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Standard way of taking data: sweep a parameter

For example, if you want to measure the loss of quantum coherence, you perform a sequence 
of Ramsey experiments, sweeping the delay time over a pre-determined range:
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this data is “useless”



Adaptive measurement: use information from 
earlier measurement outcomes to estimate the 
a quantity and optimise parameters for later 
measurements in real-time
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Adaptive quantum sensing experiments



Adaptive Bayesian experiment design

(1) Easily include ALL information (imperfections, prior info, etc) available

decoherencephoton collection efficiency dark counts

Pr "0" ~ 1 + cos(𝜸𝑩𝑡 + 𝜑)
γ = 28 MHz/mT

Ideal likelihood:

(2) integrate online adaptation: 
Current 𝑃(𝐵) can be used to optimise settings for next measurement  

𝑃 𝐵 𝑚) ∝ 𝑷 𝒎 𝑩 𝑃(𝐵)



Our strategy is to maximise Fisher information:

Fisher information:

Cramer-Rao bound:

It’s an asymptotic bound, but it works well for simple cases of single-peaked distributions



(1) probability distribution Pk(x),
(encodes your knowledge about x)

(2) select value of k to make the most change to P(x),
(we use Fisher information).

(3) perform your measurement with optimal settings,
getting outcome m.

(4) update Pk(x) using Bayes rule, for outcome m

Summarising:



Our application: spin-based quantum sensors

magnetic interaction is

’localized’
(~ 1/r3)

r

spins need to be VERY close to interact

For (arbitrary) interaction strength of 100 kHz:
o e-spin/e-spin, r = 15 nm
o e-spin/13C nuclear spin, r = 1.2 nm

Since spins only interact 
when they are close by, 
one can achieve nanoscale 
spatial resolution!



optically-active

spin state can be read-out by a 
change in photoluminescence

paramagnetic ground state (S=1)

spin manipulation by microwave pulses

Our system: nitrogen-vacancy (NV) centre in diamond
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metastable state (lifetime >150ns) 
with strong spin-orbit coupling

What’s unique about the NV centre in diamond?
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+ 25 °C

Electron spin can be polarised and readout at room temperature:

ground state:
S=1 electronic spin



Quantum sensing modalities

Heriot-Watt’s ESRC Quantum Magnetometry facility,
DSTL project “Quantum magnetometry of complex 2D materials”



Nanoscale magnetic fields

Single spins are already being used as sensors in different fields:

Imaging of currents in an electronic chip
Phys. Rev. Applied 14, 014097 (2020)

Imaging vortices in superconductors
Nature Nanotech 11 (2016)



Detection of 27 individual 13C nuclei
in diamond
Nature 576, 411 (2019)

Image “viscous” flow of Dirac 
electron fluid in graphene
Nature 583, 537 (2020)

…just few examples from the tens of papers published every year



more luminescence
(~0.03 photons/shot)

less luminescence
(~0.02 photons/shot)

spin in ۧ|𝟎

spin in ۧ|𝟏

NV centres in diamond: room temperature readout + 25 °C

Recipe:
o shine green laser
o collect 

photoluminescence

A single shot does not give us the spin info, 
we need to repeat R (e.g. R=10,000) times

Bayesian framework:
we update using “we detected r photons in R trials”



Implementation: how do you store/process the probability distribution?

discretise probability distribution {xi}
(more obvious way: uniform discretization)

store {xi} in memory (not a big deal)

after each measurement, update all {xi}
(complexity O(N))

when you start, you know nothing
so you need a broad range

… as the measurement 
progresses, there are low-
probability regions which are 
useless, but still occupy
resources



Particle filtering (or sequential MonteCarlo) Bayesian update:

Re-sampling:

Used for quantum Hamiltonian learning by:

R Santagati et al, “Magnetic-Field Learning Using a 
Single Electronic Spin in Diamond with One-Photon 
Readout at Room Temperature”, Phys Rev X (2019)



Experiment idea

Muhammad

Ben

Christiaan

Real-time Micro-controller: Adwin Pro II
AWG: Zurich Instruments HDAWG4
Real-time feedback loop duration: 50us MJ Arshad et a, arxiv:2210.06103 (2022)



Electronics Detailed Schematic • Adwin (microcontroller) 
initiates experiment, reads 
out photon counts and 
provides optimised 
parameters

• ZI Arbitrary Waveform 
Generator controls the 
experimental apparatus 
and routes count signals to 
ADwin counters

RF switch
Filters out signal and 
normalization in NV 
time-resolved PL:

Here we have a 
difference in 
photon count 
based on the spin 
state

Here we have no 
spin-related 
difference (we can 
use this to detect 
system drifts –
“normalisation”)

Feedback loop: 50-100 microseconds



Example: measuring loss of quantum coherence

Decoherence: 
quantum systems lose their “quantumness” by interacting with the environment.
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Example: fluctuations in magnetic field induce 
fluctuations in spin precession frequency

The loss of quantum coherence can be 
generally described as:



Fisher Information for 𝑇1:

approximately: t_opt ~ 0.8*T1_est

How do you adaptively choose best settings?

