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This talk is about

Expectation Propagation

3. Applications — EP for scalable imaging inverse problems
» how to construct an EP algorithm to solve image inverse problems

» how to achieve scalable posterior approximation

» toy examples and applications

4. Conclusion

By the end of this talk,

you will know how to implement your own EP algorithm to:

uncertainty

observation

&

estimate

grayscale image
denoising

1. grayscale image

color image
restoration

2. color image

multispectral Lidar
anomaly detection

>

3. multispectral image
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Linear inverse problems in imaging

l'intractable high-dimensional posterior in Bayesian estimation : p(a:|y) — fy"” (y|Hm) fo (m|9)
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Application 1: scalable image restoration using EP with patch-based GMM prior

Image denoising gz = [R 226?256
MAP- MAP - EP-
LIDIA [1] BM3D [2] GMM [3] GMM [4] CMM
Cameraman
10/255 - 34.12 33.99 33.94 34.04
15/255 32.41 31.90 31.79 31.65 31.71
20/255 - 30.45 30.36 30.10 30.19
25/255 2991 29.21 29.04 28.77 28.83
30/255 - 28.61 28.34 27.99 28.09
50/255 26.83 25.39 25.08 24.55 24,52
House
10/255 - 36.79 35.77 35.79 35.82
15/255 35.09 34.97 34.18 34.06 34.12
20/255 - 33.83 33.05 32.75 32.82
25/255 33.08 3291 32.14 31.66 31.72
30/255 - 32.08 31.25 30.60 30.68
50/255 30.14 29.45 28.91 27.91 27.82
Lena
10/255 - 33.95 33.66 33.66 33.67
15/255 32.27 31.93 31.61 31.53 31.56
207255 - 30.41 30.18 30.04 30.05
25/255 2991 29.45 29.28 29.05 29.05
30/255 - 28.62 28.44 28.15 28.13
50/255 26.86 26.18 25.99 25.55 25.44

EP estimate

uncertainty

16/26
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step 1. compute ]Em-lted[ 2} tilted po(z) = f(z) ¢ (x)
T
1 -4 (
po(z) = 5y " Nlzy,0)
=w Ny (#5p-,02) +w N (z31,07)
W—- fQylz) (@) f(z) z
a1 (z) qo (z)

step 2. moment matching E, [z] = Emted{ '762}
T

= |:,LL2 i 0_2} = Biea L:Q}
q(z)
¢ (x)

step 3. update 4 (z) x

= (o,0¢)




3. Applications — EP for scalable imaging inverse problems 17/2 6
» how to construct an EP algorithm to solve image inverse problems

» how to achieve scalable posterior approximation

> toy examples and applications

Toy example 2: 1d sparse prior (Gaussian likelihood + Laplace prior)

= Bayesian model: p(zly) < f(ylz) f(x) = EP approximation: ¢(z) =~ p(x|y) q(z) = N(z;p,0?)

Gaussian likelihood: f(y|z) = N(y;z,07)

1 8
21 °

q.(z) = f(z) = N(z;y,0%) (no approximation)
g () = argmin KL(f(z)q (2)||g(x))

00 (@) = N(z; 1, 02)

step 1. compute ]Em-lted[ i} tilted po(z) = f(z) ¢ (x)
z

Laplace prior: f(z) =

—exact likelihood —exact prior f(x)
—EP approx q0(x)

_1 ’% . 2
po(.’E) _ﬁe N(%Z/aff )

=w Ny (#5p-,02) +w N (z31,07)

T
— Etilted |: 2j|
X

W— [Qylz)

