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Outline

Learning features for machines to solve problems

• Convolutional Neural Networks (CNNs)

• CNN Architectures - learning features 

• Some Deep Learning Applications - problems
o Object detection (image, radar, sonar)
o Semantic segmentation 
o Object detection and tracking using radar and sonar 
o Visual odometry
o 3D reconstruction
o Semantic mapping
o Robot navigation 
o Manipulation and grasping
o …………
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Deep Learning: a learning technique combining layers of 
neural networks to automatically identify features that are 
relevant to the problem to solve

test data

forward
prediction

trained DNN
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Deep Learning
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Deep Learning in Robotics
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https://youtu.be/l8zKZLqkfII 
https://youtu.be/qhUvQiKec2U 
https://youtu.be/9j2a1oAHDL8
https://youtu.be/2N_wKXQ6MXA

https://youtu.be/9j2a1oAHDL8
https://youtu.be/9j2a1oAHDL8


Feed-forward Neural Networks
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From Biological Neuron to Neural Network

Input

Sum(all inputs)

Output

Input
Output

f(all inputs)
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Feedforward Neural Networks

• Feedforward Neural Networks or Multi-Layer Perceptrons (MLPs): 
fully-connected layers

Input Layer
Output Layer

Hidden Layer
Hidden Layer
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Feedforward Neural Networks

a22 = f(w2
2,1I1 + w2

2,2I2 + w2
2,3I3 + b22)

a21 = f(w2
1,1I1 + w2

1,2I2 + w2
1,3I3 + b21) f(.) is an activation function
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Activation Functions f(*)

• activation function
o introduce non-linearity into the neural network
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Feedforward Neural Networks: Vector Formulation

a2 = f(W 2T I + b2)

a3 = f(W 3Ta2 + b3) O = f(W 4T
a
3 + b

4)
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a21 = f(w2
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Feedforward Neural Networks: Vector Formulation
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a2 = f(W 2T I + b2) a3 = f(W 3Ta2 + b3) O = f(W 4T
a
3 + b

4)



Convolutional Neural Networks 
(CNNs)
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From MLPs to CNNs

• Feed-forward Neural Networks or Multi-Layer 
Perceptrons (MLPs)
o many multiplications

• CNNs are similar to Feed-forward Neural Networks 
o convolution instead of general matrix multiplication
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CNNs

• 3 Main Types of Layers:
o convolutional layer
o activation layer
o pooling layer

• repeat many times

input layer

convolutional 
layer

activation layer

pooling layer

fully-connected layer

……….
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32

32

3

32x32x3 image

width

height

depth

CNNs: Convolution Layer

5x5x3 filter

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

14
Slides courtesy of Andrej Karpathy
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32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

CNNs: Convolution Layer
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32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

CNNs: Convolution Layer
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CNNs: Convolution Layer
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Stride is the number of pixels shifts over the input matrix.

Stride 2



CNNs: Convolution Layer
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2 important ideas:
• local connectivity
• parameter sharing



32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

CNNs: Convolution Layer
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32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

CNNs: Convolution Layer
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 of 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6

CNNs: Convolution Layer
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 of 5x5 filters, we’ll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.
Q: how many parameters and multiplies would this be if we used a fully 
connected layer instead?
A: (32*32*3)*(28*28*6) = 14.5M parameters, ~14.5M multiplies

CNNs: Convolution Layer
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 of 5x5 filters, we’ll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.
Q: how many parameters are used instead? --- And how many multiplies?
A: (5*5*3)*6 = 450 parameters, (5*5*3)*(28*28*6) = ~350K multiplies

CNNs: Convolution Layer

2 Merits:
• vastly reduce the amount of parameters/multiplies
• more efficient, smaller model size
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CNNs: Activation Layer

• 3 Main Types of Layers:
o convolutional layer
o activation layer
o pooling layer

input layer

convolutional 
layer

activation layer

pooling layer

fully-connected layer

……….
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CNNs: Pooling Layer

• 3 Main Types of Layers:
o convolutional layer
o activation layer
o pooling layer

• repeat many times

input layer

convolutional 
layer

activation layer

pooling layer

fully-connected layer

……….

makes the representations smaller and more manageable
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CNNs: A sequence of Convolutional Layers
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3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….
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24
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CNN Architectures
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Hand-Crafted Features by Human

Feature Extraction
(hand-crafted)

Activities, 
Context, …

Locations, 
Scene types,
Semantics, …

Objects, 
Structure, … 

InferencePervasive Data

time-series data

vision

point cloud
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Feature Engineering and Representation

29

vision

2563x800x600

point cloud

2?x?x?

