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Better Performance through Resource-Elastic 

Dynamic Stream Processing on FPGAs

Dirk Koch, dirk.koch@ziti.uni-heidelberg.de
Heidelberg University (Germany), The University of Manchester (UK)
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 Security

(important but not the core of this talk)

 “Plumbing”

(How to implement infrastructure and user modules)

 Runtimes and Services

(APIs, programming models, drivers,…)

 Applications

(data analytics and database acceleration)

Dynamic FPGA Acceleration in Data Centers
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Scalar processing SIMD processing (e.g. GPU)multithreading

Dataflow processing / pipelining (FPGAs) Pipelining often better for global states

CPUs vs. GPUs vs. FPGAs
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FPGAs are more than updatable ASICs!

Database acceleration example

 ASIC-like (fixed) accelerators

often require an over-provisioning

(poor resource usage)

 Better: use FPGA reconfiguration

to just load currently needed modules

provides more resources to the 

currently running tasks (faster!)

 What about having a database or data analytics system where we can plug together 

operator modules to solve problems that we may only know at runtime?

 Dynamic Stream Processing (uses partial reconfiguration)

> + join sort mean

> +join sort>>in out

static design: PCIe, memory, filesystem,
management, reconfiguration
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GoAhead PR Design Flow

 The partial regions in a 

static system correspond

to (ISA/PCI) slots on a PCB

 Modules are the equivalent to

hot-swappable cards

 Properties:

 Static system and modules

implemented independently

 Simple integration through

netlist or bitstream linking

(including partial reconfiguration)

 Arbitrarily interchangeable
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ZUCL (running OpenCL on Zynq UltraScale+, FSP’18)
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GoAhead: a tool for implementing partially reconfigurable systems

 Partitioning between static and 
partial resources

 Communication synthesis

 Physical implementation scripts for the vendor tools
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The FOS (FPGA Operating System) Stack
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 Resource Elastic Virtualization for FPGAs for OpenCL

 Using aggressive reconfiguration to keep utilization high in a dynamic scenario

 Virtualization in the space-domain  
(time-domain fallback, if needed)

Resource Elastic Virtualization on FOS



10
10

FPGAs for Datacenters (H2020 ECOSCALE)

ECOSCALE demonstrator fully-populated 1u blade with

32 x Zynq UltraScale+ (ZU9EG with 16GB/FPGA or 512 GB/blade)

www.ecoscale.eu
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FPGAs for Datacenters

Partial reconfiguration allows moving 

compute to data  huge energy savings
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Dynamic Stream Processing
Integrated into FOS

 Run monolythic accelerators and...

 ...Run composable stream processing pipelines 

 supported by a DMA engine and

dedicated communication protocol

 Virtual streams

 Credit-based flow control

 Register-file read/write access
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Dynamic Stream Processing

Database acceleration example

 Build library with 

SQL operators

 Compose optimized 

datapath at run-time

 Blocking operators are

natural reconfiguration

point! 

 operators before and 

after a sorter run mutual

exclusive (never together)

> + join sort mean

> +join sort>>in out

static design: PCIe, memory, filesystem,
management, reconfiguration
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 Can run all TCP-H queries

 Modules with different area-performance/utility

tradeoffs

 Modules with different resource footprints

(improves placement for heterogeneous resources)

> + join sort mean

> +join sort>>in out

static design: PCIe, memory, filesystem,
management, reconfiguration

D
M

A

Dynamic Stream Processing
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Dynamic Stream Processing – Resource Elasticity

Resource Elasticity allows a runtime 

system to maximize throughput/utility

for the currently available resources. 

>

>>

H

>
GF

>
ED

>
CBA

>

prefetcher

RAM

sorted output

>

>>

>
p

re
fe

tc
h

e
r

RAM

>

>>

>

...

 Example Sorting: build larger

sorters from composable

accelerator PEs  more

work-per-run  fewer runs

(High-utility sorting can merge 

thosands of streams in one run!)

