

Deep Neural Networks II

Sen Wang

UDRC Co-Investigator Associate Professor in Robotics and Autonomous Systems Institute of Signals, Sensors and Systems Heriot-Watt University

UDRC-EURASIP Summer School

30th June 2021

Slides adapted from Andrej Karpathy, Kaiming He

Learning features for machines to solve problems

1

- Convolutional Neural Networks (CNNs)
- CNN Architectures learning features
- Some Deep Learning Applications problems
 - Object detection (image, radar, sonar)
 - Semantic segmentation
 - Object detection and tracking using radar and sonar
 - Visual odometry
 - 3D reconstruction
 - Semantic mapping
 - Robot navigation
 - Manipulation and grasping
 - 0

Deep Learning

Deep Learning: a learning technique combining layers of neural networks to **automatically identify features** that are relevant to the problem to solve

Deep Learning in Robotics

https://youtu.be/l8zKZLqkfll https://youtu.be/qhUvQiKec2U https://youtu.be/9j2a1oAHDL8 https://youtu.be/2N_wKXQ6MXA

2021 UDRC-EURASIP Summer School

-2-

Feed-forward Neural Networks

 \bullet \bullet \bullet

From Biological Neuron to Neural Network

Feedforward Neural Networks

• Feedforward Neural Networks or Multi-Layer Perceptrons (MLPs): fully-connected layers

Feedforward Neural Networks

 $a_1^2 = f(w_{1,1}^2 I_1 + w_{1,2}^2 I_2 + w_{1,3}^2 I_3 + b_1^2) \quad f(.) \text{ is an activation function}$ $a_2^2 = f(w_{2,1}^2 I_1 + w_{2,2}^2 I_2 + w_{2,3}^2 I_3 + b_2^2)$

a³₂?
2021 UDRC-EURASIP Summer School

Activation Functions f(*)

- activation function
 - o introduce non-linearity into the neural network

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Feedforward Neural Networks: Vector Formulation

Feedforward Neural Networks: Vector Formulation

$$a^{2} = f(W^{2^{T}}I + b^{2}) \quad a^{3} = f(W^{3^{T}}a^{2} + b^{3}) \quad O = f(W^{4^{T}}a^{3} + b^{4})$$

forward pass of a 3 layer feed-forward neural networks
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (sigmoid)
I = np.random.randn(3, 1) # random input vector
a2 = f(np.dot(W2, I) + b2) # first hidden layer activation
a3 = f(np.dot(W3, a2) + b3) # second hidden layer activation
0 = f(np.dot(W4, a3) + b4) # output

Convolutional Neural Networks (CNNs)

 \bullet \bullet \bullet

From MLPs to CNNs

- Feed-forward Neural Networks or Multi-Layer Perceptrons (MLPs)
 - many multiplications
- CNNs are similar to Feed-forward Neural Networks

 convolution instead of general matrix multiplication

$$S(i,j) = (I * K)(i,j)$$
$$= \sum_{m} \sum_{n} I(i+m, j+n)K(m,n)$$

CNNs

- 3 Main Types of Layers:

 convolutional layer
 activation layer
 pooling layer
- repeat many times

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Slides courtesy of Andrej Karpathy

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

consider a second, green filter

For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6

For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.

Q: how many parameters and multiplies would this be if we used a fully connected layer instead?

A: (32*32*3)*(28*28*6) = **14.5M parameters**, ~**14.5M multiplies**

For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:

CNNs: Activation Layer

- 3 Main Types of Layers:

 convolutional layer
 activation layer
 - pooling layer

CNNs: Pooling Layer

- 3 Main Types of Layers:

 convolutional layer
 activation layer
 - pooling layer

fully-connected layer

CNNs: A sequence of Convolutional Layers

CNN Architectures

 \bullet \bullet \bullet

Hand-Crafted Features by Human

Feature Engineering and Representation

Pervasive Data

Deep Learning: Representation Learning

Pervasive Data

LeNet - 1998

- Convolution for neural networks
- Fully-connected outputs
- weight-sharing is a key to reduce number of parameters

Foundation of modern ConvNets

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

"Gradient-based learning applied to document recognition", LeCun et al. 1998 2021 UDRC-EURASIP Summer School

AlexNet – 2012

8 layers: 5 conv and max-pooling + 3 fully-connected

LeNet-style backbone, plus:

- ReLU
 - Accelerate training
 - o better gradprop (vs. tanh)
- Dropout
 - Reduce overfitting
- Data augmentation
 - Image transformation
 - Reduce overfitting

"ImageNet Classification with Deep Convolutional Neural Networks", Krizhevsky, Sutskever, Hinton. NIPS 2012 2021 UDRC-EURASIP Summer School

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

"Very Deep Convolutional Networks for Large-Scale Image Recognition", Simonyan & Zisserman. arXiv 2014 (ICLR 2015) 2021 UDRC-EURASIP Summer School 33

VGG16/19 - 2014

Very deep ConvNet

Modularized design

- 3x3 Conv as the module
- Stack the same module
- Same computation for each module

Stage-wise training

• VGG-11 => VGG-13 => VGG-16

GoogleNet/Inception - 2014

22 layers Multiple branches

- e.g., 1x1, 3x3, 5x5 convolutions and pooling
- merged by concatenation
- Reduce dimensionality by 1x1 conv before expensive 3x3/5x5 conv (change num of channels)

Szegedy et al. "Going deeper with convolutions". arXiv 2014 (CVPR 2015)

2021 UDRC-EURASIP Summer School

Going Deeper

Simply stacking layers?

- Plain nets: stacking 3x3 conv layers
- 56-layer net has **higher training error and test error** than 20-layer net
- A deeper model should not have higher training error

Going Deeper

Cannot go deeper for deep neural networks

Problem:

deeper plain nets have higher training error on various datasets

Optimization difficulties:

- vanishing gradient
- solvers struggle to find the solution when going deeper

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

ResNets-2016

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016. 2021 UDRC-EURASIP Summer School

ResNets-2016

- Deep ResNets can be trained easier
- Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

ImageNet experiments

top 5 error %

DenseNets - 2017

- simply connect every layer directly with each other
 - each layer has direct access to the gradients from the loss function and the original input image
- DenseNets concatenate the output feature maps of the layer with the incoming feature maps.

$$x_{l} = H_{l}(x_{l-1})$$

$$x_{l} = H_{l}(x_{l-1}) + x_{l-1}$$

$$x_{l} = H_{l}([x_{0}, x_{1}, \dots, x_{l-1}])$$

G. Huang, Z. Liu and L. van der Maaten, "Densely Connected Convolutional Networks," 2017.

MobileNets - 2017

better accuracy vs better efficiency

Light-weight ConvNets for mobile applications using depthwise convolutions

Howard. et. al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 2017

EfficientNet - 2019

carefully design architecture to achieve top results with reasonable parameters

built upon a model (B0) from neural architecture search

Compound scaling: scale up network depth (more layers), width (more channels per layer), resolution (input image) simultaneously

EfficientNet-B7

- state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy
- 8.4x smaller and 6.1x faster on inference than the best existing ConvNet.

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." ICML 2019.

CNN Timeline

Deep Learning Applications

 \bullet \bullet \bullet

Deep Learning Applications

Object Detection and Recognition

Vision based: RCNN, Fast RCNN, Faster RCNN, YOLO, SSD,.....

46

Object Detection and Recognition

Radar and polarized sensor based object detection and recognition

Vehicle detection and recognition using radar [Sheeny 2021]

Pape

Heriot-Watt RADIATE Dataset

att RADIATE Dataset Home Documentation Downloads

Welcome to Heriot-Watt RADIATE Dataset Website

Multi-Modality Radar Dataset in Adverse Weather with Object Annotation

http://pro.hw.ac.uk/radiate/

Choose to Start

2021 UDRC-EURASIP Summer School

vehicle detection using polarised infrared sensors [Sheeny 2018] 48

Semantic Segmentation

FCN, SegNet, RefineNet, PSPNet,

Robot Navigation

Extra Resource

Book

Online Codes and Practice

- <u>https://codelabs.developers.google.com/</u>
- <u>TensorFlow, Keras and deep learning,</u> <u>without a PhD</u>

 <u>Build and deploy a custom object</u> <u>detection model with TensorFlow Lite</u> <u>(Android)</u>

Summary

- Deep Learning is a powerful tool
- Leveraging pre-trained models for feature extraction whenever possible (similar modality with smaller dataset)
- **Learning representation** is the key for Deep Learning

Thank you for your attention!

Dr. Sen Wang s.wang@hw.ac.uk