¢ (z) o ()

step 2. moment matching E, [z] = Emted{ '762}
T

= |:,LL2 i 0_2} = Biea L:Q}
q(z)
¢ (x)

step 3. update 4 (z) x

= (o,0¢)
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e = Image denosing/deconvolution/CS

total variation prior: f,(2|@) o« e *™®  TV(x) = lei+1,j — Zi | T — T
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Application 2: fast scalable image restoration using EP with TV prior

e = Image denosing/deconvolution/CS

total variation prior: f,(2|@) o« e *™®  TV(x) = lei+1,j — Zi | T — T

Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) or P(Hm)
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Application 2: fast scalable image restoration using EP with TV prior

o0 = Image denosing/deconvolution/CS

e total variation prior: f,(2|@) o« e *™®  TV(x) = Z |Ti1 5 — | @iy i1 — T
O i,J

/ Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) or P(Hz)
( )
/ P exact posterior: p (zly) x f,.(y|Hz) f, (z|0)
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Application 2: fast scalable image restoration using EP with TV prior

e = Image denosing/deconvolution/CS

(t N N

T total variation prior: f,(2|@) o« e *™®  TV(x) = Zm“,j — X T 01— T
O i,J
Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) or P(Hz)
( ( )
/ S exact posterior: p (zly) x f,.(y|Hz) f, (z|0)
—<r O—O—0—C—"_~ how to factorize: f,(z|0) H e e
(i) €V
x H e—)\|wi—:1:]~| H e—)\|$¢—zj| H 8_)\%_%" H e—)\|zi—xj
v (3,5) €V, (4,5) € Vs (4,5) € Vs (4,5) €V,

O—
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Y NS \.)

—-O0—0O

T
N
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@
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)
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)
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Application 2: fast scalable image restoration using EP with TV prior

<t =0 = Image denosing/deconvolution/CS
TV total variation prior: f,(2|@) o« e *™®  TV(x) = Z |Ti1 5 — | @iy i1 — T
e > i
Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) or P(Hz)
( ( )
/ P exact posterior: p (zly) x f,.(y|Hz) f, (z|0)
—<r O—O—0—C—"_~ how to factorize: f,(z|0) H o N =] =
(i) eV (i,j)e\i‘.
qo.1(2) = N(@; po.1,B0.1)
v (i,5) €V, (4,5) € Vs (i,5) € Vs (i,5) €V, (J;[L_ue o
T, —x,€V, z—z;€V, Y fy (y|H:c) > go.2 (&) = N(@; o2, Ea 2)
(t) /;\ O O a(x) =Nz, 1) H e')‘|w‘_$j|
(i,7) € Vs
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Application 2: fast scalable image restoration using EP with TV prior

DS = Image denosing/deconvolution/CS
<t T total variation prior: f,(2|@) o« e *™®  TV(x) = Z |Ziv1,— Zig| @i 01— T
? | i Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) orl%?(H:n)
/ & exact posterior: p (zly) x f,.(y|Hz) f, (z|0)

how to factorize: f, (x|0) H ¢ N3]

(i,5) €V

\/ i:5) €V, (i5) €V (1.3) €y
oo O
i N N | _- how to compute:
T
O—O )

@
O—O—0—(O0——0O
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£y
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O—0O
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<t =9 = Image denosing/deconvolution/CS
TV total variation prior: f,(2|@) o« e *™®  TV(x) = Z |Tiv1,;— Zij| @i 1 — T
e > i
Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) or P(Hz)
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/ ) exact posterior: p (zly) x f,.(y|Hz) f, (z|0)
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Application 2: fast scalable image restoration using EP with TV prior

<t =9 = Image denosing/deconvolution/CS
O—0 . - . _
T 7 71 total variation prior: f,(2|@) o« e *™®  TV(x) = E |Tiv1;— Tij| T |Tij 1 — i
O ) i,j
. . . _ . 2
C | ) Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) or P(Hz)
/ ? exact posterior: p (zly) x f,.(y|Hz) f, (z|0)
—<r O—O—0—0—"_ " how to factorize: f,(z|0) x H e M=l [
G,f) eV Gper
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<t =9 = Image denosing/deconvolution/CS
O—0 . - . _
T 7 71 total variation prior: f,(2|@) o« e *™®  TV(x) = E |Tiv1;— Tij| T |Tij 1 — i
O ) i,j
. . . _ . 2
C | ) Gaussian likelihood: f,, (y|Hz) = N(y;Hz,0?) or P(Hz)
/ ? exact posterior: p (zly) x f,.(y|Hz) f, (z|0)
—<r O—O—0—0—"_ " how to factorize: f,(z|0) x H e M=l [
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Application 2: fast scalable image restoration using EP with TV prior

