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Scratching the Surface: Sensor Driven
Perception and Action

Caveat: this is really about perception, the action is done by our partners!

UDRC Theme Meeting, November 2021

Presented by Andy Wallace

Thanks to Sen Wang, Joao Mota, Andreas Assmann, Marcel Sheeny, Sap
Mukherjee, Zhiyang Hong, Ali Ahrabian, Abde Halimi, Yvan Petillot,
Gerald Buller, Stephan Matzka and others .....
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“The Treachery of Images”

Leci nest pas une fufe.

1929: This isn’t a pipe

26  The Psychology of Computer Vision
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‘Signal Processing in the Information Age

Scratching the Surface

In most instances of vision-guided autonomy, certainly land based autonomy,
what we sense is the reflection or emission of ‘light” from surfaces.

For autonomy, we usually want to create a dense map of the surrounding
surfaces, and to get from A to B without making damaging contact with any of
those surfaces.

We may or may not wish supplementary information, to get from A to B more
easily, or because we have an additional objective, understand the scene, locate
a particular object or person, measure and collect samples of data etc.

Despite the alleged hostility of certain companies (e.g. Tesla) to active sensing,
it seems that the way forward in the short term is most likely through
multiple, passive and active sensors, notably Cameras (stereo?), Radar and
LiDAR, to somehow get round the “treachery of images’.



This talk “scratches the surface” of some of
the work we have done using (primarily)
active surface sensing using radar and

LiDAR.

Although generic (mostly) it has mainly
been evaluated using automotive vehicles.
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Chapter 1: Collecting data

One of the frustrations we have had in the last few years
was an inability to find the right data, in particular
coincident data from LiDAR, stereo cameras and radar
‘in the wild” and in adverse conditions.

Too many people seemed to be content to process and
re-process Kitti (442/367 object 2D/3D on Monday!),

NuScenes, Synthia, NGSIM, ImageNet and CIFAR
datasets .....

For that reason, we decided, belatedly, to collect our
own data...this is now available publicly and has had
several hundred downloads (since April 2021).



Heriot-Watt RADIATE Dataset Home  Documentation  Downloads  Paper

Welcome to Heriot-Watt RADIATE Dataset Website

Multi-Modality Radar Dataset in Adverse Weather with Object Annotation

RADIATE (RAdar Dataset In Adverse weaThEr) is a high-resolution radar dataset which includes about 3 hours annotated
radar images and more than 200K labelled instances on public roads. It focuses on multi-modal sensor data (radar, camera,
3D LiDAR and GPS/IMU) in adverse weather conditions, such as dense fog and heavy snowfall. It aims to facilitate research
on object detection, tracking, Simultaneous Localization and Mapping (SLAM) and scene understanding using radar sensing in

extreme weathers.

Choose to Start

Radar:* Lidar




Coincident, labelled radar, LiDAR (Velodyne)
and stereo camera data is available to download
together with GPS and INU data.

This data was collected mainly around
Edinburgh and the surrounding countryside,
although we also collected on- off-road data in
the Cairngorms.

Urban Motorway

Marcel Sheeny, Emanuele De Pellegrin, Saptarshi Mukherjee, Alireza Ahrabian, Sen Wang,
Andrew Wallace. RADIATE: A Radar Dataset for Automotive Perception. ICRA 2021
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Chapter 2:
LiDAR: problems and potential solutions



Direct surface measurement

High resolution — sub-cm in (x,y,z)
Separates the viewed scene into
‘planes’ and hence isolates ‘targets
Very sensitive, (at least single
photon systems are)

Can be long range — several Km

Solutions
Problems 1. Solid State Cameras
1. Mechanical scanning 2 ’Compresse.d’ Se.nSing’ la.rger
2. Vehicle data tends to be regular, but sparse array mosaics, Vlde.o fu.smn
3. Eye safety limits power (and range) in 3. Sparse random projection,
autonomy/assistance applications higher A .
4. Volume of data dictates slow and simple 4. Hardware acceleration, better
processing algonthms :
5. Problems with fog/smoke/mist/snow/rain 5. Higher A, multi-return

penetration

processing, fusion

Wallace, Halimi and Buller, “Full Waveform LiDAR for Adverse Weather Conditions”, IEEE

