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▪ KL divergence minimization in EP
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This talk is about

1. Problem formulation and challenges
➢ Imaging inverse problems

➢ Bayesian estimation strategy

➢ challenges 

2. Solution – EP for approximate Bayesian inference
➢ basic idea

➢ KL divergence minimization

➢ factor graph

3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

4. Conclusion

14

By the end of this talk, 

you will know how to implement your own EP algorithm to:



Go back to the high-dimensional 

15
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Dan Yao, Stephen McLaughlin, and Yoann Altmann. “Fast Scalable Image Restoration using Total Variation Priors and Expectation Propagation,“ Arxiv. https://doi.org/10.48550/arxiv.2110.01585
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19/26

https://doi.org/10.48550/arxiv.2110.01585


3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

observation

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

observation

single band

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

observation

single band

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

20/26



3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

20/26



scalability:

3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

20/26



scalability:

3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

1. parallel update of approximating factors over R,G,B channels in likelihood
2. parallel update of approximating factor over R,G,B channels in the prior
3. automatic hyperparameter estimation over  R,G,B channels

20/26



scalability:

3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

Application 3: color image restoration in the low-photon count regime

low photon-count

Poisson noise

observation

single band

recovered color image uncertainty

25

1. parallel update of approximating factors over R,G,B channels in likelihood
2. parallel update of approximating factor over R,G,B channels in the prior
3. automatic hyperparameter estimation over  R,G,B channels

20/26



Dan Yao, Stephen McLaughlin, and Yoann Altmann. “Color Image Restoration in the Low Photon-Count Regime using Expectation Propagation," IEEE International Conference in Image Processing 2022 (accepted).
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Dan Yao, Stephen McLaughlin, Yoann Altmann, Michael E Davies. “Joint Robust Linear Regression and Anomaly Detection in Poisson noise using Expectation-Propagation“, 28th European Signal Processing Conference (EUSIPCO). 
2021. pp. 2463-2467. https://doi.org/10.23919/Eusipco47968.2020.9287355

Yoann Altmann, Dan Yao, Stephen  McLaughlin, Michael E Davies. “Robust Linear Regression and Anomaly Detection in the Presence of Poisson Noise Using Expectation-Propagation“, Advances in Condition Monitoring and 
Structural Health Monitoring: WCCM 2019 (pp. 143-158). Springer. https://doi.org/10.1007/978-981-15-9199-0_14
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Other applications:

Model selection: 
K. Drummond, D. Yao, S. McLaughlin, A. Pawlikowska, R. Lamb, Y. Altmann. ‘Efficient joint surface detection and 
depth estimation of single-photon Lidar data using assumed density filtering’ , Submitted to SSPD 2022.

Online processing: 
Y. Altmann, S. McLaughlin, Michael E Davies. ‘Fast Online 3D Reconstruction of Dynamic Scenes from Individual 
Single-Photon Detection Events’, IEEE Transactions on Image Processing, vol. 29, pp. 2666-2675, 2020, doi: 
10.1109/TIP.2019.2952008.

3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

29

24/26



This talk is about

1. Problem formulation and challenges
➢ Imaging inverse problems

➢ Bayesian estimation strategy

➢ challenges 

2. Solution – EP for approximate Bayesian inference
➢ basic idea

➢ KL divergence minimization

➢ factor graph

3. Applications – EP for scalable imaging inverse problems
➢ how to construct an EP algorithm to solve image inverse problems

➢ how to achieve scalable posterior approximation

➢ toy examples and applications

4. Conclusion
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By the end of this talk, 

you will know how to implement your own EP algorithm to:
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▪ EP tutorial videos:
1. Thomas Minka: Approximate Inference http://videolectures.net/mlss09uk_minka_ai/

2. Simon Barthelmé: The Expectation-Propagation algorithm: a tutorial - Part 1 https://youtu.be/0tomU1q3AdY

▪ Homepages: 
1. Thomas Minka  

A roadmap to research on EP https://tminka.github.io/papers/ep/roadmap.html

2. Matt Wand

Statistics Methodology and Theory http://matt-wand.utsacademics.info/statsPapers.html

3. José Miguel Hernández-Lobato

Scalable methods for approximate inference https://jmhl.org/publications/

4. Matthias Seeger, Young-Jun Ko

Scalable variational approximate inference algorithms https://mseeger.github.io/

5. Yoann Altmann

Our group https://yoannaltmann.weebly.com/publications.html

Some EP references

…
32
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Dan Yao
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Expectation Propagation for 
Scalable Inverse Problems in Imaging
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Thanks for you attention !

dy2008@hw.ac.uk

Y.Altmann@hw.ac.uk
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