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What are we trying to do?

We want to infer the state of an entity

To do this we make observations or measurements using some
device – generally referred to as a sensor

Some facts we have to cope with:

the state of an entity is hidden,

measurements are noisy,

’incorrect’ measurements can happen – the sensor returns
something that can be interpreted as coming from an entity
despite there being nothing there (call these false alarms),

attempts at observation can result in no measurement being
returned, despite the existence of an entity (missed detections)

We’re also interested in putting together multiple state estimates
to estimate an entity’s track in the past, present or future
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Applications
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Objectives

The aims of today’s lesson are to give you:

an understanding of the basics of state estimation and target
tracking,

an appreciation of the defence situations which benefit from
these techniques,

some intuition surrounding the strengths and weaknesses of
various estimation, tracking and association schemes
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Stone Soup

We’ll be making use of Stone
Soup, an open-source tracking
and state estimation framework

Core modules built from
Python

Object oriented

extensible through many
libraries

interactive - we’ll be using
Jupyter notebooks
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An abstract view
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Definitions

State estimation

the process of inferring the intrinsic and extrinsic properties of an
entity, or entities, by way of data gathered using a sensor

Tracking

inferring the state of an entity over a period of time, or other
sequence, using accumulated sensed data, processed synchronously
or asynchronously

Multi-target tracking

jointly inferring the state of multiple entities over a period of time
using accumulated sensed data from multiple sensors, processed
synchronously or asynchronously
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Notation

xk a hidden state vector at (time) k
zk a measurement at k

Measurements can incorporate false detections,
clutter, and may be missed

Our goal is often to infer xk - the state of the thing we’re interested
in at some point from a sequence of measurements up to that
point, z1:k

f (xk |xk−1,wk) a function determining the transition from state
at (time) k − 1 to state at (time) k (Markovian
assumption) in the presence of some noise process
wk

h(zk |xk ,νk): a function telling us how the sensor responds to
the state, xk at k , with noise according to νk
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Examples of x, z, f (.) and h(.)

x z

temperature photon flux in the mid-IR
location range, bearing
size angular extent
radioactivity radiation flux
etc etc

Examples of f (.):

v = u + at

conservation laws (e.g. mtotvtotk = m1v1
k−1 + m2

k−1v2
k−1)

solutions to diffusion equations

Examples of h(.):

in a 2-d range-bearing sensor z =

[ √
x2 + y2

arctan( yx )

]
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That abstract view, again
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That abstract view, again
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Probability distributions

We are looking for a way of
estimating an inherently stochastic
process

It’s often not possible to know, or
measure, the precise state of an
object – the transition and sensing
processes may be very noisy.

Probability density functions (pdfs)
are extremely useful in that they give
us access to more state information
than just the ’most likely true’ value
(e.g. uncertainty, multi-modality,
etc). They also come with a handy
algebra we can use.
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Some key tools

Recall from yesterday, or your previous statistics learning

Law of total probability (marginalisation)

P(X ) =
N∑
i=1

P(X |Yi )P(Yi ) or p(x) =

∫
X
p(x |x ′)p(x ′)dx ′

Bayes’ rule

P(X |Y ) =
P(Y |X )P(X )

P(Y )
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More probability

There’s much power and depth to stochastic
calculus. For the moment we merely note
some notational equivalence:

xk|k−1 = fk(xk−1,wk), wk ∼ Qk(η1, η2, ...),
or xk|k−1 ∼ p(xk |xk−1,ηk)

zk = hk(xk ,νk), νk ∼ Rk(ζ1, ζ2, ...),
or zk ∼ p(zk |xk , ζk)

where Q and R are stochastic processes with
parameters η and ζ respectively, which
generate instances of transition noise and
measurement noise represented by vectors w
and ν.

©Prof. Konrad Jacobs, Creative Commons
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Application to state estimation

State estimation operates by way of a recursive process. Starting
with the prior estimate from a previous step, a prediction is used to
estimate the state at the current step. This is then updated with a
measurement to yield the posterior state estimate.
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Application to state estimation

Adapting the previous equations slightly:

The Chapman-Kolmogorov equation (predict)

p(xk |z1:k−1) =

∫ ∞
−∞

p(xk |xk−1)p(xk−1|z1:k−1)dxk−1

Bayes’ rule (update)

p(xk |z1:k) =
p(zk |xk)p(xk |z1:k−1)

p(zk)

where:
p(xk |z1:k−1): the probability of the current state given
(conditioned on) all observations up to some previous step,
p(xk |z1:k) is the probability of the current state given the set of
observations up to k.
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The Kalman Filter

Due to Rudolph E. Kálmán; but also Bucy, Swerling, Stratonovich.
The key insight is that in linear-Gaussian regimes the solution to
the recursive equations is analytic. (There are various derivations –
feel free.)