Transactions on Vehicular Technology, 69(7), 7064-77, 2020.
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Fast, efficient, processing: reduce the
laser power and implement in parallel

Sampling Logic Sparse Recovery
)|
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Fig. 2: Proposed compressive block LiDAR sampling. A laser array is partitioned into B blocks, each of which illuminates
the scene independently. Information about the received photons is collected into histograms, from which yg' ) and y}b) in (5)

are formed within each block b. A depth image Xp is constructed by processing these measurements in parallel, which entails
solving several instances of (6), represented by & and possibly with some post-processing, and forming X and Xj.

Examples of © include the Wavelet and DCT transforms, or

minimize %HA:I?Q — Yo 13 + agl|Ozgl|: a difference matrix (which expresses the fact that ¢ and g
*Q (6) have sparse gradients ( [22], [23]). Such assumptions enable
minimize %HAQCI — y;||% BE CXI”@IIHl ; us to estimate 2o and 27 concurrently using CS methods, as

rr
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Results: fast parallel GPU-based LiDAR

processing
dSparse,, In best case, frame time is about 10ms and
307 dSpariga/ laser projected power is reduced by factor
of 8, with comparable PSNR etc.
% 2 CB (SSB C.fv i This uses our own
o T3D Histogram data —
prd simulated from
g_) o0 | CBCS ECCT B C S DCT benchmarks ~75images
CBCS -DWT
5l v BCS-SPL
Howland ,
107 10 10° 10" 10°
time, s

A ABmann, B Stewart, J. Mota and AM Wallace, “Compressive super-pixel LiDAR for high frame
rate 3D Depth Imaging” IEEE Global Conference on Signal and Image Processing, 2019
(Extended work and submission/revision to IEEE-TCI November 2021)
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Fig. 8: A visual comparison of the final depth map reconstruction using real underwater scene photon count data for a real
depth scene from [17]. The image size is 192 x 192.

“For dSparse ... with customized floating point, the resource saving is 85% in
LUT, 80% in both DSP and BRAM. and 87% power saving is achieved with over
67% data ratio and 75% processing latency reductions.” p.s. best parallel block

time ~0.01ms. Wu, ABmann, Stewart and Wallace, “Energy Efficient Approximate 3D Image
Reconstruction”, IEEE Transactions on Emerging Topics in Computing, 2021,



VL53LOX integrates
leading-edge
SPAD array

POWER BUDGET

A medium size drone

e Consumes 100-200W
e 20 to 40 minute flight time

1 Watt of compute reduces flight time by ~10s
4g of payload reduces flight time by ~10s

Final compute constraint is mostly
driven by size/weight of the board

2021 Skydio
“Hot Chip” talk
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360° frequency modulated continuous wave (FMCW) radar

Chapter 3: »f
Radar Image Analysis: \
Mapping and Navigation |

While our radar senses surface reflection, it scans in azimuth only, and == = = ==

ke

the data is a range-azimuth power density map. Cartesian Representation
Research at the Universities of Birmingham and Edinburgh (and

elsewhere) has been directed towards the acquisition of high

resolution 3D surface maps** (looking a TDOA and SAR), but we have

been constrained to a 2D plan view.

So, it might correspond to a surface, occupancy grid planning model.

** covered at July 2020 Theme meeting



Radar Location and
Mapping

This procedure has been
tested at night, in dense fog
and heavy snowfall, in a
GPS denied environment.

Camera was completely blocked by snow.

Half of Radar was covered by snow.

“Radar SLAM: A Robust SLAM
System for All Weather
Conditions”

| | Hong, Petillot, Wallace, Wang:
| | | Map |

| Radar Scan |

| Keyframes | | Map Points |

Tracking Local Mapping Loop Detection

; Recommended for publication in
Process New Keyframe
Graph Feature Matching 01d Map Point Culling Compute SE2

: International Journal of Robotics
— Research, November 2021

[— )
| Track Local Map i i e o Sranh i i
Irack Local Map New Map Point Creation — Preprint -arXiv:2104.05347v|

New Keyframe Local Bundle Global Bundle
Decision Adjustment Adjustment

wes.



