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Background: Broadband Multichannel Signals

◮ Imagine data acquired by an array of M sensors;

◮ for spatially propagating signals, directional information is embedded in the
relative delay;
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◮ we typically need filters, not just complex gain factors, to process the signals xm[n],
m = 1, . . . ,M ;

◮ multichannel signals may also arise from single channel data through demultiplexing
— example: high speed analogue-to-digital converters.
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Task of Parallelisation

◮ Typically we want to perform some processing on the data: angle of arrival
estimation, beamforming, signal separation, enhancement, etc.;

x1[n]

x2[n]

y1[n]

y2[n]

proc. −→
x1[n]

x2[n]

y1[n]

y2[n]

T

T

proc.

T
H

T
H

◮ the aim is to transform the data to enable the execution of parallel processing tasks;

◮ parallisation can lead to computational efficiency, and also potentially a reduction of
the challenges.
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Broadband Processing

◮ To resolve broadband signals, a tap delay line of length L is applied to each sensor
output:
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Broadband Processing

◮ To resolve broadband signals, a tap delay line of length L is applied to each sensor
output:

x1[n]

xM [n]

...

s/p

s/p

4/15



Discrete Fourier Transform-Based Processing

◮ A popular approach is to perform L-point DFT matrices W, and then
perform independent processing in individual frequency bins;

◮ We apply an L-point DFT matrix W to the tap delay lines:
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◮ bins are treated independently; processing typically will be narrowband;

◮ optimal in terms of computational complexity;

◮ spectral coherence is neglected: suboptimal in terms of performance; reconstruction
can suffer.
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Are DFT Bins Independent?

◮ No — broadband signals generally are spectrally coherent;

◮ increasing the length L
of the DFT divides the
problem into a larger
number of smaller
problems;

◮ we have a finer
spectral resolution;

◮ but it does not reduce
the worst-case error.

Weiss, Proudler: “Comparing efficient broadband beamforming architectures and their performance trade-offs”, DSP,
2002.
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Filter Banks

◮ DFT downsides: (i) processing bins in isolation; (ii) performing narrowband
processing despite insufficient frequency selectivity:
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Filter Banks

◮ DFT downsides: (i) processing bins in isolation; (ii) performing narrowband
processing despite insufficient frequency selectivity:

◮ (ii) can be enhanced by using more selective filter banks, but the computational
complexity increases.
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Data-Dependent Filter Banks and Space-Time Covariance

◮ DFT and filter banks are data independent transforms;

◮ in the narrowband case, the Karhunen-Loeve transform (KLT) is optimum to decouple
data;

◮ space-time covariance matrix including explicit lags τ ∈ Z:

R[τ ] = E
{

x[n]xH[n− τ ]
}

= RH[−τ ] → R(z) =
∑

τ

R[τ ]z−τ = RP(z) = RH(1/z∗)

◮ R(z) is a matrix of functions, and parahermitian — and extension of being symmetric
/ Hermitian;

◮ the eigenvalue decomposition of R[0] yields the KLT — instantaeous decorrelation of
data.
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Parahermitian Matrix EVD

◮ Eigenvalue decomposition of a parahermitian matrix R(z) that is analytic in
z ∈ C [7, 8]:

R(z) = Q(z)Λ(z)QP(z) ; (1)

◮ the diagonal, parahermitian matrix Λ(z) = diag{λ1(z), . . . , λm(z)} contains the
unique analytic eigenvalues;

◮ the matrix of analytic eigenvectors,

Q(z) = [q1(z), . . . , qM (z)] , (2)

is paraunitary: Q(z)QP(z) = QP(z)Q(z) = I;

◮ eigenvectors unique up to arbitrary allpass functions ψm(z): ψm(z)qm(z) is also a
valid eigenvector corresponding to λm(z);

◮ different from the KLT, this decomposition diagonalised R(z) for every z.
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Example for a Parahermitian Matrix EVD

◮ R(z) with PhEVD factors q1,2(z) = [1,±z−1]T/
√
2, λ1(z) = z + 3 + z−1

and λ2(z) = jz + 3− jz−1;

◮ eigenvalues on the unit circle:
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◮ note: the eigenvalues have an algebraic multiplicity of two for Ω = π/4 and Ω = 5π/4.
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Processing Based on the Paraunitary Matrix

◮ A number of algorithms exist to compute or approximate the PhEVD [3,5, 1, 6, 9];

◮ these can be efficiently implemented [2];

◮ once computed, the paraunitary matrix can used to spatially decouple the data:
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◮ the output of the processor block QP(z) is strongly decorrelated;

◮ the processing can be performed on decorrelated signal components;

◮ spectral coherence is preserved — this can provide much enhanced perceptual
quality [4].
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PhEVD-Based Decoupling — Example

◮ Spherical microphone array data with M = 26 recording a single speaker in
omnidirectional noise;

◮ we compare a spherical harmonic transform (SHT) to KLT and PhEVD:
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Summary

◮ We have considered preprocessing in order to decouple broadband multichannel signal
processing tasks;

◮ processing in independent frequency bins is computationally optimal but suboptimal
in terms of performance — the worst-case error is typically does not dependent on the
DFT length;

◮ a parahermitian matrix eigenvalue decomposition can decouple the data; for the
instantaneous/narrowband case, this is equivalent to a Karhunen-Loeve transform;

◮ for a spherical microphone array and a speaker, apart from the decoupling, weak
(approximately noise-only) bands have been isolated;

◮ hence processing tasks can be parallelised, or even be suppressed if the decorrelated
subchannels are sufficiently weak in power.
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