Numerical

Methods where the 6;’s constitute an ordered partition of |a, b].

@ Monte Carlo Integration
@ Stochastic Optimisation

® Generating Random ® Another formula is Simpson’s rule:

Variables
@ Uniform Variates

@ Transformation Methods
® Inverse Transform Method 5 N N
@ Acceptance-Rejection

[=24fla)+4Y fO-1)+2 h(0ar) + £(b)

® Envelope and Squeeze 3

Methods k=1 k=1
@ Importance Sampling
® Other Methods

@® Markov chain Monte Carlo ° S N ya) /) |
| Methods in-the-ease-of eqttaHy spaee& SEtIIIlS}ES with-o— Ykl Uk 80/199
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Monte Carlo methods are stochastic techniques, in which random

numbers are generated and use to examine some problem.
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® The Metropolis-Hastings
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Consider the integral,
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Monte Carlo Integration

Consider the integral,
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b s Wl Defining a function 7 (@) which is non-zero and positive for all
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Estimation Theory

0
MonteCarlo I p— Q T (0 ) dH ,
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Monte Carlo Integration

Consider the integral,
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Estimation Theory
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o hcceprance Rejetion This may be written as an expectation:
ampling

® Envelope and Squeeze

Methods
@ Importance Sampling

0
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Monte Carlo Integration

This expectation can be estimated using the idea of the sample

Ams and Objectves expectation, and leads to the idea behind Monte Carlo
Signal Processing inte gration :
Probability Theory

1. Sample N random variates from a density function 7 (6),

Scalar Random Variables

Multiple Random Variables 9([{:) ~ 7_(_(0)’ ]C c N‘ — {O’ el N _ 1}

Estimation Theory

T——— 2. Calculate the sample average of the expectation using

@ Introduction

@ Deterministic Numerical
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@ Deterministic Optimisation

N—1
S .1 3 (6™) < |
N Pt 7T(@(k)) T

® Monte Carlo Numerical
m(6)
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Stochastic Optimisation

There are two distinct approaches to the Monte Carlo
o optimisation of the objective function h(0):

Signal Processing

A

Probability Theory 0 — arg 11 ax h(e)
6co
Scalar Random Variables
Muliple Random Varibies The first method is broadly known as an exploratory approach,
simation Theoms while the second approach is based on a probabilistic

approximation of the objective function.

MonteCarlo

@ Introduction
@ Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
@ Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
@ Uniform Variates

® Transformation Methods

@ Inverse Transform Method

@ Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods

| ® Markov chain Monte Carlo I
' 1
Methods
® The Metropolis-Hastings - p. 83/199

aleorithm



Aims and Objectives

Stochastic Optimisation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

@ Introduction
@ Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
@ Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
@ Uniform Variates

® Transformation Methods

@ Inverse Transform Method

@ Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Exploratory approach  This approach is concerned with fast

explorations of the sample space rather than working with the

objective function directly.

Methods
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Exploratory approach  This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, NV, of independent random variables, {H(k)}, from a
pdf 7(0), and taking the estimate:

0 ~ arg max h (H(k)>
{6k}

Typically, when no specific features regarding the function
h (0), are taken into account, 7(0) will take on a uniform
distribution over ©.

' Methods
® The Metropolis-Hastings

aleorithm
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Stochastic Approximation

Exploratory approach  This approach is concerned with fast

explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, NV, of independent random variables, {H(k)}, from a
pdf 7(0), and taking the estimate:

0 ~ arg max h (H(k)>
{6k}

Typically, when no specific features regarding the function
h (0), are taken into account, 7(0) will take on a uniform
distribution over ©.

® The Monte Carlo EM algorithm

' Methods
® The Metropolis-Hastings
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This section discusses a variety of techniques for generating
random variables from a different distributions.
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The foundation underpinning all stochastic simulations is the

ability to generate a sequence of i. i. d. uniform random variates

over the range (0, 1].
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Uniform Variates

The foundation underpinning all stochastic simulations is the

Ao o) Qs ability to generate a sequence of i. i. d. uniform random variates
S over the range (0, 1].

Probabilty Theory

Seatar Random Variabls Random variates are pseudo or synthetic and not truly random

since they are usually generated using a recurrence of the form:

Multiple Random Variables

Estimation Theory

Tpi1 = (@x, +b) mod m
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The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

Tpi1 = (@x, +b) mod m

This is known as the linear congruential generator.

However, suitable values of a, b and m can be chosen such that
the random variates pass all statistical tests of randomness.
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It is possible to sample from a number of extremely important
probability distributions by applying various probability
transformation methods.

Theorem (Probability transformation rule).  Denote the real roots of
y = g(x) by {z,,, n € N}, such that

y=g(r1)="-=g(zNn)

PROOF. The proof is given in the handout on scalar random
variables.
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@ Introduction

® Deterministic Numerical A simple derivation of the inverse transform method

Methods
@ Deterministic Optimisation

cvmecmonmensr X (¢) and Y'(¢) are RVs related by the function Y (¢) = II(X (¢)).
Methods
@ Monte Carlo Integration

SR ® [1(¢) is monotonically increasing so that there is only one

® Generating Random

Varisbles solution to the equation y = II(z), z = II"(y).
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dH( )
fy (y)

@ Deterministic Optimisation
@ Deterministic Integration

@ Monte Carlo Numerical fX (-CU )
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@ Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

S Now, suppose Y (¢) ~ Uy, 1] is a uniform random variable. If

® Uniform Variates o o o

o Transformaion Methods II(x) is the cdf corresponding to a desired pdf = (z), then
Inverse Transform Method

: Acceptance-Rejection

.Zir\jggsgand Squeeze fX (IL‘) — ﬂ-(w) Where ZE — H_l (y)
Methods !
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In otherwords, if

U(C) ~Up, 1y, X(¢) =TT7'TU(C) ~ m (x)
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In otherwords, if
U(C) ~ U, 1), X(O) =TTU() ~ 7 ()

Example (Exponential variable generation).  If X ({) ~ Exp(1), such
that 7(z) = e and II(x) = 1 — e~ 7, then solving for z in terms
of u=1—e"" gives x = —log(1 — u).
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In otherwords, if
U(C) ~ U, 1), X(O) =TTU() ~ 7 ()

Example (Exponential variable generation).  If X ({) ~ Exp(1), such

that 7(z) = e and II(x) = 1 — e~ 7, then solving for z in terms

of u=1—e"" gives x = —log(1 — u).

® Therefore, if U(¢) ~ Ujp, 1], then the RV from the

transformation X (¢) = —log U (() has the exponential
distribution (since U({) and 1 — U(() are both uniform).

X
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For most distributions, it is often difficult or even impossible to

directly simulate using either the inverse transform or probability

transformations.
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i X  Sample space X
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. e ot On average, you would expect to have too many variates that

siene awom et take on the value X by a factor of
° :2332;15 and Squeeze

Methods Pp D (X)
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| ® Markov chain Monte Carlo Pq-r T (X) |
|
Methods
@ The Metropolis-Hastings - p. 88/199

aleorithm



Aims and Objectives

Acceptance-Rejection Sampling

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

@ Introduction
@ Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
@ Monte Carlo Numerical

Methods
@ Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
@ Uniform Variates

@ Transformation Methods

@ Inverse Transform Method

@ Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Thus, to reduce the number of variates that take on a value of X,

simply throw away a number of samples in proportion to the
amount of over sampling.
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Thus, to reduce the number of variates that take on a value of X,
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. Accept X if U < P, = %;

. Otherwise, reject and return to first step.
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If X satisfies ¢ (X) < 7 (X), then it should be accepted when

U < %, since this also satisfies U < %.

A
Sample pE)
variate X

m(x)

Probability density
2
:‘y\
&

X Sample space
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This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ~ p(x) and U ~ Ujp 1j;

2. Accept X if U < I\Z(p)(ig) ;

m(X) .
Mp(x)’

3. Otherwise, accept X if U <

4. Otherwise, reject and return to first step.
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This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ~ p(x) and U ~ Ujp 1j;

. q(X) .
2. Accept X if U < 37053
3. Otherwise, accept X if U < Mp(z)

4. Otherwise, reject and return to first step.

By construction of a lower envelope on 7 (z), the number of
function evaluations is potentially decreased by a factor of

Pﬁ:%/q(m) @

which is the probability that 7 (x) is not evaluated.
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The problem with accept-reject sampling methods is finding the

envelope functions and the constant M.
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The problem with accept-reject sampling methods is finding the
envelope functions and the constant M.

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

z:/fwma
S
Approximate by empirical average:
1= E Nz_l]l (0(’“)) where 9% ~ £(0)
N 2 e :

where [ 4 (a) is the indicator function, and is equal to one if
a € A and zero otherwise.
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Defining an easy-to-sample-from density w(0) > 0, V0 € O:

(IO
I_/M(O) (0)d0 =,
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A Markov chain is the first generalisation of an independent
process, where each state of a Markov chain depends on the
previous state only.
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The Metropolis-Hastings algorithm is an extremely flexible
method for producing a random sequence of samples from a
given density.

1. Generate a random sample from a proposal distribution:

Y ~g (y| X(k)).
2. Set the new random variate to be:

(k1) _ Y with probability p(X %), Y)
] X®*)  with probability 1 — p(X ), V)

where the acceptance ratio function p(x, y) is given by:

g(ylz) \g(z|y

il ) = s &) — (gﬂw)))l’l Emin{w(y)gmy)
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lity density

© puy

Probab

g(y|x?)

T(X)
g(x[Y)

7

Sample space
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Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, = (6, 61, ..., 657) by
drawing successive samples from marginal densities of smaller
dimensions.
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T ({Qm}nj\fﬂ) =T (‘918 | {em}'n]\le,m;éﬁ) n ({em}nj\{ﬂ,m#)

e The Gibbs sampler works by drawing random variates from the
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eterministic Integration 7 141 M . o e .
:ﬁlonte Carlo l\;umirical marglnal denSItleS ™ ( 96 | {Hm }m: 1 ,m;éﬁ) ]‘n a CyC]']'C lteratlve
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First iteration:
o ~ (01165, 65, 00, 637

057 ~ (021 08, 65, 00, 67)

057 ~ (051 01, 6V, 000, 67)

057~ (Oar | 60, 687, 650, 057 ,)
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Second iteration:

0® ~ x (91 oD ol oD .

952) ~ T (92 0§2)’ eél)’ (9511)’

9:(32) ~ T (93 0§2)’ 952)’ 9511)’

95\3) o (9M| 9§2)’ 952)’ 9512)’

037
037
037)

9@ )
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k -+ 1-th iteration:

00D~ (0] 08, 0P, 0, 07
o) (92 g+ gk gk) 95\?)

oD 1 (93 gkt glhtD) gk 95@)

oD L o (9M| giF) gk gk 95\?_1)

At the end of the j-th iteration, the samples Héj ), 95‘7 ), e 95\?
are considered to be drawn from the joint-density

7T(90, (91, « ooy QM)
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Linear Systems Review

® Fourier Series and

transforms
® Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

In this review of Fourier series and transforms, the topics covered

dare:

® Complex Fourier series

® Fourier transform

® The discrete-time Fourier transform
® Discrete Fourier transform

I' @ Frequency response
@ Periodic Inputs
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@ Fourier transform

@ Parseval’s Theorem

® The DTFT

® Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

A periodic continuous-time deterministic signal, z.(t), with
fundamental period 7, can be expressed as a linear combination
of harmonically related complex exponentials:

ze(t) = Y Xe(k)e™', teR,

k=—oc0

2

where wy = 27Fy =
p

is the fundamental frequency.
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Aims and Objectives

Complex Fourier series

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

® Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

A periodic continuous-time deterministic signal, z.(t), with

fundamental period 7, can be expressed as a linear combination

of harmonically related complex exponentials:

ze(t) = Y Xe(k)e™', teR,

k=—oc0

where wg = 27 Fy = ?r—” is the fundamental frequency.
p
Moreover,

Ty .
X.(k) = — /0 zo(t) e Kol gt ke,

are the Fourier coefficients, or spectrum of x.(t).
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& Datinral +rancfaorr

- p. 98/199



Aims and Objectives

Complex Fourier series

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

® Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Example (Complex Fourier Series).  Find the complex form of the

Fourier series expansion of the periodic function f(¢) defined by:

f(t) = cos %t (—m <t<m)

- 0 T 3n ;

Function f(¢) of Example 2?2

I @ Frequency response
@ Periodic Inputs
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Aims and Objectives

Parseval’s Theorem

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

Energy Signals A signal x.(t) is said to be an energy signal if the
total energy, F, dissipated by the signal over all time is both
nongero and finite. Thus:

oo

0<E <oco where FE = o (t)]° dt

— OO

® Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Parseval’s Theorem

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Energy Signals A signal x.(t) is said to be an energy signal if the
total energy, F, dissipated by the signal over all time is both
nongero and finite. Thus:

oo

0< E<oo where E:/ () dt

— OO

Power signals If the average power delivered by the signal over all
time is both nongero and finite, the signal is classified as a
power signal:

1 (T
0<P<oo where P = lim —/ o ()| dt
T — 00 T -T

I' @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor

- p. 99/199



Parseval’s Theorem

The average power of x.(t) is given by Parseval’s theorem:

Aims and Objectives

Probability Theory Tp

Signal Processing 1 Tp > -
p,= L / z@®)Fd = 3 | Xu(B)?
k

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

@ Frequency response
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Aims and Objectives

Parseval’s Theorem

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The average power of x.(t) is given by Parseval’s theorem:

1 [T s
Pom o [ Cle®Pdt= 3 X0
p JO

k=—o00

| X.(k)|? represents the power in the kth frequency component,
at frequency wy, = k2*. Hence,
p

~

P.(k) = |X.(k)]?, —oco<k<oo, kcZ

is called the power spectrum of x.(t).

I' @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor

- p. 99/199



Aims and Objectives

Parseval’s Theorem

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The average power of x.(t) is given by Parseval’s theorem:

1 [T s
Pom o [ Cle®Pdt= 3 X0
p JO

k=—0o0
| X.(k)|? represents the power in the kth frequency component,

__ L.2m
at frequency wj, = kT—p. Hence,

~

P.(k) = |X.(k)]?, —oco<k<oo, kcZ

is called the power spectrum of x.(t).

Later in this course, the notion of a power spectrum will be
extended to stochastic signals.
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@ Periodic Inputs
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Aims and Objectives

Fourier transform

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

® Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

An aperiodic continuous-time deterministic signal, x.(¢), can be
expressed in the frequency domain using the Fourier transform
pairs:

1 [ :
z.(t) = %/ X (w) e?“t dw

and
X, (w) = / vo(t) e3¢t gt

X.(w) is the spectrum of z.(t). Continuous-time aperiodic
signals have continuous aperiodic spectra.

I @ Frequency response
@ Periodic Inputs

& Datinral +rancfaorr

- p. 100/199



Aims and Objectives

Fourier transform

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

® Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Example (Fourier Transforms).

Find the Fourier transform of the

one-sided exponential function

f(t)=H(t) e wherea >0

and where H(t) is the Heaviside unit step function given by:

H(t)

1 ift>0
0 otherwise

I @ Frequency response
@ Periodic Inputs
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Aims and Objectives

Parseval’s Theorem

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

@ Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The energy of z.(t) is, as for Fourier series, computed in either
the time or frequency domain by Parseval’s theorem:

oo 1 oo
Ex:/ ze(W)2dt = — [ | Xo(w)]*dw

The function | X .(w)|? > 0 shows the distribution of energy of
z.(t) as a function of frequency, w, and is called the energy
spectrum of x.(?).

I' @ Frequency response
@ Periodic Inputs
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Parseval’s Theorem

The energy of x.(t) is, as for Fourier series, computed in either
Alms and Objectives the time or frequency domain by Parseval’s theorem:

Signal Processing

©.@) 1 ©.@)
Probability Theory Ex — / ‘wc(t)‘2 dt — ‘XC(CU)|2 dw

Scalar Random Variables

Multiple Random Variables

The function | X .(w)|? > 0 shows the distribution of energy of
Estimation Theory z.(t) as a function of frequency, w, and is called the energy
MonteCarl spectrum of . (t).

Linear Systems Review

® Fourier Series and
transforms

o Complex Fourier seies PROOF. The derivation proceeds as follows:

@ Parseval’s Theorem
® Fourier transform
® Parseval’s Theorem

.Tl.le DTFT . o o 1 o ]

i T Ey = / LI (t)dt = / R / X} (w)e 7 dw dt
Transformation — 00 — 00 27-‘- — 00

@ Properties of the DFT

) Disc?rett.e—time S}.fstem.s 1 o xo . 1 o

e o = — X2 (w) / T.(t) e 79 dtdw = — / X (w) Xe(w) dw
@ Bilateral z-transform 27-‘- 27-‘- — 00

@ LTT systems

— 00 — 0

® Matrix-vector formulation
| ® Transform-domain analysis |

e Frequency response |
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Aims and Objectives

The DTFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

An aperiodic discrete-time deterministic signal, {x[n]

oo
—00?

can

be synthesised from its spectrum using the inverse-discrete-time

Fourier transform,

T o

x|n] ! / X (/") ¥ dw, neZ

— 7T

and the discrete-time Fourier transform (DTFT):

X (e%") = Zx[n] e " weR

all n

I @ Frequency response
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Aims and Objectives

The DTFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

An aperiodic discrete-time deterministic signal, {z[n|}>,_, can

—00?

be synthesised from its spectrum using the inverse-discrete-time

Fourier transform,

1

x|n] = —/ X (/") ¥ dw, neZ

2T

and the discrete-time Fourier transform (DTFT):

E (CE‘ —gwn’

all n

X eﬂwT weR

Since X (e/*T) = X (e/(wT27%)) | discrete-time aperiodic signals
have continuous periodic spectra with fundamental period 2.

E,= ) o] = %/_w X (77 |2 dw
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Aims and Objectives

Discrete Fourier transform

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

® Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Any finite-length or periodic discrete-time deterministic signal,

{x[n]}{' "', can be written by the Fourier series, or
inverse-DFT (IDFT):

where N ={0,1,...,N — 1} C Z™, and where the discrete
Fourier transform (DFT):

N-1
Xi = Za}[n] e IR ke N
n=0

are the corresponding Fourier coefficients.
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Aims and Objectives

Discrete Fourier transform

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

® Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Any finite-length or periodic discrete-time deterministic signal,
{x[n]}2' ™!, can be written by the Fourier series, or IDFT:

N-1
Xi = Za}[n] e IR ke N
n=0

are the corresponding Fourier coefficients.

