Expectation Propagation for Scalable Inverse Problems in Imaging

Dan Yao

Heriot-Watt University

UDRC summer school, University of Edinburgh June, 27th 2022

Expectation Propagation

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- ➢ KL divergence minimization
- ➢ factor graph
- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- ➢ KL divergence minimization
- ➢ factor graph

3. Applications – EP for scalable imaging inverse problems!

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- ➢ KL divergence minimization
- ➢ factor graph

3. Applications – EP for scalable imaging inverse problems

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

you will know how to implement your own EP algorithm to:

1. grayscale image

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- ➢ KL divergence minimization
- factor graph
- 3. Applications EP for scalable imaging inverse problems!
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- ➢ KL divergence minimization
- factor graph
- 3. Applications EP for scalable imaging inverse problems!
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- ➢ KL divergence minimization
- factor graph
- 3. Applications EP for scalable imaging inverse problems!
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- ➢ KL divergence minimization
- factor graph
- 3. Applications EP for scalable imaging inverse problems!
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

Expectation Propagation

1. Problem formulation and challenges

- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- KL divergence minimization
- factor graph
- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

- > Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

• Goal:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

26

• Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

26

• Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

Ground truth image

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

Ground truth image N

Noisy observation

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

26

• Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

26

• Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

Ground truth image

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

> Imaging inverse problems

- Bayesian estimation strategy
- ➤ challenges

Examples:

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$
- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(oldsymbol{x}|oldsymbol{ heta})$

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(oldsymbol{x}|oldsymbol{ heta})$

posterior:
$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})\mathrm{d}\boldsymbol{x}}$$

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(oldsymbol{x}|oldsymbol{ heta})$

posterior:
$$p(\boldsymbol{x}|\boldsymbol{y}) = rac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})\mathrm{d}\boldsymbol{x}}$$

• Estimation strategy:

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(oldsymbol{x}|oldsymbol{ heta})$

posterior:
$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})\mathrm{d}\boldsymbol{x}}$$

• Estimation strategy:

point estimate:

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(oldsymbol{x}|oldsymbol{ heta})$

posterior:
$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})\mathrm{d}\boldsymbol{x}}$$

• Estimation strategy:

point estimate: $\hat{\pmb{x}}_{ ext{MAP}} = rg \max_{\pmb{x}} \ p(\pmb{x}|\pmb{y})$

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(oldsymbol{x}|oldsymbol{ heta})$

posterior:
$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})\mathrm{d}\boldsymbol{x}}$$

• Estimation strategy:

point estimate:
$$\hat{\boldsymbol{x}}_{\text{MAP}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y})$$

or
 $\hat{\boldsymbol{x}}_{\text{MMSE}} = \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y})}[\boldsymbol{x}]$

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta})$ posterior: $p(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})d\boldsymbol{x}}$

• Estimation strategy:

point estimate:
$$\hat{m{x}}_{ ext{MAP}} = rg\max_{m{x}} \ p(m{x}|m{y})$$

or
 $\hat{m{x}}_{ ext{MMSE}} = \mathbb{E}_{p(m{x}|m{y})}[m{x}]$

uncertainty:

- Imaging inverse problems
- Bayesian estimation strategy
- ➤ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta})$ posterior: $p(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})d\boldsymbol{x}}$

• Estimation strategy:

point estimate:
$$\hat{\boldsymbol{x}}_{ ext{MAP}} = rg \max_{\boldsymbol{x}} \ p(\boldsymbol{x}|\boldsymbol{y})$$

or
 $\hat{\boldsymbol{x}}_{ ext{MMSE}} = \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y})}[\boldsymbol{x}]$

uncertainty: $\operatorname{Cov}_{p(\pmb{x}|\pmb{y})}(\pmb{x})$

L

- Imaging inverse problems
- Bayesian estimation strategy
- ➢ challenges
 - Bayesian model:

likelihood: $f_{y|x}(oldsymbol{y}|\mathbf{H}oldsymbol{x})$

prior: $f_x(oldsymbol{x}|oldsymbol{ heta})$

posterior:
$$p(\boldsymbol{x}|\boldsymbol{y}) = rac{f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})}{\int f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x}|\boldsymbol{\theta})\mathrm{d}\boldsymbol{x}}$$

Estimation strategy:

point estimate:
$$\hat{\pmb{x}}_{ ext{MAP}} = rg \max_{\pmb{x}} \ p(\pmb{x}|\pmb{y})$$

or
 $\hat{\pmb{x}}_{ ext{MMSE}} = \mathbb{E}_{p(\pmb{x}|\pmb{y})}[\pmb{x}]$

uncertainty: $\operatorname{Cov}_{p(\pmb{x}|\pmb{y})}(\pmb{x})$

1. Problem formulation and challenges

/26

- Imaging inverse problems
- Bayesian estimation strategy
- > challenges

Challenges:

high-dimensional $oldsymbol{x} = [\,x_1, \cdots, x_N\,]^{\, \scriptscriptstyle T}$

 1. Problem formulation and challenges > Imaging inverse problems > Bayesian estimation strategy > challenges 	 1. Problem formulation and challenges > Imaging inverse problems > Bayesian estimation strategy > challenges
• Bayesian model: likelihood: $f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})$ prior: $f_x(\boldsymbol{x} \boldsymbol{\theta})$ posterior: $p(\boldsymbol{x} \boldsymbol{y}) = \frac{f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta})}{\int f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta}) \mathrm{d}\boldsymbol{x}}$	• Challenges: high-dimensional $oldsymbol{x} = [x_1, \cdots, x_N]^T$ e.g. $oldsymbol{x} = [x_1, \dots, x_{10000}]^T$
Estimation strategy:	
point estimate: $\hat{m{x}}_{ ext{MAP}} = rg \max_{m{x}} \; p(m{x} m{y})$ or	

$$\hat{oldsymbol{x}}_{ ext{MMSE}} = \mathbb{E}_{p(oldsymbol{x}|oldsymbol{y})}[oldsymbol{x}]$$

uncertainty: $\operatorname{Cov}_{p({m{x}}|{m{y}})}({m{x}})$

 1. Problem formulation and challenges > Imaging inverse problems > Bayesian estimation strategy > challenges 	1. Problem formulation and challenges2/26➤ Imaging inverse problems2/26➤ Bayesian estimation strategy➤ challenges
• Bayesian model: likelihood: $f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})$ prior: $f_x(\boldsymbol{x} \boldsymbol{\theta})$ posterior: $p(\boldsymbol{x} \boldsymbol{y}) = \frac{f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta})}{\int f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta}) d\boldsymbol{x}}$	• Challenges: high-dimensional $\boldsymbol{x} = [x_1, \dots, x_N]^T$ e.g. $\boldsymbol{x} = [x_1, \dots, x_{10000}]^T$ $p(\boldsymbol{x} \boldsymbol{y}) = \frac{f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta})}{\int f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta}) d[x_1, \dots, x_{10000}]^T}$
• Estimation strategy: point estimate: $\hat{\boldsymbol{x}}_{MAP} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x} \boldsymbol{y})$ or $\hat{\boldsymbol{x}}_{MMSE} = \mathbb{E}_{p(\boldsymbol{x} \boldsymbol{y})}[\boldsymbol{x}]$ uncertainty: $\operatorname{Cov}_{p(\boldsymbol{x} \boldsymbol{y})}(\boldsymbol{x})$	

 1. Problem formulation and challenges ➢ Imaging inverse problems ➢ Bayesian estimation strategy ➢ challenges 	1. Problem formulation and challenges2/26> Imaging inverse problems2/26> Bayesian estimation strategy> challenges
• Bayesian model: likelihood: $f_{y x}(y \mathbf{H}x)$ prior: $f_x(x \theta)$ posterior: $p(x y) = \frac{f_{y x}(y \mathbf{H}x)f_x(x \theta)}{\int f_{y x}(y \mathbf{H}x)f_x(x \theta) dx}$	• Challenges: high-dimensional $\boldsymbol{x} = [x_1, \dots, x_N]^T$ e.g. $\boldsymbol{x} = [x_1, \dots, x_{10000}]^T$ $p(\boldsymbol{x} \boldsymbol{y}) = \frac{f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta})}{\int f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta}) d[x_1, \dots, x_{10000}]^T}$ $\boldsymbol{\theta}^{(t)} = \text{arg max} \mathbb{E}$ [lag $f(\boldsymbol{x} \boldsymbol{\theta})$]
• Estimation strategy: point estimate: $\hat{\boldsymbol{x}}_{MAP} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x} \boldsymbol{y})$ or $\hat{\boldsymbol{x}}_{MMSE} = \mathbb{E}_{p(\boldsymbol{x} \boldsymbol{y})}[\boldsymbol{x}]$ uncertainty: $\operatorname{Cov}_{p(\boldsymbol{x} \boldsymbol{y})}(\boldsymbol{x})$	$\boldsymbol{\theta} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{x} \boldsymbol{y}, \boldsymbol{\theta}^{(t-1)}) \left[\log f(\boldsymbol{y} \boldsymbol{\theta}) \right]$

