
1
1

Better Performance through Resource-Elastic

Dynamic Stream Processing on FPGAs

Dirk Koch, dirk.koch@ziti.uni-heidelberg.de
Heidelberg University (Germany), The University of Manchester (UK)

2

 Security

(important but not the core of this talk)

 “Plumbing”

(How to implement infrastructure and user modules)

 Runtimes and Services

(APIs, programming models, drivers,…)

 Applications

(data analytics and database acceleration)

Dynamic FPGA Acceleration in Data Centers

3

LD

ST

MUL

ADD

ROR

ACC

MUL

ADD

a2 a0 b2 b0

c2 c0

l2 l0k2 k0

y2 y0x2 x0

LD

ST

MUL

ADD

ROR

ACC

MUL

ADDST

ACC c1c3

x3

k3

a3

x1

k1

a1 b3

l3

y3 y1

l1
b1

LD

ST

MUL

ADD

ROR

ACC

MUL

ADD

a2 a0 b2 b0

c
2

c
0

l2 l0k2 k0

y2 y0x2 x0

LD

ST

MUL

ADD

ROR

ACC

MUL

ADDST

ACC c
1

c
3

x3

k3

a3

x1

k1

a1 b3

l3

y3 y1

l1
b1

LD

ST

MUL

ADD

ROR

ACC

MUL

ADD

a2 a0 b2 b0

c2 c0

l2 l0k2 k0

y2 y0x2 x0

LD

ST

MUL

ADD

ROR

ACC

MUL

ADDST

ACC c1c3

x3

k3

a3

x1

k1

a1 b3

l3

y3 y1

l1
b1

LD

ST

MUL

ADD

ROR

ACC

MUL

ADD

a2 a0 b2 b0

c2 c0

l
2

l
0

k
2

k
0

y2 y0x2 x0

LD

ST

MUL

ADD

ROR

ACC

MUL

ADDST

ACC c1c3

x3

k
3

a3

x1

k
1

a1 b3

l
3

y3 y1

l
1

b1

LD

ST

MUL

ADD

ROR

ACC

MUL

ADD

a2 a0 b2 b0

c2 c0

l2 l0k2 k0

y
2

y
0

x
2

x
0

LD

ST

MUL

ADD

ROR

ACC

MUL

ADDST

ACC c1c3

x
3

k3

a3

x
1

k1

a1 b3

l3

y
3

y
1

l1
b1

LD

ST

MUL

ADD

ROR

ACC

MUL

ADD

a2 a0 b2 b0

c2 c0

l
2

l
0

k
2

k
0

y
2

y
0

x
2

x
0

LD

ST

MUL

ADD

ROR

ACC

MUL

ADDST

ACC c1c3

x
3

k
3

a3

x
1

k
1

a1 b3

l
3

y
3

y
1

l
1

b1

LD

ST

MUL

ADD

ROR

ACC

MUL

ADD

b0a0

c0

k0 l0

x0 y0

ST

ACC

Scalar processing SIMD processing (e.g. GPU)multithreading

Dataflow processing / pipelining (FPGAs) Pipelining often better for global states

CPUs vs. GPUs vs. FPGAs

4

FPGAs are more than updatable ASICs!

Database acceleration example

 ASIC-like (fixed) accelerators

often require an over-provisioning

(poor resource usage)

 Better: use FPGA reconfiguration

to just load currently needed modules

provides more resources to the

currently running tasks (faster!)

 What about having a database or data analytics system where we can plug together

operator modules to solve problems that we may only know at runtime?

 Dynamic Stream Processing (uses partial reconfiguration)

> + join sort mean

> +join sort>>in out

static design: PCIe, memory, filesystem,
management, reconfiguration

5

GoAhead PR Design Flow

 The partial regions in a

static system correspond

to (ISA/PCI) slots on a PCB

 Modules are the equivalent to

hot-swappable cards

 Properties:

 Static system and modules

implemented independently

 Simple integration through

netlist or bitstream linking

(including partial reconfiguration)

 Arbitrarily interchangeable

6

ZUCL (running OpenCL on Zynq UltraScale+, FSP’18)

7

GoAhead: a tool for implementing partially reconfigurable systems

 Partitioning between static and
partial resources

 Communication synthesis

 Physical implementation scripts for the vendor tools

8

The FOS (FPGA Operating System) Stack

9

 Resource Elastic Virtualization for FPGAs for OpenCL

 Using aggressive reconfiguration to keep utilization high in a dynamic scenario

 Virtualization in the space-domain
(time-domain fallback, if needed)

Resource Elastic Virtualization on FOS

10
10

FPGAs for Datacenters (H2020 ECOSCALE)

ECOSCALE demonstrator fully-populated 1u blade with

32 x Zynq UltraScale+ (ZU9EG with 16GB/FPGA or 512 GB/blade)

www.ecoscale.eu

11
11

FPGAs for Datacenters

Partial reconfiguration allows moving

compute to data  huge energy savings

12

Dynamic Stream Processing
Integrated into FOS

 Run monolythic accelerators and...

 ...Run composable stream processing pipelines

 supported by a DMA engine and

dedicated communication protocol

 Virtual streams

 Credit-based flow control

 Register-file read/write access

13

Dynamic Stream Processing

Database acceleration example

 Build library with

SQL operators

 Compose optimized

datapath at run-time

 Blocking operators are

natural reconfiguration

point!

 operators before and

after a sorter run mutual

exclusive (never together)

> + join sort mean

> +join sort>>in out

static design: PCIe, memory, filesystem,
management, reconfiguration

14

 Can run all TCP-H queries

 Modules with different area-performance/utility

tradeoffs

 Modules with different resource footprints

(improves placement for heterogeneous resources)

> + join sort mean

> +join sort>>in out

static design: PCIe, memory, filesystem,
management, reconfiguration

D
M

A

Dynamic Stream Processing

15

Dynamic Stream Processing – Resource Elasticity

Resource Elasticity allows a runtime

system to maximize throughput/utility

for the currently available resources.