® The sequence X, k € R is the spectrum of z|n|. X}, is
discrete and periodic with the same period as z|n|.
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Aims and Objectives

The DFT as a Linear Transformation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

The formulas for the DFT and IDFT may be expressed as:

1
z[n| = ZX/{WJQM, neN

where, by definition:

® Frequency response
@ Periodic Inputs
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Aims and Objectives

The DFT as a Linear Transformation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The formulas for the DFT and IDFT may be expressed as:

N-1
X = Z zln] WF ke N
n=0

N—1
ZXk W&nk, neN

k=0

=2~

x|n] =

where, by definition:

_j27
WNZB J'N

It is instructive to view the DFT and IDFT as linear

transformations on the sequences {z[n]})' "' and {X;}y '

I' @ Frequency response
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Aims and Objectives

The DFT as a Linear Transformation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

® Frequency response
@ Periodic Inputs

& Datinral +rancfaor
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Aims and Objectives

The DFT as a Linear Transformation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

XN = : ) XN: :

Then the N-point DFT may be expressed as:

XN — WNXN

I' @ Frequency response
@ Periodic Inputs
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Aims and Objectives

Properties of the DFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

DFT DFT
Linearity If x[n] = X} and y|n| = Y%, then

DFT
arz|n] + asy[n] = a1 Xi + asYx

® Frequency response
@ Periodic Inputs
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Aims and Objectives

Properties of the DFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

DFT DFT
Linearity If x[n] = X} and y|n| = Y%, then

DFT
arz|n] + asy[n] = a1 Xi + asYx

DFT ,
Symmetry of real-valued sequences  If x[n] = X} is real, then

XNk =X, =X_4

® Frequency response
@ Periodic Inputs

& Datinral +rancfaorr
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Properties of the DFT

DFT DFT
Linearity If x[n] = X} and y|n| = Y%, then

Aims and Objectives

Signal Processing DFT
Probability Theory o 1 L [n] —|_ a2 y [n] o 1 Xk —|_ a2 Yk
Scalar Random Variables DFT

Symmetry of real-valued sequences  If x[n] = X} is real, then

Multiple Random Variables

Estimation Theory

XNk =X, =X_4

MonteCarlo

Linear Systems Review DFT

P o Complex-conjugate properties  If z[n| = X} then

transforms
@ Complex Fourier series

@ Parseval’s Theorem DFT
® Fourier transform — g5

*
® Parseval’s Theorem £x [n] N N — k
® The DTFT
@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis |
I" @ Frequency response J
dneney resp - p. 105/199
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Aims and Objectives

Properties of the DFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

DFT DFT
Linearity If x[n] = X} and y|n| = Y%, then

DFT
arz|n] + asy[n] = a1 Xi + asYx

DFT

Symmetry of real-valued sequences  If x[n] = X} is real, then

XNk =X, =X_4

DFT

Complex-conjugate properties  If z[n| = X} then

DFT
¥ [n] = Xy_y
DFT

Time reversal of a sequence  If z[n] = X then

DFT

ZU[N—?Z] = XnN_¢k

| ® Transform-domain analysis |

e Frequency response |
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Aims and Objectives

Properties of the DFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

Circular Convolution  As with many linear transforms, convolution
in the time-domain becomes multiplication in the frequency

domain, and vice-versa.

® Frequency response
@ Periodic Inputs

& Datinral +rancfaorr
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Aims and Objectives

Properties of the DFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Circular Convolution  As with many linear transforms, convolution
in the time-domain becomes multiplication in the frequency
domain, and vice-versa.

® Since the signals are periodic, it is necessary to introduce
the idea of circular convolution.

I' @ Frequency response
@ Periodic Inputs
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Aims and Objectives

Properties of the DFT

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Circular Convolution  As with many linear transforms, convolution
in the time-domain becomes multiplication in the frequency
domain, and vice-versa.

® Since the signals are periodic, it is necessary to introduce
the idea of circular convolution.

$ Assuming that convolution is interpreted in the circular

sense (i.e. taking advantage of the periodicity of the

DFT DFT
time-domain signals), then if x[n] = X and y[n| = Y%,

then:

DFT

I' @ Frequency response
@ Periodic Inputs
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Aims and Objectives

Discrete-time systems

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

® Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

The following aspects of discrete-time systems are reviewed:

® Basic discrete-time signals

® The z-transform

® Review of linear time-invariant systems
® Rational transfer functions

® Frequency response
@ Periodic Inputs

& Datinral +rancfaorr
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Basic discrete-time signals

1. The unit impulse sequence ¢|n] is defined as:

Aims and Objectives

;

Signal Processing 1 n — O

dn| =

\
Probability Theory O n # O
\

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

@ Frequency response

- p. 107/199
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Aims and Objectives

Basic discrete-time signals

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

1. The unit impulse sequence ¢|n] is defined as:

;

1 n=0

dn| = <\O n 40

2. The unit step sequence, u|n| is defined as:

1 n>0

uln| =
0 n<O

® Frequency response
@ Periodic Inputs

& Datinral +rancfaorr
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Aims and Objectives

Basic discrete-time signals

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

1. The unit impulse sequence ¢|n] is defined as:

;

1 n=0

dn| = <\O n 40

2. The unit step sequence, u|n| is defined as:

1 n>0

uln| =
0 n<O

3. The exponential sequence is of the form

n

z[n| =a", —oco<n<oo,n€EZ

If a = r e7“° then

= r" coswon + jr'" sinwon

I' @ Frequency response
@ Periodic Inputs

& Datinral +rancfaorr
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Aims and Objectives

Basic discrete-time signals

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

1. The unit impulse sequence ¢|n] is defined as:

;

1 n=0

dn| = <\O n 40

2. The unit step sequence, u|n| is defined as:

1 n>0

uln| =
0 n<O

3. The exponential sequence is of the form

n

z[n| =a", —oco<n<oo,n€EZ

If a = r e7“° then

= r" coswon + jr'" sinwon

I' @ Frequency response
@ Periodic Inputs

& Datinral +rancfaorr
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Aims and Objectives

The z-transform

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

If x|n] is a power signal (having finite power), rather than an
energy signal, the discrete-time Fourier transform (DTFT) does
not exist.

One such signal is the unit step function, u[t], which has DTFT:

e

U (ej“’T) = Z un eIV — ie_jw”
n=0

n——~oo

This is a geometric series which diverges. Therefore, the DTFT
does not exist:

D lulfl =) 1400

all n

I' @ Frequency response
@ Periodic Inputs

& Datinral +rancfaor
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Aims and Objectives

Bilateral z-transform

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The z-transform is defined by the following pairs of equations:

X (2) 2 Zlzn)] = ) z[n] 27"

x[n] = % j{}X (2) 2" dz

Example (Two-sided exponential (Laplacian exponential)) . What is the
bilateral z-transform of the sequence z[n] = a/™! for all n and
some real constant a, where |a| < 1?

SOLUTION. The bilateral z-transform of a sequence z[n] = al™,
shown in Figure 2?2, is given by:

x|n]=a

I' @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Bilateral z-transform

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The z-transform is defined by the following pairs of equations:

X (2) 2 Zlzn)] = ) z[n] 27"

x[n] = % j{jX (2) 2" dz

By evaluating the z-transform on the unit circle of the z-plane,

such that z = /%, then:

oo

X (Z)‘zzejw =X <eij) — Z z[n] p—Jwn

nN=——o

x|n] = %/ X (791 79" dw

— 7T

I' @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor

Example (Two-sided exponential (Laplacian exponential))

. What is thé "



Aims and Objectives

LTI systems

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

® LTI systems

@ Matrix-vector formulation

® Transform-domain analysis

® Systems which are linear time-invariant (LTI) can be
elegantly analysed in both the time and frequency domain:
convolution in time, multiplication in frequency.

® Frequency response
@ Periodic Inputs

& Datinral +rancfaor
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Aims and Objectives

LTI systems

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

® LTI systems

@ Matrix-vector formulation

| ® Transform-domain analysis

® Systems which are LTI can be elegantly analysed in both the

time and frequency domain: convolution in time,
multiplication in frequency.

® For signals and sequences, it is common to write {y[n|}>° __,

or even {y|n|},cz rather than simply y|n|: the latter is
sufficient for these notes.

I' @ Frequency response
@ Periodic Inputs

& Datinral +rancfaor
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Aims and Objectives

LTI systems

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

® LTI systems

@ Matrix-vector formulation

| ® Transform-domain analysis

® Systems which are LTI can be elegantly analysed in both the
time and frequency domain: convolution in time,
multiplication in frequency.

® For signals and sequences, it is common to write {y[n|}>° __,

or even {y|n|},cz rather than simply y|n|: the latter is
sufficient for these notes.

® Output, y[n], of a LTI system is the convolution of the input,
x|n], and the impulse response of the system, hA[n|:

yln] = x[n] * h[n] £ Y " x[k] hln — K]

keZ

I' @ Frequency response
@ Periodic Inputs

& Datinral +rancfaor
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Aims and Objectives

LTI systems

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

® LTI systems

@ Matrix-vector formulation

| ® Transform-domain analysis

® Systems which are LTI can be elegantly analysed in both the
time and frequency domain: convolution in time,
multiplication in frequency.

® For signals and sequences, it is common to write {y[n|}>° __,

or even {y|n|},cz rather than simply y|n|: the latter is
sufficient for these notes.

® Output, y[n], of a LTI system is the convolution of the input,
x|n], and the impulse response of the system, hA[n|:

yln] = x[n] * h[n] £ Y " x[k] hln — K]

keZ

® By making the substitution k¥ = n — k, it follows:

y[n] =) h[k] z[n — k] = h[n] * z[n]

keZ

I' @ Frequency response
@ Periodic Inputs

& Datinral +rancfaor
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Aims and Objectives

Matrix-vector formulation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

If z[n| and h[n| are sequences of finite duration, the convolution

operation can be written in matrix-vector form.

® Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Matrix-vector formulation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation
| ® Transform-domain analysis

Letz[n],0<n<N-—1land hln],0<n <M —1be
finite-duration sequences, then y[n], 0 <n < L — 1, where
L = N + M — 1, can be written as:

I @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Matrix-vector formulation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

or
y = Xh
® Here,y € R, X e R\*M and h € RV,

® The matrix X is termed an input data matrix, and has the
property that it is toeplitz.

® Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Matrix-vector formulation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

or
y = Xh
® Here,y € R, X e R\*M and h € RV,

® The matrix X is termed an input data matrix, and has the
property that it is toeplitz.

® The observation or output vector y can also be written in a
similar way as:

y=Hx

in which H is also toeplitz.

I @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Matrix-vector formulation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

or
y = Xh
® Here,y € R, X e R\*M and h € RV,

® The matrix X is termed an input data matrix, and has the
property that it is toeplitz.

® The observation or output vector y can also be written in a
similar way as:

y=Hx

in which H is also toeplitz.

® A system is causal if the present output sample depends only

on past and/or present input samples.

I @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor

® Assume system is asymptotically stable.
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Aims and Objectives

Transform-domain analysis

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

@ Transform-domain analysis

Time-domain convolution:

or

y[n] = ) a[k] hln — k]

kez

yln] = ) hlk] x[n — K]

kez

® Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Transform-domain analysis

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Time-domain convolution:

y[n] = ) a[k] hln — k]

kez

or

yln] = ) hlk] x[n — K]

kez

Taking z-transforms gives:
Y(2)=H(z2) X (2

where X (2), Y (2) and H (z) are the z-transforms of the input,
output, and impulse response sequences respectively.

® H (z) = Z|h|n]] is the system function or transfer function.

I' @ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaor
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Aims and Objectives

Frequency response

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The frequency response of the system is found by evaluating
the z-transform on the unit circle, so z = e%:

Y () = H (e7) X (1)

® |H(e’%)| is the magnitude response of the system, and
arg H (e’“) is the phase response.

le Frequency response
@ Periodic Inputs

& Datinral +ranrncfaorr
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Aims and Objectives

Frequency response

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

The frequency response of the system is found by evaluating
the z-transform on the unit circle, so z = e%:

Y () = H (e7) X (1)

® |H(e’%)| is the magnitude response of the system, and
arg H (e’“) is the phase response.

® The group delay of the system is a measure of the average
delay of the system as a function of frequency:

| d |
T(e!Y) = — o arg H(e*)

le Frequency response
@ Periodic Inputs

& Datinral +ranrncfaorr
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Aims and Objectives

Periodic Inputs

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

Let x[n] be a periodic signal with fundamental period V.

N-1
1 : 3

x[n]:NE Xkej%k”, ne{0,...,N—1}
k=0

@ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaore
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Aims and Objectives

Periodic Inputs

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem
@ Fourier transform
® Parseval’s Theorem
® The DTFT

® Discrete Fourier transform

® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

Let x[n] be a periodic signal with fundamental period V.

N-1
1 : 3

x[n]:NE Xkej%k”, ne{0,...,N—1}
k=0

Hence, it follows that :

yln) = Y hlm] zln —m]

m—=—oo

:%Zh[

N-1
m| Z Xy el 7 k(n—m)
k=0

which, by interchanging the order of summation , gives;

@ Frequency response
@ Periodic Inputs

& Datinral +ranrncfaore
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Aims and Objectives

Periodic Inputs

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Let x[n] be a periodic signal with fundamental period V.

—1
1 2
:N E Xkej%kn, TLE{O,...,N

Hence, it follows that :

— 1}

Z X, eI W k(n—m)

00 00 N—-1
= Z h|m] w[n—m]:% Z
m=—oo m=—o0 k=0
Z e 6] 27 fem, Z h =Fkm

where H(e/ ¥ *) are samples of H (/).

H(e

"~

5

)

e Frequency response
@ Periodic Inputs

& Datinral +ranrncfaore
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Periodic Inputs

Hence,

Aims and Objectives

N—-1

Signal Processing 1

> {H(eTFE) Xy | eI %

Probability Theory

yln| = N

k=0

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals

@ The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

® Transform-domain analysis

@ Frequency response

- p. 114/199
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Aims and Objectives

Periodic Inputs

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Hence,

N-1
1 o o
yln] = N > {H(ej%k)Xk} el W kn
k=0

However, this is just the inverse-DFT expansion of y[n|, and
therefore:

Y, =HE )X, ke{0,...,N—1}

Thus, the response of a LTI system to a periodic input is also
periodic with the same period.

e Frequency response
@ Periodic Inputs

& Datinral +ranrncfaore
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Aims and Objectives

Periodic Inputs

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Hence,

N-1
1 o o
yln] = N > {H(ej%k)Xk} el W kn
k=0

However, this is just the inverse-DFT expansion of y[n|, and
therefore:

Y, =HE )X, ke{0,...,N—1}
Thus, the response of a LTI system to a periodic input is also

periodic with the same period.

® The magnitude of the input components is modified by
|H (e7 % *%)|, and the phase is modified by arg H(e? ¥ *).

e Frequency response
@ Periodic Inputs

& Datinral +ranrncfaore
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Aims and Objectives

Rational transfer functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear
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P Q
yln) = =) aryln — k| + ) dya[n— k]
k=1 k=0

Taking z-transforms gives:

) — Y(z) Zfzodkz‘k 2 D(z)
H()—X(Z)_1_|_ZkP:1akz—k A (2)

I' @ Frequency response
@ Periodic Inputs

& Datinrnal francfor

- p. 115/199



Aims and Objectives

Rational transfer functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

® Fourier Series and

transforms
@ Complex Fourier series

@ Parseval’s Theorem

@ Fourier transform

® Parseval’s Theorem

® The DTFT

@ Discrete Fourier transform
® The DFT as a Linear

Transformation
@ Properties of the DFT

@ Discrete-time systems

@ Basic discrete-time signals
® The z-transform

@ Bilateral z-transform

@ LTT systems

@ Matrix-vector formulation

| ® Transform-domain analysis

Many systems can be expressed in the z-domain by a rational
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_ Q:o dy 2~
1+3 jagz—k  A(2)

This can be described in the complex z-plane as:

Hk (1=
Hk (1=

D()
A(z)

227 1)

H(z) =
(2) =
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The set of all possible sequences {x|n, (|} is called an ensemble,
and each individual sequence x|n, (x|, corresponding to a
specific value of ¢ = (., is called a realisation or a sample
sequence of the ensemble.

There are four possible interpretations of z|n, ]:

¢ Fixed ¢ Variable
n Fixed Number Random variable
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Use simplified notation z|n] = z|n, (] to denote both a stochastic
process, and a single realisation. Use the terms random process
and stochastic process interchangeably throughout this course.
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The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of
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2. No functional description is available for all realisations of the

ensemble.
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The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of

a random experiment;

2. No functional description is available for all realisations of the

ensemble.

In some special cases, however, a functional relationship is

available. This means that after the occurrence of all samples of

a particular realisation up to a particular point, n, all future
values can be predicted exactly from the past ones.

If this is the case for a random process, then it is called
predictable, otherwise it is said to be unpredictable or a
regular process.
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As an example of a predictable process, consider the signal:

z[n, (] = A sin(wn + ¢)

where A is a known amplitude, w is a known normalised angular
frequency, and ¢ is a random phase, where ¢ ~ fg (¢) is its pdf.
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For fixed n = ng, x|ng, ] is a random variable. Moreover, the
random vector formed from the k£ random variables
{z|n;], j € {1,... k}} is characterised by the cdf and pdfs:

Fx (z1 ... 25| n1 ... nk) =Pr(zng <z, ..., zng] < xp)

:5’kFX(x1 . T | M. )

(9331 : ﬁwk

fx(xy ... 2| Ny ... ng)

In exactly the same way as with random variables and random
vectors, it 1s:

® difficult to estimate these probability functions without
considerable additional information or assumptions;

® possible to frequently characterise stochastic processes
usefully with much less information.
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Mean and Variance Sequence At time n, the ensemble mean and
variance are given by:

ozln] = E [[z[n] — po[n] ] = E [|z[n] I*] — |pa(n]

Both 1,[n] and o2[n] are deterministic sequences.
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Linear Systems Review

Autocorrelation sequence  The second-order statistic 7, |n1, no|
P provides a measure of the dependence between values of the

o Iterpretation of Sequences process at two different times; it can provide information
@ Predictable Processes

o Descripton using pdfs about the time variation of the process:

® Second-order Statistical

Description
@ Example of Calculating *
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Autocovariance sequence The autocovariance sequence provides a
measure of how similar the deviation from the mean of a
process is at two different time instances:

Yoz (1, 02| = E [(z[n1] — pa[ni]) (@[ne] — panel)*]

Txx [n].) n2] — Uz [77,1] :u;k: [nQ]
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Autocovariance sequence The autocovariance sequence provides a

measure of how similar the deviation from the mean of a
process is at two different time instances:

Yoz (1, 02| = E [(z[n1] — pa[ni]) (@[ne] — panel)*]

Txx [n].) n2] — Uz [7?,1] :u;k: [nQ]

To show how these deterministic sequences of a stochastic
process can be calculated, several examples are considered in
detail below.
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Example ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process
x|n] is defined by:

M
z[n] = ZAk cos(wrn + ¢r), wir #0
k=1

where M, {A;} and {w }M are constants, and {¢;,}/ are
pairwise independent random variables uniformly distributed in
the interval |0, 27].

1. Determine the mean of x|n].

2. Show the autocorrelation sequence is given by

M
1
Tez|l] = 5 Z |Ag|? coswpl, —o0o << oo X
k=1
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Example ( [Manolakis:2000, Ex 3.9, page 144]).
expected value of the process is straightforwardly given by:

SOLUTION. 1. The

E [z[n]] = E Z Ay cos(wgn + ¢r) | = Z Ay E [cos(wgn + ¢r)]

k=1

k=1

Since a co-sinusoid is zero-mean, then:

E [cos(wgn + ¢r)] = /cos(wk’n, + o) p (o) doi

Hence, it follows:

2m
:/ cos(wgn + Pi)
0

1
X — X dor =0
2T

]
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Example ( [Manolakis:2000, Ex 3.9, page 144]).