 Problem formulation and challenges Imaging inverse problems Bayesian estimation strategy challenges 	 1. Problem formulation and challenges > Imaging inverse problems > Bayesian estimation strategy > challenges
• Bayesian model: likelihood: $f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})$ prior: $f_x(\boldsymbol{x} \boldsymbol{\theta})$ posterior: $p(\boldsymbol{x} \boldsymbol{y}) = \frac{f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta})}{\int f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta}) \mathrm{d}\boldsymbol{x}}$	• Challenges: high-dimensional $\boldsymbol{x} = [x_1, \dots, x_N]^T$ e.g. $\boldsymbol{x} = [x_1, \dots, x_{10000}]^T$ $p(\boldsymbol{x} \boldsymbol{y}) = \frac{f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta})}{\int f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{\theta}) \mathrm{d}[x_1, \dots, x_{10000}]^T}$
Estimation strategy:	$oldsymbol{ heta}^{(t)} = rg\max_{oldsymbol{ heta}} \mathbb{E}_{p(oldsymbol{x} oldsymbol{y},oldsymbol{ heta}^{(t-1)})} ig[\logf(oldsymbol{y} oldsymbol{ heta})ig]$
point estimate: $\hat{\boldsymbol{x}}_{\text{MAP}} = rg \max_{\boldsymbol{x}} p(\boldsymbol{x} \boldsymbol{y})$ or $\hat{\boldsymbol{x}}_{\text{MMSE}} = \mathbb{E}_{p(\boldsymbol{x} \boldsymbol{y})}[\boldsymbol{x}]$ uncertainty: $\operatorname{Cov}_{p(\boldsymbol{x} \boldsymbol{y})}(\boldsymbol{x})$	$\mathbb{E}_{p(\boldsymbol{x} \boldsymbol{y})}[\boldsymbol{x}] = \int \boldsymbol{x} p(\boldsymbol{x} \boldsymbol{y}) d[x_1, \dots, x_{10000}]^T$

 1. Problem formulation and challenges > Imaging inverse problems > Bayesian estimation strategy > challenges 	1. Problem formulation and challenges2/26> Imaging inverse problems2/26> Bayesian estimation strategy> challenges
- Bayesian model: likelihood: $f_{y x}(oldsymbol{y} \mathbf{H}oldsymbol{x})$	high-dimensional $oldsymbol{x} = [x_1, \cdots, x_N]^{T}$
prior: $f_x(oldsymbol{x} oldsymbol{ heta})$	e.g. $oldsymbol{x} = [x_1, \dots, x_{10000}]^T$
posterior: $p(\boldsymbol{x} \boldsymbol{y}) = rac{f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{ heta})}{\int f_{y x}(\boldsymbol{y} \mathbf{H}\boldsymbol{x})f_x(\boldsymbol{x} \boldsymbol{ heta})\mathrm{d}\boldsymbol{x}}$	$p(oldsymbol{x} oldsymbol{y}) = rac{f_{y x}(oldsymbol{y} oldsymbol{H}oldsymbol{x})f_x(oldsymbol{x} oldsymbol{ heta})}{\int f_{y x}(oldsymbol{y} oldsymbol{H}oldsymbol{x})f_x(oldsymbol{x} oldsymbol{ heta})\mathrm{d}[oldsymbol{x}_1,\ldots,oldsymbol{x}_{10000}]^T}$
Estimation strategy:	$oldsymbol{ heta}^{(t)} = rg\max_{oldsymbol{ heta}} \mathbb{E}_{p(oldsymbol{x} oldsymbol{y},oldsymbol{ heta}^{(t-1)})} ig[\log\ f(oldsymbol{y} oldsymbol{ heta})ig]$
point estimate: $\hat{m{x}}_{ ext{MAP}} = rg \max_{m{x}} \ p(m{x} m{y})$	
$\hat{oldsymbol{x}}_{ ext{MMSE}} = \mathbb{E}_{p(oldsymbol{x} oldsymbol{y})}[oldsymbol{x}]$	$\mathbb{E}_{p(\boldsymbol{x} \boldsymbol{y})}[\boldsymbol{x}] = \int \boldsymbol{x} p(\boldsymbol{x} \boldsymbol{y}) d[x_1, \dots, x_{10000}]^T$
uncertainty: $\operatorname{Cov}_{p(oldsymbol{x} oldsymbol{y})}(oldsymbol{x})$	$\operatorname{Cov}_{p(\boldsymbol{x} \boldsymbol{y})}(\boldsymbol{x}) = \int (\boldsymbol{x} - \mathbb{E}_{p(\boldsymbol{x} \boldsymbol{y})}[\boldsymbol{x}]) (\boldsymbol{x} - \mathbb{E}_{p(\boldsymbol{x} \boldsymbol{y})}[\boldsymbol{x}])^T p(\boldsymbol{x} \boldsymbol{y}) d[\boldsymbol{x}_1, \dots, \boldsymbol{x}_{10000}]^T$

This talk is about

Expectation Propagation

- **1. Problem formulation and challenges**
- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- KL divergence minimization
- factor graph
- 3. Applications EP for scalable imaging inverse problems!
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

you will know how to implement your own EP algorithm to:

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➤ factor graph

2. Solution – EP for approximate Bayesian inference

- KL divergence minimization
- ➢ factor graph

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

$$\begin{aligned} & (\mathbf{x}) \approx p(\mathbf{x}|\mathbf{y}) \\ & q(\mathbf{x}) \approx p(\mathbf{x}|\mathbf{y}) \\ & q(\mathbf{x}) \text{ does not require to compute } \begin{bmatrix} p(\mathbf{x}|\mathbf{y}) = \frac{f_{\mathbb{P}^{\mathbf{x}}}(\mathbf{y}|\mathbf{H}\mathbf{x})f_{\mathbb{P}^{\mathbf{x}}}(\mathbf{x}|\boldsymbol{\theta})}{\int f_{\mathbb{P}^{\mathbf{x}}}(\mathbf{y}|\mathbf{H}\mathbf{x})f_{\mathbb{P}^{\mathbf{x}}}(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}} \\ & \boldsymbol{\theta}^{(t)} = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{q(\mathbf{x}|\mathbf{y},\boldsymbol{\theta}^{(t-1)})} \left[\log f(\mathbf{y}|\boldsymbol{\theta})\right] \quad \boldsymbol{\theta}^{(t)} = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}^{\mathbf{x}|\mathbf{y}|},\boldsymbol{\theta}^{(t-1)}} \left[\log f(\mathbf{y}|\boldsymbol{\theta})\right] \\ & \mathbb{E}_{q(\mathbf{x})}[\mathbf{x}], \operatorname{Cov}_{q(\mathbf{x})}(\mathbf{x}) \text{ are easier to compute } \begin{bmatrix} \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}|\mathbf{y}) d\mathbf{x} \\ \mathbb{C}_{\operatorname{V}_{p(\mathbf{x}|\mathbf{y})}}(\mathbf{x}) = \int (\mathbf{x} - \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}]) (\mathbf{x} - \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}])^T p(\mathbf{x}|\mathbf{y}) d\mathbf{x} \end{aligned}$$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

$$\begin{aligned} & (\mathbf{x}) \approx p(\mathbf{x}|\mathbf{y}) \\ & q(\mathbf{x}) \approx p(\mathbf{x}|\mathbf{y}) \\ & q(\mathbf{x}) \text{ does not require to compute } \begin{bmatrix} p(\mathbf{x}|\mathbf{y}) = \frac{f_{\partial \mathbb{P}}(\mathbf{y}|\mathbf{H}\mathbf{x})f_{\mathbf{x}}(\mathbf{x}|\boldsymbol{\theta})}{\int f_{y|\mathbf{x}}(\mathbf{y}|\mathbf{H}\mathbf{x})f_{\mathbf{x}}(\mathbf{x}|\boldsymbol{\theta}) \, \mathrm{d}\mathbf{x}} \\ & \boldsymbol{\theta}^{(t)} = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{q(\mathbf{x}|\mathbf{y},\boldsymbol{\theta}^{(t-1)})} [\log f(\mathbf{y}|\boldsymbol{\theta})] \quad \boldsymbol{\theta}^{(t)} = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x}|\mathbf{y},\boldsymbol{\theta}^{(t-1)})} [\log f(\mathbf{y}|\boldsymbol{\theta})] \\ & \mathbb{E}_{q(\mathbf{x})}[\mathbf{x}], \operatorname{Cov}_{q(\mathbf{x})}(\mathbf{x}) \text{ are easier to compute } \begin{bmatrix} \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}|\mathbf{y}) \, \mathrm{d}\mathbf{x} \\ \operatorname{Cov}_{p(\mathbf{x}|\mathbf{y})}(\mathbf{x}) = \int (\mathbf{x} - \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}]) \, (\mathbf{x} - \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}])^T \, p(\mathbf{x}|\mathbf{y}) \, \mathrm{d}\mathbf{x} \end{aligned}$$

3/26

Approximate Bayesian inference:

