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This Talk — Lightweight Approximate Edge ML
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What



Surface EMG Devices & Sighal Processing




Why



Metaverse-inspired EMG Signal Processing
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Scope — General HCI & Defence-Related




Challenge

Issue 1: Capability Issue 2: Cost
* Placed sensors can reliably detect * The detection approaches are too
~10 wrist-hand poses complex for on-board computation

* Myo can (could) only detect ~5

Can we enable armband-based EMG acquisition from randomly-placed
skin surface sensors and classify as many movements as accurately as
the state-of-the-art, within the on-board computational resources of the
armband?



Approximation
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How



ldentifying Wrist-Hand Poses
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Wrist-Hand Pose Experiments

Classification Accuracy (%)
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AR | 3.52
IEMG | 0.07
Kurtosis | 0.67
log RMS | 0.02
Skewness | 0.46
RMS | 0.08
Variance | 0.38
MSV | 0.15
Features | 5.35
LDA 1.80
MLP | 2.60
Total | 9.75




Approximation
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Authenticating People

Segment selection Re-Authentication K-time-frame

Wait Duration

On-going Verification

Feature Extraction One-time Verification
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Parameters Parameters
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LDA | MLP
Training Training
LDA | 0.21
MLP | 0.38

Others 0.07
Total 1.06




Performance & Approximation

Time-frame gap (samples)
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Operations | time (ms)
BP | 0.24
RSSy | 0.16
LDA | 0.21
MLP | 0.38
Others | 0.07
Total | 1.06
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Performance and Approximation

Wrist pronation
Wrist flexion

Wrist supination
Hand open

Wrist radial Flexion
Wrist ulnar flexion
Hand close

Wrist extension
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Accuracy (%)

Operations | time (ms)

Normalisation | 0.41

RSS; | 023

KFD | 0.36

RBF | 0.52

Others | 0.09

Total | 1.61
System Time-frame gap (K)

Configuration | 1024 2048 3072

Single-window | 9092 91.54 91.67

Majority voting | 91.39 9192 92.08
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Experiments

Accuracy
System | Identification | Motion Classification
Configuration Error (%) Accuracy (%)
Single-window framework 1.09 97.07
3-majority voting 0.80 98.14
5-majority voting 0.66 98.61

Performance

System Operations time (ms)

Biometric Normalisation 0.41

I(.l(ﬁlltiﬁ{:&;i(]ll RSS; Feature 0.23

_ KFD Projection 0.36

System RBF Classification 0.52

Movement FﬁatllTGS , 4.28

Recognition LDA Projection 1.80

Svstem MLP Classification 2.60

) Others 0.21

Total 10.41




Ssummary

There are plenty of degrees of freedom in physical systems which can be used
to optimise efficiency even before arithmetic formats are considered.

EMG systems provide flexibility in numbers of channels, features and
temporal features for authentication & verification for significantly reduce
computational load whilst maintaining real-time processing.

Combining sub-optimal ML engines in a hierarchical fashion provides even
further performance boosts.