Tex [nla n2]

k=1
M

M
DD AATE

SOLUTION. 1.

M M
E Z Ay cos(wgni + o) Z A7 cos(wjng + ¢;)

J=1

[cos(wgn1 + ¢r) cos(wjng + ¢;)]

7

k=1 j=1

r(¢k:a¢j)

[]
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@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1.

M M
Tyz|M1, 2] = E Z Ay, cos(wrni + o) Z A% cos(wjng + @)

k=1 j=1

M
k=19

M

Ay A% E [cos(wgny + @x) cos(w;nz + ¢;)]
: Hok-5)

After some algebra, it can be shown that:

E [cos(wkn1 + éx)

Lcoswi(ng —n2) k=3

. + . = 2
cos(w;ng + @;)] 0 otherwise

]
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@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. After

some algebra, it can be shown that:

k=

E [cos(wimy + ¢r) cos(wing + ¢;)] =< 2 w (1 — n2)

O -

otherwise
Substituting this expression into
M M
Fys|M1,No2| = Z Z Ay A% E [cos(wrni + @x) cos(wing + ¢;)]
k=1 j=1

[]

thus leads to the desired result.
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@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- N and strict-sense
stationarity

® Wide-sense stationarity

@ Wide-sense

Independence A stochastic process is independent iff

N
fx (21, ey | na, .o nw) = | fx. (2 | )
k=1

VN, ng, k € {1,..., N}. Here, therefore, x[n| is a sequence of
independent random variables.

cyclo-stationarity
® Quasi-stationarity

® WSS Properties
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Autocorrelations
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Processes
@ Stationary Processes

® Order- N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Independence A stochastic process is independent iff

N
fx (21, ey | na, .o nw) = | fx. (2 | )
k=1

VN, ng, k € {1,..., N}. Here, therefore, x[n| is a sequence of

independent random variables.

Ani.i. d. process 1is one where all the random variables

{x|ng, (], ni € Z} have the same pdf, and z|n| will be called

an i. i. d. random process.
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Process
@ Interpretation of Sequences
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@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Independence A stochastic process is independent iff

N
fx (21, ey | na, .o nw) = | fx. (2 | )
k=1

VN, ng, k € {1,..., N}. Here, therefore, x[n| is a sequence of
independent random variables.

An i. i. d. process

is one where all the random variables

{x|ng, (], ni € Z} have the same pdf, and z|n| will be called
an i. i. d. random process.

An uncorrelated processes

variables:

Yoz, n2) = 02| 8[ng — no]

is a sequence of uncorrelated random
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@ Definition of a Stochastic

Process
@ Interpretation of Sequences
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@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

An orthogonal process  is a sequence of orthogonal random
variables, and is given by:

rez(ni, na] = E [|z{na] 2] 6[n1 — no

If a process is zero-mean, then it is both orthogonal and
uncorrelated since v, [n1, n2] = ryz(n1, nal.
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Types of Stochastic Processes

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

@ Definition of a Stochastic

Process
@ Interpretation of Sequences

@ Predictable Processes

@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

An orthogonal process  is a sequence of orthogonal random
variables, and is given by:

rez(ni, na] = E [|z{na] 2] 6[n1 — no

If a process is zero-mean, then it is both orthogonal and
uncorrelated since v, [n1, n2] = ryz(n1, nal.

A stationary process  is a random process where its statistical
properties do not vary with time. Processes whose statistical
properties do change with time are referred to as
nonstationary.
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@ Definition of a Stochastic

Process
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@ Description using pdfs
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Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

A random process x|n] has been called stationary if its statistics
determined for x[n| are equal to those for z[n + k|, for every k.
There are various formal definitions of stationarity, along with
quasi-stationary processes, which are discussed below.

® Order-N and strict-sense stationarity

® Wide-sense stationarity

® Wide-sense periodicity and cyclo-stationarity
® Local- or quasi-stationary processes

After this, some examples of various stationary processes will be
given.
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Process
@ Interpretation of Sequences
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® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

@ Order-IN and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Definition (Stationary of order- IN). A stochastic process z|n| is called
stationary of order-NV if:

fx(z1,..,zN | n1,...,nN) = fx (z1,.. ;28 | na + k... ,nN + k)

%

for any value of k. If x[n] is stationary for all orders N € Z™, it is
said to be strict-sense stationary (SSS).

I cyclo-stationarity
® Quasi-stationarity
® WSS Properties
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@ Definition of a Stochastic

Process
@ Interpretation of Sequences

@ Predictable Processes

@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

@ Order-IN and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Definition (Stationary of order- IN). A stochastic process z|n| is called
stationary of order-NV if:

fx(z1,...;zn| n1,....nN) = fx (z1,...,zn | n1+ k,...,nN + k)

%

for any value of k. If x[n] is stationary for all orders N € Z™, it is
said to be SSS.

An independent and identically distributed process is SSS since,
in this case, fx, (x| nx) = fx (z1) is independent of n, and
therefore also of n + k.

® However, SSS is more restrictive than necessary in practical
applications, and is a rarely required property.
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@ Definition of a Stochastic

Process
@ Interpretation of Sequences
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@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity

® Wide-sense stationarity

@ Wide-sense

A more relaxed form of stationarity, which is sufficient for

practical problems, occurs when a random process is stationary

order-2; such a process is wide-sense stationary (WSS).

cyclo-stationarity
® Quasi-stationarity

® WSS Properties
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@ Definition of a Stochastic

Process
@ Interpretation of Sequences
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® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Definition (Wide-sense stationarity).

wide-sense stationary if:

® the mean and variance is constant and independent of n:

® the autocorrelation depends only on the time difference

E [z[n]] = pa

2

var [x|n]] = o2

= ni — ng, called the lag:

Tz N1, N2] = 73,02, 1] = E [z[n1] 27%[ns]]

Tezll] = rezni — nel = E [x[ng] 2% [ng — £]]

E [z[no 4+ £] ™ [ns]]

A random signal x|n] is called

%
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@ Definition of a Stochastic

Process
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Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

® The autocovariance sequence is given by:

Yz [5] — Tzx [ﬁ] - |:“x|2

® Since 2nd-order moments are defined in terms of 2nd-order
pdf, then strict-sense stationary are always WSS, but not
necessarily vice-versa, except if the signal is Gaussian.

® In practice, however, it is very rare to encounter a signal that
is stationary in the wide-sense, but not stationary in the strict
sense.

I cyclo-stationarity
® Quasi-stationarity
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Description
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Autocorrelations
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@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

Two classes of nonstationary process which, in part, have

properties resembling stationary signals are:

1. A wide-sense periodic (WSP) process

is classified as signals whose

mean is periodic, and whose autocorrelation sequence (ACS)
is periodic in both dimensions:

Tyx (nl 9 n2)

pa(n) = pz(n + N)

= rge(N1 + N,n2) = rzz(ng,ne + N)

rzz(n1 + N,no + N)

for all n, ny and n,. These are quite tight constraints for real

signals.

I cyclo-stationarity
® Quasi-stationarity
® WSS Properties
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Wide-sense cyclo-stationarity

2. A wide-sense cyclo-stationary process  has similar but less

Alms and Objectives restrictive properties than a WSP process, in that the mean is
Signal Processing periodic, but the autocorrelation function is now just
N invariant to a shift by IV in both of its arguments:

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review for all n 9 n 1

Stochastic Processes

@ Definition of a Stochastic

Process
@ Interpretation of Sequences

@ Predictable Processes

@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity

® Wide-sense stationarity

@ Wide-sense

pa(n) = pz(n + N)
Tez(N1,N2) = ree(ny + Nyng + N)

and no.

cyclo-stationarity
® Quasi-stationarity
® WSS Properties
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Description
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Autocorrelations
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Processes
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® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.
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® Quasi-stationarity

® WSS Properties
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Process
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Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.
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Process
@ Interpretation of Sequences
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@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

® Such processes possess statistical properties that change
slowly over short periods of time.
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Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

® Such processes possess statistical properties that change
slowly over short periods of time.

® They are globally nonstationary, but are approximately locally
stationary, and are modelled as if the statistics actually are
stationary over a short segment of time.
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The average power of a WSS process z|n| satisfies:

Tez|0] = 0:12: + ‘Nw|2

22 (0] > T2z[l]

for all ¢
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The average power of a WSS process z|n| satisfies:

7“:1::1:[0] p— 0-32: + ‘,uw|2
Fze [O] > [f] ; for all /

The expression for power can be broken down as follows:

Average DC Power: |, |?

2

Average AC Power:. o,

Total average power: 75 [0]

Total average power = Average DC power + Average AC power
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® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

The average power of a WSS process z|n| satisfies:

7“:1::1:[0] p— 0-32: + ‘,uw|2
Fze [O] > [f] ; for all /

The expression for power can be broken down as follows:

Average DC Power: |, |?

2

Average AC Power:. o,

Total average power: 75 [0]

Total average power = Average DC power + Average AC power

Moreover, it follows that v, [0] > v, [¢].
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| ® Wide-sense

The autocorrelation sequence r,, /] is:

$ a conjugate symmetric function of the lag /:

$ a nonnegative-definite or positive semi-definite function,

r

*
9695

[_E] = T'zx [6]

such that for any sequence «a/n|:

Z Z a*[n| rezln —m| alm] >0

n=1m=1
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Autocorrelations
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® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

The autocorrelation sequence r,, /] is:

$ a conjugate symmetric function of the lag /:

rr 1=l = ry. |l

rx

$ a nonnegative-definite or positive semi-definite function,
such that for any sequence «a/n|:

Z Z a*[n| rezln —m| alm] >0

n=1m=1

Note that, more generally, even a correlation function for a
nonstationary random process is positive semi-definite:

M M
Z Z a*[n| reeln,mlam| >0 for any sequence «a|n]
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stationarity
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® A stochastic process consists of the ensemble, z(n, (), and a
probability law, fx ({z}| {n}). If this information is available

Vn, the statistical properties are easily determined.
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stationarity
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® A stochastic process consists of the ensemble, z(n, (), and a
probability law, fx ({z}| {n}). If this information is available
Vn, the statistical properties are easily determined.

® In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {z(n,(x), k € {1,..., K}}
is known for some K, but fx (x| n) is unknown.
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Autocorrelations
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Processes
@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

® A stochastic process consists of the ensemble, z(n, (), and a
probability law, fx ({z}| {n}). If this information is available
Vn, the statistical properties are easily determined.

® In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {z(n,(x), k € {1,..., K}}
is known for some K, but fx (x| n) is unknown.

® Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:
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@ Stationary Processes

® Order- [N and strict-sense
stationarity
® Wide-sense stationarity
| ® Wide-sense

® A stochastic process consists of the ensemble, z(n, (), and a
probability law, fx ({z}| {n}). If this information is available
Vn, the statistical properties are easily determined.

® In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {z(n,(x), k € {1,..., K}}
is known for some K, but fx (x| n) is unknown.

® Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

® ergodic processes;

I' " cyclo-stationarity
® Quasi-stationarity

® WSS Properties
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® A stochastic process consists of the ensemble, z(n, (), and a
probability law, fx ({z}| {n}). If this information is available
Vn, the statistical properties are easily determined.

® In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {z(n,(x), k € {1,..., K}}
is known for some K, but fx (x| n) is unknown.

® Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

® ergodic processes;

® nonstationary processes where additional structure about
the autocorrelation function is known (beyond the scope of
this course).
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Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.
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Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

(galn)) 2 lim ——— 3 g(a[n])

N—oo 2N + 1 M

For every ensemble average, a corresponding time-average can
be defined; the above corresponds to: E [g(z[n])].

I' " cyclo-stationarity
® Quasi-stationarity

® WSS Properties

- p. 131/199



Aims and Objectives

Ensemble and Time-Averages

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

@ Definition of a Stochastic

Process
@ Interpretation of Sequences

@ Predictable Processes

@ Description using pdfs

® Second-order Statistical
Description

@ Example of Calculating

Autocorrelations
® Types of Stochastic

Processes
@ Stationary Processes

® Order-IN and strict-sense

stationarity
® Wide-sense stationarity

| ® Wide-sense

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

(galn)) 2 lim ——— 3 g(a[n])

N—oo 2N + 1 M

For every ensemble average, a corresponding time-average can
be defined; the above corresponds to: E [g(z[n])].

Time-averages are random variables since they implicitly depend
on the particular realisation, given by (. Averages of
deterministic signals are fixed numbers or sequences, even
though they are given by the same expression.
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A stochastic process, x|n], is ergodic if its ensemble
averages can be estimated from a single realisation of a
process using time averages.

The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical
expected values and sample-means:

Covariance-Ergodic Processes
property that:

(or ergodic in correlation) have the

(z[n] 2% [n —1]) = E [z[n] 7[n —]]
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® [t should be intuitiveness obvious that ergodic processes must
be stationary and, moreover, that a process which is ergodic
both in the mean and correlation is WSS.

® WSS processes are not necessarily ergodic.

® Ergodic is often used to mean both ergodic in the mean and
correlation.

® In practice, only finite records of data are available, and
therefore an estimate of the time-average will be given by

(olatn)) = 1+ . glaln])

neN

where N is the number of data-points available.
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Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

Teyn1,n2] = E [z[n1] y*[na]]

Yoy N1, N2 = Tay[n1, nal — pna] pyno
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Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

Teyn1,n2] = E [z[n1] y*[na]]

Yoy N1, N2 = Tay[n1, nal — pna] pyno

Normalised cross-correlation (or cross-covariance) The
cross-covariance provides a measure of similarity of the
deviation from the respective means of two processes. It
makes sense to consider this deviation relative to their
standard deviations; thus, normalised cross-correlations:

Yy [nla n2]
oz |n1] oylna]

Pxy [nla 77/2] —
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Statistically independence  of two stochastic processes occurs when,
for every n, and n,,

Uncorrelated stochastic processes have, for all n, & n, # n,:

Yy [nxv ny] =0

Ty [nxa ny] = Mz [nx] Hy [ny]
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Statistically independence  of two stochastic processes occurs when,
for every n, and n,,

Uncorrelated stochastic processes have, for all n, & n, # n,:

Yy [nxvny] =0
Joint stochastic processes that are statistically independent are

uncorrelated, but not necessarily vice-versa, except for Gaussian
processes.
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Orthogonal joint processes  have, for every n; and ny # nq:

Ty [nla 77/2] =0

Joint WSS is a similar to WSS for a single stochastic process, and
is useful since it facilitates a spectral description, as discussed

later in this course:

—ng| =1

vel—0) = E [z[n] y*[n — 1]
Yzy 4] = Yzy [n1 —no] = ’YCZL’U[_B] — Tay ] = ta ,u;

Tayll] = Tzy[n1

Joint-Ergodicity applies to two ergodic processes, x|n]| and y|n],
whose ensemble cross-correlation can be estimated from a
time-average:

(z[n] y*[n = 1]) = E [z[n] y"[n -]
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Let an M-dimensional random vector X (n, () = X(n) be derived
from the random process x(n) as follows:

X(n) 2 [w(n) z(n = 1) x(n— M + 1)} '

Then its mean is given by an M -vector

px(n) 2 [uan) pa(n=1) o paln— M+

and the M x M correlation matrix is given by:
Txx (n, n) Trx (n, n—M —+ 1)
Rx(n) £ :
ez —M+1,n— M+ 1)

Tez(n — M 4+ 1,n)
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Rx(n) is a constant matrix Rx;

ez —in— ) =1(J — 1) =12(1), L =7 — i

. conjugate symmetry gives 1, () = r_(—[).

For stationary processes, the correlation matrix has an interesting
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For stationary processes, the correlation matrix has an interesting

additional structure. Note that:

1. Rx(n) is a constant matrix Rx;
2. rez(m—1,m —j) = 122.(J
3. conjugate symmetry gives 7., (1) = rk.(—1).

Hence, the matrix R, is given by:

<
8
8
~~
-
~—
=
8
8
~
—_
~—
<
8
8
~~
(N
~—

— 1) =T (1), L =5 — i;

Tox(M — 1)
Tow(M — 2)
Tow(M — 3)
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A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

® Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.
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A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

® Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.

® The simplest kind of dependence arises when the probability
of any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.
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A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

® Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.

® The simplest kind of dependence arises when the probability
of any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.

® This simple process is a surprisingly good model for a number
of practical signal processing, communications and control
problems.
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As an example of a Markov process, consider the process
generated by the difference equation

z|n] = —ax[n — 1] + win]
where « is a known constant, and w(n) is a sequence of

zero-mean i. i. d. Gaussian random variables with variance o3
density:

o (ule) = - exp {211}

2
2mogy, 207,
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As an example of a Markov process, consider the process
generated by the difference equation

z|n] = —ax[n — 1] + win]
where « is a known constant, and w(n) is a sequence of

zero-mean i. i. d. Gaussian random variables with variance o3
density:

o (ule) = - exp {211}

2
2mogy, 207,

The conditional density of x[n| given x[n — 1] is also Gaussian,

fi (o) | = 1) = e exp { - EE S =D

2
27TJI2/V 207,
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Definition (Markov Process). A random process is a Pth-order
Markov process if the distribution of x|n|, given the infinite past,
depends only on the previous P samples

{z|n —1],...,x[n — P]}; that is, if:

fx (zn]| xn—-1],zn—-2],...) = fx (zn]| zn—-1], ..., x[n — P))
%
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Definition (Markov Process). A random process is a Pth-order
Markov process if the distribution of x|n|, given the infinite past,
depends only on the previous P samples

{z|n —1],...,x[n — P]}; that is, if:

fx (zn]| xn—-1],zn—-2],...) = fx (zn]| zn—-1], ..., x[n — P))
%

Finally, it is noted that if x|n] takes on a countable (discrete) set
of values, a Markov random process is called a Markov chain.
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Linear Systems Theory

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

Linear Signal Models
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Frequency- and transform-domain methods are very powerful

tools for the analysis of deterministic sequences. It seems natural

to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been

considered in the time-domain through the use of the ACS.

® Since the ACS for a stationary process is a function of a
single-discrete time process, then the question arises as to
what the DTFT corresponds to.
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Power Spectral Density

@ Introduction
@ The power spectral

density
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spectral density

® General form of the PSD
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density

® Complex Spectral Density
Functions

Linear Systems Theory

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

® Since the ACS for a stationary process is a function of a
single-discrete time process, then the question arises as to
what the DTFT corresponds to.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACS.

® It turns out to be known as the power spectral density (PSD)

of a stationary random process, and the PSD is an extremely
powerful and conceptually appealing tool in statistical signal

processing.
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In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:
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In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform
of the autocorrelation function.
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@ The cross-power spectral
density
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In signal theory for deterministic signals, spectra are used to

represent a function as a superposition of exponential functions.

For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform

of the autocorrelation function.

Stochastic decomposition ~ The second interpretation represents a
stochastic process as a superposition of exponentials, where
the coefficients are themselves random variables. Hence, x|n]

can be represented as:

x[n] ! / X (e“") &“"dw, mneR

:% -

where X (e/*) is a random variable for a given value of w.
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The discrete-time Fourier transform of the autocorrelation
sequence of a stationary stochastic process x|n, | is known as the

power spectral density (PSD), is denoted by P, (e’*), and is
given by:

Poo(€7) = rgall] €77

LEZ

where w is frequency in radians per sample.
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The discrete-time Fourier transform of the autocorrelation
sequence of a stationary stochastic process x|n, | is known as the
power spectral density (PSD), is denoted by P, (e’*), and is
given by:

Poo(€7) = rgall] €77

LEZ

where w is frequency in radians per sample.