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

$$\begin{aligned} & (\mathbf{x}) \approx p(\mathbf{x}|\mathbf{y}) \\ & q(\mathbf{x}) \approx p(\mathbf{x}|\mathbf{y}) \\ & q(\mathbf{x}) \text{ does not require to compute } \begin{bmatrix} p(\mathbf{x}|\mathbf{y}) = \frac{f_{\partial \mathcal{D}}(\mathbf{y}|\mathbf{H}\mathbf{x})f_{\mathbf{x}}(\mathbf{x}|\boldsymbol{\theta})}{\int f_{y|\mathbf{x}}(\mathbf{y}|\mathbf{H}\mathbf{x})f_{\mathbf{y}}(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}} \\ & \boldsymbol{\theta}^{(t)} = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{q(\mathbf{x}|\mathbf{y},\boldsymbol{\theta}^{(t-1)})}[\log f(\mathbf{y}|\boldsymbol{\theta})] \quad \boldsymbol{\theta}^{(t)} = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x}|\mathbf{y},\boldsymbol{\theta}^{(t-1)})}[\log f(\mathbf{y}|\boldsymbol{\theta})] \\ & \mathbb{E}_{q(\mathbf{x})}[\mathbf{x}], \operatorname{Cov}_{q(\mathbf{x})}(\mathbf{x}) \text{ are easier to compute } \begin{bmatrix} \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}|\mathbf{y}) d\mathbf{x} \\ \operatorname{Cov}_{p(\mathbf{x}|\mathbf{y})}(\mathbf{x}) = \int (\mathbf{x} - \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}]) (\mathbf{x} - \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{x}])^T p(\mathbf{x}|\mathbf{y}) d\mathbf{x} \end{aligned}$$

3/26

• Approximate Bayesian inference: $\mathbb{E}_{q(\boldsymbol{x})}[\boldsymbol{x}] \approx \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y})}[\boldsymbol{x}] \quad \operatorname{Cov}_{q(\boldsymbol{x})}(\boldsymbol{x}) \approx \operatorname{Cov}_{p(\boldsymbol{x}|\boldsymbol{y})}(\boldsymbol{x})$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

Now forget about the high-dimensional $\,oldsymbol{x} = [\,x_1, \cdots, x_N\,]^{\,T}$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

2. Solution – EP for approximate Bayesian inference

5/26

basic idea

- ➢ KL divergence minimization
- ➢ factor graph
 - Expectation Propagation (EP):

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph

Expectation Propagation (EP): 362

UAI 2001

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph
 - Expectation Propagation (EP): 362

UAI 2001

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

 $q(x) = \arg\min_{q(x)} KL(p(x)||q(x))$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph
 - Expectation Propagation (EP): 362

UAI 2001

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

 $q(x) = \arg\min_{q(x)} KL(p(x)||q(x))$

• Similarity between variational Bayes (VB) and EP:

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph
 - Expectation Propagation (EP): 362

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

$$q(x) = \arg\min_{q(x)} KL(\mathbf{p}(x)||q(x))$$

• Similarity between variational Bayes (VB) and EP:

 $q(x) \stackrel{KL ext{ divergence minimization}}{pprox} p(x)$

UAI 2001

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph
 - Expectation Propagation (EP): 362

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

$$q(x) = \arg\min_{q(x)} KL(\mathbf{p}(x)||q(x))$$

• Similarity between variational Bayes (VB) and EP:

 $q(x) \stackrel{KL ext{ divergence minimization}}{pprox} p(x)$

UAI 2001

• Difference between variational Bayes (VB) and EP :

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph
- Expectation Propagation (EP): 362

UAI 2001

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

$$q(x) = \arg\min_{q(x)} KL(p(x)||q(x))$$

- Similarity between variational Bayes (VB) and EP: $q(x) \approx p(x)$
- Difference between variational Bayes (VB) and EP : asymmetry: $KL(q||p) \neq KL(p||q)$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph
- Expectation Propagation (EP): 362

UAI 2001

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

$$q(x) = \arg\min_{q(x)} KL(p(x)||q(x))$$

- Similarity between variational Bayes (VB) and EP: $q(x) \approx p(x)$
- Difference between variational Bayes (VB) and EP : asymmetry: $KL(q||p) \neq KL(p||q)$

 \Box VB: KL(q(x)||p(x))

2. Solution – EP for approximate Bayesian inference

- KL divergence minimization
- ➢ factor graph
- Expectation Propagation (EP): 362

UAI 2001

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

$$q(x) = \arg\min_{q(x)} KL(p(x)||q(x))$$

- Similarity between variational Bayes (VB) and EP: $q(x) \stackrel{KL \text{ divergence minimization}}{\approx} p(x)$
- Difference between variational Bayes (VB) and EP : asymmetry: $KL(q||p) \neq KL(p||q)$

□ VB: KL(q(x)||p(x))□ EP: KL(p(x)||q(x))

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- ➢ factor graph
- Expectation Propagation (EP): 362

UAI 2001

Expectation Propagation for Approximate Bayesian Inference

MINKA

Thomas P. Minka Statistics Dept. Carnegie Mellon University Pittsburgh, PA 15213

$$q(x) = \arg \min_{q(x)} KL(p(x)||q(x))$$

- Similarity between variational Bayes (VB) and EP: $q(x) \stackrel{KL \text{ divergence minimization}}{\approx} p(x)$
- Difference between variational Bayes (VB) and EP : asymmetry: $KL(q||p) \neq KL(p||q)$

□ VB:
$$KL(q(x)||p(x))$$

□ EP: $KL(p(x)||q(x))$ → different $q(x)$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph
2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph

• KL divergence minimization in EP $q(x) = \underset{q(x) \in Q}{\arg \min KL(p(x)||q(x))}$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph
- KL divergence minimization in EP $q(x) = \underset{q(x) \in Q}{\arg \min KL(p(x)||q(x))}$

$$\mathcal{Q} = \{q:q(x) = \boldsymbol{e}^{T(x)^T \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)}\}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- **KL divergence minimization**
- ➢ factor graph
- KL divergence minimization in EP $q(x) = \underset{q(x) \in Q}{\arg \min KL(p(x)||q(x))}$

$$\mathcal{Q} = \{q:q(x) = \boldsymbol{e}^{T(x)^T \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)}\}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph
- KL divergence minimization in EP $q(x) = \underset{q(x) \in Q}{\arg \min KL(p(x)||q(x))}$

$$\mathcal{Q} = \{q:q(x) = \boldsymbol{e}^{T(x)^T \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)}\}$$

$$KL(\mathbf{p}(\mathbf{x})||q(\mathbf{x})) = \int p(\mathbf{x})\log\frac{\mathbf{p}(\mathbf{x})}{q(\mathbf{x})}d\mathbf{x}$$
$$= \int p(\mathbf{x})\log\frac{\mathbf{p}(\mathbf{x})}{\mathbf{e}^{T(\mathbf{x})^{\mathrm{T}}\mathbf{\eta} - A(\mathbf{\eta}) + \mathbf{B}(\mathbf{x})}}d\mathbf{x}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- **KL divergence minimization**
- ➢ factor graph
- KL divergence minimization in EP $q(x) = \underset{q(x) \in Q}{\arg \min KL(p(x)||q(x))}$

$$\mathcal{Q} = \{q:q(x) = \boldsymbol{e}^{T(x)^T \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)}\}$$

$$KL(p(x)||q(x)) = \int p(x)\log\frac{p(x)}{q(x)}dx$$
$$= \int p(x)\log\frac{p(x)}{e^{T(x)^{T}\eta - A(\eta) + B(x)}}dx$$
$$\Longrightarrow \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$$

26

2. Solution – EP for approximate Bayesian inference

- basic idea
- **KL divergence minimization**
- ➢ factor graph
- KL divergence minimization in EP $q(x) = \underset{q(x) \in Q}{\arg \min KL(p(x)||q(x))}$

$$\mathcal{Q} = \{q:q(x) = \boldsymbol{e}^{T(x)^T \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)}\}$$

$$KL(p(x)||q(x)) = \int p(x)\log\frac{p(x)}{q(x)}dx$$
$$= \int p(x)\log\frac{p(x)}{e^{T(x)^{T}\eta - A(\eta) + B(x)}}dx$$
$$\Longrightarrow \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)] \quad \text{moment matching}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- factor graph

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph

$$q(x) \in \mathcal{Q} = \left\{ q : q(x) = \boldsymbol{e}^{T(x)^{\mathrm{T}} \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)} \right\}$$

e.g. univaritate Gaussian distribution

$$q(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- **KL divergence minimization**
- ➢ factor graph

$$q(x) \in \mathcal{Q} = \left\{ q : q(x) = \boldsymbol{e}^{T(x)^{\mathrm{T}} \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)} \right\}$$

e.g. univaritate Gaussian distribution

$$egin{aligned} q(x) &= \mathcal{N}(x;\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{(x-\mu)^2}{2\sigma^2}} \ &= e^{-rac{1}{2\sigma^2}x^2 + rac{\mu}{\sigma^2}x - rac{\mu^2}{2\sigma^2} + \log\left(rac{1}{\sqrt{2\pi\sigma^2}}
ight)} \end{aligned}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph

$$q(x) \in \mathcal{Q} = \left\{ q : q(x) = \boldsymbol{e}^{T(x)^{\mathrm{T}} \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)} \right\}$$

$$q(x) = \mathcal{N}(x;\mu,\sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$
$$= e^{-\frac{1}{2\sigma^{2}}x^{2} + \frac{\mu}{\sigma^{2}}x - \frac{\mu^{2}}{2\sigma^{2}} + \log\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)}$$
$$= e^{\left[\frac{x}{x^{2}}\right]^{T} \left[-\frac{\mu}{\sigma^{2}}\right] - \left[-\frac{\eta^{2}}{4\eta_{2}} - \frac{1}{2}\log(-2\eta_{2})\right] - \frac{1}{2}\log(2\pi)}$$
$$= e^{\left[\frac{x}{2\sigma^{2}}\right]^{T} \left[-\frac{\mu}{2\sigma^{2}}\right] - \left[-\frac{\eta^{2}}{4\eta_{2}} - \frac{1}{2}\log(-2\eta_{2})\right] - \frac{1}{2}\log(2\pi)}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph

$$q(x) \in \mathcal{Q} = \left\{ q : q(x) = \boldsymbol{e}^{T(x)^{\mathrm{T}} \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)} \right\}$$

$$q(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$= e^{-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} + \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)}$$
$$= e^{\left[\frac{x}{x^2}\right]^T \left[\frac{\mu}{\sigma^2}\right] - \left[-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)\right] - \frac{1}{2}\log(2\pi)}$$
$$= e^{\left[\frac{x}{2\sigma^2}\right]^T \left[\frac{\mu}{\sigma^2}\right] - \left[-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)\right] - \frac{1}{2}\log(2\pi)}$$

$$T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix} \quad \boldsymbol{\eta} = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix} \quad A(\boldsymbol{\eta}) = -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2) \quad B(x) = -\frac{1}{2}\log(2\pi)$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph

$$q(x) \in \mathcal{Q} = \left\{ q : q(x) = \boldsymbol{e}^{T(x)^{\mathrm{T}} \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)} \right\}$$

$$q(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$= e^{-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} + \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)}$$
$$= e^{\left[\frac{x}{x^2}\right]^T \left[\frac{\mu}{\sigma^2}\right] - \left[-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)\right] - \frac{1}{2}\log(2\pi)}$$
$$= e^{\left[\frac{x}{2\sigma^2}\right]^T \left[\frac{\mu}{\sigma^2}\right] - \frac{1}{2\sigma^2}} e^{-\frac{1}{2\sigma^2}\left[\frac{1}{2\sigma^2}\right] - \frac{1}{2}\log(-2\eta_2)} = e^{-\frac{1}{2}\log(2\pi)}$$

$$T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$
 $\boldsymbol{\eta} = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} rac{\mu}{\sigma^2} \\ -rac{1}{2\sigma^2} \end{bmatrix}$ $A(\boldsymbol{\eta}) = -rac{\eta_1^2}{4\eta_2} - rac{1}{2}\log(-2\eta_2)$ $B(x) = -rac{1}{2}\log(2\pi)$

moment matching
$$\frac{\partial A(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \mathbb{E}_{p(x)}[T(x)]$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- > KL divergence minimization
- ➢ factor graph

$$q(x) \in \mathcal{Q} = \left\{ q : q(x) = \boldsymbol{e}^{T(x)^{\mathrm{T}} \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)} \right\}$$

$$q(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \\ = e^{-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} + \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)} \\ = e^{\left[\frac{x}{x^2}\right]^T \left[-\frac{\mu}{\sigma^2}\right] - \left[-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)\right] - \frac{1}{2}\log(2\pi)} \\ = e^{\left[\frac{x}{2\sigma^2}\right]^T \left[-\frac{\mu}{2\sigma^2}\right]} = e^{-\frac{1}{2\sigma^2}} e^{-\frac{1}{2\sigma^2}$$

$$T(x) = egin{bmatrix} x \ x^2 \end{bmatrix} \quad oldsymbol{\eta} = egin{bmatrix} \eta_1 \ \eta_2 \end{bmatrix} = egin{bmatrix} rac{\mu}{\sigma^2} \ -rac{1}{2\sigma^2} \end{bmatrix} \quad A(oldsymbol{\eta}) = -rac{\eta_1^2}{4\eta_2} - rac{1}{2} ext{log}(-2\eta_2) \quad B(x) = -rac{1}{2} ext{log}(2\pi)$$

moment matching
$$\frac{\partial A(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \mathbb{E}_{p(x)}[T(x)]$$

$$\begin{bmatrix} \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_1} \\ \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_2} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix}$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- **KL divergence minimization**
- ➢ factor graph

$$q(x) \in \mathcal{Q} = \left\{ q : q(x) = \boldsymbol{e}^{T(x)^{\mathrm{T}} \boldsymbol{\eta} - A(\boldsymbol{\eta}) + \boldsymbol{B}(x)} \right\}$$

$$q(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \\ = e^{-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} + \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)} \\ = e^{\left[\frac{x}{x^2}\right]^T \left[\frac{\mu}{\sigma^2}\right] - \left[-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)\right] - \frac{1}{2}\log(2\pi)} \\ = e^{\left[\frac{x}{2\sigma^2}\right]^T \left[\frac{\mu}{\sigma^2}\right] - \left[-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)\right] - \frac{1}{2}\log(2\pi)}}$$

$$T(x) = egin{bmatrix} x \ x^2 \end{bmatrix} \quad oldsymbol{\eta} = egin{bmatrix} \eta_1 \ \eta_2 \end{bmatrix} = egin{bmatrix} rac{\mu}{\sigma^2} \ -rac{1}{2\sigma^2} \end{bmatrix} \quad A(oldsymbol{\eta}) = -rac{\eta_1^2}{4\eta_2} - rac{1}{2} ext{log}(-2\eta_2) \quad B(x) = -rac{1}{2} ext{log}(2\pi)$$

moment matching
$$\frac{\partial A(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \mathbb{E}_{p(\boldsymbol{x})}[T(\boldsymbol{x})]$$
 $\begin{bmatrix} \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_1} \\ \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_2} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix} \implies \mathbb{E}_{p(\boldsymbol{x})}\begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{x}^2 \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix}$

2. Solution – EP for approximate Bayesian inference

- basic idea
- ➢ KL divergence minimization
- > factor graph

2. Solution – EP for approximate Bayesian inference

- basic idea
- ➢ KL divergence minimization
- > factor graph
- Goal of EP: $q(x) \approx p(x)$

2. Solution – EP for approximate Bayesian inference

- basic idea
- ➢ KL divergence minimization
- factor graph

• Goal of EP: $q(x) \approx p(x)$ $q(x) = \underset{q(x) \in Q}{\arg \min KL(p(x)||q(x))}$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- factor graph

• Goal of EP: $q(x) \approx p(x)$ $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)}$

26

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- factor graph

• Goal of EP: $q(x) \approx p(x)$ $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)]$ intractable

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)]$ intractable

8/26

• EP on a factor graph

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{\mathrm{T}} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)] \text{ intractable}$

8/26

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)] \text{ intractable}$

$$p(x) = p_1(x) p_2(x)...$$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)]$ intractable

8/26

$$p(x) = p_1(x) p_2(x) \dots$$

$$\not \wr \quad \not \wr$$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)] \text{ intractable}$

8/26

$$p(x) = p_1(x) p_2(x) \dots$$

$$n = p_1(x) p_2(x) \dots$$

$$n = p_1(x) q_2(x) \dots$$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{\top} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)] \text{ intractable}$

8/26

$$p(x) = p_1(x) p_2(x) \dots$$

$$i i i i i$$

$$q_1(x) q_2(x) \dots = q(x)$$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)]$ intractable

26

• EP on a factor graph difficult » {simple +...+simple}

a function can be expressed as product of local functions (factors) over a subset of variables

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)]$ intractable

• EP on a factor graph difficult » {simple +...+simple}

$$p(x) = p_1(x) p_2(x)...$$

 $n = q(x)$
 $q_1(x) q_2(x)... = q(x)$

a function can be expressed as product of local functions (factors) over a subset of variables

 $f(a,b,c) = f_1(a,b)f_2(a,c)f_3(b,c)$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)] \text{ intractable}$

• EP on a factor graph difficult » {simple +...+simple}

$$p(x) = p_1(x) p_2(x) \dots$$

$$i \in \mathcal{U}$$

$$q_1(x) q_2(x) \dots = q(x)$$

• a function can be expressed as product of local functions (factors) over a subset of variables

$$f(a,b,c) = f_1(a,b)f_2(a,c)f_3(b,c)$$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\arg \min} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{\top} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)]$ intractable

• EP on a factor graph difficult » {simple +...+simple}

• a function can be expressed as product of local functions (factors) over a subset of variables

$$f(a,b,c) = f_1(a,b) f_2(a,c) f_3(b,c)$$

$$a$$

$$f_1$$

$$f_2$$

$$f_3$$

$$c$$

 $p(x) \propto f(y|x)f(x)$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)] \text{ intractable}$

• EP on a factor graph difficult » {simple +...+simple}

$$p(x) = p_1(x) p_2(x) \dots$$

$$i = q(x)$$

$$q_1(x) q_2(x) \dots = q(x)$$

a function can be expressed as product of local functions (factors) over a subset of variables

$$f(a,b,c) = f_1(a,b) f_2(a,c) f_3(b,c)$$

$$a$$

$$f_1$$

$$f_2$$

$$f_3$$

$$c$$

$$p(x) \propto f(y|x)f(x)$$

$$y - f(y|x) - x - f(x)$$

2. Solution – EP for approximate Bayesian inference

- ➢ KL divergence minimization
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)] \text{ intractable}$

• EP on a factor graph difficult » {simple +...+simple}

f

• a function can be expressed as product of local functions (factors) over a subset of variables

$$(a,b,c) = f_1(a,b) f_2(a,c) f_3(b,c)$$

 f_1
 f_2
 f_2
 f_3
 f_3
 f_3

c) $p(x) \propto f(y|x)f(x)$

$$\overbrace{y = f(y|x) = x}{f(x) = f(x) = q_0(x)}$$

2. Solution – EP for approximate Bayesian inference

- KL divergence minimization \succ
- > factor graph

• Goal of EP:
$$q(x) \approx p(x)$$
 $q(x) = \underset{q(x) \in Q}{\operatorname{arg min}} KL(p(x)||q(x)) \quad q(x) = e^{T(x)^{T} \eta - A(\eta) + B(x)} \quad \frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$
 $! \mathbb{E}_{p(x)}[T(x)]$ intractable