Our approach: simple “analytical” near-optimal max(FI)
(formula needs to be simple for adaptive choice to be fast so that 

computations do not slow sensing down)

No analytical solution, Taylor expansion:



Experimental T2* estimation (averaged-readout with R=106 reps)

10x!!!



Experimental T2* estimation (averaged-readout with R=105 reps)



What should we optimise when sensing time is not constant?

A longer measurement that yields the same sensitivity as a shorter one should be penalised!

Instead of looking at variance, we can look at 
sensitivity, commonly defined as Var*T

From the Cramer-Rao bound:

Var * T > 
1∗𝑇

𝐹𝐼

Instead of maximising FI, let’s maximise:
FT = F/T



Multi-parameter estimation

The loss of quantum coherence can be generally described as:

decay exponent provides 
information about the statistics of 
the noise acting on the spin sensors

Can we estimate 𝛽 and 𝑇χ simultaneously?



Multi-parameter estimation

Problem: the determinant of the Fisher information is zero!

Why are 𝛽 and 𝑇χ correlated?

They are not. But with just one sensing time, they become 
correlated (one equation with two unknowns)

Solution: use two sensing times!



Multi-parameter estimation

Determinant of the Fisher information matrix:

Simple approximation for its maximum:



Multi-parameter estimation

MJ Arshad et a, arxiv:2210.06103 (2022)



What do we need this for?

Decoherence of the central spin can give us information about the local environment



What’s the longer-term 
vision for this?



Our lab’s goal: adaptive automated nanoscale magnetic resonance

Detecting nuclear spins is important…

Current limits:
- volume 40 um3

- number spins: 1013 Hz1/2

Solution: go NANO!

Use a single spin as nearby
quantum sensor and detect nuclear 
spins by their dipolar coupling
(statistical polarisation!)

See work from Taminiau (Delft), Degen (EH), Wrachtrup (Stuttgart)



Our lab’s goal: adaptive automated nanoscale magnetic resonance

The signal from many individual nuclear spins is complex, data acquisition is time-consuming:

(data from Taminiau group)



Our lab’s goal: adaptive automated nanoscale magnetic resonance

(1) Can we adaptively optimise data taking for each point?

(2) Can we adaptive take only the points that give more information?

(3) How do we automatically fit the data and then link hyperfine values to position (need DFT prior)?



Automating physics:
Learning models of quantum systems from data

Stewart Wallace Erik Gauger
(open quantum 
system theorist)

Yoann Altmann



Can we learn the model for two “cooperatively-emitting” quantum emitters? 

Data from Gerardot’s group at HWU
Zhe Xian Koong, Science Adv (2022)

Two quantum dots 
brought into resonance:

Independent emitters: Super-radiance:

Signatures

Lifetime:
Correlation (g2):



Can we learn the model for two “cooperatively-emitting” quantum emitters? 

Data from Gerardot’s group at HWU
Zhe Xian Koong, Science Adv (2022)

Experimental data:

o lifetime does not appear to be changed

o g2 shows a small peak

What is going on?



Again, using Bayesian inference 
(just a more complex algorithm known as Markov-chain MonteCarlo)

- method to sample a probability 
distribution

- a Markov-chain is used to walk across 
the parameters space

- every proposed move in parameters 
space can be accepted or rejected 
depending on how well it explains the 
data (Metropolis-Hastings algorithm)

10 parameters = 9 rates + background



Single emitter estimation (3 parameters)



Two emitters estimation (10 parameters)



Can we learn a Lindblad master equation without making assumptions?

ሶ𝜌 = −𝑖 𝐻, 𝜌 +

𝑣

(𝐿𝑣𝜌𝐿𝑣
† −

1

2
𝐿𝑣
† 𝐿𝑣, 𝜌 )

We are learning a differential equation of the form:

where the number of terms is unknown.

our approach:
reversible-jump MCMC



Can we learn a Lindblad master equation without making assumptions?

First results (showing goodness of fit for different models):

… work in progress …



Can we learn a Lindblad master equation without making assumptions?

General problem:
The size of quantum systems scales exponentially with size!

𝑁 quantum levels  ----->  matrix 2𝑁 × 2𝑁

e.g. already 256 (complex) parameters with 4 levels
This problem can only be solved in a scalable way with a quantum computer!



To conclude:

(1) Self-optimising experiments
Considerable speed-up for long measurements (nano-MRI for NVs)

(3) Capitalising on new instruments
“Programmable” AWGs (Zurich Instruments, Quantum Machines ), or 
directly FPGAs (for the brave)

(4) Other platforms?
This is obviously not restricted to NVs

(2) “Machine learning” can help physics
We can use most sophisticated tools to help us do physics 
(e.g. are there any alternative explanations for our data?)
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