
Maximum Chirplet Transform Code
These notes complement the Maximum Chirplet Transform Matlab code written by Fabien Millioz

and Mike Davies, last updated 2016. This is a software implementation of the Maximum Chirplet

Transform and its application to the detection of FMCW signals (piecewise linear chirps). Theory and

details of the technique can be found in:

F. Millioz and M. E. Davies, "Sparse detection in the chirplet transform: application to FMCW radar

signals," IEEE Transactions on Sig. Proc. vol 60(6), pp 2800 – 2813, 2012.

Please reference this paper in any publication that makes use of this software. Copyright, University

of Edinburgh 2016. Details of the code functions are given below along with a description of the

important variables and recommended settings for key parameters. Appendix A contains additional

notes on the code. The README file is reproduced for convenience in appendix B.

Main Function: chirpgathering

chirpgathering.m – This function takes the input signal and applies the chirplet transform to

the data generating a frequency-time-chirprate (f-t-c) representation. Such a representation is

redundant and the next step is to determine a sparse chirplet decomposition of the signal using

minimal computation. This is done through the detectionWinmax function.

The detection phase is a `light’ version of Matching Pursuit. We detect one chirplet at a time (the

largest) and then subtract a conservative estimate of its influence on this detection of subsequent

chirplets. Subtraction of the chirplet from the original signal would be costly so, instead, we subtract

an upper bound (winmax) from the Maximum Chirplet Transform (MCT) of the signal which in turn

is the maximum (over the chirprate) of the absolute value of the chirplet transform. The winmax

represents a conservative approximation of the influence of chirplets at one T-F point on

neighbouring points. Sequential detection is performed until there are no significant MCT values

above the noise floor. The noise level is determined through a spectral kurtosis based method.

The function is composed of a small number of subfunctions detailed below:

Chirplet Transform

The chirplet transform is computed in chirpletc.m (or for real signals chirplet.m can be

used). The output is a Frequency-Time-Chirprate Tensor. This indexing order is chosen so that when

vectorizing a Frequency-Time representation in Matlab the frequencies remain together in frames.

Maxwindow

The algorithm creates the maxwindow function used in detectionWinmax.m . This is used to

remove the energy leakage (correlation) into neighbouring TF bins from any detected chirplet. See

[Millioz and Davies 12] for details.

DetectionWinmax

The function estimates the noise level using the spectral kurtosis [Millioz and Martin, ICASSP, 2010]

of the signal’s spectrogram (the chirplet transform section with zero chirprate). It then sequentially

detects significant chirplets and masks out the leaked energy. The algorithm terminates once there

are no more significant chirplets to be detected. The algorithm uses a constant false alarm detection

strategy with a constant false alarm rate, pfa .

Gathering

The gathering.m function collects together detected chirplets to form individual linear chirps.

Chirplets are associated with existing chirps if they are in the proximity of the existing chirp (in time,

frequency and chirprate – see recommended parameters below). If there are multiple chirps that

match in proximity then the closest in frequency is selected. It is possible for the chirplet to still be

equally likely to be assigned to multiple chirps (particularly at crossing chirps). In this scenario the

code generates the following warning:

'Warning: ambiguity in chirplet assignation'

The code then assigns the chirplet arbitrarily to the first chirp in the list.

The final step in gathering.m is to post process the chirp list and to remove chirps that are likely

to be false positives. These are chirps with only a small number of window lengths in duration. In the

post processing step any chirp of length < 4*dt is removed where dt is the time between frames

(measured in number of samples). This is consistent with the recommended gathering parameter

choice: deltat=3*dt below. Thus it will not detect chirps that do not extend for more than 4

chirplet windows.

Sig_gathering

In the final stage we implement a simple greedy signal gathering algorithm in sig_gathering.m .

The algorithm assumes that all signals are piecewise continuous in TF and run from the start of the

data to the end, i.e. that they take the form of piecewise linear chirps. Since we do not look for

extreme chirprates we allow discontinuities in frequency.

The goal is to associate the end of each chirp with the start of another with the constraint that the

beginning of each chirp may only be associated with one other chirp. Initial association is done

through TF proximity with Time and Frequency given equal weighting (other weightings would be

possible):

��,� = � 1�	
��
 − ����	 + 1�	
��
 + ����	 	 , ∀� ≠ �

with � and � the number of time and frequency bins and ��
, ��
, ��
 and ��
 the time and

frequency bin positions of the start and end of chirp �. A secondary association is performed if chirps

are not close in TF using a time based criterion:

�′�,� = ���
 − ���� 	 , ∀� ≠ �

This allows the connection of chirps with time proximity and discontinuities in frequency.

The set of starting chirps are identified and define the start of the output signals. Then each chirp is

sequentially assigned to one of these signals or left unassigned (signal number =0).

Note: no information about the periodicity or similarity of chirprates has been used. Clearly more

sophisticated chirp gathering algorithms would be possible.