26

f(x)

 $\overline{q_0(x)}$

(x)

• EP on a factor graph difficult » {simple +...+simple}

$$p(x) = p_1(x) p_2(x) \dots$$

$$n = q(x)$$

$$q_1(x) q_2(x) \dots = q(x)$$

a function can be expressed as product of local functions (factors) over a subset of variables

$$f(a,b,c) = f_1(a,b) f_2(a,c) f_3(b,c)$$

$$p(x) \propto f(y|x) f(x)$$

$$(y - f(y|x) - x - f(x))$$

$$q_1(x) - (x) - f(x)$$

$$q_1(x) - (x) - (x)$$

$$p(x) \propto q_1(x) q_0(x)$$

2. Solution – EP for approximate Bayesian inference

- basic idea
- ➢ KL divergence minimization
- > factor graph

2. Solution – EP for approximate Bayesian inference

- basic idea
- ➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

exact posterior:

$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

.
2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

exact posterior:
$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

likelihood prior
factor graph representation: $y - f(y|x) - x - f(x)$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

exact posterior: $p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$ factor graph representation: $\underbrace{y - f(y|x)}_{q_1(x)} - \underbrace{x - f(x)}_{q_0(x)}$

/26

EP sequential KL divergence minimization:

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

factor graph representation:

exact posterior:

EP sequential KL divergence minimization:

$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)f(x)dx}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)}{q_1(x)} - (x) = \frac{f(x)}{q_0(x)}$$

$$\begin{cases} q_1(x) = \underset{q_1(x) \in \mathcal{Q}}{\operatorname{arg\ min\ }} KL(f(y|x)q_0(x)||q(x)) \\ q_0(x) = \underset{q_0(x) \in \mathcal{Q}}{\operatorname{arg\ min\ }} KL(f(x)q_1(x)||q(x)) \\ \dots \text{until convergence} \end{cases}$$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

exact posterior:

$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$
factor graph representation:

$$y = \frac{f(y|x)f(x)}{\int f(y|x)} = x = \frac{prior}{f(x)}$$

$$q_1(x) = \arg \min_{q_1(x) \in \mathcal{Q}} KL(f(y|x)q_0(x)||q(x))$$

$$\begin{cases} q_1(x) = \arg \min_{q_1(x) \in \mathcal{Q}} KL(f(x)q_1(x)||q(x)) \\ q_0(x) = \arg \min_{q_0(x) \in \mathcal{Q}} KL(f(x)q_1(x)||q(x)) \\ \dots until convergence \end{cases}$$

tilted distribution: exact factor \times cavity

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

factor graph representation:

exact posterior:

EP sequential KL divergence minimization:

$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)f(x)dx}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)}{q_1(x)} - x - \frac{f(x)}{q_0(x)}$$

$$\begin{cases} q_1(x) = \underset{q_1(x) \in \mathcal{Q}}{\arg\min KL}(f(y|x)q_0(x)||q(x)) \\ q_0(x) = \underset{q_0(x) \in \mathcal{Q}}{\arg\min KL}(f(x)q_1(x)||q(x)) \\ \dots \text{until convergence} \end{cases}$$

tilted distribution: exact factor \times cavity

cavity:
$$q_1(x) = \frac{q(x)}{q_0(x)}, \ q_0(x) = \frac{q(x)}{q_1(x)}$$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

factor graph representation:

exact posterior:

EP sequential KL divergence minimization:

$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)f(x)dx}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)}{q_1(x)} - (x) - \frac{f(x)}{q_0(x)}$$

$$\begin{cases} q_1(x) = \underset{q_1(x) \in \mathcal{Q}}{\operatorname{arg\ min\ }} KL(f(y|x)q_0(x)||q(x)) \\ q_0(x) = \underset{q_0(x) \in \mathcal{Q}}{\operatorname{arg\ min\ }} KL(f(x)q_1(x)||q(x)) \\ \dots \text{until convergence} \end{cases}$$

tilted distribution: exact factor \times cavity

cavity:
$$q_1(x) = \frac{q(x)}{q_0(x)}, \ q_0(x) = \frac{q(x)}{q_1(x)}$$

$$\frac{\partial A(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \mathbb{E}_{p(\boldsymbol{x})}[T(\boldsymbol{x})]$$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

factor graph representation:

exact posterior:

EP sequential KL divergence minimization:

$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)f(x)dx}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)}{q_1(x)} - (x) = \frac{f(x)}{q_0(x)}$$

$$\begin{cases} q_1(x) = \underset{q_1(x) \in \mathcal{Q}}{\operatorname{arg\ min\ }} KL(f(y|x)q_0(x)||q(x)) \\ q_0(x) = \underset{q_0(x) \in \mathcal{Q}}{\operatorname{arg\ min\ }} KL(f(x)q_1(x)||q(x)) \\ \dots until \operatorname{convergence} \end{cases}$$

tilted distribution: exact factor \times cavity

cavity:
$$q_1(x) = \frac{q(x)}{q_0(x)}, \ q_0(x) = \frac{q(x)}{q_1(x)}$$

$$\frac{\partial A(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \mathbb{E}_{\boldsymbol{p}(x)}[T(x)]$$

2. Solution – EP for approximate Bayesian inference

➢ KL divergence minimization

> factor graph

Approximate Bayesian inference by EP:

factor graph representation:

exact posterior:

EP sequential KL divergence minimization:

$$p(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)f(x)dx}{\int f(y|x)f(x)dx}$$

$$(y) = \frac{f(y|x)}{q_1(x)} - (x) - \frac{f(x)}{q_0(x)}$$

$$\begin{cases} q_1(x) = \underset{q_1(x) \in \mathcal{Q}}{\arg \min KL}(f(y|x)q_0(x)||q(x)) \\ q_0(x) = \underset{q_0(x) \in \mathcal{Q}}{\arg \min KL}(f(x)q_1(x)||q(x)) \\ \dots \text{ until convergence} \end{cases}$$

tilted distribution: exact factor \times cavity

cavity:
$$q_1(x) = \frac{q(x)}{q_0(x)}, \ q_0(x) = \frac{q(x)}{q_1(x)}$$

$$\frac{\partial A(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x})}[T(\boldsymbol{x})] \implies \frac{\partial A(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \mathbb{E}_{titled}[T(\boldsymbol{x})]$$

This talk is about

Expectation Propagation

- **1. Problem formulation and challenges**
- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- KL divergence minimization
- factor graph

3. Applications – EP for scalable imaging inverse problems

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

you will know how to implement your own EP algorithm to:

Go back to the high-dimensional $\,oldsymbol{x} = [\,x_1, \cdots, x_N\,]^{\,\scriptscriptstyle T}$

- **3.** Applications EP for scalable imaging inverse problems
- > how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- > how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- **3. Applications** EP for scalable imaging inverse problems
- > how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- **3. Applications** EP for scalable imaging inverse problems
- > how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications
- Exponential family : $Q = \{q:q(\boldsymbol{x}) = \boldsymbol{e}^{T(\boldsymbol{x})^{T}\boldsymbol{\eta} A(\boldsymbol{\eta}) + \boldsymbol{B}(\boldsymbol{x})}\}$

> how to construct an EP algorithm to solve image inverse problems

- how to achieve scalable posterior approximation
- toy examples and applications
- Exponential family : $Q = \{q:q(\boldsymbol{x}) = \boldsymbol{e}^{T(\boldsymbol{x})^{T}\boldsymbol{\eta} A(\boldsymbol{\eta}) + \boldsymbol{B}(\boldsymbol{x})}\}$

q(x) univaritate Gaussian distribution

$$q(x) = \mathcal{N}(x; \mu, \sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

$$T(x) = egin{bmatrix} x \ x^2 \end{bmatrix} \quad oldsymbol{\eta} = egin{bmatrix} \eta_1 \ \eta_2 \end{bmatrix} = egin{bmatrix} rac{\mu}{\sigma^2} \ -rac{1}{2\sigma^2} \end{bmatrix} \quad A(oldsymbol{\eta}) = -rac{\eta_1^2}{4\eta_2} - rac{1}{2} \log(-2\eta_2)$$

$$\begin{bmatrix} \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_1} \\ \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_2} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix}$$

> how to construct an EP algorithm to solve image inverse problems

- how to achieve scalable posterior approximation
- toy examples and applications
- Exponential family : $Q = \{q:q(\boldsymbol{x}) = \boldsymbol{e}^{T(\boldsymbol{x})^{T}\boldsymbol{\eta} A(\boldsymbol{\eta}) + \boldsymbol{B}(\boldsymbol{x})}\}$

q(x) univaritate Gaussian distribution

$$q(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$T(x) = egin{bmatrix} x \ x^2 \end{bmatrix} \quad oldsymbol{\eta} = egin{bmatrix} \eta_1 \ \eta_2 \end{bmatrix} = egin{bmatrix} rac{\mu}{\sigma^2} \ -rac{1}{2\sigma^2} \end{bmatrix} \quad A(oldsymbol{\eta}) = -rac{\eta_1^2}{4\eta_2} - rac{1}{2} \mathrm{log}(-2\eta_2)$$

$$\begin{bmatrix} \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_1} \\ \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_2} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix}$$

moment matching
$$\implies \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix} = \mathbb{E}_{tilted}[T(x)]$$