Raw data 
≈

Bad Representation 

Pervasive Data

time-series data
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Deep Learning: Representation Learning

End-to-End Learning

Locations, 
Scene types, …

Activities, 
Context, …

Structure, 
Semantics, …

automatically learn effective
feature representation to solve the problem 

Inference

time-series data

vision

point cloud

Pervasive Data
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LeNet - 1998

31

• Convolution for neural networks
• Fully-connected outputs
• weight-sharing is a key to reduce number of parameters

“Gradient-based learning applied to document recognition”, LeCun et al. 1998

Foundation of modern ConvNets
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AlexNet – 2012

32

8 layers: 5 conv and max-pooling + 3 fully-connected

LeNet-style backbone, plus:
• ReLU

o Accelerate training
o better gradprop (vs. tanh)

• Dropout 
o Reduce overfitting 

• Data augmentation
o Image transformation
o Reduce overfitting

“ImageNet Classification with Deep Convolutional Neural Networks”, Krizhevsky, Sutskever, Hinton. NIPS 2012
2021 UDRC-EURASIP Summer School 



VGG16/19 - 2014
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Very deep ConvNet

Modularized design
• 3x3 Conv as the module
• Stack the same module
• Same computation for each module

Stage-wise training
• VGG-11 => VGG-13 => VGG-16

“Very Deep Convolutional Networks for Large-Scale Image Recognition”, Simonyan & Zisserman. arXiv 2014 (ICLR 2015)
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GoogleNet/Inception - 2014
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22 layers
Multiple branches
• e.g., 1x1, 3x3, 5x5 convolutions and pooling
• merged by concatenation
• Reduce dimensionality by 1x1 conv before 
expensive 3x3/5x5 conv (change num of channels)

Szegedy et al. “Going deeper with convolutions”. arXiv 2014 (CVPR 2015)
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Going Deeper
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Simply stacking layers?

• Plain nets: stacking 3x3 conv layers
• 56-layer net has higher training error and test error than 
20-layer net
• A deeper model should not have higher training error
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Going Deeper
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Problem:
deeper plain nets have higher training error on various datasets

Optimization difficulties: 
o vanishing gradient
o solvers struggle to find the solution when going deeper

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Cannot go deeper for deep neural networks
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ResNets-2016
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image 
Recognition”. CVPR 2016.

Residual netPlain net

gradients can flow directly through 
the skip connections backwards 
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ResNets-2016
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• Deep ResNets can be trained easier
• Deeper ResNets have lower training error, and also lower test 
error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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ImageNet experiments
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top 5 error %
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DenseNets - 2017 

• simply connect every layer 
directly with each other
o each layer has direct access to 

the gradients from the loss 
function and the original 
input image

• DenseNets concatenate the 
output feature maps of the 
layer with the incoming 
feature maps.

40

G. Huang, Z. Liu and L. van der Maaten, “Densely Connected Convolutional Networks,” 2017.
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MobileNets - 2017

41

better accuracy vs better efficiency
Light-weight ConvNets for mobile applications using depth-
wise convolutions

Howard. et. al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 2017

Multiply accumulate operation
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EfficientNet - 2019
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EfficientNet-B7 
• state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy 
• 8.4x smaller and 6.1x faster on inference than the best existing 

ConvNet.
Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." ICML 2019.

carefully design architecture to 
achieve top results with reasonable 
parameters

built upon a model (B0) from neural 
architecture search

Compound scaling: scale up network 
depth (more layers), width (more 
channels per layer), resolution (input 
image) simultaneously



CNN Timeline
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and many others 



Deep Learning Applications
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Deep Learning Applications
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Feature 
Extractor

Data
Feature
(feature from 

last Conv layer)

Application

Backbone 
network
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Object Detection and Recognition 
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Vision based: RCNN, Fast RCNN, Faster RCNN, YOLO, SSD,…..
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Object Detection and Recognition 
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Radar and polarized sensor based object detection and recognition

vehicle detection using polarised infrared sensors
[Sheeny 2018]

Vehicle detection and recognition using  radar
[Sheeny 2021]
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http://pro.hw.ac.uk/radiate/



Semantic Segmentation 
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FCN, SegNet, RefineNet, PSPNet, …..
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Robot Navigation
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Extra Resource

• https://codelabs.developers.google.com/
• TensorFlow, Keras and deep learning, 

without a PhD

• Build and deploy a custom object 
detection model with TensorFlow Lite 
(Android)
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Online Codes and Practice
Book

https://codelabs.developers.google.com/
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist
https://codelabs.developers.google.com/tflite-object-detection-android


Summary

• Deep Learning is a powerful tool
• Leveraging pre-trained models for feature extraction 

whenever possible (similar modality with smaller dataset)

• Learning representation is the key for Deep Learning

522021 UDRC-EURASIP Summer School 



Thank you for your attention!

Dr. Sen Wang
s.wang@hw.ac.uk