Object Classification at 300GHz

In this example, we used a small set of six objects, viewed
In isolation for training, in cluttered scenes for evaluation.

Fig. 9 Multiple object dataset. Above: 300 GH= radar image. Below. reference RGB image




Engmperireg snd Pyscal Scisnces
Reseanch Councl

EPSRC  Object Classification at 300GHz Ejt

Experiments in the Lab with 300GHz data: several architectures, with and without
transfer learning from Mstar, data augmentation. On isolated objects, classification
rates are 80-90%

f Trolley
Input Image Input Image Input Image Input Image

l J l |

Conv 16 Conv 16 Conv 30 Conv 16
3x3 [RelLU] 3x3 [ReLU] 5x5 [ReLU] 5x5 [ReLU]
Conv 16 Conv 16 Max Paool 2x2 Max Pool 2x2
3x3 [ReLU] 3x3 [ReLU] Conv 15 Conv 32
Max Pool 2x2 Conv 16 3x3 [Rel U] 5
3x3 [ReLU] Max Pool 2x2 Max Pool 2x2
‘ Fully Connected 6 ‘ Max P|°°| 2x2 Drop Cfu‘ 0.2 Conv 64
[Softmax] ‘ Fully Connected 6 ‘ Fully Connected 128 Ma:f F[,Izzll_ ;!2
[Softmax] [ReLU] Drop out 0.5
Label Distribution Fully Cennected 50 Conv 128
Label Distribution Fully Connected 6 Conv 6
[Softmax] 3x3 [Softmax]
o srend #O0bjects < 4 4 < #0bjects < 7 #O0bjects > 7 .
AP Overall  ierall Short Mid Long Overall Short Mid Long Overall Short Mid Long ~rort Mid TLong
bike 65.78 81.7 50.0 88.89 75.0 53.82 0.0 59.92 66.67 66.36 N/A 67.2 N/A 25.0 69.31 7143
bike (ours) 71.94 90.98 50.0 9444 100.0 64.55 100.0 59.99 100.0 53.43 N/A 4892 N/A 75.0 67.17 100.0
cone 42.29 51.25 50.0 61.11 500 66.44 65.08 83.33 28.57 34.35 62.5 425 2319 6044 5271 2422
cone (ours) 49.96 66.67 50.0 66.67 100.0 69.23 66.67 66.67 83.33 35.07 62.5 13.33 0.0 62.07 37.04 4531
dog 26.72 45.07 55.56 47.32  30.95 25.22 33.33  36.67 16.67 13.68 50.0 N/A 7.5 48.0 3833 9.4
dog (ours) 67.26 86.43 88.89 99.05 11.11 64.74 83.33 60.42 50.0 30.91 40.0 N/A 0.0 68.0 85.02 6.67
mannequin 42.05 71.28 53.33 87.02 55.56 283 4242 34.18 75 44.47 1429 5882 1925 3472 5416 1494
mannequin (ours) 41.15 82.61 83.33 9286 33.33 28.56 4545 26.67 1455 36.28 1429 5294 1092 4583 4994 10.62
sign 49.36 413 0.0 4471  40.0 59.77 N/A 625 57.89 40.35 N/A 4194 3846 0.0 50.57 49.28
sign (ours) 77.26 87.01 100.0 90.09 66.67 74.49 N/A  80.19 70.27 76.92 N/A 77.78 7619 1000 8252 7213
tl'olley 84.61 90.23 8472 9992 7647 87.35 100.0 91.66 6881 78.51 9599 8578 2667 9629 9169 61.94
tl'ol_ley (ours) 90.08 97.08 97.62 9944 9412 94.16 100.0 96.42 81.36 83.82 1000 8779 4437 9901 9291 7511
ine mAP . 63.47 48.94 7149 54.66 53.48 48.17 61.38 41.02 46.29 55.69 59.25 23.01 44.07 59.46 38.54
mAP (ours) 66.28 85.13 7831 9043 67.54 65.96 79.09 65.06 66.58 52.74 542 56.15 26.3 7499 691 5l.64
?