> how to construct an EP algorithm to solve image inverse problems

- how to achieve scalable posterior approximation
- toy examples and applications
- Exponential family : $Q = \{q:q(\boldsymbol{x}) = \boldsymbol{e}^{T(\boldsymbol{x})^{T}\boldsymbol{\eta} A(\boldsymbol{\eta}) + \boldsymbol{B}(\boldsymbol{x})}\}$

$$q(x)$$
 univaritate Gaussian distribution

$$q(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$T(x) = egin{bmatrix} x \ x^2 \end{bmatrix} \quad oldsymbol{\eta} = egin{bmatrix} \eta_1 \ \eta_2 \end{bmatrix} = egin{bmatrix} rac{\mu}{\sigma^2} \ -rac{1}{2\sigma^2} \end{bmatrix} \quad A(oldsymbol{\eta}) = -rac{\eta_1^2}{4\eta_2} - rac{1}{2} ext{log}(-2\eta_2)$$

$$\begin{bmatrix} \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_1} \\ \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_2} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix}$$

moment matching
$$\Longrightarrow \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix} = \mathbb{E}_{tilted}[T(x)]$$

 $q(\pmb{x})$ multivariate Gaussian distribution

$$q(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{N}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

> how to construct an EP algorithm to solve image inverse problems

- how to achieve scalable posterior approximation
- toy examples and applications
- Exponential family : $Q = \{q:q(\boldsymbol{x}) = \boldsymbol{e}^{T(\boldsymbol{x})^{T}\boldsymbol{\eta} A(\boldsymbol{\eta}) + \boldsymbol{B}(\boldsymbol{x})}\}$

$$q(x)$$
 univaritate Gaussian distribution $q(x)=\mathcal{N}(x;\mu,\sigma^2)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$

$$T(x) = egin{bmatrix} x \ x^2 \end{bmatrix} \quad oldsymbol{\eta} = egin{bmatrix} \eta_1 \ \eta_2 \end{bmatrix} = egin{bmatrix} rac{\mu}{\sigma^2} \ -rac{1}{2\sigma^2} \end{bmatrix} \quad A(oldsymbol{\eta}) = -rac{\eta_1^2}{4\eta_2} - rac{1}{2} ext{log}(-2\eta_2)$$

$$\begin{bmatrix} \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_1} \\ \frac{\partial A(\boldsymbol{\eta})}{\partial \eta_2} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix}$$

moment matching
$$\Longrightarrow \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix} = \mathbb{E}_{tilted}[T(x)]$$

 $q(\pmb{x})$ multivariate Gaussian distribution

$$q(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{N}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

$$T(\boldsymbol{x}) = \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{x} \boldsymbol{x}^T \end{bmatrix} \ \boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\eta}_1 \\ \boldsymbol{\eta}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\ -\frac{1}{2} \boldsymbol{\Sigma}^{-1} \end{bmatrix} \ A(\boldsymbol{\eta}) = -\frac{1}{4} \boldsymbol{\eta}_1^T \boldsymbol{\eta}_2^{-1} \boldsymbol{\eta}_1 - \frac{1}{2} \log(|-2\boldsymbol{\eta}_2|)$$

> how to construct an EP algorithm to solve image inverse problems

- how to achieve scalable posterior approximation
- toy examples and applications
- Exponential family : $Q = \{q:q(\boldsymbol{x}) = \boldsymbol{e}^{T(\boldsymbol{x})^{T}\boldsymbol{\eta} A(\boldsymbol{\eta}) + \boldsymbol{B}(\boldsymbol{x})}\}$

$$q(x)$$
 univaritate Gaussian distribution
 $q(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 $T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix} \quad \boldsymbol{\eta} = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix} \quad A(\boldsymbol{\eta}) = -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)$

$$egin{bmatrix} \displaystyle rac{\partial A\left(oldsymbol{\eta}
ight)}{\partial\eta_1} \ \displaystyle rac{\partial A\left(oldsymbol{\eta}
ight)}{\partial\eta_2} \end{bmatrix} = egin{bmatrix} \mu \ \mu^2 + \sigma^2 \end{bmatrix}$$

moment matching
$$\Longrightarrow \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix} = \mathbb{E}_{tilted}[T(x)]$$

 $q(\pmb{x})$ multivariate Gaussian distribution

$$q(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{N}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

$$T(\boldsymbol{x}) = \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{x} \boldsymbol{x}^T \end{bmatrix} \ \boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\eta}_1 \\ \boldsymbol{\eta}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\ -\frac{1}{2} \boldsymbol{\Sigma}^{-1} \end{bmatrix} \ A(\boldsymbol{\eta}) = -\frac{1}{4} \boldsymbol{\eta}_1^T \boldsymbol{\eta}_2^{-1} \boldsymbol{\eta}_1 - \frac{1}{2} \log(|-2\boldsymbol{\eta}_2|)$$

$\left\lceil rac{\partial A\left(oldsymbol{\eta} ight) }{\partial \eta_{1}} ight ceil$		[μ]
$\left\lfloor rac{\partial A(oldsymbol{\eta})}{\partial \eta_2} ight floor$	_	$\lfloor \boldsymbol{\mu} \boldsymbol{\mu}^{\scriptscriptstyle T} + \boldsymbol{\Sigma} floor$

> how to construct an EP algorithm to solve image inverse problems

- how to achieve scalable posterior approximation
- toy examples and applications
- Exponential family : $Q = \{q:q(\boldsymbol{x}) = \boldsymbol{e}^{T(\boldsymbol{x})^{T}\boldsymbol{\eta} A(\boldsymbol{\eta}) + \boldsymbol{B}(\boldsymbol{x})}\}$

$$q(x) \text{ univaritate Gaussian distribution}$$

$$q(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix} \quad \eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix} \quad A(\eta) = -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)$$

$$\begin{bmatrix} \frac{\partial A(\eta)}{\partial \eta_1} \\ \frac{\partial A(\eta)}{\partial \eta_2} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix}$$

moment matching $\implies \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix} = \mathbb{E}_{tilted}[T(x)]$

 $q(\pmb{x})$ multivariate Gaussian distribution

$$q(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{N}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

$$T(\boldsymbol{x}) = \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{x} \boldsymbol{x}^T \end{bmatrix} \ \boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\eta}_1 \\ \boldsymbol{\eta}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\ -\frac{1}{2} \boldsymbol{\Sigma}^{-1} \end{bmatrix} \ A(\boldsymbol{\eta}) = -\frac{1}{4} \boldsymbol{\eta}_1^T \boldsymbol{\eta}_2^{-1} \boldsymbol{\eta}_1 - \frac{1}{2} \log(|-2\boldsymbol{\eta}_2|)$$

$egin{bmatrix} \displaystyle rac{\partial A\left(oldsymbol{\eta} ight)}{\partial\eta_1} \ \displaystyle rac{\partial A\left(oldsymbol{\eta} ight)}{\partial\eta_2} \end{bmatrix}$ =	$= egin{bmatrix} oldsymbol{\mu} \ oldsymbol{\mu} oldsymbol{\mu}^{ extsf{T}} + oldsymbol{\Sigma} \end{bmatrix}$
---	--

moment matching
$$\Longrightarrow \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu} \boldsymbol{\mu}^T + \boldsymbol{\Sigma} \end{bmatrix} = \mathbb{E}_{tilted}[T(\boldsymbol{x})]$$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- > how to achieve scalable posterior approximation
- toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- > how to achieve scalable posterior approximation
- toy examples and applications

1. how to factorize?

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- > how to achieve scalable posterior approximation
- toy examples and applications

1. how to factorize?

factorize likelihood

13/26

- how to construct an EP algorithm to solve image inverse problems
- > how to achieve scalable posterior approximation
- toy examples and applications

1. how to factorize?

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- > how to achieve scalable posterior approximation
- toy examples and applications

2. how to compute?

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

Toy example 1: 1d clutter problem (GMM likelihood + Gaussian prior)

14/26

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

Toy example 1: 1d clutter problem (GMM likelihood + Gaussian prior)

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Toy example 1: 1d clutter problem (GMM likelihood + Gaussian prior)

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$
- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications \succ

Toy example 1: 1d clutter problem (GMM likelihood + Gaussian prior) Bayesian model: $p(x|y) \propto f(y|x)f(x)$ GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$ Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ -exact likelihood f(y|x) -prior f(x)

EP approximation: $q(x) \approx p(x|y)$

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications \succ

Toy example 1: 1d clutter problem (GMM likelihood + Gaussian prior) Bayesian model: $p(x|y) \propto f(y|x)f(x)$ GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$ Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ -exact likelihood f(y|x) -prior f(x)

EP approximation: $q(x) \approx p(x|y)$

$$q(x) = \mathcal{N}(x; \mu, \sigma^2)$$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

• EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x;\mu_0,\sigma_0^2)$ (no approximation)

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

• EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x;\mu_0,\sigma_0^2)$ (no approximation) $q_1(x) = \underset{q_1(x) = \mathcal{N}(x;\mu_1,\sigma_1^2)}{\operatorname{arg min}} KL(f(y|x)q_0(x)||q(x))$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