. . 165x 165
Image denoising ¢ = R>12*°12 Image deconvolution € R
cmmmmmmm—mm L e .
Noisy observation Y i EP I MCMC VB Blur observation Y EP i  MCMC VB
PSNR: 17.69 dB | PSNR: 18.48 dB

PSNR: 22.66 dBi PSNR: 21.58 dB. PSNR: 22.69 dB PSNR: 22.97 dB} PSNR: 22.97 dB PSNR: 22.94 dB

estimate estimate
800 7 04
600
uncertainty ,,, uncertainty oy

SRR

200 5 S

0 : Vebhiats v . RGN G
CPU computational time:: 0.3 seconds |  14.3 hours 25 seconds CPU computational time:L 40 seconds : 1 hours 42 seconds

Dan Yao, Stephen McLaughlin, and Yoann Altmann. “Fast Scalable Image Restoration using Total Variation Priors and Expectation Propagation,“ Arxiv. https://doi.org/10.48550/arxiv.2110.01585



https://doi.org/10.48550/arxiv.2110.01585
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observation y recovered color image
single band

uncertainty

low photon-count

Poisson noise
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"

observation y recovered color image uncertainty
single band )
low photon-count ¢, —norm TV prior: f, ((B|9) X fy (wR|9R) [z ($G|0G) [z (mB|OB)

Poisson noise Poisson likelihood: f,, (yHx) = PHzrzr + Hexe + Hpxp)
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Application 3: color image restoration in the low-photon count regime

observation y recovered color image uncertainty
single band
low photon-count 61 —norm TV pI'iOI‘: fx ((B|9) X fm (wR|0R) fx (wG|0G) fx (mB|OB)
Poisson noise Poisson likelihood: f,, (yHx) = P(Hzxzz + Hoxe +Hpxp)

exact posterior: p (g, Zq,xs|y) < f,.(yHz)f. (x|0)
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Application 3: color image restoration in the low-photon count regime _
_ @ £, — TV prior (\y)]
= — = ] Al ] e

4
H qu_n (:‘BR,k)
E=1

P(HR$R+H0$G+H3$3) @ 51_TVPTT;0'F ()\G)|
1
T T T
¢ (zr) q (x6) ¢ () Hq%‘u(w(;.k)
k=1

observation y recovered color image uncertainty
single band @ 4 _4TVPMOT )|
low photon-count el — norm TV prior: fw (w|9) X fm (wR|0R) fx (wG|0G) fac (mB|eB) quuu(mﬂk)
Poisson noise Poisson likelihood: f,, (yHx) = P(Hzxzz + Hoxe +Hpxp) o

exact posterior: p (g, Zq,xs|y) < f,.(yHz)f. (x|0)
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Application 3: color image restoration in the low-photon count regime _
@ £, — TV prior (\y)]
: — R A BF fh

4
H qu_n (:‘BR,k)
E=1

P(HR$R+H0$G+H3$3) @ 51_TVP""7;0'F ()\G)|
1
T T T
¢ (zr) q (x6) ¢ () Hq%‘u(w(;.k)
k=1

observation y recovered color image uncertainty
single band @ 4 _4TVPMOT )|
low photon-count el — norm TV prior: fx (w|9) X fm (wR|0R) fx (wG|0G) fac (m3|93) quuu(mﬂk)
Poisson noise Poisson likelihood: f,, (yHx) = P(Hzxzz + Hoxe +Hpxp) o

exact posterior: p (g, Zq,xs|y) < f,.(yHz)f. (x|0)
scalability:
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. |