Object detection in the wild

The wild data is challenging - networks were
trained on cars, vans, trucks, buses, motorbikes
and bicycles.

Motion was NOT used. Tracking and/or Doppler
analysis may give better results BUT scenes are Motorway

cluttered and cars and pedestrians stop! _ T

Cameras and LiDAR were not effective.

Overall | Static | Motorway | Urban | Night | Rain | Fog | Snow
Faster RCNN ResNet-50 Trained on Good and Bad Weather | 53.57 | 88.19 | 4447 | 42.58 | 73.02 | 48.08 | 70.69 | 22.45
,g Faster RCNN ResNet-50 Trained on Good Weather 5277 | 88.08 | 49.03 | 35.05 | 64.03 | 43.30 | 62.02 | 27.63
& | Faster RCNN ResNet-101 Trained on Good and Bad Weather | 5443 | 87.86 | 4754 | 42.09 | 7422 | 5179 | 63.04 | 26.70
Faster RCNN ResNet-101 Trained on Good Weather 5290 | 8798 | 4644 | 36.26 | 64.40 | 42.51 | 56.99 | 17.77
Faster RCNN ResNet-50 Trained on Good and Bad Weather | 19.91 | 40.59 | 1118 | 20.17 | 1938 | 1553 | 1948 | 1.23
_g Faster RCNN ResNet-50 Trained on Good Weather 1749 | 40.87 | 1103 | 1735 | 1413 | 931 | 1502 | 1.82 P
3 | Faster RCNN ResNet-101 Trained on Good and Bad Weather | 20.66 | 40.25 | 1174 | 2017 | 19.18 | 16.85 | 36.41 | 1.82 Precision = TP L TP
Faster RCNN ResNet-101 Trained on Good Weather 17.81 | 41.80 | 1085 | 2084 | 13.39 | 16.17 | 13.07 | L30
TP
Table 7: AP results on each scenario using rectangular bounding boxes. Recall = 17PN

1
AP=/p(r)dr
0
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Behaviour prediction using video and radar data

An LSTM encoder-decoder structure predicted the future trajectories and
manoeuvres of vehicles in the radar data over a 3-5s (30-50 frames) time
window

(M1, V1) 1,0, Vrso)
| 256 |— Encoder LSTMs i ' is_;?sj;;_z,r
256 —> Decoder LSTMs
->l2560
2;6 —> 2?6 - — 256 A —> 256 =\
256 |-{ 256 |>---—{ 256 | ' | D |
| ] [ ] | 1
Oit-n) O-n+1) 0

FIGURE 4. The proposed LSTM [40] based encoder-decoder structure, using the LSTM cell with 256 neuron count. FC Layers are the fully-connected layers shown in Fig. 5.
O(t_ h) to O(t are the encoder-inputs shown in Fig. 2(a) consisting of the TV’s features (sky-blue) and nearest ns SV'’s features (orange). D(t +1) to D(, +F) are the
decoder-inpu)s shown in Fig. 2(b) consisting of the predicted entities of the TV (purple) and the predicted entities of nearest ns SVs (red).



Video showing behaviour prediction (Sighthill)
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Quantitative Results:

trajectory and
manoeuvre prediction

5 . : ; .
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4 [—|~<Lankershim (NGSIM) [~ A SO N U, SOV SO SO
B e
3 T T T B 5
o : : H
e M cE A s S o
w i Worsifoissinissd i §
wn 2 :
o B UGN I S N YO S
1 —
Tl it e s 1 e T O
od—= : iyt } : g i
0 0.5 1 1.5 2
Time (Sec)

Fig. 7: The RMSE comparison of Lankershim (NGSIM),
Kingussie (Radiate) and Sighthill (Radiate) dataset. This
figure shows their average mean squared errors for the
prediction time horizon from 1s to 2s.

These results are comparable to SoA on
video data

TABLE III: Confusion matrix for maneuver classification at

Lankershim junction (NGSIM dataset).