• EP approximation: $q(x) \approx$	$z p(x y) \qquad q(x) = \mathcal{N}(x;\mu,\sigma^2)$
$q_0(x)=f(x)=\mathcal{N}(x;\mu_0,x)$	σ_0^2) (no approximation)
$q_1(x) = rgmin_{q_1(x)=\mathcal{N}(x;\mu_1,\sigma_1^2)}KL$	$L(f(y x)q_0(x) q(x))$
step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$	tilted $p_1(x) = f(y x)q_0(x)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

• EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x;\mu_0,\sigma_0^2)$ (no approximation) $q_1(x) = \underset{q_1(x) = \mathcal{N}(x;\mu_1,\sigma_1^2)}{\operatorname{arg min}} KL(f(y|x)q_0(x)||q(x))$ step 1. compute $\mathbb{E}_{tilted}\begin{bmatrix} x\\x^2 \end{bmatrix}$ $tilted p_1(x) = f(y|x)q_0(x)$ $p_1(x) = [0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)]\mathcal{N}(x;\mu_0,\sigma_0^2)$ $= \omega \mathcal{N}(x;\mu_*,\sigma_*^2) + (1-\omega)\mathcal{N}(x;\mu_0,\sigma_0^2)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ (no approximation) $q_1(x) = \arg \min KL(f(y|x)q_0(x)||q(x))$ $q_1(x) = \mathcal{N}(x; \mu_1, \sigma_1^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_1(x) = f(y|x)q_0(x)$ $p_1(x) = [0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)]\mathcal{N}(x;\mu_0,\sigma_0^2)$ $=\omega \mathcal{N}(x;\mu_*,\sigma_*^2) + (1-\omega)\mathcal{N}(x;\mu_0,\sigma_0^2)$ $\Longrightarrow \mathbb{E}_{tilted} \left| egin{array}{c} x \\ x^2 \end{array} \right|$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ (no approximation) $q_1(x) = \arg \min KL(f(y|x)q_0(x)||q(x))$ $q_1(x) = \mathcal{N}(x; \mu_1, \sigma_1^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_1(x) = f(y|x)q_0(x)$ $p_1(x) = [0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)]\mathcal{N}(x;\mu_0,\sigma_0^2)$ $= \omega \mathcal{N}(x; \mu_*, \sigma_*^2) + (1 - \omega) \mathcal{N}(x; \mu_0, \sigma_0^2)$ $\Longrightarrow \mathbb{E}_{tilted} \left| egin{array}{c} x \ x^2 \end{array}
ight|$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ (no approximation) $q_1(x) = \arg \min KL(f(y|x)q_0(x)||q(x))$ $q_1(x) = \mathcal{N}(x; \mu_1, \sigma_1^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_1(x) = f(y|x)q_0(x)$ $p_1(x) = [0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)]\mathcal{N}(x;\mu_0,\sigma_0^2)$ $= \omega \mathcal{N}(x; \mu_*, \sigma_*^2) + (1 - \omega) \mathcal{N}(x; \mu_0, \sigma_0^2)$ $\Longrightarrow \mathbb{E}_{tilted} \left| egin{array}{c} x \ x^2 \end{array}
ight|$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ $\Longrightarrow \left| egin{array}{c} \mu \ \mu^2 + \sigma^2 \end{array}
ight| = \mathbb{E}_{tilted} \left| egin{array}{c} x \ r^2 \end{array}
ight|$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ (no approximation) $q_1(x) = \arg \min KL(f(y|x)q_0(x)||q(x))$ $q_1(x) = \mathcal{N}(x; \mu_1, \sigma_1^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_1(x) = f(y|x)q_0(x)$ $p_1(x) = [0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)]\mathcal{N}(x;\mu_0,\sigma_0^2)$ $=\omega \mathcal{N}(x;\mu_*,\sigma_*^2) + (1-\omega)\mathcal{N}(x;\mu_0,\sigma_0^2)$ $\Longrightarrow \mathbb{E}_{tilted} \left| egin{array}{c} x \ x^2 \end{array}
ight|$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ step 3. update $q_1(x) \propto \frac{q(x)}{q_2(x)}$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ (no approximation) $q_1(x) = \arg \min KL(f(y|x)q_0(x)||q(x))$ $q_1(x) = \mathcal{N}(x; \mu_1, \sigma_1^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_1(x) = f(y|x)q_0(x)$ $p_1(x) = [0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)]\mathcal{N}(x;\mu_0,\sigma_0^2)$ $=\omega \mathcal{N}(x;\mu_*,\sigma_*^2) + (1-\omega)\mathcal{N}(x;\mu_0,\sigma_0^2)$ $\Longrightarrow \mathbb{E}_{tilted} \left| egin{array}{c} x \ x^2 \end{array}
ight|$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ $\underbrace{\longrightarrow \left\lfloor \begin{array}{c} \mu \\ \mu^2 + \sigma^2 \end{array} \right\rfloor = \mathbb{E}_{\textit{tilted}} \begin{bmatrix} x \\ x^2 \end{bmatrix}}$ step 3. update $q_1(x) \propto \frac{q(x)}{q_0(x)}$ $\implies (\mu_1, \sigma_1^2)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

GMM likelihood: $f(y|x) = 0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)$

Gaussian prior: $f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$

EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_0(x) = f(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ (no approximation) $q_1(x) = \arg \min KL(f(y|x)q_0(x)||q(x))$ $q_1(x) = \mathcal{N}(x; \mu_1, \sigma_1^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_1(x) = f(y|x)q_0(x)$ $p_1(x) = [0.5\mathcal{N}(y;x,1) + 0.5\mathcal{N}(y;0,10)]\mathcal{N}(x;\mu_0,\sigma_0^2)$ $=\omega \mathcal{N}(x;\mu_*,\sigma_*^2) + (1-\omega)\mathcal{N}(x;\mu_0,\sigma_0^2)$ $\Longrightarrow \mathbb{E}_{tilted} \left| egin{array}{c} x \ x^2 \end{array}
ight|$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ $\underbrace{\longrightarrow \left\lfloor \begin{array}{c} \mu \\ \mu^2 + \sigma^2 \end{array} \right\rfloor = \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}}$ step 3. update $q_1(x) \propto \frac{q(x)}{q_0(x)}$ $\implies (\mu_1, \sigma_1^2)$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Image denosing/inpainting/deconvolution H: **I**/binary mask/convolution matrix

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Image denosing/inpainting/deconvolution H: **I**/binary mask/convolution matrix GMM patch – based prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j=1}^J \sum_{k=1}^K \omega_k \mathcal{N}(\boldsymbol{x}_j; m_0 \mathbf{1} + \alpha \boldsymbol{\mu}_k, s^2 \mathbf{11}^T + \alpha^2 \mathbf{C}_k)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

Image denosing/inpainting/deconvolution **H**: **I**/binary mask/convolution matrix GMM patch – based prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j=1}^J \sum_{k=1}^K \omega_k \mathcal{N}(\boldsymbol{x}_j; m_0 \mathbf{1} + \alpha \boldsymbol{\mu}_k, s^2 \mathbf{1}\mathbf{1}^T + \alpha^2 \mathbf{C}_k)$ Gaussian/Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y};\mathbf{H}\boldsymbol{x},\sigma^2)$ or $\mathcal{P}(\mathbf{H}\boldsymbol{x})$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Image denosing/inpainting/deconvolution **H**: **I**/binary mask/convolution matrix GMM patch – based prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\boldsymbol{x}_j; m_0 \mathbf{1} + \alpha \boldsymbol{\mu}_k, s^2 \mathbf{1}\mathbf{1}^T + \alpha^2 \mathbf{C}_k)$ Gaussian/Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}; \mathbf{H}\boldsymbol{x}, \sigma^2)$ or $\mathcal{P}(\mathbf{H}\boldsymbol{x})$ exact posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Image denosing/inpainting/deconvolution \mathbf{H} : I/binary mask/convolution matrix GMM patch – based prior: $f_x(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\mathbf{x}_j; m_0 \mathbf{1} + \alpha \boldsymbol{\mu}_k, s^2 \mathbf{1} \mathbf{1}^T + \alpha^2 \mathbf{C}_k)$ Gaussian/Poisson likelihood: $f_{y|x}(\mathbf{y}|\mathbf{H}\mathbf{x}) = \mathcal{N}(\mathbf{y}; \mathbf{H}\mathbf{x}, \sigma^2)$ or $\mathcal{P}(\mathbf{H}\mathbf{x})$ exact posterior: $p(\mathbf{x}|\mathbf{y}) \propto f_{y|x}(\mathbf{y}|\mathbf{H}\mathbf{x}) f_x(\mathbf{x}|\boldsymbol{\theta})$ where the posterior: $p(\mathbf{x}|\mathbf{y}) \propto f_{y|x}(\mathbf{y}|\mathbf{H}\mathbf{x}) f_x(\mathbf{x}|\boldsymbol{\theta})$ is how to factorize: $\mathbf{y} = \prod_{i=1}^{N} f_{y|x}(y_i|\mathbf{h}_i\mathbf{x}) = \mathbf{x} = \prod_{j=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\mathbf{x}_j; \mathbf{m}_k, \mathbf{C}_k)$ $q_1(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \mathbf{\Sigma}_1)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Image denosing/inpainting/deconvolution H: I/binary mask/convolution matrix GMM patch – based prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\boldsymbol{x}_j; m_0 \mathbf{1} + \alpha \boldsymbol{\mu}_k, s^2 \mathbf{1} \mathbf{1}^T + \alpha^2 \mathbf{C}_k)$ Gaussian/Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y};\mathbf{H}\boldsymbol{x},\sigma^2)$ or $\mathcal{P}(\mathbf{H}\boldsymbol{x})$ exact posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$ where the posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$ is how to factorize: $\mathbf{y} = \prod_{i=1}^{N} f_{y|x}(y_i|\boldsymbol{h}_i\boldsymbol{x})$ $q_1(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1)$ $\mathbf{y} = \sum_{i=1}^{N} (\mathbf{x}_i;\boldsymbol{\mu}_0,\mathbf{\Sigma}_0)$