The autocorrelation sequence, ... |¢], can be recovered from the
PSD by using the inverse-DTFT:

1 & . .
T'ex [6] / Pxx(ejw) 6Jw£ dw, =N/

:% -
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® P,..(e7%) : w— RT; in otherwords, the PSD is real valued, and

nonnegative definite. i.e.

P..(e?%) >0

Linear Signal Models

- p. 140/199



Properties of the power spectral density

® P,..(e7%) : w— RT; in otherwords, the PSD is real valued, and
Aims and Objectives nonnegative definite. i.e.

Signal Processing

Probability Theory P TT (ejw ) 2 0

Scalar Random Variables

® P, (e7%) = P,,(e/“t2n7m): in otherwords, the PSD is periodic
with period 2.

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

@ Introduction
@ The power spectral

density

@ Properties of the power
spectral density

® General form of the PSD

@ The cross-power spectral
density

® Complex Spectral Density
Functions

Linear Systems Theory

Linear Signal Models - p. 140/199 :




Properties of the power spectral density

® P,..(e7%) : w— RT; in otherwords, the PSD is real valued, and
Aims and Objectives nonnegative definite. i.e.

Signal Processing

Probability Theory P TT (ejw ) 2 0

Scalar Random Variables

® P, (e7%) = P,,(e/“t2n7m): in otherwords, the PSD is periodic
with period 2.

Multiple Random Variables

Estimation Theory

MonteCarlo

® If z[n] is real-valued, then:
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Linear Systems Review

Stochastic Processes ’ rxx I:E] iS rea]. and even;

Power Spectral Density

@ Introduction
@ The power spectral

density

@ Properties of the power
spectral density

® General form of the PSD

@ The cross-power spectral
density

® Complex Spectral Density
Functions

Linear Systems Theory

Linear Signal Models - p. 140/199 :




Properties of the power spectral density

® P,..(e7%) : w— RT; in otherwords, the PSD is real valued, and

At end Objectes nonnegative definite. i.e.
Signal Processing
Probability Theory P xraT (6‘7 “ ) 2 O

Scalar Random Variables

® P, (e7%) = P,,(e/“t2n7m): in otherwords, the PSD is periodic
with period 2.

Multiple Random Variables

Estimation Theory

MonteCarlo

® If z[n] is real-valued, then:

Linear Systems Review

Stochastic Processes ’ ’rxx I:E] iS rea]. and even;
Power Spectral Density 5 o . .
® Introducion ® P, (%) = P,.(e7?¥) is an even function of w.
@ The power spectral
density

@ Properties of the power
spectral density

® General form of the PSD

@ The cross-power spectral
density

® Complex Spectral Density
Functions

Linear Systems Theory
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® P,..(e7%) : w— RT; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

® P (%)

with period 2.

P..(e?%) >0

P, (e7@*2nm)): in otherwords, the PSD is periodic

® If z[n] is real-valued, then:

® r,..[/] is real and even;

® P..(e7¥)

® The area under P, (e’“) is nonnegative and is equal to the

= P,.(e77%) is an even function of w.

average power of z[n|. Hence:

1

o

T
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A process, x|n], and r,,[¢], can be decomposed into a zero-mean
(a)

aperiodic component, 7z, |¢], and a non-zero-mean periodic

component, 7% [¢):

raoll] = 143 [0 + 18 [4
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A process, x|n], and r,,[¢], can be decomposed into a zero-mean
aperiodic component, ri >[€], and a non-zero-mean periodic

component, 7% [¢):
rooll] = i3 [0) + &) ]

Theorem (PSD of a non-zero-mean process with periodic compo nent).
The most general definition of the PSD for a non-zero-mean
stochastic process with a periodic component is

: 27T
_ pla)( jw E (p)
— Pxx (6‘7 ) _|_ K P p

ke

P,.(e?%) d (w— w) &

P (e3+) is the DTFT of r{% [¢], while P2 (k) are the DFT
coefficients for 72 [(] .
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Example ( [Manolakis:2001, Harmonic Processes, Page 110-1  11]).
Determine the PSD of the harmonic process defined by:

M
x[n] = Z Ay cos(win + ¢r), wi #0
k=1
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Example ( [Manolakis:2001, Harmonic Processes, Page 110-1
Determine the PSD of the harmonic process defined by:

M
x[n] = Z Ay cos(win + ¢r), wi #0

SOLUTION. x(n] is a stationary process with zero-mean, and

k=1

autocorrelation sequence (ACS):

1

M

> Z |Ag]? coswpl, —o0o0 <l < o0

k=1

11]).
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Example ( [Manolakis:2001, Harmonic Processes, Page 110-1
Determine the PSD of the harmonic process defined by:

M
x[n] = Z Ay cos(win + ¢r), wi #0

k=1

SOLUTION. Hence, the ACS can be written as:

Tz ll] =

M

2.

k=—M

| Ag|? .
4

Jwil

Y

—o0 < ¥ < o0

11]).

where the following are defined: Ay =0, A, = A_;, and
W — —Wk.
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Example ( [Manolakis:2001, Harmonic Processes, Page 110-1  11]).

Determine the PSD of the harmonic process defined by:

M
x[n] = Z Ay cos(win + ¢r), wi #0
k=1

SOLUTION. Hence, the ACS can be written as:

M
Tz ll] = Z %ejw’“g —00 < £ < o0
xra — 4 Y
k=—M

where the following are defined: A9 =0, A, = A_;, and
W — —Wk.

Hence, it directly follows
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The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, z|n| and y|n], provides a description of their
statistical relations in the frequency domain.

® [t is defined, naturally, as the DTFT of the cross-correlation,
reyll] £ E [2[n] y*[n — £]]:

By (@) = Plolf = 3 vl &

(el

|
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The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, z|n| and y|n], provides a description of their
statistical relations in the frequency domain.

® [t is defined, naturally, as the DTFT of the cross-correlation,
reyll] £ E [2[n] y*[n — £]]:

By (@) = Plolf = 3 vl &

(el

The cross-correlation r, |¢] can be recovered by using the
inverse-DTFT:

1 [T | |
oy lf] / Py (e7") e/“tdw, LeR

o

— 7T

|
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The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, z|n| and y|n], provides a description of their
statistical relations in the frequency domain.

® [t is defined, naturally, as the DTFT of the cross-correlation,
reyll] £ E [2[n] y*[n — £]]:

By (@) = Plolf = 3 vl &

(el

The cross-correlation r, |¢] can be recovered by using the
inverse-DTFT:

1 [T | |
oy lf] / Py (e7") e/“tdw, LeR

:% -

The cross-spectrum P,, (e/“1) is, in general, a complex function
of w.
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yxr

Some properties of the CPSD and related definitions include:

1. P, (e?“1) is periodic in w with period 2.

2. Since rp,[¢] = r},[—/], then it follows:

Py (/1) = Py, (¢)

3. If the process z|n] is real, then r,,|¢] is real, and:

P:vy(ejw) = P:;ky(e—jw)

Ly (ejw) =

4. The coherence function, is given by:

Py (ejw)

V Pra(€79)\/ Pyy (€7)
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The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.
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The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.

Hence, 7, /] = P, (2z) and 74, |/] = P,,(z), where:

(el

(el
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The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral

density and complex cross-spectral density functions.

Hence, 7, /] = P, (2z) and 74, |/] = P,,(z), where:

Z roxll] 27°

If the unit circle, defined by z = ¢’% is within the region of

(el

(el

Z royll] 27°

convergence of these summations, then:

Py
Py

z(€7%)

y(e’*)

J
J

wa(

Py

y(

<

Z

) ‘z:ejw

)‘ :ij
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The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

1
_?j
1
_?j

T'ex [6] fé« Pxx(Z> Zg_l dz

Ty /] 7{3 Py (2) 1 dz
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The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

1
_?j
1
_?j

T'ex [6] fg Pa:az(z> Zg_l dz

Ty /] j{; Py (2) 1 dz

Some properties of the complex spectral densities include:
1. Conjugate-symmetry:

Poo(2) = Prp(1/27) and  Ppy(z) = Pr,(1/27)
2. For the case when z(n) is real, then:

Pz =Fonzn")

Linear Signal Models

- p. 143/199



Handout 4
Linear Systems Theory

- p. 144/199



Systems with Stochastic Inputs

T()
Aims and Objectives x(n) - X(n, C) SyStem or y(n) = y(”’ Q)
Transformation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo Abstract [ T 1 I ' T Abstract I
sample space, S ! T ! T l=n sample space, S r 1 » 1

Linear Systems Review

A graphical representation of a random process at the
output of a system in relation to a random process at the
input of the system.

Stochastic Processes

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic

o i What does it mean to apply a stochastic signal to the input of a

Stationary Inputs

@ Input-output Statistics of a SyS te m ?

LTI System
@ System identification

® LTV Systems with

Nonstationary Inputs
@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '

- p. 145/199



Systems with Stochastic Inputs

In principle, the statistics of the output of a system can be
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Systems with Stochastic Inputs

In principle, the statistics of the output of a system can be

Aot s expressed in terms of the statistics of the input. However, in
Signal Processing general this is a complicated problem except in special cases.
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a

Alms and Objectives deterministic signal, there is a well-defined input signal
Signal Processing producing a well-defined output signal corresponding to a single
N realisation of the output stochastic process:
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a

Alms and Objectives deterministic signal, there is a well-defined input signal

Signal Processing producing a well-defined output signal corresponding to a single
N realisation of the output stochastic process:

b s Wl -

T e e y(n, () = Z h(k)z(n—k,¢)

Estimation Theory k=—o0

MonteCarlo

® A complete description of y[n, (] requires the computation of
an infinite number of convolutions, corresponding to each
Stochastic Processes Value Of C.

Linear Systems Review

Power Spectral Density

e S Theons ® Thus, a better description would be to consider the statistical
© e wih Stochase properties of y|n, (] in terms of the statistical properties of the
input and the characteristics of the system.

@ LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '
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LTI Systems with Stationary Inputs

To investigate the statistical input-output properties of a linear
Alms and Objectives system, note the following fundamental theorem:

Signal Processing

Probability Theory

Theorem (Expectation in Linear Systems). For any linear system,

Scalar Random Variables

E [L[z[n]]] = L[E [z[n]]]

Estimation Theory

In other words, the mean p,(n) of the output y(n) equals the
response of the system to the mean p,(n) of the input:

MonteCarlo

Linear Systems Review

Stochastic Processes M y (’}’L) p— L [ ,U, T (n) ] <>

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

@ LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '
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Input-output Statistics of a LTI System

If a stationary stochastic process x|n| with mean value 1, and

Aims and Objectves correlation r,,|¢| is applied to the input of a LTI system with
Signal Processing impulse response h[n| and transfer function H(e’*), then the:
Probability Theory

Scalar Random Variables

Output mean value is given by:

Multiple Random Variables

Estimation Theory

py =t S BlK] = o H(e?)

k=—o0

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

® LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTT System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| @ Frequency-Domain |
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Input-output Statistics of a LTI System

If a stationary stochastic process x|n| with mean value 1, and

Aims and Objectves correlation r,,|¢| is applied to the input of a LTI system with
Signal Processing impulse response h[n| and transfer function H(e’*), then the:
Probability Theory

Scalar Random Variables

Output mean value is given by:

Multiple Random Variables

Estimation Theory

py =t S BlK] = o H(e?)

k=—o0

MonteCarlo

Linear Systems Review

Input-output cross-correlation  is given by:

Stochastic Processes

Power Spectral Density

@)
Linear Systems Theory ?“xy |:€:| — h* [_'g] % ?QCCCC [é] — E h* [_k] ’I“xx I:'g - k]
@ Systems with Stochastic

Inputs l{ =
® LTI Systems with

Stationary Inputs

o S ot Similarly, it follows that r,, (1) = h(l) * r34(1).
@ System identification

® LTV Systems with

Nonstationary Inputs
@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '
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Input-output Statistics of a LTI System

Output autocorrelation  is obtained by pre-multiplying the
Alms and Objectives system-output by y*(n — /) and taking expectations:

Signal Processing

Probability Theory

ryy() = D h(R)E[z(n—k)y*(n— )] = h(l) % ray (1)

k=—o00

Multiple Random Variables

Estimation Theory

Substituting the expression for r,, (1) gives:

MonteCarlo

Linear Systems Review rpyy(l) = h(l) * h*(—l) k racac(l) = rhh(l) * Ta:a:(l)

Stochastic Processes

Power Spectral Density rhh(l)
Linear Systems Theory
@ Systems with Stochastic
B — rd) —» () > k(D) > 7,()
Stationary Inputs r yx(D
@ Input-output Statistics of a
o Syt Heaticaion An equivalent LTI system for autocorrelation filtration.

® LTV Systems with

Nonstationary Inputs
@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '
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Input-output Statistics of a LTI System

Output-power of the process y(n) is given by r,,(0) = E ||y(n)|?],
and therefore since 7, () = rp, (1) * ry4(1),

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Noting power, P,,, is real, then taking complex-conjugates using
Tow(—1) = raa(l):

Pyy = he— oo Thin (k) Tza (k) =

D ne—oo (1) D op= oo Tea(n + k) h(K)

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear systotus Theory Output pdf In general, it is very difficult to calculate the pdf of the
S St output of a LTI system, except in special cases, namely
g Gaussian processes.

@ Input-output Statistics of a

LTT System
@ System identification

® LTV Systems with

Nonstationary Inputs
@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '
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System identification

Aims and Objectives

White noise input y(n) = y(n, €) r. (D) =h(])
Unkn LTI ’ - "

r (D) = (1) system, /(¢)

Signal Processing

Probability Theory x(n ) =X (n s C)

e —— System identification by cross-correlation.

Multiple Random Variables

The system is excited with a WGN input with autocorrelation
function:

Estimation Theory

MonteCarlo

Linear Systems Review T Tx (l ) = 5 (l )

Stochastic Processes

Since the output-input cross-correlation can be written as:

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic Tyx (l) = h(l) X Trx (l)

Inputs
® LTI Systems with

Stationary Inputs o o
[ Input—ourt};ut%tatistics of a then, Wlth ’f‘xx (l) — 5 (l) 9 ].t fO].].OWS :
LTI System
@ System identification
® LTV Systems with
Nonstationary Inputs ’]"yw(l) =— h(l) b3 6(l) =— h(l)
@ Difference Equation
| @ Frequency-Domain |

J Analysis of LTI systems '
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LTV Systems with Nonstationary Inputs

x(n) = x(n, C)} LTV system: y(n) = y(n, C})

Aims and Objectives h (n b k)
S ey General LTV system with nonstationary input
Probability Theory

The input and output are related by the generalised convolution:

Scalar Random Variables

Multiple Random Variables

y(n) = Y h(n,k)z(k)

k=—oc0

MonteCarlo

Linear Systems Review where h(n, k) is the response at time-index n to an impulse
S — occurring at the system input at time-index k.

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

® LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '
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LTV Systems with Nonstationary Inputs

x(n) = x(n, C) LTV system: y(n) =y(n, C)
> >
Aims and Objectives h(n) k)

Signal Processing General LTV system with nonstationary input

Probability Theory

The input and output are related by the generalised convolution:

Scalar Random Variables

Multiple Random Variables

y(n) = Y h(n,k)z(k)

k=—oc0

MonteCarlo

Linear Systems Review where h(n, k) is the response at time-index n to an impulse
S — occurring at the system input at time-index k.

it e bl ® The mean, autocorrelation and autocovariance sequences of
Linear Systems Theory the output, y(n), as well as the cross-correlation and

@ Systems with Stochastic

Inputs cross-covariance functions between the input and the output,

® LTI Systems with

Statonary Inpu can be calculated in a similar way as for LTI systems with

@ Input-output Statistics of a

LTI System stationary inputs.

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| @ Frequency-Domain |

J Analysis of LTI systems '

- p. 149/199



Difference Equation

Consider a LTI system that can be represented by a difference
Aims and Objectives e qu ation :

Signal Processing

P

Q
Probability Theory
Zapy[n—p] — qux[n— q]
q=0

Scalar Random Variables
p=0

Multiple Random Variables

A
Estimation Theory Whe re CL() — 1 o

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

® LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| ® Frequency-Domain

J Analysis of LTI systems
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Difference Equation

Consider a LTI system that can be represented by a difference
Aims and Objectives e qu ation :

Signal Processing

P

Probability Theory
. E apyln —p| = g by z[n — q|
Scalar Random Variables

p=0

Multiple Random Variables

A
Estimation Theory Whe re CL() — 1 o

MonteCarlo

® Assuming that both x(n) and y(n) are stationary processes,
Linear Systems Review then taking expectations of both sides gives,

Stochastic Processes

Z Q

Power Spectral Density q— q

Ny T P fox
Linear Systems Theory ]_ —|— Zp_ 1 a P

@ Systems with Stochastic

Inputs
® LTI Systems with
Stationary Inputs
@ Input-output Statistics of a
LTI System
@ System identification
® LTV Systems with
Nonstationary Inputs
@ Difference Equation
| ® Frequency-Domain |

J Analysis of LTI systems '
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Difference Equation

Next, multiplying the system equation throughout by y*(m) and
fo e taking expectations gives:

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

® LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| ® Frequency-Domain

J Analysis of LTI systems

- p. 150/199



Difference Equation

Next, multiplying the system equation throughout by y*(m) and
fo e taking expectations gives:

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Retimation Theory Similarly, instead multiply though by z*(m) to give:

MonteCarlo

Linear Systems Review Z ap f”*yx (n —_ p’ m) = Z bq TQZ'CC (n - q, m)

Stochastic Processes p — O q — 0

Power Spectral Density

These two difference equations may be used to solve for

Linear Systems Theory

o Systems with Stochasic ryy(n1,n2) and r4, (11, n2). Similar expressions can be obtained
Inputs . .
® LTI Systems with for the covariance functions.

Stationary Inputs
@ Input-output Statistics of a
LTI System
@ System identification
® LTV Systems with
Nonstationary Inputs
@ Difference Equation
| ® Frequency-Domain |

J Analysis of LTI systems '
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Difference Equation

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x(n) be a

Ams and Objectives random process generated by the first order difference equation
Signal Processing given by:
Probability Theory

z(n) =azxzn—1)+wn), |of<1,neZ X

Scalar Random Variables

Multiple Random Variables

where w(n) ~ N (py, 02,) is an i. i. d. WGN process.

Estimation Theory

MonteGarto ® Demonstrate that the process x(n) is stationary, and
determine the mean ..

Linear Systems Review

Stochastic Processes

® Determine the autocovariance and autocorrelation function,
Yoz (1) @and 7. (1).