Actual
Straight Left Right
E Straight | 2346050 39300 35750
‘;:) Left 58050 962150 22950
fo
~ Right 30750 20700 350650

TABLE 1V: Confusion matrix for maneuver classification at

Kingussie junction (Radiate dataset).

Actual
Straight Right Left
T | Straight 4755 6 -
% Right 4 3335 -
E Left - - -

TABLE V: Confusion matrix for maneuver classification at

Sighthill junction (Radiate dataset).

Actual
Straight Left Right
T | Straight 2800 14 20
£ | Left 2 1400 | 8
£ Right 46 10 1320

Mukherjee, S.,Wallace,A.M. and Wang, S.,“Predicting Vehicle Behaviour using Automotive Radar and
Recurrent Neural Networks”, IEEE Journal of Intelligent Transportation Systems, 2,254-268, 2021



University Defence Research Collaboration (UDRC)

Signal Processing in the Information Age

Chapter 4: “Fusion” and full waveforms
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Creating dense depth images from sparse data using intensity images

I L . Given the sparse LIDAR map L and the side information
Side information U : .
RGB generator u, we estimate the dense map of the scene, denoted z € R™,
as a solution of

o1
minnize 152 =]} + AW Hall, 21D~

LiDAR L * Ol e P L, depth No physics? No semantics?

(assumptions + side info) map » Waltz Line labelling (1971)

* Beattie - Edge detection for semantically
based early visual processing (1985)

* Zhang Physical modelling and
combination of range and intensity edge

Fig. 1. Diagram of our method. Given an RGB image [ and LiDAR

data L, it generates a vector u that is used as side information in data (1993)
the optimization problem. The output is a dense depth map .

Ahrabian, Mota, Wallace, Image-Guided Depth Up-sampling via Hessian and TV Priors, Arxiv, October 2019



https://arxiv.org/search/eess?searchtype=author&query=Ahrabian%2C+A
https://arxiv.org/search/eess?searchtype=author&query=Mota%2C+J+F+C
https://arxiv.org/search/eess?searchtype=author&query=Wallace%2C+A+M

Full waveform processing

Accumulated Pixels: log scale

4 10 r
— 531nm f
onl data — = We can analyse
9 Real data o .
S 4 the obscuring
10 A
= g plreetopif medium to
2 S AT
§ \ VL
O : VR measure bark and
b, L[
SSAASCELISE leaf area and
- % 5 10 15 20 25
y NDVI
... 15, Measured area profiles for leaf and bark as a function of canopy
depth. These are measured as m? /m? at the irregularly spaced layer positions
shown in Fig. 6. This assumes a random distribution of areas in each layer so

15 2 25 that subsequent layers have occluded material.
Metres

Synthetic data

We can detect
vehicles or rogue
vegetation below
the tree canopy.

Returning
o o 00 0 000 00
=T WL

»

Wallace et al.“Design and of Evaluation of Multi-spectral LiDAR for the
Multispectral! Recovery of Arboreal Parameters” |EEE Transactions on Geoscience and
P ' Remote Sensing, 52(8), 4942-4954,2014
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Detecting surfaces through Obscuring Media | “ae™*=

40 m: — visibility 10
sl Gamma — visibility 20
' ' [\ moca [
The sensor uses a Geiger 2500, — visibility 50
mode APD and is located E 2800 — visibility 60

INSIDE the fog chamber N 2\

_ /| filled with water-based mist ]
|__‘ R A S T T
time [sampling interval]

30m

Mean waveforms, fog only

amplitude [LSB] amplitude [LSB] amplitude [LSB]

4000 4000 4000

35001 3s00] . 3500-

— n

3000- clear i o] V18 40m & 3000 10m

2500, : zni - Range of {nterest| 2w,

2000- 2000- T B 2000

1500 1500- 1500-

1000 1000/ 1000

5001 500 500

m
220 0 20 40 60 80 100 120 140 160 180  -20 0 20 40 60 80 100 120 140 160 180  -20 0 20 40 60 80 100 120 140 160 180
t [sampling interval] t [sampling interval] t [sampling interval]