Predict

xk|k−1 = Fkxk−1 + Bkuk , Pk|k−1 = FkPk−1F
T
k + Qk

Update

yk = zk − Hkxk|k−1, Sk = HkPk−1H
T
k + Rk

Kk = Pk|k−1H
T
k S−1

k

xk|k = xk|k−1 + Kkyk , Pk|k = (I − KkHk)Pk|k−1

© Crown Copyright 2022 Dstl 17



The Kalman Filter

We refer to xk−1, Pk−1 as the prior state and covariance (or error,
or uncertainty) at step k − 1. (These are sometimes rendered as
xk−1|k−1, Pk−1|k−1.)

The predicted values of these quantities at k are xk|k−1 and Pk|k−1

where the subscripts can be taken to mean, ”the value at k given
all information collected up to step k − 1.” The update step yields
the posterior values xk|k , Pk|k .

y and S are known as the innovation and innovation covariance
respectively. K is called the Kalman gain and can be interpreted as
a measure of how much weight is placed on the measurement, as
opposed to the prediction. For low values of K the posterior value
tends to the prediction (when R is large you don’t trust the
measurement too much). When R is small (measurements are
more accurate) K approaches a limit governed by the uncertainty
in the dynamics only.
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The Kalman Filter

Note that the transition model f (·) and the observation model h(·)
are now matrix multiplications of the state vector x and
observation z via F and H.

The stochasticity due to the transition (Q) and observation (R) is
accounted for by the covariance matrices Q and R, reflecting the
fact that we are now assumeing these are multivariate normal
distributed processes.

A term to account for control input is included (Bkuk). This is
assumed noiseless and included for completeness. We drop it in
subsequent analysis as for many tracking examples the target of
interest isn’t something we can manipulate directly. Clearly it’s of
more direct concern in the control theory literature.

It’s interesting to note that whereas the posterior mean estimate is
a function of the measurement, the posterior uncertainty isn’t.

© Crown Copyright 2022 Dstl 19



Practical

Jupyter notebook 1: Kalman filter
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Non-linear estimation

The Kalman filter is used in a surprising array of applications. It’s
often quite convenient to linearise the problem, rather than the
solution. There are, however, situations where you simply can’t
apply a linear function.
Consider a simple two dimensional range-bearing sensor. How
would one apply the Kalman filter here?

A simple range-bearing sensor (Kalman version)

x =


x
ẋ
y
ẏ

 , z =

[
r
φ

]
=

[ √
(x2 + y2)

arctan( yx )

]

F =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 (for example),H = er...
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The Extended Kalman Filter

Recall that in the Kalman filter,
xk|k−1 = f (xk−1,wk) = Fkxk−1 + wk and
zk = h(xk ,νk) = Hkxk + νk .

We can approximate the non-linear f (xk−1) and,or h(xk) as a
Taylor expansion about xk−1 = µk−1 or xk|k−1 = µk|k−1,

General n-d Taylor series approximation

g(x) ≈ g(µ) + (x− µ)TDg(µ) +
1

2 !
(x− µ)TD2g(µ)(x− µ) + ...
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The Extended Kalman Filter

This series is most often truncated at the first term which means
that the task boils down to finding the gradient D using the
transpose of the Jacobian matrix. The functions f (.) and h(.) can
then be approximated as,

The Extended Kalman Filter

F (xk−1) ≈ J(f )|x=µk−1

H(xk|k−1) ≈ J(h)|x=µk|k−1

where

J(g) =


∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...
∂gm
∂x1

. . . ∂gm
∂xn


The predict and update stages proceed as with the Kalman filter
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Practical

Jupyter notebook 2: extended Kalman filter, range-bearing
exercise
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The Particle Filter

Also known as Sequential Monte Carlo (SMC) sampling methods,
particle filters seek to approximate (posterior) probability
distributions using samples, or particles

Sample-based probability distribution

We make the following approximation,

p(xk |z1:k) ≈
N∑
i=1

w i
kδ(xk − xik)

where w i
k are weights such that

∑
i w

i
k = 1
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Particle filter - pictorial intuition

© Crown Copyright 2022 Dstl 26



Particle filter

Each particle goes through the predict/update process as with
the Kalman filters

The predict step ’moves’ the particles, and the update step
recalculates the weights

Benefits:

Points only: no need to consider higher moments (like those
pesky covariances)
Easily copes with non-linearity in the process and sensor models

Drawbacks:

computational effort
sample sparsity
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Importance Sampling

Sequential Importance Sampling

w i
k = w i

k−1

p(zk |xik)p(xik |xik−1)

q(xik |xik−1, z1:k)

where q(.) is the so-called importance density which is easy to
sample from, while approximating the posterior distribution.