>

>>

H

>
GF

>
ED

>
CBA

>

prefetcher

RAM

sorted output

>

>>

>
p

re
fe

tc
h

e
r

RAM

>

>>

>

...

 Example Sorting: build larger

sorters from composable

accelerator PEs  more

work-per-run  fewer runs

(High-utility sorting can merge

thosands of streams in one run!)

 Works for WHERE clauses

(number and complexity of

clauses/regular expressions)

 JOIN: larger buffering reduces

runtime

16

SELECT Sum(l_extendedprice * (1 - l_discount)) AS revenue
FROM lineitem,

part
WHERE (p_partkey = l_partkey

AND p_brand = 'Brand#12'
AND p_container IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
AND l_quantity >= 1
AND l_quantity <= 1 + 10
AND p_size BETWEEN 1 AND 5
AND l_shipmode IN ('AIR', 'AIR REG')
AND l_shipinstruct = 'DELIVER IN PERSON')
OR (p_partkey = l_partkey

AND p_brand = 'Brand#23'
AND p_container IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
AND l_quantity >= 10
AND l_quantity <= 10 + 10
AND p_size BETWEEN 1 AND 10
AND l_shipmode IN ('AIR', 'AIR REG')
AND l_shipinstruct = 'DELIVER IN PERSON')

OR (p_partkey = l_partkey
AND p_brand = 'Brand#34'
AND p_container IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
AND l_quantity >= 20
AND l_quantity <= 20 + 10
AND p_size BETWEEN 1 AND 15
AND l_shipmode IN ('AIR', 'AIR REG')
AND l_shipinstruct = 'DELIVER IN PERSON');

We can execute TCP-H Query 19,

Xilinx cannot (Vivado HLS) 

17

Stream Processing Ecosystem

 Frontend

 Parser

 Middleware

 Scheduler

 Operation

management

 Hardware

 Static

 Module library

(including variants for different placement positions and

area-performance tradeoffs)

18

Dynamic Stream Processing
Integrated into FOS

 Frontend:

 Parse SQL – PostgreSQL

 Create execution graph

 Middleware:

 Schedule modules - Branch and Bound

 Configure FPGA – Xilinx FPGA manager

 Initialise modules with generic drivers

 Hardware:

 Execute

 Collect results

19

Resource-Elastic Dynamic Stream Processing

 FPGA acceleration allows us to tailor the I/O and memory subsystem to our problems

(e.g., we can sort thousands of streams in a single run, thereby minimizing #runs)

design pattern fits to many big data stream processing problems and allows us to

maximize the compute work per unit I/O (I/O is key for low power and for everything else)

 Our dynamic stream processing was demonstrated for SQL (and additional data

analytics), video processing and some ML acceleration.

 Our modular approach is ideal for data scientists exploring various combinations of

accelerator cores (you can plug bitstreams together in tens of milliseconds)

 Load accelerators as needed (e.g., dedicated de-compression for different data types)

 Take advantage of natural configuration points (again: sorting is a blocking operation)

 Our framework could work as a SQL / data analytics domain compiler (+ software stack)

20

Contributors
Malte Vesper malte.vesper@manchester.ac.uk (SSD stream processing infrastructure & applications)

Kaspar Matas kaspar.matas@manchester.ac.uk (Middleware for dynamic stream processing)

Christian Beckhoff (GoAhead support)

Khoa Pham khoa.pham@manchester.ac.uk (HLS support for PR and runtime management)

Anuj Vaishnav anuj.vaishnav@manchester.ac.uk (Resource-elastic FPGA virtualization & cloud infrastructure)

Kristiyan Manev kristiyan.manev@postgrad.manchester.ac.uk (Resource-elastic stream processing)

Babis Kritikakis babis_k4@hotmail.com (Dynamic Dataflow on Maxeler)

Tuan La tuan.la@manchester.ac.uk (FPGA hardware security)

Joe Powell joe-powell@manchester.ac.uk (FPGA hardware security)

Dirk Koch dirk.koch@ziti.uni-heidelberg.de

Find all our projects on git: https://github.com/orgs/FPGA-Research-Manchester/

 GoAhead https://github.com/FPGA-Research-Manchester/GoAhead

 FOS https://github.com/FPGA-Research-Manchester/fos

 Dynamic Streams https://github.com/FPGA-Research-Manchester/OrkhestraFPGAStream

 FPGA Virus Scanning https://github.com/FPGA-Research-Manchester/FPGAVirusScanner

21

One slide on our FPGA security work

 Sidechannel attacks: no real threat
(but fault injection, possibly Trojans)

 Power-Hammering Potential (Alveo U200)

 Oscilators and glitch amplifiers > 2 KW

 Wires > 5 KW

 Flops > 2 KW

 + BRAMs (write collisions), DSPs, Gbit transceivers...

 The sun emits ~63 MW / m2

 or ~6.3 KW / cm2
 The sun emits ~63 MW / m2

 or ~6.3 KW / cm2

 DoS attack on AWS F1

(we crashed >100 F1s, see TCHES 2021)

 Bitstream virus scanning

reject malicious designs (TRETS 2020)

 FPGA TEEs (FCCM 2021)

 FPGA health monitoring