@ ¢, — TV prior (\s)|
4
quﬁ_n (:‘BR,k)
k=1

PMHrzr +Hexe + Hpxp) @ ¢, — TV prior (\o)|
1
T T T
¢ (xr) g1 (z6) n (z5) quc;‘u(wc\k)
k=1

observation y recovered color image uncertainty
single band @ 4 _4TVPMOT )|
low photon-count gl — norm TV prior: fz (w|9) X fm (wR|0R) fa: (wG|0G) fx (m3|93) quuu(mﬂk)
Poisson noise Poisson likelihood: f,, (yHx) = P(Hzxzz + Hoxe +Hpxp) o

exact posterior: p (g, Zq,xs|y) < f,.(yHz)f. (x|0)

scalability: 1. parallel update of approximating factors over R,G,B channels in likelihood

2. parallel update of approximating factor over R,G,B channels in the prior
3. automatic hyperparameter estimation over R,G,B channels
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_ @ ¢, — TV prior (\s)|
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k=1

observation y recovered color image uncertainty
single band @ 4 _4TVPMOT )|
low photon-count gl — norm TV prior: fz (w|9) X fm (wR|0R) fa: (wG|0G) fx (m3|93) quuu(mﬂk)
Poisson noise Poisson likelihood: f,, (yHx) = P(Hzxzz + Hoxe +Hpxp) o

exact posterior: p (g, Zq,xs|y) < f,.(yHz)f. (x|0)

scalability: 1. parallel update of approximating factors over R,G,B channels in likelihood
2. parallel update of approximating factor over R,G,B channels in the prior
3. automatic hyperparameter estimation over R,G,B channels
4
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true color image observation Y

o= R512><512><3 (channels)

Dan Yao, Stephen MclLaughlin, and Yoann Altmann. “Color Image Restoration in the Low Photon-Count Regime using Expectation Propagation," |EEE International Conference in Image Processing 2022 (accepted).
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Dan Yao, Stephen McLaughlin, Yoann Altmann, Michael E Davies. “Joint Robust Linear Regression and Anomaly Detection in Poisson noise using Expectation-Propagation”, 28th European Signal Processing Conference (EUSIPCO).
2021. pp. 2463-2467. https://doi.org/10.23919/Eusipco47968.2020.9287355

Yoann Altmann, Dan Yao, Stephen McLaughlin, Michael E Davies. “Robust Linear Regression and Anomaly Detection in the Presence of Poisson Noise Using Expectation-Propagation”, Advances in Condition Monitoring and
Structural Health Monitoring: WCCM 2019 (pp. 143-158). Springer. https://doi.org/10.1007/978-981-15-9199-0_14
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Other applications:

Model selection:
K. Drummond, D. Yao, S. McLaughlin, A. Pawlikowska, R. Lamb, Y. Altmann. ‘Efficient joint surface detection and
depth estimation of single-photon Lidar data using assumed density filtering’ , Submitted to SSPD 2022.

Online processing:

Y. Altmann, S. MclLaughlin, Michael E Davies. ‘Fast Online 3D Reconstruction of Dynamic Scenes from Individual
Single-Photon Detection Events’, IEEE Transactions on Image Processing, vol. 29, pp. 2666-2675, 2020, doi:
10.1109/TIP.2019.2952008.
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Some EP references

= EP tutorial videos:
1. Thomas Minka: Approximate Inference http://videolectures.net/mlss09uk _minka_ai/

2. Simon Barthelmé: The Expectation-Propagation algorithm: a tutorial - Part 1 https://youtu.be/0OtomU1g3AdY

= Homepages:
1. Thomas Minka
A roadmap to research on EP https:/tminka.github.io/papers/ep/roadmap.html

2. Matt Wand
Statistics Methodology and Theory http://matt-wand.utsacademics.info/statsPapers.htm|

3. José Miguel Hernandez-Lobato
Scalable methods for approximate inference https://jmhl.org/publications/

4. Matthias Seeger, Young-Jun Ko
Scalable variational approximate inference algorithms https:/mseeger.github.io/

5. Yoann Altmann
Our group https://yoannaltmann.weebly.com/publications.html
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Thanks for you attention !
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