 Works for WHERE clauses

(number and complexity of 

clauses/regular expressions)

 JOIN: larger buffering reduces

runtime
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SELECT Sum(l_extendedprice * ( 1 - l_discount )) AS revenue
FROM lineitem,

part
WHERE ( p_partkey = l_partkey

AND p_brand = 'Brand#12'
AND p_container IN ( 'SM CASE', 'SM BOX', 'SM PACK', 'SM PKG' )
AND l_quantity >= 1
AND l_quantity <= 1 + 10
AND p_size BETWEEN 1 AND 5
AND l_shipmode IN ( 'AIR', 'AIR REG' )
AND l_shipinstruct = 'DELIVER IN PERSON' )
OR ( p_partkey = l_partkey

AND p_brand = 'Brand#23'
AND p_container IN ( 'MED BAG', 'MED BOX', 'MED PKG', 'MED PACK' )
AND l_quantity >= 10
AND l_quantity <= 10 + 10
AND p_size BETWEEN 1 AND 10
AND l_shipmode IN ( 'AIR', 'AIR REG' )
AND l_shipinstruct = 'DELIVER IN PERSON' )

OR ( p_partkey = l_partkey
AND p_brand = 'Brand#34'
AND p_container IN ( 'LG CASE', 'LG BOX', 'LG PACK', 'LG PKG' )
AND l_quantity >= 20
AND l_quantity <= 20 + 10
AND p_size BETWEEN 1 AND 15
AND l_shipmode IN ( 'AIR', 'AIR REG' )
AND l_shipinstruct = 'DELIVER IN PERSON' );

We can execute TCP-H Query 19,

Xilinx cannot (Vivado HLS) 
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Stream Processing Ecosystem

 Frontend

 Parser

 Middleware

 Scheduler

 Operation 

management

 Hardware

 Static

 Module library

(including variants for different placement positions and 

area-performance tradeoffs)
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Dynamic Stream Processing
Integrated into FOS

 Frontend:

 Parse SQL – PostgreSQL

 Create execution graph

 Middleware:

 Schedule modules - Branch and Bound

 Configure FPGA – Xilinx FPGA manager

 Initialise modules with generic drivers

 Hardware:

 Execute

 Collect results
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Resource-Elastic Dynamic Stream Processing

 FPGA acceleration allows us to tailor the I/O and memory subsystem to our problems

(e.g., we can sort thousands of streams in a single run, thereby minimizing #runs) 

design pattern fits to many big data stream processing problems and allows us to 

maximize the compute work per unit I/O (I/O is key for low power and for everything else)

 Our dynamic stream processing was demonstrated for SQL (and additional data 

analytics), video processing and some ML acceleration.

 Our modular approach is ideal for data scientists exploring various combinations of 

accelerator cores (you can plug bitstreams together in tens of milliseconds)

 Load accelerators as needed (e.g., dedicated de-compression for different data types)

 Take advantage of natural configuration points (again: sorting is a blocking operation)

 Our framework could work as a SQL / data analytics domain compiler (+ software stack)
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Contributors
Malte Vesper malte.vesper@manchester.ac.uk (SSD stream processing infrastructure & applications)

Kaspar Matas kaspar.matas@manchester.ac.uk (Middleware for dynamic stream processing)

Christian Beckhoff (GoAhead support)

Khoa Pham khoa.pham@manchester.ac.uk (HLS support for PR and runtime management)

Anuj Vaishnav anuj.vaishnav@manchester.ac.uk (Resource-elastic FPGA virtualization & cloud infrastructure)

Kristiyan Manev kristiyan.manev@postgrad.manchester.ac.uk (Resource-elastic stream processing)

Babis Kritikakis babis_k4@hotmail.com (Dynamic Dataflow on Maxeler)

Tuan La tuan.la@manchester.ac.uk (FPGA hardware security)

Joe Powell joe-powell@manchester.ac.uk (FPGA hardware security)

Dirk Koch dirk.koch@ziti.uni-heidelberg.de

Find all our projects on git: https://github.com/orgs/FPGA-Research-Manchester/

 GoAhead https://github.com/FPGA-Research-Manchester/GoAhead

 FOS https://github.com/FPGA-Research-Manchester/fos

 Dynamic Streams https://github.com/FPGA-Research-Manchester/OrkhestraFPGAStream

 FPGA Virus Scanning https://github.com/FPGA-Research-Manchester/FPGAVirusScanner
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One slide on our FPGA security work

 Sidechannel attacks: no real threat
(but fault injection, possibly Trojans)

 Power-Hammering Potential (Alveo U200)

 Oscilators and glitch amplifiers > 2 KW

 Wires > 5 KW

 Flops > 2 KW

 + BRAMs (write collisions), DSPs, Gbit transceivers...

 The sun emits ~63 MW / m2

 or ~6.3 KW / cm2
 The sun emits ~63 MW / m2

 or ~6.3 KW / cm2

 DoS attack on AWS F1

(we crashed >100 F1s, see TCHES 2021)

 Bitstream virus scanning

reject malicious designs (TRETS 2020)

 FPGA TEEs (FCCM 2021)

 FPGA health monitoring