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

® LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| ® Frequency-Domain |

J Analysis of LTI systems '
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Aims and Objectives

Frequency-Domain Analysis of LTI systems

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

® LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| ® Frequency-Domain

x(n) = x(n, )
>
7o)

y(n) =y(n, C)
>
F yy(l)

h(n)

>  H() e >

P, (c")

The PSD at the input and output of a LTI system with
stationary input.

ny(ej“’) H*(ejw)Pm(ejw)
wa(ej ) = H(ejw) wa(ejw)
Pyy(e7”) = [H(')|? Pue(e?™)

w
w

Analysis of LTI systems
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Aims and Objectives

Frequency-Domain Analysis of LTI systems

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

@ Systems with Stochastic
Inputs

® LTI Systems with
Stationary Inputs

@ Input-output Statistics of a
LTI System

@ System identification

® LTV Systems with
Nonstationary Inputs

@ Difference Equation

| ® Frequency-Domain

x(n) = x(n, )
>
7o)

y(n) =y(n, C)
>
F yy(l)

h(n)

> H(e") >

P, (c") P,(c")

The PSD at the input and output of a LTI system with
stationary input.

ny(ejw) H*(e7) Pyy(e??)

wa(ej ) = H(ejw) wa(ejw)

Pyy(ej ) = |H(6jw)‘2 wa(ejw>

w
w

$® If the input and output autocorrelations or autospectral
densities are known, the magnitude response of a system
|H (e7%)| can be determined, but not the phase response.

Analysis of LTI systems
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Aims and Objectives

Abstract

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

@ Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

® This lecture looks at the special class of stationary signals that

are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

@ All-pole Models
® Frequency Response of an
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Models
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® The following models are considered in detail:
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Aims and Objectives
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Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

@ Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models
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Models

dals

® This lecture looks at the special class of stationary signals that

are obtained by driving a LTI system with white noise. A
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® The following models are considered in detail:

® All-pole systems and autoregressive (AR) processes;
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Sequence

@ Filtration of WGN

® Nonparametric and
parametric models
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Models
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® This lecture looks at the special class of stationary signals that

are obtained by driving a LTI system with white noise. A
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® The following models are considered in detail:
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® All-zero systems and moving average (IMA) processes;
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Linear Signal Models
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Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

® This lecture looks at the special class of stationary signals that

are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

® The following models are considered in detail:
® All-pole systems and autoregressive (AR) processes;
® All-zero systems and moving average (IMA) processes;

® and pole-zero systems and autoregressive moving
average (ARMA) processes.

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Abstract

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

@ Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal

Models
dalc

® This lecture looks at the special class of stationary signals that

are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

® The following models are considered in detail:
® All-pole systems and autoregressive (AR) processes;
® All-zero systems and moving average (IMA) processes;

® and pole-zero systems and autoregressive moving
average (ARMA) processes.

® Pole-zero models are widely used for modelling stationary

signals with short memory; the concepts will be extended, in

overview at least, to nonstationary processes.

@ All-pole Models
® Frequency Response of an
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Estimation Theory

MonteCarlo
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Linear Systems Theory

Linear Signal Models
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Sequence
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Models
dalc

® This lecture looks at the special class of stationary signals that

are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

® The following models are considered in detail:
® All-pole systems and autoregressive (AR) processes;
® All-zero systems and moving average (IMA) processes;

® and pole-zero systems and autoregressive moving
average (ARMA) processes.

® Pole-zero models are widely used for modelling stationary

signals with short memory; the concepts will be extended, in

overview at least, to nonstationary processes.
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Aims and Objectives

The Ubiquitous WGN Sequence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

The simplest random signal model is the WSS WGN sequence:

The sequence is i. i. d., and P, (e/“T) =¢

White
noise

wln] ~ N (0, o7)

PWW ( e](o) A

2
@)

w

w?

—r<w<m. Itis
also easy to generate samples using simple algorithms.

o 0
White noise PSD.

+7T

A 4

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Filtration of WGN

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

@ Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

By filtering a WGN through a stable LTI system, it is possible to
obtain a stochastic signal at the output with almost any arbitrary

aperiodic correlation function or continuous PSD.

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Filtration of WGN

Signal Processing

By filtering a WGN through a stable LTI system, it is possible to
obtain a stochastic signal at the output with almost any arbitrary
aperiodic correlation function or continuous PSD.

Probability Theory wa( eiw) A Pxx( eiw)
2
Scalar Random Variables L o O,
= :
Multiple Random Variables B 8 g H (e’ OJ) LTI System g
- 0 +1 (5 = |0 +7 03
Estimation Theory 2 _#> _#> P
é o P, (k) Input Desired e
MonteCarlo 59 excitation - b > signal ._ |
o £ w(n) =w(n, §) - By =x(n,0) Te |y a ]
Linear Systems Review E . H(Z) or D(Z)/A(Z) or 1/A(Z) - I I I I -
) B -7 +7T (5 —T |0 +TT O:
Stochastic Processes
Signal models with continuous and discrete (line) power
Power Spectral Density .
spectrum densities.
Linear Systems Theory
Linear Signal Models
® Abstract
® The Ubiquitous WGN
Sequence
@ Filtration of WGN
@ Nonparametric and
parametric models
@ Parametric Pole-Zero Signal
Models I
alc 1
@ All-pole Models - p. 155/199

® Frequency Response of an



Filtration of WGN

Pitch Voiced/unvoiced Filter Speech
. - Period indicator function Parameters segment
Aims and Objectives | | | :
v i i i
Signal Processing : : :
Voiced Impulse train | } }
Probability Theory Speech generator | v i
v |
1 d iabl . . . A 4 c
S Excitation Variance \» All-pole Synthetic
| . —»
Multiple Random Variables ‘ o Flltel’ Slgnal
Estimation Theory Unvoiced Vocal tract model
Speech
MonteCarlo

Linear Systems Review

The speech synthesis model.

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

@ Nonparametric and
parametric models

@ Parametric Pole-Zero Signal

Models
dalc I

|
@ All-pole Models - p. 155/199
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Aims and Objectives

Nonparametric and parametric models

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

Nonparametric models have no restriction on its form, or the

number of parameters characterising the model. For example,

specifying a LTI filter by its impulse response is a
nonparametric model.

Parametric models, describe a system with a finite number of
parameters. For example, if a LTI filter is specified by a
finite-order rational system function, it is a parametric
model.

® All-pole Models
® Frequency Response of an
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Aims and Objectives

Nonparametric and parametric models

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal

Models
dalc

Nonparametric models have no restriction on its form, or the

number of parameters characterising the model. For example,

specifying a LTI filter by its impulse response is a
nonparametric model.

Parametric models, describe a system with a finite number of
parameters. For example, if a LTI filter is specified by a
finite-order rational system function, it is a parametric
model.

Two important analysis tools present themselves for
parametric modelling:

1. given the model parameters, analyse the characteristics of

that model (in terms of moments etc.);

2. design of a parametric system model to produce a random

signal with a specified autocorrelation function or PSD.

® All-pole Models
® Frequency Response of an

This is signal modelling.
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Aims and Objectives

Parametric Pole-Zero Signal Models

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal

Models
dalc

Consider a system described by the following linear
constant-coefficient difference equation:

P Q
x|n] = —Zakx[n—k]—l—dew[n—k]
k=1 k=0

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Parametric Pole-Zero Signal Models

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

Consider a system described by the following linear
constant-coefficient difference equation:

P Q
x|n] = —Zakx[n—k]—l—dew[n—k]
k=1 k=0

Delay Delay Delay Delay
B wln—1 . w[n—2 , ,
z z A —» z
Feed
Forward

Taps

@ All-pole Models
® Frequency Response of an

Filter block diagram for ARMA model.
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Aims and Objectives

Types of pole-zero models

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models
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All-pole model when () = 0. The input-output difference equation

is given by:

P

x[n] = — Zak x[n — k| + dp wn]
k=1

All-zero model when P = 0. The input-output relation is given by:

Q
x[n] = de wln — k]
k=0

Pole-zero model when P > 0 and Q > 0.
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If a parametric model is excited with WGN, the resulting output
signal has second-order moments determined by the parameters

of the model.
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parametric models

@ Parametric Pole-Zero Signal
Models

dals

If a parametric model is excited with WGN, the resulting output
signal has second-order moments determined by the parameters

of the model.

® These stochastic processes have special names in the

literature, and are known as:

a moving average (MA) process when it is the output of an all-zero

model;

an autoregressive (AR) process when it is the output of an all-pole

model;

an autoregressive moving average (ARMA) process
output of an pole-zero model,;

each subject to a WGN process at the input.

when it is the
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All-pole models are frequently used in signal processing
applications since they are:

$» mathematically convenient since model parameters can be
estimated by solving a set of linear equations, and

® they widely parsimoniously approximate rational transfer
functions, especially resonant systems.
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@ Parametric Pole-Zero Signal

Models

dals

All-pole models are frequently used in signal processing

applications since they are:

$» mathematically convenient since model parameters can be
estimated by solving a set of linear equations, and

® they widely parsimoniously approximate rational transfer

functions, especially resonant systems.

There are various model properties of the all-pole model that are
useful; these include:

1

2

3.

. the systems impulse response;
. the autocorrelation of the impulse response;

and minimum-phase conditions.
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The all-pole model has form:

do do do

Alz) 1+ anz* [T (I —pret)

Therefore, its frequency response is given by:

H(eY) =

do do

1+ Y ape it I (1 - pyei)
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The all-pole model has form:

Clo o dO _ Cl()
Alz) 1+ anz* [T (I —pret)

Therefore, its frequency response is given by:

H(@jw) = d() p— d()
1+ agedk Tl (1 — pye=iv)

When the poles are written in the form p;, = r,e/“*, the
frequency response can be written as:

: d
H(€]W) — Iz 0 —
[T—q (1 — g emilw=we))

Hence, it can be deduced that resonances occur near the
frequencies corresponding to the phase position of the poles.
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Hence, the PSD of the output of an all-pole filter is given by:

w

‘2 _ G?
[Ty |1 — i edlomen ’2

where G = o0, dj is the overall gain of the system.

Py () = o, |H (™)
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Hence, the PSD of the output of an all-pole filter is given by:

‘2 _ G?
[Ty |1 — i edlomen ’2

where G = o0, dj is the overall gain of the system.

Py () = o, |H (™)

w

Consider the all-pole model with poles at positions:

{rr} = {0.985,0.951,0.942,0.933}

— Ikl where
{pr} = {rr e’**} {wi} = 27 x {270,550, 844, 1131} /2450
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All-Pole Magnitude Frequency Response
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w/ T

All-Pole Pole Positions

270

Re(z)

The frequency response and position of the poles in an all-pole

system.
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All-Pole Power Spectrum
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Power spectral response of an all-pole model.
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The impulse response of the all-pole filter satisfies the equation:

hln] = = " ay hln — k] + do 5[n]

If H (2) has its poles inside the unit circle, then h|n] is a causal,

stable sequence, and the system is minimum-phase.
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The impulse response of the all-pole filter satisfies the equation:

hln] = = " ay hln — k] + do 5[n]

If H (2) has its poles inside the unit circle, then h|n] is a causal,

stable sequence, and the system is minimum-phase.

Assuming causality, such that h|n| =0, n < 0 then it follows
h|—k] = 0, k > 0, and therefore:

(

0 ifn <0
hin] = < dy ifn=20
\—Z,leakh[n—k] ifn>0
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A linear predictor forms an estimate, or prediction, z|n|, of the
present value of a stochastic process z|n| from a linear
combination of the past P samples; that is:

z|n] = —Zak x|n — kj
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A linear predictor forms an estimate, or prediction, z|n|, of the

present value of a stochastic process z|n| from a linear
combination of the past P samples; that is:

z|n] = —Zak x|n — kj

The coefficients {a } of the linear predictor are determined by

attempting to minimise some function of the prediction error

given by:

Usually the objective function is equivalent to MSE, given by

E =5 ¢é*n).

e(n)
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Hence, the prediction error can be written as:

x(n) + Z ai r(n — k)
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Hence, the prediction error can be written as:

e(n) =xz(n) —z(n) =xzn)+ Z ai r(n — k)

® Thus, the prediction error is equal to the excitation of the
all-pole model; e(n) = w(n). Clearly, finite impulse

response (FIR) linear prediction and all-pole modelling are

closely related.

$ Many of the properties and algorithms developed for either

linear prediction or all-pole modelling can be applied to the

other.
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Hence, the prediction error can be written as:

e(n) =xz(n) —z(n) =xzn)+ Z ai r(n — k)

® Thus, the prediction error is equal to the excitation of the
all-pole model; e(n) = w(n). Clearly, FIR linear prediction
and all-pole modelling are closely related.

® Many of the properties and algorithms developed for either

linear prediction or all-pole modelling can be applied to the

other.

® To all intents and purposes, linear prediction, all-pole

modelling, and AR processes (discussed next) are equivalent

terms for the same concept.
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While all-pole models refer to the properties of a rational

system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied

to the input of an all-pole filter.

matrix-vector form (noting that r,,[¢| = r}.[—/] and that the
parameters {ay } are real) as:
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While all-pole models refer to the properties of a rational

system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied

to the input of an all-pole filter.

As such, the same input-output equations for all-pole models still

apply.

matrix-vector form (noting that r,..[¢] = r’_|—/| and that the
parameters {ay } are real) as:
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While all-pole models refer to the properties of a rational

system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied

to the input of an all-pole filter.

As such, the same input-output equations for all-pole models still

apply.

Thus:

x[n] = —Zak z[n — k] + win], wln] ~ N (0, 0,3,)

k=1

The autoregressive output, x|n/, is a stationary sequence with a

mean value of zero, u, = 0.

matrix-vector form (noting that r,,[¢| = r’_.[—/] and that the
parameters {a;} are real) as:
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While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

Thus:

z[n] = —Zak zln — k] +wn], wn] ~N (0, 03)

k=1

The autoregressive output, x|n/|, is a stationary sequence with a

mean value of zero, u, = 0.

The autocorrelation sequence (ACS) can be calculated in a
similar approach to finding the output autocorrelation and
cross-correlation for linear systems.

matrix-vector form (noting that r..[/] = r* [—/] and that the
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Multiply the difference through by x*(n — [) and take

expectations to obtain:

roa(l) + Y apran(l — k) = rug(l)
k=1

matrix-vector form (noting that r,.|[¢] = r

parameters {ay } are real) as:

*
rxr

|—¢] and that the
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Multiply the difference through by x*(n — [) and take
expectations to obtain:

roa(l) + Y apran(l — k) = rug(l)
k=1

Observing that z|n| cannot depend on future values of w(n| since

the system is causal, then r,,.[¢] = E [w[n] *|n — {]] is zero if
[ >0, and o2 if ¢ = 0.

matrix-vector form (noting that r,..[¢] = r’_|—/| and that the
parameters {ay } are real) as:
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Multiply the difference through by x*(n — [) and take

expectations to obtain:

Thus, forl = {0, 1, ..., P}

matrix-vector form (noting that r,,[¢| = r’_.[—/] and that the
parameters {ay } are real) as:

T2z 0]
T2z |1]

T2z | P

roa(l) + Y apran(l — k) = rug(l)
k=1

Tox | P —

1]

r

*

TCECE

rr

rxr

P

v [ — 1]

0]

ai

ap
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Whereas all-pole models can capture resonant features of a
particular PSD, it cannot capture nulls in the frequency response.
These can only be modelled using a pole-zero or all-zero model.
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Whereas all-pole models can capture resonant features of a

particular PSD, it cannot capture nulls in the frequency response.
These can only be modelled using a pole-zero or all-zero model.

The output of an all-zero model is the weighted average of
delayed versions of the input signal. Thus, assume an all-zero
model of the form:

Q@
x|n] = de wln — k]
k=0

where () is the order of the model, and the corresponding system

function is given by:

Q
H(z)=D(z) = dez_k
k=0
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The all-zero model has form:

Q Q
H(z)=D(z) = de 2% =dy H (1—2r27")

Therefore, its frequency response is given by:

Q Q
H(e?Y) = de eIk — d, H (1 — 2z e_jw)
k=0 k=1
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The all-zero model has form:

Q Q
H(z)=D(z) = de 2% =dy H (1—2r27")

Therefore, its frequency response is given by:

Q Q
H(e?Y) = de eIk — d, H (1 — 2z e_jw)
k=0 k=1

When the zeros are written in the form z; = r.e/“*, then the
frequency response can be written as:

Q
H(ej‘*’) = dp H (1 — T e_j(“’_w"’))
k=1

Hence, it can be deduced that troughs or nulls occur near |
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Hence, the PSD of the output of an all-zero filter is given by:

2

Q
wa(ejw) — O-r?u ’H(ejw)‘Q _ GQ H ‘1 o e—j(w—wk)
k=1

where G = o0, dj is the overall gain of the system.
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Hence, the PSD of the output of an all-zero filter is given by:

2

Q
wa(ejw) _ 0-121) ’H(ejw)‘Q _ GQ H ‘1 — e—j(w—wk)
k=1

where G = o0, dj is the overall gain of the system.
® Consider the all-zero model with zeros at positions:

{ri} = {0.985,1,0.942,0.933}

2V = {r. 9V where
{2} = {re e’} {wp} = 27 x {270,550, 844, 1131} /2450;

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Frequency Response of an All-Zero Filter

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

All-Zero Model Magnitude Frequency Response All-Zero Model Zero Positions
10 ‘ ‘ ‘ ‘

IH(E")|

270

0 0.2 0.4 0.6 0.8 1
W/ Re(z)

The frequency response and position of the zeros in an
all-zero system.

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Frequency Response of an All-Zero Filter

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

All-Zero Model Power Spectrum
20

10 log,, |PXX(e‘°’)|

80 0.2 0.4 0.6 0.8 1

w/m

Power spectral response of an all-zero model.

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Moving-average processes

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied

to the input.

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Moving-average processes

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied

to the input.

Thus, a MA process is an AZ(()) model with dy = 1.

Q
z[n] = wln|] + de win — k], wln] ~N (0, o7)
k=1

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Moving-average processes

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied

to the input.

Thus, a MA process is an AZ(()) model with dy = 1.
Q
z[n] = wln|] + de win — k], wln] ~N (0, o7)
k=1
The output z|n| has zero-mean, and variance of
Q
o2 =00 |14+ |di|”
k=1
The autocorrelation sequence is given by:

Q-4
for0</<Q

@ All-pole Models
® Frequency Response of an

’I“mm[ﬂ = U%.Thh w] = 0'2 ; dl(-_Ll Cli.
L - o L - w : ( 1 [AY
k=0
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Aims and Objectives

Pole-Zero Models

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

The output of a causal pole-zero model is given by the recursive
input-output relationship:

P Q
x|n] = —Zakx[n—k]+2dkw[n—k]
k=1 k=0

The corresponding system function is given by:

_ D) _ Yidzt
Az) 143 ap 2"

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Pole-Zero Frequency Response

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

The pole-zero model can be written as

D(z) Hk 1 ( kz_l)

SR o Rl v

Therefore, its frequency response is:

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Pole-Zero Frequency Response

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

The pole-zero model can be written as

D(z) _ Hk 1( kz_l)
A(z) Hk (L=prz=t)

Therefore, its frequency response is:

H(z) =

The PSD of the output of a pole-zero filter is given by:

Pm(ejw) =0 ’H(ej“)’2 G2Hk 1 ’1 —*k€ Jw‘

" Hk 1‘1_ Pk € Jw‘

where G = 0, dj is the overall gain of the system.