Degeneracy

After a few iterations, all but a small number of the particles will
have negligible weight. This affects accuracy, wastes computation
on particles with little effect on the estimate. Resampling schemes
– many exist – are designed to redistribute particles to areas where
the posterior probability is higher.
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Practical

Jupyter notebook 4: particle filter
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Data Association

More often than not, the difficult part of state estimation concerns
the ambiguous association of predicted states with measurements.
This happens whenever,

there is more that one target under consideration

there are false alarms

there is clutter

targets can appear and disappear.

So it happens everywhere.
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Association schemes

How do we map observations to predicted state?

(with liberties taken regarding state-observation space)
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Data Association - combinatorics

Exhaustive example of associating two targets (crosses)

with two measurements (stars). Green: measurement

generated by one target only and target capable of

generating one measurement only; Yellow: includes

measurements generated by more than one target; Pink:

includes targets generating more than one measurement.

Number of ways of associating up to 5 targets with up to

10 measurements depending on whether you allow

one-to-one (bottom), many-to-one (middle) or

many-to-many (top) association
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Absolute assignment schemes

Make the assumption, for the moment, that each target generates,
at most, one measurement, and that one measurement is
generated by a single target, or is a clutter point.

Nearest neighbour (or greedy assignment): simply pick the
measurement closest to that of the predicted measurement,
i.e. pick the minimum innovation, or pick none. (Note that
this potentially violates the many-to-one measurement to
target assignment rule.)
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Absolute assignment schemes

Global nearest neighbour (GNN): assign measurements to
predicted measurements to minimise some total (global) cost,
this cost being a function of the sum of innovations. This is
an example of an assignment problem in combinatorial
optimisation. Solutions to these Linear Programming
problems abound. For example, the Hungarian algorithm (also
the Munkres algorithm), auction algorithms, the simplex
algorithm.

Practical considerations are usually invoked, e.g.

Gating
Track initiation
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Practical

Jupyter notebook 5 and 6: multi-target tracking using GNN
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Issues

Examine the output of the previous notebook. What
happened?

Is that your final decision?

There’s a problem with making a firm decision at each time
step

Running time

Surprisingly often some form of brute-force algorithm will be
used
Gate can be ‘tuned’
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Probabilistic Data Association

Rather than make a firm assignment at each timestep, we could
work out the probability that each measurement should be
assigned to a particular target.
Then, assign a bit of each measurement to a target based on some
measure of those probabilities.
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Probabilistic Data Association filter

Zk = {zjk}, j = 1 . . .mk

xk|k = xk|k−1 + Kk

mk∑
j=1

βjyjk

Pk|k = β0
kPk|k−1 + (1− β0

k)Pc
k|k + P̃k

where,

P̃k , Kk

 mk∑
j=1

βjkyjkyjk
T
− yjkyjk

T

KT
k
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Probabilistic Data Association

The symbols have the same meanings as they do in the description
of the Kalman filter earlier, but now we have to cope with a set Z
of m measurements. So y is still innovation but is now computed
for each measurement as denoted by the superscript j . The new
quantity β is the probability that the jth measurement is
associated with the state under consideration.
The posterior covariance estimate is composed of three terms
(broadly) interpreted as the sum of covariances representing:

measurements all being false alarms,

the target is associated correctly (hence Pc),

uncertainties associated with incorrect associations, P̃.

Note that, as with the Kalman filter, we don’t need to have the
innovations to determine the correct posterior state covariance.
We do, however, need them in order to determine the uncertainty
due to incorrect associations.
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Joint Probabilistic Data Association

Extending the PDA in a similar way as the GNN algorithm extends
the naive nearest neighbour algorithm seems sensible.
But is that all that’s missing from PDA? What about the notion of
other targets/tracks? Interferers are no longer confined merely to
clutter, and that can change the statistics.

Further to the PDA, assume:

The number of targets we are tracking is known

The transition and sensor models are linear-Gaussian
distributed or can be approximated as such (via the EKF, say)
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Joint Probabilistic Data Association

We can enumerate the joint conditional probabilities of all
assignments at time k (i.e. if the probability of the assignment
of measurement j to target i (αi←j) is βij then the
probabilities of αk←l and αm←n are βkl and βmn, etc, etc.)
These assignments may be statistically independent, or not.

JPDA marginal assignment probabilities

βijk , P(αi←j
k |Zk)

=
∑

α:αi←j∈Ak

P(α|Zk)

where Ak are all possible assignments at time k

As with the GNN, we’re likely to need efficient assignment.
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Jupyter notebook 7, 8: joint probabilistic data association -
compare with GNN
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Practical considerations

In the real world we need to be able to:

start a track in response to new measurements,

delete tracks when we no longer want to (or can’t) consider
the object.

We might also want to use some practical measures to make data
association easier:

exclude certain combinations from consideration to reduce the
computational complexity.

