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Signal Processing in the Information Age

Deep Neural Networks Deployment

@ Brining the success of deep learning to the "sensor” side
@ Running machine learning tasks on the edge, in real time

@ Preserving data privacy and reducing the dependency on the
network access



University Defence Research Collaboration (UDRC)

Signal Processing in the Information Age

A Recap on Deep Neural
Networks Inference and
Deployment
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Deep Neural Networks
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https://bit.ly/30V55AC

o Consecutive multiplication, additions, and non-linear
operators; Y = f4(f3(... (W2 x f1(W1 x X + bl) + b2))).
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Embedded Deep Neural Networks Deployments
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@ Challenges to be addressed:
@ Computational complexity
@ Memory limitation
© Communication bandwidth
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Computational Complexity
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@ While DNN inference needs much less computational resources
than learning, real time implementations on power constrained
embedded platforms are still challenging.

@ More computation gives more accuracy, i.e. mean Average
Precision (mAP)
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Memory Limitation
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@ Higher capacity networks often need more memory

@ Latency in memory read-out can be the bottleneck



University Defence Research Collaboration (UDRC)

Signal Processing in the Information Age

|/O and Communication Bandwidths and Delays
m M e T

{} 30Gieis
14 GiBls DDR: T aa GiBls Wolgm —3
mm.c.. (w-lgm Fetcher)
30GiBls
- |=‘> Control G

°
-8 Unified Matrix Multiply
St 3 10 GiB/s Buffer Unit
1cisis |8 5| 14ciBis| & (Local Dz > (64K per cycle)
§ =l & Activation
E Storage)
B
]
-

Actlvatlon
Normalize / Pool

[] cor n
[ control

Google (HPC) TPU structure. This bandwidth is not achievable in the embedded TPUs.
@ Issues in acquiring full rate signals/images
@ Asynchronous sensor measurements

@ Time delays in measurements
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ASIC/FPGA Al Accelerators
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Hardware Platforms and Al Accelerators

@ Low power CPU or Microcontroller, e.g. ARM, RISC-V
@ /0 interfaces and sensors, e.g. camera(s), microphones,
depth-sensors

@ ASIC or FPGA accelerators, e.g. GPU, TPU and RISC
many-core processors 10
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Al Accelerators

@ Matrix-matrix multiplication accelerator,
Multiplier-Accumulator (MAC), Systolic MAC

@ Structured fast memory,
Multi-level dedicated/shared caches (L1/L2 cache GPU)

@ Recursive implementation facilitators 11
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"Exploration and Tradeoffs of Different Kernels in FPGA Deep Learning Applications” by Elliott Delaye, 2018

@ The breakthrough in computation is in the systolic MAC or
massive parallel processing elements (PE),

@ PEs in a systolic MAC are configured for one- (few-) shot
tensor multiplications

@ PEs are suitable for scaling up array sizes. 12
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Embedded Deep Models
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"Exploration and Tradeoffs of Different Kernels in FPGA Deep Learning Applications” by Elliott Delaye, 2018

@ Learned models with highest mAP: over-parametrized with
double precision weights

@ Model simplification with pruning: cutting ineffective weights
and sharing weights

@ Model quantization: not losing much using quantized models;3
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Quantised Models
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mAP of MobileNetV2 SSD in different settings
@ Full precision models: computationally and memory expensive
o Simple post-quantization: degrades mAP performance

@ Quantized learning and dynamic post-quantization : showing
close performance in a comparison with full precision. 14
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Take-Home Messages

@ Various benefits in on-the-device and on-the-edge computing
o Embedded DNN Deployment Hardware
o Powerful Al accelerators are available now and they will be
highly optimised in the near future
e Each structure has its pros and cones. They mainly accelerate

parallel MAC operations
o Integration of multiple Al units accelerates almost linearly

o Embedded DNN Deployment Models

e Pruning: sparse and shared weights
e Quantization: acceleration given a fixed IC footprint and lower
power consumption
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