@ All-pole Models
® Frequency Response of an
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Aims and Objectives

Pole-Zero Frequency Response

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

Pole-Zero Model Magnitude Frequency Response
7 T T T T

0.6 0.8 1

0.4
w/ T

0 0.2

Pole and Zero Positions

Poles
Zeros

270

Re(z)

The frequency response and position of the poles and zeros
in an pole-zero system.

@ All-pole Models
® Frequency Response of an

- p. 168/199



Pole-Zero Frequency Response

Pole-Zero Model Power Spectrum

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

10 log,, |PXX(e‘°’)|

Estimation Theory

MonteCarlo

80 0.2 0.4 0.6 0.8 1

Linear Systems Review w/ T

e — Power spectral response of an pole-zero model.

Power Spectral Density

Linear Systems Theory

Linear Signal Models

® Abstract

® The Ubiquitous WGN
Sequence

@ Filtration of WGN

® Nonparametric and
parametric models

@ Parametric Pole-Zero Signal
Models

dals

@ All-pole Models - p. 168/199
® Frequency Response of an
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Aims and Objectives

Introduction

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
® ASL Methodology

@ Source Localization

Receiver
(Mic Array)

Source localisation and BSS.

Strategies
@ Geometric Layout
& Tdmal Tran £a11 MNAAAT
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Aims and Objectives

Introduction

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Walls

<— and other

obstacles

Observer

Source 2

Sound
Source 3

Source 1

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
® ASL Methodology

| @ Source Localization

Humans turn their head in the direction of interest in order
to reduce interference from other directions; joint detection,
localisation, and enhancement.

Strategies
® Geometric Layout
& Tdmal Tran £a11 MNAAAT
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Aims and Objectives

Introduction

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
® ASL Methodology

| @ Source Localization

® This research tutorial is intended to cover a wide range of
aspects which link acoustic source localisation (ASL) and
blind source separation (BSS).

® This tutorial is being continually updated, and feedback is
welcomed. The documents published on the USB stick may
differ to the slides presented on the day.

® The latest version of this document can be found online and
downloaded at:

® Thanks to Xionghu Zhong and Ashley Hughes for borrowing
some of their diagrams from their dissertations.

Strategies
@ Geometric Layout
& Tdmal Tran £a11 MNAAAT
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http://mod-udrc.org/events/2016-summer-school

Structure of the Tutorial

® Recommended Texts

Aims and Objectives

Signal rocessing ® Conceptual link between ASL and BSS.

Probability Theory

® Geometry of source localisation.

Scalar Random Variables

Multiple Random Variables

® Spherical and hyperboloidal localisation.

Estimation Theory

MonteCarlo ® Estimating TDOAs.

Linear Systems Review

Stochastc Processes ® Steered beamformer response function.

Power Spectral Density

® Multiple target localisation using BSS.

Linear Systems Theory

Linear Signal Models

® Conclusions.

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |

Strategies -p. 172/199 I
@ Geometric Layout P
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Aims and Objectives

Recommended Texts

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
® ASL Methodology

| @ Source Localization

Speec|
Processing

Benesty

Sondhi
Huang
Editors

Recommended book chapters and the references therein.

® Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and

Source Localization,” in Springer Handbook of Speech
Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp.
1043-1063, , Springer, 2008.

Strategies
@ Geometric Layout
& Tdmcal Tran £a11 MNAAAT
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Aims and Objectives

Recommended Texts

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
® ASL Methodology

| @ Source Localization

DIGITAL SIGNAL PROCESSING

Microphone

Speec Arrays

Processing
C Benesty
Sondhi

Huang
Editors

&% Springer

Recommended book chapters and the references therein.

® Chapter 8: DiBiase J. H., H. F. Silverman, and
M. S. Brandstein, “Robust Localization in Reverberant
Rooms,” in Microphone Arrays by M. Brandstein and D. Ward,
pp. 157-180, , Springer Berlin Heidelberg, 2001.

Strategies
@ Geometric Layout
& Tdmcal Tran £a11 MNAAAT
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Aims and Objectives

Recommended Texts

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
® ASL Methodology

| @ Source Localization

DIGITAL SIGNAL PROCESSING

Microphone

Speec Arrays

Processing
C Benesty
Sondhi

Huang
Editors

Springer
A

Marthias WoLFeL anp Jorn McDonouGH

DISTANT
SPEECH

SHWILEY

Recommended book chapters and the references therein.

® Chapter 10 of Wolfel M. and J. McDonough, Distant Speech

Recognition, Wiley, 20009.

IDENTIFIERS - Hardback, ISBN13: 978-0-470-51704-8

Strategies
@ Geometric Layout
& Tdmcal Tran £a11 MNAAAT
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Aims and Objectives

Recommended Texts

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
® ASL Methodology

| @ Source Localization

Some recent PhD thesis on the topic include:

® 7Zhong X., “Bayesian framework for multiple acoustic source
tracking,” Ph.D. thesis, University of Edinburgh, 2010.

® Pertila P., “Acoustic Source Localization in a Room Environment
and at Moderate Distances,” Ph.D. thesis, Tampere University
of Technology, 2009.

® Fallon M., “Acoustic Source Tracking using Sequential Monte
Carlo,” Ph.D. thesis, University of Cambridge, 2008.

Strategies
@ Geometric Layout
& Tdmcal Tran £a11 MNAAAT
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Why Source Localisation?

A number of blind source separation (BSS) techniques rely on
Alms and Objectives knowledge of the desired source position:

Signal Processing

1. Look-direction in beamforming techniques.

Probability Theory

Scalar Random Variables

2. Camera steering for audio-visual BSS (including Robot
Multiple Random Variables Au d it i O n) .

Estimation Theory

MonteCarlo 3. Parametric modelling of the mixing matrix.

Linear Systems Review

Equally, a number of multi-target acoustic source
localisation (ASL) techniques rely on BSS.

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
@ Why Source Localisation?
@ ASL Methodology
| @ Source Localization |

Strategies - p. 174/199 '
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Aims and Objectives

ASL Methodology

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

Sensors
(microphones)

xllj‘n] x#n] x[n]  x,[n]

m,

Direct
paths

Sound
Source
s[n]

Ideal free-field model.

® Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

Strategies
@ Geometric Layout
& Tdnal Tran £a11 MNAAAT
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ASL Methodology

Sensors
(microphones)

7] xz%n] x[n] - x,[n]

Aims and Objectives X

—
'

Signal Processing

Probability Theory

Scalar Random Variables

m,
Multiple Random Variables

Estimation Theory Direct
paths
Sound
MonteCarlo Source
s[n]

Linear Systems Review

Stochastic Processes Ideal free—ﬁeld mOdel.

Power Spectral Density

STy ® Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

Linear Signal Models

Passive Target Localisation

o Inzoduction ® Most ASL algorithms are designed assuming there is no
@ Structure of the Tutorial . o .
o Recommended Text reverberation present, the free-field assumption.

® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |

Strategies - p. 175/199 I
@ Geometric Layout P
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ASL Methodology

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

An uniform linear array (ULA) of microphones.

Multiple Random Variables

Estimation Theory

MonteCarlo ® Typically, this acoustic sensor is a microphone; will primarily
Linear Systems Review consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |

Strategies - p. 175/199 I
@ Geometric Layout P
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ASL Methodology

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

W s

P =

Multiple Random Variables

An ULA of microphones.

Estimation Theory

MonteCarlo ® Typically, this acoustic sensor is a microphone; will primarily
Linear Systems Review consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.

Stochastic Processes

Power Spectral Density

® Other measurement types include:

Linear Systems Theory

Linear Signal Model ® range difference measurements;

Passive Target Localisation

o introduction ® interaural level difference;

@ Structure of the Tutorial

® Recommended Texts
® Why Source Localisation?

|8 25t ol ® joint TDOA and vision techniques. |
@ Source Localization
Strategies '

- p. 175/199
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Aims and Objectives

ASL Methodology

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® Another sensor modality might include acoustic vector
sensors (AVSs) which measure both air pressure and air

velocity. Useful for applications such as sniper localisation.

An acoustic vector sensor.

Strategies
@ Geometric Layout
& Tdnal Tran £a11 MNAAAT
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Aims and Objectives

Source Localization Strategies

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Existing source localisation methods can loosely be divided into

three generic strategies:

1. those based on maximising the SRP of a beamformer;

® ]location estimate derived directly from a filtered, weighted,

and sum version of the signal data.

Strategies
@ Geometric Layout
& Tdmal Tran £a11 MNAAAT
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Aims and Objectives

Source Localization Strategies

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Existing source localisation methods can loosely be divided into

three generic strategies:

1. those based on maximising the SRP of a beamformer;

® ]location estimate derived directly from a filtered, weighted,

and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

® any localisation scheme relying upon an application of the

signal correlation matrix.

Strategies
@ Geometric Layout
& Tdmal Tran £a11 MNAAAT
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
Alms and Objectives three generic strategies:

Signal Processing

1. those based on maximising the SRP of a beamformer;

Probability Theory

Scalar Random Variables

® location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

Multiple Random Variables

Estimation Theory

vontecano 2. techniques adopting high-resolution spectral estimation

Linear Systems Review concepts (see Stephan Weiss’s talk);

Stochastic Processes

Power Spectral Density ® any localisation scheme relying upon an application of the
e s T, signal correlation matrix.

Linear Signal Models

3. approaches employing TDOA information.

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial

e eeion? ® source locations calculated from a set of TDOA estimates
Lo Sonee ooy measured across various combinations of microphones. ,

i |
Strategies
® Geometric Layout p. 176/199
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Aims and Objectives

Source Localization Strategies

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Spectral-estimation approaches ~ See Stephan Weiss’s talk :-)

TDOA-based estimators Computationally cheap, but suffers in the

presence of noise and reverberation.

SBF approaches Computationally intensive, superior performance
to TDOA-based methods. However, possible to dramatically

reduce computational load.

Strategies
@ Geometric Layout
& Tdmal Tran £a11 MNAAAT
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Aims and Objectives

Geometric Layout

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

'

7 Targets
(sound sources)

C)l (mi

Sensors
crophones)

Geometry assuming a free-field model.

Suppose there is a:

® sensor array consisting of N microphones located at positions

m; € R3, fori € {0,...,N — 1},

® )/ talkers (or targets) at positions x;, € R?, for
ke{0,...,M —1}.

Strategies
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Geometric Layout

s Targets Sensors
% (sound sources) Ol (microphones)

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

T Geometry assuming a free-field model.

Stochastic Processes

The TDOA between the microphones at position m; and m; due
to a source at x; can be expressed as:

Power Spectral Density

Linear Systems Theory

X — 1My | — (X — 1INy
T (m,, mjaxk)éTij(Xk):‘ il — | i

Passive Target Localisation C

Linear Signal Models

@ Introduction
et where c is the speed of sound, which is approximately 344 m/s.
® Why Source Localisation?
o ASLyMethodology
| @ Source Localization |

Strategies b 177/199 I
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& TAaal Tvan falAd MaAaAal



Aims and Objectives

Geometric Layout

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

s Targets Sensors
% (sound sources) C)l (microphones)

Geometry assuming a free-field model.

The distance from the target at x;. to the sensor located at m;
will be defined by D,;, and is called the range.

1
Tij (Xk) = . (Dir — Dji)

Strategies
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Aims and Objectives

Ideal Free-field Model

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® In an anechoic free-field acoustic environment, the signal
from source k, denoted by s (t), propagates to the i-th sensor
at time ¢ according to the expression:

ik (t) = g Sk(t — Tik) + bik(t)

where b;;(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

XL (w) — ok Sk (w) e IWTik 4 B (w)

® The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.
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Aims and Objectives

Ideal Free-field Model

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® In an anechoic free-field acoustic environment, the signal
from source k, denoted by s (t), propagates to the i-th sensor
at time ¢ according to the expression:

ik (t) = g Sk(t — Tik) + bik(t)

where b;;(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

XL (w) — ok Sk (w) e IWTik 4 B (w)
® The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.

® The TDOA between the i-th and j-th microphone is given by:

Tijk = Tik — Tjk = 1 (m;, m;, Xx)
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Aims and Objectives

TDOA and Hyperboloids

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj, Xk)

% = my| = |xg — my|

C
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Aims and Objectives

TDOA and Hyperboloids

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

It is important to be aware of the geometrical properties that

arise from the TDOA relationship

% = my| = |xg — my|

T(mi, mj, Xk) = -

® This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, v;; =

(xk — Vi)' Vij (xk — viz) =1

m;+m;

2
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
Aot s arise from the TDOA relationship

Signal Processing

robabili €o ‘Xk_mz‘_‘xk_m]|

Probability Theory T(mz, mj7 Xk) —

Scalar Random Variables C

Multiple Random Variables ® This defines one half of a hyperboloid of two sheets, centered
Bstimation Theory on the midpoint of the microphones, Vij = %

MonteCarlo

(xk — Vi)' Vij (xk — viz) =1

Linear Systems Review

Stochastic Processes

® For source with a large source-range to

Power Spectel Desity microphone-separation ratio, the hyperboloid may be
Linear Systems Theory well-approximated by a cone with a constant direction angle
inear Sigmal Models relative to the axis of symmetry.

Passive Target Localisation

= Sewr o e T bs; = cos=! ( CL 1M T, Xi)
® Recommended Texts |mz — ]:r]_'7 |

® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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Aims and Objectives

TDOA and Hyperboloids

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization
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Aims and Objectives

TDOA and Hyperboloids

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

K — my| — |x — my
T(mi, mj, Xk) =
C
Possible source locations as function of TDOA
0.15 —— Hyperboloid /
Cone approximation

)
>
o
= 0.1 -
g
T
)
Q.
g
” 0.05 ]
‘5 \ 7/
=
T N
Z 0 : :
A -0.04 -0.02 0 0.02 0.04

Distance along x-axis from centre of microphone pair, x

Hyperboloid, for a microphone separation of d = 0.1, and a

d

time-delay of 7;; = .
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Aims and Objectives

Indirect TDOA-based Methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an

AED algorithm.
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Aims and Objectives

Indirect TDOA-based Methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.
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Aims and Objectives

Indirect TDOA-based Methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

® The error between the measured and hypothesised TDOAs is
then minimised.
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Aims and Objectives

Indirect TDOA-based Methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.
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Aims and Objectives

Indirect TDOA-based Methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.

® An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Aims and Objectives

Spherical Least Squares Error Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® Suppose the first microphone is located at the origin of the

T
coordinate system, such that mg = {O 0 O] :

® The range from target k to sensor i can be expressed as :

Dii. = Do, + D;x — Doy
= Rs + cTio (xx)

where R, = |xj| is the range to the first microphone which is

at the origin.
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Aims and Objectives

Spherical Least Squares Error Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® In practice, the observations are the TDOAs and, given Ry,
these ranges can be considered the measurement ranges.

Of course, knowing R is half the solution, but it is just one
unknown at this stage.

N «&_132 = Cly
\\ \

Range and TDOA relationship.
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Spherical Least Squares Error Function

® The source-sensor geometry states that the target lies on a
Alms and Objectives sphere centered on the corresponding sensor. Hence,

Signal Processing

Probability Theory

D712k X — mi|2

Scalar Random Variables

e Rt e = X X — 2m; X + m; m;

Estimation Theory — Ri = Qm;r X + Rf

MonteCarl

S —— R; = |m;| is the distance of the i-th microphone to the origin.

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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Spherical Least Squares Error Function

® The source-sensor geometry states that the target lies on a
Alms and Objectives sphere centered on the corresponding sensor. Hence,

Signal Processing

Probability Theory

D712k X — mi|2

Scalar Random Variables

et = X}, X}, — 2m; x; +m; m;
Estimation Theory — Ri — Qm;r Xk 1 R?

MonteCarlo

inear Systems Review ® Define the spherical error function as:

Stochastic Processes

1/
Power Spectral Density A 2 2

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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Aims and Objectives

Spherical Least Squares Error Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

2
D3, |

|Xk — Im;

= X; X}, — 2m; X, +m; m;

:Rg—Qm;-er—l—R?

® Define the spherical error function as:

AY
€k —

(b2, — 3

{(RS + CTi())Q — (Ri — Qm?Xk + R?)}

N — DN~
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Aims and Objectives

Spherical Least Squares Error Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

2
D3, |

|Xk — Im;

= X; X}, — 2m; X, +m; m;

:Rg—Qm;-er—l—R?

® Define the spherical error function as:

€k (D

2
{( cTw) — (Ri—meXkJrR?)}
g

1 R
= m? xy +c R, Tjo + = 5 (cQTfO—R?)
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Spherical Least Squares Error Function

® Concatenating the error functions for each microphone gives
Aims and Objectives the eXpreSSiOH:

Signal Processing

Probability Theory

€ir = Axp — (b — Repdy)

\ 7

Scalar Random Variables ~/
Vi
Multiple Random Variables
X
Estimation Theory k

Il

>

Q.
S

MonteCarlo \ 7

Linear Systems Review 9 L

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models m 0 TOO 02 T02 0 RO

Passive Target Localisation _ o - ° -

@ Introduction

N | —

@ Structure of the Tutorial T ~ 5 A 5 9
® Recommended Texts m C T -
® Why Source Localisation? N — 1 _T( N - 1 ) 0_ (N — ]_ ) 0 RN — ]_ i
@ ASL Methodology

| @ Source Localization |
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Aims and Objectives

Spherical Least Squares Error Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® The LSE can then be obtained by using J = € ¢; :

(Axy — (b, — Repdi))’ (Axy — (by — Rady))

(Sk0i — bi)" (SkO; — by)
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Aims and Objectives

Spherical Least Squares Error Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® The LSE can then be obtained by using J = € ¢; :

J (%)
J(Xk, Hk) = (Skﬁk — bk)T (Skﬁk — bk)

(Axy — (b, — Repdi))’ (Axy — (by — Rady))

® Note that as R,, = |xi|, these parameters aren’t independent.

Therefore, the problem can either be formulated as:
® a nonlinear least-squares problem in x;

® a linear minimisation subject to quadratic constraints:

0. = argmin (Sx0) — by)" (Six — br)

k

subject to the constraint

0. A0, =0 where A = diag |1, 1, 1, —1]
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Aims and Objectives

Spherical Least Squares Error Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization
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Aims and Objectives

Two-step Spherical LSE Approaches

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in x; assuming the range to the target,
R, is known;

2. and then solving for R, given an estimate of xj, i. t. 0. Ry.
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Aims and Objectives

Two-step Spherical LSE Approaches

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in x; assuming the range to the target,
R, is known;

2. and then solving for R, given an estimate of xj, i. t. 0. Ry.

$ Assuming an estimate of R this can be solved as

. —1
%, = Afv, = Al (bk _ Rskdk> where AT — [ATA] AT

Note that AT is the pseudo-inverse of A.
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Aims and Objectives

Spherical Intersection Estimator

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This method uses the physical constraint that the range R is

the Euclidean distance to the target.