Pictures from “Online waveform processing for demanding target situations”, Pfennigbauer
et al. SPIE, Vol. 9080
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Detecting surfaces through Obscuring Media
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Radar Power and CFAR Detections
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Fig. 7: Accumulated LiDAR 3D points using vehicle motion. of]
The wall of the building in front and parked cars are clearly '

visible 0 20 a0 60 80 100
Distance (meters)

Fig. 9: Radar power spectrum for Navtech image captured at 0 10 20 30 40 50
the location shown in Fig. 6. A result from CFAR detection Distance (mefers)

(guard cells=10, training cells=300 false alarm rate =0.1) is  Fig, 12: Histogram of signal detections without radar wave-
also shown. form
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Fig. 8: The radar image; again the wall and cars are visible. ‘ =t K. & - 4ar
Tg‘ieie::gxfl(;:; (ii;:nlgit:sgthe ting: o sigh fow shesweal matkio Fig. 10: LiDAR magnitude Spectrum corresponding to 2
P = Navtech image. This uses real 3D data but generates waveform
synthetically. The LiDAR return is at 19.44 meters. ®les  1ass 194 tess 195 1955 196

Distance (meters)

Fig. 11: Histogram of signal detections with radar waveform

Wallace, Mukherjee, Toh, Ahrabian“Combining automotive radar
and LiDAR for surface detection in adverse conditions”, [ET
Proceedings on Radar, Sonar & Navigation. 2021;1-11
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Attentive Resource Allocation 00 Yo ®

> Resource
Allocation

Resource
Allocation

o0 '
.‘ J

Sometimes, you have to be attentive s . L @%

(as are humans when they drive cars)

We have used an attentive multi-objective
strategy based on utility theory to select
computational resource to selected sensors
and regions to perform processes
(recognise, estimate TTC etc.)

Fig. 15. TTC values for the example road traffic scene. The minimum TTC
inside each region is used as tpcc and drawn in HSV color space.

Example: Priority given to time to collision , , ,
Example: Attentive regional processing

Matzka, Wallace and Petillot, "Efficient Resource Allocation for Automotive Attentive Vision Systems",
|IEEE Transactions on Intelligent Transportation Systems, |3(2),859-872,2012
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Summary: Scratching the Surface

*  We have been looking at the use of surface data for autonomous vehicle and
driver assistance, primarily using sensor suites, to take advantage of
complementary strengths and weaknesses of Radar, LIDAR and Video data

« Highlights

1. Collected and distributed a labelled (200,000 actors) radar, LIDAR and
stereo dataset in all weathers

2. Simultaneous location and mapping using our ‘wild’ 79GHz radar data

3. Studies of object recognition using 300GHz (Lab) and 79GHz radar data

4. Driver behaviour prediction using benchmark birds-eye video and our
wild radar data

5. Dense depth map creation using concurrent sparse LiDAR and video data

6. Full waveform LiDAR analysis for seeing through obscuring media

* Fusion with 79GHz radar image data

7. Efficient, resource-saving processing using random laser projection,
parallel block processing and reduced precision (GPU and FPGA)

8. An attentive, multi-sensor processing architecture using utility theory and
multi-objective optimisation

* Finally, the devil is in the detail. I appreciate this talk has been light on detail
but all this work has been published or is under review.
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Are we making slow progress?

THEN (1993-97, first photon counting imaging LiDAR)

Wallace, Massa, Buller and Walker, "Laser ranging using time correlated single
photon counting", UK Patent GB 2 306 825 A, filed 18.10.95, first paper published
1997.

AND NOW (2021)

How Multi-Beam Flash Lidar Works | Ouster

“I'm excited to announce that Ouster has been granted foundational patents for
our multi-beam flash lidar technology ” (850nm)

“Ouster is the first company to commercialize a high performance SPAD (single
photon avalanche detector) and VCSEL (vertical cavity surface emitting laser)
approach.”

“The second chip in our flash lidar is our custom designed CMOS detector ASIC
that incorporates an advanced single photon avalanche diode (SPAD) array.”


https://ouster.com/blog/how-multi-beam-flash-lidar-works/
https://ouster.com/products/os1-lidar-sensor/