And if we’re concerned with measuring how well we’ve done

we’ll want to compare against other methods by deriving
measures of performance which are consistent across
scenarios.
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Practical considerations

Initiating and deleting tracks
This usually leans heavily toward the specifics of the problem being
addressed. That may be to do with target detectability, clutter,
sensor performance, etc.
Track initiation

M-consecutive unassociated detections

M-of-N unassociated detections

Track deletion

Covariance limited

Time-based
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Practical considerations

Association
Why waste your time enumerating (and calculating the probability
of) associations which have virtually no chance of being credible?
A Gate can be employed to reduce the number of potential
associations we are willing to consider. While conceptually easy to
understand, it’s ultimately up to the operator to choose a gate of
appropriate size and shape; and that’s usually scenario-specific.
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Metrics

We want to be able to judge how well we’ve done in our tracking.
But does good tracking mean

a small average difference between a state’s estimate and
ground truth,

an uncertainty representative of the difference between mean
estimate and ground truth,

consistent assignment of track to truth,

maintaining tracks on a large number of objects in the scene
of interest,

one-to-one track to truth assignment,

low number of track breaks,

or something else, or combination thereof?
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Metrics

It’s worth distinguishing between true metrics and figures of merit.
Strictly speaking, a metric is a function which returns a
non-negative scalar and satisfies three properties:

identity, d(x1, x2) = 0 =⇒ x1 = x2

symmetry, d(x1, x2) = d(x2, x1)

triangle inequality, d(x1, x2) ≤ d(x1, x3) + d(x3, x2)

A figure of merit is more loosely defined as a numerical
representation of a tracker’s performance. Whilst not being as
mathematically rigorous as metrics, they can capture practical
aspects of a problem (for example if one prioritised persistent track
association over assigning the correct number of tracks).
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Metrics and figures of merit

Metrics

Optimal Sub-Pattern Assignment

d (c)
p (X ,Y ) =

 1

|Y |

 min
π∈Π|Y |

|X |∑
i=1

d (c)(xi , yπ(i))
p + cp(|Y | − |X |)

 1
p

Generalized Optimal Sub-Pattern Assignment

d
(c,α)
p (X ,Y ) =

 min
π∈Π|Y |

|X |∑
i=1

d (c)(xi , yπ(i))p +
cp

α
(|Y | − |X |)

 1
p
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Metrics and figures of merit

Single Integrated Air Picture (SIAP) ‘metrics’
Notable figures of merit include,

Completeness: the fraction of true objects that are tracked

Clarity: subdivided into

Ambiguity: the fraction of true objects for which more than
one track can be associated
Spuriousness: the fraction of tracks with no associated true
object

Continuity: the fraction of time for which the track’s ID does not change

Kinematic accuracy: how well track position and velocity (more generally,
the state vector) matches the position and velocity of the associated
object

And there are others (see references) associated with, among other things, how
well and consistently an object’s identification is maintained and how similar
estimates of the tracking picture are across a set of sensors.
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Practical

Jupyter notebooks 9 and 10: practical tracking, and metrics
example
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Time did not permit us to cover

Other filtering schemes

Unscented Kalman filter
Continuous-time filter
Information filter

Other association schemes

Many flavours of (J)PDA
Multi-hypothesis tracking (MHT)

Multiple models

Interacting multiple model filter
Multiple sensors

Non-sequential estimation

Asynchronous and out-of-sequence measurements
Smoothing

Association-free filtering

The Probability Hypothesis Density (PHD) filter and its
derivatives
Finite-set statistics-based filtering
Track-before-detect
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Summary

We have covered:

The abstract state-estimation and tracking problem and
(some of the many) defence scenarios where this is of interest

Single-target state estimation and tracking, linear and
non-linear examples

Multi-target tracking, the association problem and some
schemes to address target-measurement assignment

(Some) practical issues and how to measure tracking
performance
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Resources

Software

Stone Soup: https://github.com/dstl/Stone-Soup
https://stonesoup.rtfd.io

Textbooks, tutorial papers, other references
Blackman S. S. 1986, Multiple-target tracking with radar applications,
Dedham, MA, Artech House, Inc.
Koch W. 2014, Tracking and Sensor Data Fusion, ISBN
978-3-642-39271-9
Sanjeev Arulampalam M., Maskell S., Gordon N., Clapp T. 2002, Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,
IEEE transactions on signal processing, vol. 50, no. 2
Daum F, Huang, F. 2009, The Probabilistic Data Association Filter,
Bar-Shalom Y, IEEE Control Systems Magazine
Votruba P., Nisley R., Rothrock R. et al. 2001-2003 (revised), SIAP SE
TF Technical Reports 2001-001–003, Arlington VA: SIAP SE TF

© Crown Copyright 2022 Dstl 53



Resources

People
Open Source Tracking and Estimation
Working Group (on isif.org)

Social media
Stone Soup on Gitter
https://gitter.im/dstl/Stone-Soup
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