® Writing k2, = %7 %, it follows that:

2
Rsk

(

A

by — Rsrdi

T
) ATTA' (bk _

A

Rgrdy

)
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Spherical Intersection Estimator

This method uses the physical constraint that the range R is

Alms and Objectives the Euclidean distance to the target.
Signal Processing
P ® Writing R?, = Xi Xy, it follows that:

Scalar Random Variables T
Multiple Random Variables Rsk — (bk T RSIC dk) AT A'T (bk _ RSIC dk)

Estimation Theory

which can be written as the quadratic:

MonteCarlo

Linear Systems Review

aR§k+bRsk‘|—C:O

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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Aims and Objectives

Spherical Intersection Estimator

Signal Processing
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Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This method uses the physical constraint that the range R is
the Euclidean distance to the target.

® Writing k2, = %7 %, it follows that:
N N T " A
R2, = (bk - Rskdk) ATTAT (bk _ Rskdk)
which can be written as the quadratic:

aR§k+bR3k‘|—C:O

® The unique, real, positive root is taken as the spherical
intersection (SX) estimator of the source range. Hence, the
estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.
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Aims and Objectives
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Signal Processing
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Multiple Random Variables

Estimation Theory

MonteCarlo
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Stochastic Processes
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Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The spherical interpolation (SI) estimator again uses the
spherical least squares error (LSE) function, but this time the
range R, is estimated in the least-squares sense.

Consider again the spherical error function:

€ = Axy — (b — Rsr dy)
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Aims and Objectives

Spherical Interpolation Estimator

Signal Processing
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Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The SI estimator again uses the spherical LSE function, but this
time the range R, is estimated in the least-squares sense.

Consider again the spherical error function:

€ix = Axy — (by — Ry dy)
Substituting the LSE gives:

€ = A [ATA} AT (bk - Rskdk) — (by — Ry dy)
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Aims and Objectives

Spherical Interpolation Estimator

Signal Processing
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Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo
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Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The SI estimator again uses the spherical LSE function, but this
time the range R, is estimated in the least-squares sense.

Consider again the spherical error function:

€ix = Axy — (by — Ry dy)
Substituting the LSE gives:

€L — AlA°A A bk Rskdk (bk Rsk dk)
~1
Defining the projection matrix as Pp = Iy — A [ATA} AT,

€ix = Rsx Padr, — Paby
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Aims and Objectives

Spherical Interpolation Estimator

Signal Processing
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Multiple Random Variables
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Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The SI estimator again uses the spherical LSE function, but this
time the range R, is estimated in the least-squares sense.

Consider again the spherical error function:

€ = Ax, — (b — Rsi dy)

—1l
Defining the projection matrix as Po = Iy — A [ATA} AT,

€ir = Rsp Pady — Paby
Minimising the LSE using the normal equations gives:

_ dIPaby;
dT P ody

Rsk
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Aims and Objectives
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@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The SI estimator again uses the spherical LSE function, but this
time the range R, is estimated in the least-squares sense.

Consider again the spherical error function:

€ = Ax, — (b — Rsi dy)

Substituting back into the LSE for the target position gives the
final estimator:

dIPa
Xp = AT Iy — dj ==~ b
Xk (N kngAdk> k

This approach is said to perform better, but is computationally
slightly more complex than the SX estimator.
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Aims and Objectives

Other Approaches

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables
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Linear Systems Review
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Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

There are several other approaches to minimising the spherical
LSE function .

® In particular, the linear-correction LSE solves the constrained
minimization problem using Lagrange multipliers in a two
stage process.

® For further information, see: Huang Y., J. Benesty, and
J. Chen, “Time Delay Estimation and Source Localization,” in
Springer Handbook of Speech Processing by J. Benesty,
M. M. Sondhi, and Y. Huang, pp. 1043-1063, , Springer, 2008.
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Aims and Objectives
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@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® If a TDOA is estimated between two microphones i and j,
then the error between this and modelled TDOA is:

€(Xk) = Tijr — T (my, my, xi)

® The total error as a function of target position

N N
=" > (rijx — T (my, my, xz))°
1=1 jF£i=1

® Unfortunately, since 7' (m,;, m,, X;) is a nonlinear function of
X1, the minimum LSE does not possess a closed-form solution.
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Aims and Objectives

Linear Intersection Method

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The linear intersection (LI) algorithm works by utilising a sensor
quadruple with a common midpoint, which allows a bearing line

to be deduced from the intersection of two cones.

A _
’ Z.
Ij j
° > \
l1’lj2 j
® m, B
Y

Quadruple sensor arrangement and local Cartesian
coordinate system.
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Aims and Objectives

Linear Intersection Method

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® Given the bearing lines, it is possible to calculate the points s,
and s,;; on two bearing lines which give the closest
intersection. This is basic gemoentry.

® The trick is to note that given these points s;; and s;;, the
theoretical TDOA, T' (m;;, my;, s;;), can be compared with
the observed TDOA.
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Aims and Objectives

TDOA estimation methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

® computationally efficient, and hence short decision delays;

® perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
Alms and Objectives function and the AED algorithm.

Signal Processing

Probability Theory

GCC algorithm most popular approach assuming an ideal
Scalar Random Variables free_ﬁeld movel

Multiple Random Variables

® computationally efficient, and hence short decision delays;

Estimation Theory

MonteCarlo

® perform fairly well in moderately noisy and reverberant

Linear Systems Review e nV i r O n m e n t S .
Stochastic Processes
bower spectal Densiy However, GCC-based methods

Linear Systems Theory

® fail when room reverberation is high;

Linear Signal Models

i e ® focus of current research is on combating the effect of
@ Structure of the Tutorial TOOMm reverberation.

® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
Alms and Objectives function and the AED algorithm.

Signal Processing

Probability Theory

AED Algorithm Approaches the TDOA estimation approach from a
Stalas Randont VariaL e different point of view from the traditional GCC method.

Multiple Random Variables

® adopts a reverberant rather than free-field model,;

Estimation Theory

MonteCarlo

® computationally more expensive than GCC;

Linear Systems Review

St sz ® can fail when there are common-zeros in the room impulse
Power Spectral Density response (RIR)-

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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@ Geometric Layout P

& TAaal Tvan falAd MaAaAal



GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
Alms and Objectives widely used approach to TDOA estimation.

Signal Processing

® The TDOA estimate between two microphones ¢ and j

Probability Theory

Scalar Random Variables

) = argmaxry, ., 1

Multiple Random Variables

Estimation Theory

® The cross-correlation function is given by

MonteCarlo

Linear Systems Review

i a5 0] = F1 (<I> (ej“’TS) Py ., (ej“’TS))

Stochastic Processes

s
T
Power Spectral Density . / s @ (eijS) P (eijs) e]EwT dw
- L1

Linear Systems Theory —_

Linear Signal Models

Passive Target Localisation Where the CPSD iS given by

@ Introduction

@ Structure of the Tutorial

® Recommended Texts ] w Ts L J w TS ] w TS
® Why Source Localisation? P r1I2 <€ — E X 1 e X 2 (&
@ ASL Methodology
| @ Source Localization |
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CPSD for Free-Field Model

For the free-field model , it follows that for 7 # j:

Aims and Objectives

Signal Processing

Probability Theory lexﬂ (Cd) =K [XJ (Cd) X] (Cd)]
o andom Vrales =E [(ok Sk (w) €777 + By () (e Sk (w) €777 + By, (w))]

Multiple Random Variables — O{Zkafjke_]w T(ml, mj 3 Xk)E |:|Sk (w> |2:|

Estimation Theory

ok where E By, (w) Bj (w)] = 0 and E [Bix, (w) Sy (w)] = 0.

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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CPSD for Free-Field Model

For the free-field model , it follows that for 7 # j:

Aims and Objectives

Signal Processing

Probability Theory lexﬂ (Cd) =K [XJ (Cd) X] (Cd)]
o andom Vrales =E [(ok Sk (w) €777 + By () (e Sk (w) €777 + By, (w))]

Multiple Random Variables — Q{Zkafjke_']w T(ml, mj 3 Xk)E |:|Sk ((,d) |2:|

Estimation Theory

ok where E By, (w) Bj (w)] = 0 and E [Bix, (w) Sy (w)] = 0.

Linear Systems Review

Stochastic Processes

® In particular, note that it follows:

Power Spectral Density

Linear Systems Theory prlxj (w) — _jCUT (mZ’ mj7 Xk)

Linear Signal Models

o In otherwords, all the TDOA information is conveyed in the
o Introducion phrase rather than the amplitude of the CPSD. This therefore

@ Structure of the Tutorial

 Recommended Texts suggests that the weighting function can be chosen to remove

® Why Source Localisation?

o ASL Methodology the amplitude information.

| ® Source Localization |
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Aims and Objectives

GCC Processors

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Processor Name

Frequency Function

Cross Correlation

PHAT

Roth Impulse Response

SCOT

Eckart

Hannon-Thomson or ML

where v, ., (e/“%+) is the normalised CPSD or coherence

function
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Aims and Objectives

GCC Processors

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

The PHAT-GCC approach can be written as:

Tz, z; 4

Ts P (eijS) lexg (6ij3) 6j€wT dw
T
75 1

—TLS |P€B1$2 (eijs>|
" 6j(£wT+4Px1x2 (ejWTS )) dw
T

(0T + £LPy, s, (€7479))
0Ty — T (m;, mj, X))

| Py, s (eijS) \ejépxlm(ejws) 7T du
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GCC Processors

The PHAT-GCC approach can be written as:

Aims and Objectives

Signal Processing T
TS . . .
Probability Theory /rxz T j |:€:| — / @ (ejWTs ) lexQ (6JWT3 ) 6']£CUT dw

Scalar Random Variables
Multiple Random Variables /
Estimation Theory —

MonteCarlo _ /T_S 6j (ewT—FéleOCQ (6jWTS )) dw

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localsaton ® In the absence of reverberation, the GCC-PHAT algorithm

@ Introduction

o Structure of the Tutora gives an impulse at a lag given by the TDOA divided by the

® Recommended Texts

® Why Source Localisation? S ampllng per]_Od .
@ ASL Methodology
| e Source Localization |

|
- p. 191/199
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GCC Processors

x 10
2 1
c
Aims and Objectives (‘ o
—
L 1 o
c 1 c 0.5}
Signal Processing g =
Q O
. 50 1 O
Probability Theory [t D)
O [ Or
&) —
Scalar Random Variables =1t 1 %
| @
Multiple Random Variables 2 —05 r
-1 0 1 -1 0 1
Estimation Theo -3 -3
ry TDOA/sec. % 10 TDOA/sec. % 10

MonteCarlo Normal cross-correlation and GCC-PHAT functions for a

Linear Systems Review frame Of S p e e Ch °

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization
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GCC Processors

0.2

éactual delay

éactual delay;

Aims and Objectives

0.1

Signal Processing

PHAT-GCC function
o
PHAT-GCC function
o

Probability Theory
Scalar Random Variables -0.1 -0.1
Multiple Random Variables -0.2 ‘ ‘ ‘ | 02 ‘ ‘ ‘

— -1 0 1 ' -1 0 1
Estimation Theory TDOA/sec. % 1072 TDOA/sec. x 107
MonteCarlo The effect of reverberation and noise on the GCC-PHAT can
Linear Systems Review lead tO poor TDOA eStimateS.

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization
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Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
identification problem, which then seeks to identify the channel
coefficients corresponding to the direct path elements.
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Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
A e identification problem, which then seeks to identify the channel
Signal Processing coefficients corresponding to the direct path elements.

Probability Theory

Scalar Random Variables ® Suppose that the acoustic impulse response (AIR) between
source k and i is given by h;x[n] such that

Multiple Random Variables

Estimation Theory

MonteGerlo Tk [n] = Z hik|n — m] sg|m| + bix|n]

Linear Systems Review m—=—0o0

Stochastic Processes

then the TDOA between microphones 7 and j is:

Power Spectral Density

Linear Systems Theory

Tols — {argm?ﬂhik[f“} — {argm?ﬂhjk[ﬁ]\}

Linear Signal Models

Passive Target Localisation

 Introducion This assumes a minimum-phase system, but can easily be
@ Structure of the Tutorial o 0
o and s made robust to a non-minimum-phase system.

® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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Adaptive Eigenvalue Decomposition

Acoustic Impulse Response (AIR)
1 T T T T

0.8F
Aims and Objectives
061
Signal Processing 0.4
02F
Probability Theory 8
2 o m«w
3
['4
Scalar Random Variables -0.2
_oal
Multiple Random Variables
sl
Estimation Theory -0.8-
-1 L L 1 1 1 1
0 0.02 0.04 0.06 0.08 01 012
MonteCarlo Time (sec)

A typical room acoustic impulse response.

Linear Systems Review

Stochastic Processes

® Reverberation plays a major role in ASL and BSS.

Power Spectral Density

Linear Systems Theory ® Consider reverberation as the sum total of all sound
Linear Signal Models reflections arriving at a certain point in a room after room has
Passive Target Localisation been eXCited by impulse-

@ Introduction

@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |

|
- p. 192/199
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Aims and Objectives

Adaptive Eigenvalue Decomposition

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Magnitude of
impulse response

» ,  Direct path

‘ \Hmﬂ\ Ml ,

~— — S e
e~ T~

Early reflections Late reflections time

Early and late reflections in an AIR.

Trivia: Perceive early reflections to reinforce direct sound, and
can help with speech intelligibility. It can be easier to hold a
conversation in a closed room than outdoors
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Aims and Objectives

Adaptive Eigenvalue Decomposition

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® Room transfer functions are often nonminimum-phase since
there is more energy in the reverberant component of the RIR

than in the component corresponding to direct path.

- Reflected Paths

Demonstrating nonminimum-phase properties

® Therefore AED will need to consider multiple peaks in the
estimated AlR.
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Aims and Objectives

Direct Localisation Methods

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

® However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Aims and Objectives

Steered Response Power Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The SBF or SRP function is a measure of correlation across all

pairs of microphone signals for a set of relative delays that arise

from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a

spatial position %X, such that 7,; = |Xx — m,,|:

2

N
S (ﬁ) — / ZWP <€ij3) Xp <€ij5) ejw Tiol dw

o Ip=l
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all

Aims and Objectives pairs of microphone signals for a set of relative delays that arise
Signal Processing from a hypothesised source location.
Probability Theory

The frequency domain delay-and-sum beamformer steered to a
spatial position %X, such that 7,; = |Xx — m,,|:

Scalar Random Variables

Multiple Random Variables

Estimation Theory

N
MonteCarlo S ()2) — / Z Wp <€ij3) Xp <€ij5> ejw e dw

o Ip=l

Linear Systems Review

Stochastic Processes

Taking expectations, @, (e/“'=) = W, (e/*T=) W (e/¥1)

Power Spectral Density

Linear Systems Theory

N N
Linear Signal Models E [S ()2)] _ Z Z / (I)pq <€ij3> PZL'pZL'q (6ij3) 6jw7°qu dww
Q

Passive Target Localisation p= 1 q= 1

@ Introduction
@ Structure of the Tutorial

® Recommended Texts N N N N ] )
® Why Source Localisation? . A - X k m'], X k m i
@ ASL Methodology — ’I“wl xj [quk] p— 74332 xj

| e Source Localization

C |
Strategies p=1qg=1 p=1g=1 - - 194/199_I I
@ Geometric Layout P
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Steered Response Power Function

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

SBF response
N
o
(@)
/

Estimation Theory

MonteCarlo
4

Linear Systems Review

2
y—coordinate/m

Stochastic Processes

Power Spectral Density

Linear Systems Theory SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is
at (2.0, 2.5]m. The grid density is set to 40 mm.

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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Aims and Objectives

Steered Response Power Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

An example video showing the SBF changing as the source
location moves.

®» Show video!
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Aims and Objectives

Conceptual Intepretation

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

A
FXIXZ(T)
VAN . >
AU S
0 \’/ T
A '\
7a(T) True TDOA
A S >
\/ \/ 0 T
A
rx2x3(r)
Incorrect TDOA
Lv/\ \/A >
0 Vi \ T

GCC-PHAT for different microphone pairs.

T(mi, mj, )A(k) =

Xk —my| = X — my|

C
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Aims and Objectives

DUET Algorithm

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The degenerate unmixing estimation technique (DUET)
algorithm is an approach to BSS that ties in neatly to ASL. Under
certain assumptions and circumstances, it is possible to separate
more than two sources using only two microphones.
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Aims and Objectives

DUET Algorithm

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

The DUET algorithm is an approach to BSS that ties in neatly to
ASL. Under certain assumptions and circumstances, it is possible
to separate more than two sources using only two microphones.

® DUET is based on the assumption that for a set of signals
xy [t], their time-frequency representations (TFRs) are
predominately non-overlapping. This condition is referred to
as W-disjoint orthogonality (WDO):

Sy (w, t) Sy (w, t) =0Vp # q, Vi, w
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DUET Algorithm

o1
Aims and Objectives g‘ 0
@©
-1
Signal Processing o1
o
g 0
©
Probability Theory -1
8
Scalar Random Variables E 5
x~
E_ 4
Multiple Random Variables o 2
Estimation Theory 8
N 6
MonteCarlo I
<24
o
4]
Linear Systems Review = 2
Stochastic Processes 8
N 6 i
. L 6 _
Power Spectral Density 4 -
= 4} == -
o — — —
g 2+ — = o 4
Linear Systems Theory . _ = = == — — —
0 —_ — ——— [ ——] p— — | —— =
0 0.5 (e) 1 15
Linear Signal Models time/s

Passive Target Localisation

® introduction W-disjoint orthogonality of two speech signals. Original

@ Structure of the Tutorial

® Recommended Texts speech signal (a) s;[t] and (b) s»|t]; corresponding STFTs (c)

S 1S1 (w, t)| and (d) |55 (w, t)|; (e) product |S; (w, t) Ss (w, t)

® Source Localization
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Aims and Objectives

DUET Algorithm

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Consider taking a particular time-frequency (TF)-bin, (w, t),

where source p is known to be active. The two received signals in
that TF-bin can be written as:

X
X;

p

p

(
(

w, t
w, t

) = Qip e IW Tip Sp (w, t) + B; (w, t)
) = Qjp e—jw e Sp (wv t) T Bj (wv t)
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Aims and Objectives

DUET Algorithm

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Consider taking a particular TF-bin, (w, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (wa t) — Qip eI Tir Sp (UJ, t) + Bi (UJ, t)
Xjp (@, 1) = ap 997 S, (0, ) + By (w, 1
Taking the ratio and ignoring the noise terms gives:

Xip (w, ) _

plw,t
ij (wa t) Qjp

Hipp (w, 1) = ) _ Y e IWTijp
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DUET Algorithm

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

Consider taking a particular TF-bin, (w, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (wa t) — Qip eI Tir Sp (UJ, t) + Bi (UJ, t)
Xjp (@, 1) = ap 997 S, (0, ) + By (w, 1
Taking the ratio and ignoring the noise terms gives:

Xip (w, ) _

plw,t
ij (wa t) Qjp

Hipp (w, 1) = ) _ Y e IWTijp

Hence,

Tijp = —; arg Hfikp (w, t) : and . = ‘szp (w, t)‘
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Linear Systems Review
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Linear Signal Models

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization
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Illustration of the underlying idea in DUET.
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DUET Algorithm
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Scalar Random Variables

Multiple Random Variables
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Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

Aims and Objectives

T 1. Construct the TF representation of both mixtures.

Probability Theory

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

Scalar Random Variables

Multiple Random Variables

Estimation Theory 3. Combine the set of local mixing parameter estimates into [V
MonteCarlo pairings corresponding to the true mixing parameter pairings.