Recommended Parameter Settings
There are a number of parameters that need to be set for this algorithm. Below we give our

recommendations on how to select these values:

wlen This variable controls the length of the TF analysis window, ���� , whose type is

defined by typef . Ideally this should be of the order of the smallest linear chirp

component in the FMCW signals that we are interested in detecting. The longer

the window the more coherent gain that we will have. This will improve the SNR

at which detection is possible. However longer window lengths require a finer

sampling of the chirprate (and hence larger nbcr – see below). This can

significantly increase the computation of the chirplet transform.

typef window type used in analysis:

 'r' = 'Rect'

 'k' = 'Kaiser',4

 'h' = 'Hanning'

 'hm' = 'Hamming'

 'b' = 'Blackman'

 'g' = 'Gauss' [DEFAULT if variable not assigned]

The window should be symmetric and normalized such that max(win) = 1.0.

pfa The pfa determines the target probability of false alarm for the individual T-F

chirplet detections (this will be a slight underestimate for chirplets detected later

in the process due to the correlation in the coefficients – see paper). We have

found that setting this at 1e-3 gives a good compromise between too many false

detections and too few. As this is only the low level PFA we are able to remove

many of these false alarms through the chirp and signal gathering stages where

isolated chirplets are rejected.

nbcr One of the main contributions of the paper is to identify the natural discrete

sampling for the chirprate that is dependent on the TF analysis window.

Specifically we recommend the chirprate discretization to be:

Δ" =	2 ∗ CRmaxnbcr − 1 ≈ 2/∑ ���� 1 2	

Rearranging in terms of code variables we get:

nbcr ≈ 1 + CRmax	 ∗ 34 ���� 1 5	

Finally note that for Hann window we have /∑ ���� 1 2	 ≈ 0.25 ∗ wlen	. This

chirprate discretization ensures that the winmax function is a good

approximation of the chirplet leakage into neighbouring frequency bins.

CRmax

This is the maximum (positive or negative) normalized chirprate used in the

chirplet transform. This is normalized to a sampling rate of unity. Hence a chirp

signal with ramp time of 500μs and Δ> = 150MHz sampled at BC = 500MHz

would have a normalized chirprate of: DE	 = 	 F.G	.H×JFK = 1.2e-6.

 We should therefore select CRmax to be larger than the maximum anticipated

chirprate,

CRmax ≥ 	 |Δ>|NOP1Q × BR	

It is possible with slightly reduced performance to search for chirps with a rate

higher than CRmax (by setting flag=1 in gathering.m). This allows us to

reduce the computational load by reducing the number of chirprates that need to

be calculated in the Chirplet transform. See the discussion in [Millioz and Davies

2012].

deltat The time proximity threshold for matching detected chirplets to existing chirps.

this value is fixed (in gathering.m) to deltat=3*dt where dt is the time

between frames (measured in number of samples). WARNING: deltat is also

used in sig_gathering.m and separately defined.

deltac The chirprate proximity threshold for matching detected chirplets to existing

chirps. In the code this value is fixed (in gathering.m) to deltat=1.5* Δ".

deltaf The frequency proximity threshold for matching detected chirplets to existing

chirps. In the code this value is fixed (in gathering.m) to:

deltaf=max(df, deltac*deltat/2);

 where df is the frequency resolution of the chirplet transform.

Appendix A

Notes

1. In the current implementation the FMCW signals are assumed to span the full duration of

the data. Therefore it is not suitable for the detection of signals such as pulsed radar signals

that only span part of the signal. However it would be possible to easily adapt the algorithm

to deal with such a scenario.

2. The noise in the signal is assumed to be white and Gaussian. Noise level is not assumed

known and is estimated using the spectral kurtosis of the minimal statistics [Millioz and

Martin, ICASSP, 2010]. A constant false alarm rate (CFAR) detection strategy is then adopted

based on this noise estimate (this is within detectionWinmax.m). Other forms of noise level

estimation and CFAR detection could be implemented, including local variance estimation as

in classical cell-averaging CFAR detectors.

3. The calculation of the upper bound window in chirpgathering.m (using function

maxwindow.m) is data independent and so for a real time implementation could be

performed off-line and stored in memory.

Appendix B
Main code functions and scripts as given in the rea dme file:

Main program: chirpgathering.m
Example use is in: miniscript.m

Each script has a help showing how to use the funct ion

In Matlab : >> help <function>

chirpgathering.m Main program, calls a chirplet tra nsform, a

computation of the maximum window, a
detection, a gathering into chirps.

 Note: doesn't gather into signal

Note2: a flag may be set in the script to
gather chirps over maximal chirprate

Note3: the detection used is based on the
maximum window (a pseudo-Matching Pursuit
approach)

chirpletc.m Chirplet transform for complex signal (all
frequencies)

chirplet.m Chirplet transform for real signals (hal f
frequencies)

chirpprofilec.m Creation of a complex signal made o f piecewise
linear chirplets

detectionWinmax.m Detection using a pseudo-MP appro ach (cf
[Millioz and Davies 2012])

gathering.m Gathering of the chirplets into chirps
sig_gathering.m Gathering of the chirps into signa ls
id2ids.m Translation of Matlab index into set of

coordinates
maxwindow.m Computation of the maximal window
tftb_window.m Generates the Time-frequency analysis window

used in the chirplet transform. This function
is written by F. Auger, June 1994 - November
1995, copyright (c) 1996 by CNRS (France), and
is freely available under the terms of the GNU
General Public License

Auxiliary display functions:

dispchirp.m Display of the selected chirps or chir plets
dispsig.m Adaptation of dispchirp to plot the sig nal

Example code:

miniscript.m Example script