Linear Systems Review

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology
| @ Source Localization |
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Aims and Objectives

DUET Algorithm

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into /N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that

particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the
mixtures.

6. Return each demixed TFR to the time domain.
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@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

This leads to the essentials of the DUET method which are:

30'-. et
25 ]

15 .o

weight

05 = 22 relative delay (8)

DUET for multiple sources.
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Effect of Reverberation and Noise

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo
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@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
@ ASL Methodology

@ Source Localization

frequency/kHz

frequency/kHz
frequency/kHz

time/s time/s time/s

The TFR is very clear in the anechoic environment but
smeared around by the reverberation and noise.
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Estimating multiple targets

received | X(k) Z(k, ) Z(k,®) PHAT- | R(k,7)| TDOA
signal = STFT ®—' GCC ™ estimates
Aims and Objectives
feature
Signal Processing extraction || (k, @)
(a,r)l
Probability Theory

h

| ring —®| maskin
Scalar Random Variables cluste 9 asking

Mliple Rendom Variabes Flow diagram of the DUET-GCC approach. Basically, the

speech mixtures are separated by using the DUET in the TF

Estimation Theory

domain, and the PHAT-GCC is then employed for the

MonteCarlo

spectrogram of each source to estimate the TDOA:s.

Linear Systems Review

Stochastic Processes 1 i I I II:, HAT-G CCI
I ground truth |, = =, DUET-GCC, 1st peak
Power Spectral Density ; ‘' TboAl | DUET-GCC, 2nd peak
S 05f i \ i
Linear Systems Theory g £\ ground truth R
il S
2 FI® TDOA 2 *
Linear Signal Models 8 ’
o O i
Passive Target Localisation
@ Introduction
@ Structure of the Tutorial
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® Why Source Localisation? TDOA/sec. -3
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Aims and Objectives

Further Topics

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® Reduction in complexity of calculating SRP. This includes

stochastic region contraction (SRC) and hierarchical searches.

® Multiple-target tracking (see Daniel Clark’s Notes)

® Simultaneous (self-)localisation and tracking; estimating
sensor and target positions from a moving source.

3 -3
15X : : : S— 15210 : , , ,
ground truth ¢ ground truth |
1 * multiple TDOAs | 1 © 94 *  multiple TDOAs
R, O largest peak B O largest peak
» 0.5 R " 0.5 O oF
2 2 B * LX)
3 g o >, ° ®
*
" o5 Y % KX %® -
* ¥ ° Q
- -1 v 9 * B
1. I I I I I I I I I _q il I *@‘ * I okl I I
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
time step time step

Acoustic source tracking and localisation.
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Aims and Objectives

Further Topics

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

@ Introduction
@ Structure of the Tutorial
® Recommended Texts
® Why Source Localisation?
@ ASL Methodology

| @ Source Localization

® Joint ASL and BSS.

® Explicit signal and channel modelling! (None of the material

so forth cares whether the signal is speech or music!)

® Application areas such as gunshot localisation; other sensor

modalities; diarisation.

Strategies
@ Geometric Layout
& Tdnal Tran £a11 MNAAAT

- p. 199/199



	Aims and Objectives
	Obtaining the Latest Handouts
	Obtaining the Latest Handouts
	Obtaining the Latest Handouts

	Module Abstract
	Module Abstract
	Module Abstract
	Module Abstract
	Module Abstract

	Introduction and Overview
	Description and Learning Outcomes
	Description and Learning Outcomes
	Description and Learning Outcomes

	Structure of the Module
	Structure of the Module
	Structure of the Module
	Structure of the Module
	Structure of the Module
	Structure of the Module
	Structure of the Module
	Structure of the Module


	Signal Processing
	Passive and Active Target Localisation
	Passive Target Localisation Methodology
	Passive Target Localisation Methodology

	Source Localization Strategies
	Source Localization Strategies
	Source Localization Strategies

	Geometric Layout
	Geometric Layout

	Ideal Free-field Model
	Ideal Free-field Model

	Indirect TDOA-based Methods
	Indirect TDOA-based Methods
	Indirect TDOA-based Methods
	Indirect TDOA-based Methods
	Indirect TDOA-based Methods

	Hyperbolic Least Squares Error Function
	TDOA estimation methods
	TDOA estimation methods
	TDOA estimation methods

	GCC TDOA estimation
	GCC TDOA estimation

	GCC Processors
	GCC Processors

	Direct Localisation Methods
	Steered Response Power Function
	Steered Response Power Function
	Steered Response Power Function
	Steered Response Power Function

	Conclusions
	Probability, Random Variables, and Estimation Theory

	Probability Theory
	Introduction
	Introduction
	Introduction
	Introduction

	Classical Definition of Probability
	Bertrand's Paradox
	Bertrand's Paradox
	Bertrand's Paradox
	Bertrand's Paradox

	Difficulties with the Classical Definition
	Difficulties with the Classical Definition
	Difficulties with the Classical Definition

	Axiomatic Definition
	Axiomatic Definition
	Axiomatic Definition
	Axiomatic Definition
	Axiomatic Definition
	Axiomatic Definition

	Set Theory
	Set Theory
	Set Theory
	Set Theory
	Set Theory

	Properties of Axiomatic Probability
	Properties of Axiomatic Probability
	Properties of Axiomatic Probability
	Properties of Axiomatic Probability
	Properties of Axiomatic Probability
	Properties of Axiomatic Probability
	Properties of Axiomatic Probability

	The Real Line
	The Real Line
	The Real Line
	The Real Line

	Conditional Probability
	Conditional Probability
	Conditional Probability
	Conditional Probability


	Scalar Random Variables
	Definition
	Definition
	Definition

	Distribution functions
	Distribution functions
	Distribution functions
	Distribution functions

	Kolmogorov's Axioms
	Density functions
	Density functions
	Density functions
	Density functions

	Properties: Distributions and Densities
	Properties: Distributions and Densities
	Properties: Distributions and Densities

	Common Continuous rv
	Common Continuous rv
	Common Continuous rv

	Probability transformation rule
	Probability transformation rule
	Probability transformation rule
	Probability transformation rule
	Probability transformation rule
	Probability transformation rule
	Probability transformation rule

	Expectations
	Expectations
	Expectations
	Expectations
	Expectations

	Properties of expectation operator
	Properties of expectation operator
	Properties of expectation operator
	Properties of expectation operator

	Moments
	Moments

	Higher-order statistics
	Higher-order statistics
	Higher-order statistics
	Higher-order statistics
	Higher-order statistics


	Multiple Random Variables
	Abstract
	Abstract
	Abstract
	Abstract

	Definition of Random Vectors
	Definition of Random Vectors
	Definition of Random Vectors
	Definition of Random Vectors

	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions
	Distribution and Density Functions

	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function
	Marginal Density Function

	Independence
	Independence

	Conditionals and Bayes's
	Conditionals and Bayes's
	Conditionals and Bayes's
	Conditionals and Bayes's
	Conditionals and Bayes's

	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description
	Statistical Description

	Probability Transformation Rule
	Probability Transformation Rule

	Polar Transformation
	Polar Transformation

	Generating WGN samples
	Generating WGN samples
	Generating WGN samples
	Generating WGN samples
	Generating WGN samples

	Auxiliary Variables
	Auxiliary Variables
	Auxiliary Variables
	Auxiliary Variables

	Multivariate Gaussian Density Function
	Multivariate Gaussian Density Function
	Multivariate Gaussian Density Function
	Multivariate Gaussian Density Function
	Multivariate Gaussian Density Function


	Estimation Theory
	Introduction
	Introduction
	Introduction
	Introduction

	Properties of Estimators
	Properties of Estimators
	Properties of Estimators
	Properties of Estimators

	What makes a good estimator?
	What makes a good estimator?
	What makes a good estimator?

	Bias of estimator
	Bias of estimator
	Bias of estimator

	Variance of estimator
	Variance of estimator
	Variance of estimator

	Mean square error
	Mean square error
	Mean square error

	Cramer-Rao Lower Bound
	Cramer-Rao Lower Bound
	Cramer-Rao Lower Bound
	Cramer-Rao Lower Bound
	Cramer-Rao Lower Bound
	Cramer-Rao Lower Bound

	Consistency of an Estimator
	Consistency of an Estimator
	Consistency of an Estimator

	Maximum Likelihood Estimation
	Maximum Likelihood Estimation
	Maximum Likelihood Estimation
	Maximum Likelihood Estimation

	Properties of the MLE
	Properties of the MLE
	Properties of the MLE

	DC Level in WGN
	DC Level in WGN

	MLE for Transformed Parameter
	MLE for Transformed Parameter

	Least Squares
	Least Squares
	Least Squares
	Least Squares

	The Least Squares Approach
	The Least Squares Approach
	The Least Squares Approach
	The Least Squares Approach

	DC Level
	DC Level

	Linear Least Squares
	Linear Least Squares
	Linear Least Squares


	MonteCarlo
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction

	Deterministic Numerical Methods
	Deterministic Numerical Methods
	Deterministic Numerical Methods
	Deterministic Numerical Methods

	Deterministic Optimisation
	Deterministic Optimisation
	Deterministic Optimisation

	Deterministic Integration
	Deterministic Integration

	Monte Carlo Numerical Methods
	Monte Carlo Integration
	Monte Carlo Integration
	Monte Carlo Integration
	Monte Carlo Integration

	Stochastic Optimisation
	Stochastic Optimisation
	Stochastic Optimisation
	Stochastic Optimisation

	Generating Random Variables
	Uniform Variates
	Uniform Variates
	Uniform Variates

	Transformation Methods
	Inverse Transform Method
	Inverse Transform Method
	Inverse Transform Method
	Inverse Transform Method
	Inverse Transform Method

	Acceptance-Rejection Sampling
	Acceptance-Rejection Sampling
	Acceptance-Rejection Sampling
	Acceptance-Rejection Sampling

	Envelope and Squeeze Methods
	Envelope and Squeeze Methods
	Envelope and Squeeze Methods
	Envelope and Squeeze Methods

	Importance Sampling
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Importance Sampling

	Other Methods
	Markov chain Monte Carlo Methods
	The Metropolis-Hastings algorithm
	The Metropolis-Hastings algorithm

	Gibbs Sampling
	Gibbs Sampling
	Gibbs Sampling
	Gibbs Sampling
	Gibbs Sampling

	Stochastic Processes and Statistical Signal Processing

	Linear Systems Review
	Fourier Series and transforms
	Complex FS
	Complex FS
	Complex FS

	Parseval's Theorem
	Parseval's Theorem
	Parseval's Theorem
	Parseval's Theorem
	Parseval's Theorem

	FT
	FT

	Parseval's Theorem
	Parseval's Theorem

	The DTFT
	The DTFT

	Discrete FT
	Discrete FT

	The DFT as a Linear Transformation
	The DFT as a Linear Transformation
	The DFT as a Linear Transformation
	The DFT as a Linear Transformation

	Properties of the DFT
	Properties of the DFT
	Properties of the DFT
	Properties of the DFT
	Properties of the DFT
	Properties of the DFT
	Properties of the DFT

	Discrete-time systems
	Basic discrete-time signals
	Basic discrete-time signals
	Basic discrete-time signals
	Basic discrete-time signals

	The z-transform
	Bilateral z-transform
	Bilateral z-transform

	LTI systems
	LTI systems
	LTI systems
	LTI systems

	Matrix-vector formulation
	Matrix-vector formulation
	Matrix-vector formulation
	Matrix-vector formulation
	Matrix-vector formulation

	Transform-domain analysis
	Transform-domain analysis

	Frequency response
	Frequency response

	Periodic Inputs
	Periodic Inputs
	Periodic Inputs
	Periodic Inputs
	Periodic Inputs
	Periodic Inputs

	Rational transfer functions
	Rational transfer functions
	Rational transfer functions


	Stochastic Processes
	Definition of a Stochastic Process
	Definition of a Stochastic Process
	Definition of a Stochastic Process
	Definition of a Stochastic Process
	Definition of a Stochastic Process
	Definition of a Stochastic Process

	Interpretation of Sequences
	Interpretation of Sequences
	Interpretation of Sequences
	Interpretation of Sequences

	Predictable Processes
	Predictable Processes
	Predictable Processes
	Predictable Processes

	Description using pdf
	Description using pdf

	Second-order Statistical Description
	Second-order Statistical Description
	Second-order Statistical Description
	Second-order Statistical Description

	Example of Calculating Autocorrelations
	Example of Calculating Autocorrelations
	Example of Calculating Autocorrelations
	Example of Calculating Autocorrelations
	Example of Calculating Autocorrelations

	Types of Stochastic Processes
	Types of Stochastic Processes
	Types of Stochastic Processes
	Types of Stochastic Processes
	Types of Stochastic Processes

	Stationary Processes
	Order-N and strict-sense stationarity
	Order-N and strict-sense stationarity

	Wide-sense stationarity
	Wide-sense stationarity
	Wide-sense stationarity

	Wide-sense cyclo-stationarity
	Wide-sense cyclo-stationarity

	Quasi-stationarity
	Quasi-stationarity
	Quasi-stationarity
	Quasi-stationarity

	WSS Properties
	WSS Properties
	WSS Properties
	WSS Properties
	WSS Properties

	Estimating statistical properties
	Estimating statistical properties
	Estimating statistical properties
	Estimating statistical properties
	Estimating statistical properties

	Ensemble and Time-Averages
	Ensemble and Time-Averages
	Ensemble and Time-Averages

	Ergodicity
	Ergodicity

	Joint Signal Statistics
	Joint Signal Statistics

	Types of Joint Stochastic Processes
	Types of Joint Stochastic Processes
	Types of Joint Stochastic Processes

	Correlation Matrices
	Correlation Matrices
	Correlation Matrices
	Correlation Matrices
	Correlation Matrices

	Markov Processes
	Markov Processes
	Markov Processes
	Markov Processes
	Markov Processes
	Markov Processes
	Markov Processes


	Power Spectral Density
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction

	The PSD
	The PSD

	Properties of the PSD
	Properties of the PSD
	Properties of the PSD
	Properties of the PSD
	Properties of the PSD
	Properties of the PSD

	General form of the PSD
	General form of the PSD
	General form of the PSD
	General form of the PSD
	General form of the PSD
	General form of the PSD

	The CPSD
	The CPSD
	The CPSD
	The CPSD

	Complex Spectral Density Functions
	Complex Spectral Density Functions
	Complex Spectral Density Functions
	Complex Spectral Density Functions
	Complex Spectral Density Functions


	Linear Systems Theory
	Systems with Stochastic Inputs
	Systems with Stochastic Inputs
	Systems with Stochastic Inputs

	LTI Systems with Stationary Inputs
	LTI Systems with Stationary Inputs
	LTI Systems with Stationary Inputs

	Input-output Statistics of a LTI System
	Input-output Statistics of a LTI System
	Input-output Statistics of a LTI System
	Input-output Statistics of a LTI System

	System identification
	LTV Systems with Nonstationary Inputs
	LTV Systems with Nonstationary Inputs

	Difference Equation
	Difference Equation
	Difference Equation
	Difference Equation
	Difference Equation

	Frequency-Domain Analysis of LTI systems
	Frequency-Domain Analysis of LTI systems


	Linear Signal Models
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract

	The Ubiquitous WGN Sequence
	Filtration of WGN
	Filtration of WGN
	Filtration of WGN

	Nonparametric and parametric models
	Nonparametric and parametric models

	Parametric Pole-Zero Signal Models
	Parametric Pole-Zero Signal Models

	Types of pole-zero models
	Types of pole-zero models
	Types of pole-zero models
	Types of pole-zero models

	All-pole Models
	All-pole Models

	Frequency Response of an All-Pole Filter
	Frequency Response of an All-Pole Filter
	Frequency Response of an All-Pole Filter
	Frequency Response of an All-Pole Filter
	Frequency Response of an All-Pole Filter
	Frequency Response of an All-Pole Filter

	Impulse Response of an All-Pole Filter
	Impulse Response of an All-Pole Filter

	All-Pole Modelling and Linear Prediction
	All-Pole Modelling and Linear Prediction
	All-Pole Modelling and Linear Prediction
	All-Pole Modelling and Linear Prediction
	All-Pole Modelling and Linear Prediction

	Autoregressive Processes
	Autoregressive Processes
	Autoregressive Processes
	Autoregressive Processes
	Autoregressive Processes
	Autoregressive Processes
	Autoregressive Processes

	All-Zero models
	All-Zero models

	Frequency Response of an All-Zero Filter
	Frequency Response of an All-Zero Filter
	Frequency Response of an All-Zero Filter
	Frequency Response of an All-Zero Filter
	Frequency Response of an All-Zero Filter
	Frequency Response of an All-Zero Filter

	Moving-average processes
	Moving-average processes
	Moving-average processes

	Pole-Zero Models
	Pole-Zero Frequency Response
	Pole-Zero Frequency Response
	Pole-Zero Frequency Response
	Pole-Zero Frequency Response

	Advanced Topics

	Passive Target Localisation
	Introduction
	Introduction
	Introduction

	Structure of the Tutorial
	Recommended Texts
	Recommended Texts
	Recommended Texts
	Recommended Texts

	Why Source Localisation?
	ASL Methodology
	ASL Methodology
	ASL Methodology
	ASL Methodology
	ASL Methodology

	Source Localization Strategies
	Source Localization Strategies
	Source Localization Strategies
	Source Localization Strategies

	Geometric Layout
	Geometric Layout
	Geometric Layout

	Ideal Free-field Model
	Ideal Free-field Model

	TDOA and Hyperboloids
	TDOA and Hyperboloids
	TDOA and Hyperboloids
	TDOA and Hyperboloids
	TDOA and Hyperboloids

	Indirect TDOA-based Methods
	Indirect TDOA-based Methods
	Indirect TDOA-based Methods
	Indirect TDOA-based Methods
	Indirect TDOA-based Methods

	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function
	Spherical Least Squares Error Function

	Two-step Spherical LSE Approaches
	Two-step Spherical LSE Approaches

	Spherical Intersection Estimator
	Spherical Intersection Estimator
	Spherical Intersection Estimator

	Spherical Interpolation Estimator
	Spherical Interpolation Estimator
	Spherical Interpolation Estimator
	Spherical Interpolation Estimator
	Spherical Interpolation Estimator

	Other Approaches
	Hyperbolic Least Squares Error Function
	Linear Intersection Method
	Linear Intersection Method

	TDOA estimation methods
	TDOA estimation methods
	TDOA estimation methods

	GCC TDOA estimation
	CPSD for Free-Field Model
	CPSD for Free-Field Model

	GCC Processors
	GCC Processors
	GCC Processors
	GCC Processors
	GCC Processors

	Adaptive Eigenvalue Decomposition
	Adaptive Eigenvalue Decomposition
	Adaptive Eigenvalue Decomposition
	Adaptive Eigenvalue Decomposition
	Adaptive Eigenvalue Decomposition

	Direct Localisation Methods
	Steered Response Power Function
	Steered Response Power Function
	Steered Response Power Function
	Steered Response Power Function

	Conceptual Intepretation
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm
	DUET Algorithm

	Effect of Reverberation and Noise
	Estimating multiple targets
	Further Topics
	Further Topics