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \succ
- toy examples and applications

Image denosing/inpainting/deconvolution H: **I**/binary mask/convolution matrix $\text{GMM patch-based prior: } f_x(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j=1}^J \sum_{k=1}^K \omega_k \mathcal{N}(\boldsymbol{x}_j; m_0 \boldsymbol{1} + \alpha \boldsymbol{\mu}_k, s^2 \boldsymbol{1} \boldsymbol{1}^T + \alpha^2 \boldsymbol{C}_k)$ Gaussian/Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\boldsymbol{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y};\boldsymbol{H}\boldsymbol{x},\sigma^2) \text{ or } \mathcal{P}(\boldsymbol{H}\boldsymbol{x})$ exact posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$

in the second s

$[\Sigma_1]_1$	0				0]	Γ	$\mathbf{\Sigma}_0]_1$	0				0]
÷	$[\mathbf{\Sigma}_1]_2$:		÷	$[\mathbf{\Sigma}_0]_1$:
÷	÷	÷	÷	·.	:		÷	÷	÷	÷	۰.	:
0	0			0	$[\mathbf{\Sigma}_1]_J$		0	0			0	$[\mathbf{\Sigma}_0]_J$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

 $N \times N \implies J \ r \times r$ matrix **parallel** inversion $(r \ll N)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

• Image denosing/inpainting/deconvolution H: I/binary mask/convolution matrix
GMM patch – based prior:
$$f_x(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\boldsymbol{x}_j; m_0 \mathbf{1} + \alpha \boldsymbol{\mu}_k, s^2 \mathbf{1} \mathbf{1}^T + \alpha^2 \mathbf{C}_k)$$

Gaussian/Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y};\mathbf{H}\boldsymbol{x},\sigma^2)$ or $\mathcal{P}(\mathbf{H}\boldsymbol{x})$
exact posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$
where the factorize: $\mathbf{y} = \prod_{i=1}^{N} f_{y|x}(y_i|\mathbf{h}_i\boldsymbol{x})$
 $q_1(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1)$ $\mathbf{y} = \prod_{i=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\boldsymbol{x}_j;\boldsymbol{m}_k,\mathbf{C}_k)$
 $q_0(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_0,\boldsymbol{\Sigma}_0)$
where the compute: $\mathbf{1}. \ \boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_0$ are constrained to be block-diagonal $\begin{bmatrix} [\Sigma_i]_1 & \mathbf{0} & \cdots & \cdots & \mathbf{0} \\ \vdots & [\Sigma_i]_2 & \cdots & \cdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & [\Sigma_i]_i \end{bmatrix}$ $\begin{bmatrix} [\Sigma_0]_1 & \mathbf{0} & \cdots & \cdots & \mathbf{0} \\ \vdots & [\Sigma_0]_1 & \cdots & \cdots & \mathbf{0} \\ \vdots & [\Sigma_0]_1 & \cdots & \cdots & \mathbf{0} \\ \vdots & [\Sigma_0]_1 & \cdots & \cdots & \mathbf{0} \\ \vdots & [\Sigma_0]_1 & \cdots & \cdots & \mathbf{0} \end{bmatrix}$

15/26

0

 \vdots $[\mathbf{\Sigma}_0]_J$

 $N \times N \implies J \ r \times r$ matrix **parallel** inversion $(r \ll N)$

2. automatic estimation of hyperparameter $oldsymbol{ heta}=(m_0,s^2,lpha)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Image denosing/inpainting/deconvolution \mathbf{H} : I/binary mask/convolution matrix GMM patch – based prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\boldsymbol{x}_j; m_0 \mathbf{1} + \alpha \boldsymbol{\mu}_k, s^2 \mathbf{1} \mathbf{1}^T + \alpha^2 \mathbf{C}_k)$ Gaussian/Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}; \mathbf{H}\boldsymbol{x}, \sigma^2)$ or $\mathcal{P}(\mathbf{H}\boldsymbol{x})$ exact posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$ where the total factorize: $\mathbf{y} = \prod_{i=1}^{N} f_{y|x}(y_i|\mathbf{h}_i\boldsymbol{x})$ $q_1(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ $\mathbf{y} = \prod_{i=1}^{J} \sum_{k=1}^{K} \omega_k \mathcal{N}(\boldsymbol{x}_j; \boldsymbol{m}_k, \mathbf{C}_k)$ how to compute: $\mathbf{1}. \ \boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_0$ are constrained to be block-diagonal $\begin{bmatrix} [\boldsymbol{\Sigma}_1]_1 & \boldsymbol{\theta} & \cdots & \cdots & \boldsymbol{\theta} \\ \vdots & [\boldsymbol{\Sigma}_1]_2 & \cdots & \cdots & [\boldsymbol{\Sigma}_1]_i \end{bmatrix} \begin{bmatrix} [\boldsymbol{\Sigma}_0]_1 & \boldsymbol{\theta} & \cdots & \cdots & \boldsymbol{\theta} \\ \vdots & [\boldsymbol{\Sigma}_0]_1 & \cdots & \cdots & [\boldsymbol{\Sigma}_1]_i \end{bmatrix} \begin{bmatrix} [\boldsymbol{\Sigma}_0]_1 & \boldsymbol{\theta} & \cdots & \cdots & \boldsymbol{\theta} \\ \vdots & [\boldsymbol{\Sigma}_0]_1 & \cdots & \cdots & [\boldsymbol{\Sigma}_1]_i \end{bmatrix} \begin{bmatrix} [\boldsymbol{\Sigma}_0]_1 & \boldsymbol{\theta} & \cdots & \cdots & \boldsymbol{\theta} \\ \vdots & [\boldsymbol{\Sigma}_0]_1 & \cdots & \cdots & [\boldsymbol{\Sigma}_0]_i \end{bmatrix} \begin{bmatrix} [\boldsymbol{\Sigma}_0]_1 & \boldsymbol{\theta} & \cdots & \cdots & \boldsymbol{\theta} \\ \vdots & [\boldsymbol{\Sigma}_0]_1 & \cdots & \cdots & [\boldsymbol{\theta} \end{bmatrix} \end{bmatrix}$

 $N \times N \implies J \ r \times r$ matrix **parallel** inversion $(r \ll N)$

2. automatic estimation of hyperparameter $\boldsymbol{\theta} = (m_0, s^2, \alpha)$

EP scalable posterior approximation: $q(\boldsymbol{x}) \propto q_1(\boldsymbol{x}) q_0(\boldsymbol{x}) \propto \mathcal{N}(;\boldsymbol{\mu},\boldsymbol{\Sigma})$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation

toy examples and applications

Application 1: scalable image restoration using EP with patch-based GMM prior

Image denoising $\, oldsymbol{x} \in \mathbb{R}^{256 imes 256} \,$

	LIDIA [1]	BM3D [2]	MAP- GMM [3]	MAP – GMM [4]	EP- GMM
			Cameraman		
10/255	_	34.12	33.99	33.94	<u>34.04</u>
15/255	32.41	<u>31.90</u>	31.79	31.65	31.71
20/255	-	30.45	30.36	30.10	30.19
25/255	29.91	29.21	29.04	28.77	28.83
30/255	_	28.61	<u>28.34</u>	27.99	28.09
50/255	26.83	<u>25.39</u>	25.08	24.55	24.52
			House		
10/255	-	36.79	35.77	35.79	35.82
15/255	35.09	34.97	34.18	34.06	34.12
20/255	_	33.83	33.05	32.75	32.82
25/255	33.08	<u>32.91</u>	32.14	31.66	31.72
30/255	—	32.08	<u>31.25</u>	30.60	30.68
50/255	30.14	<u>29.45</u>	28.91	27.91	27.82
			Lena		
10/255	_	33.95	33.66	33.66	33.67
15/255	32.27	31.93	31.61	31.53	31.56
20/255	_	30.41	30.18	30.04	30.05
25/255	29.91	29.45	29.28	29.05	29.05
30/255	_	28.62	28.44	28.15	28.13
50/255	26.86	26.18	25.99	25.55	25.44

[1] G. Vaksman, M. Elad, and P. Milanfar. "*Lidia: Lightweight learned image denoising with instance adaptation*", IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 524– 525, 2020.

16/26

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. "Image denoising by sparse 3-D transform-domain collaborative filtering", IEEE Transactions on image processing, ol. 16, no. 8, pp. 2080–2095, 2007.
[3] D. Zoran and Y. Weiss. "From learning models of natural image patches to whole image restoration", IEEE International Conference on Computer Vision (ICCV), pp. 479–486, 2011.
[4] A. M. Teodoro, M. S. Almeida, and M. A.

Figueiredo. "Single-frame image denoising and inpainting using Gaussian mixtures", ICPRAM (2), pp. 283–288, 2015.

Dan Yao, Stephen McLaughlin, and Yoann Altmann. "Patch-based Image Restoration using Expectation Propagation," SIAM Journal on Imaging Sciences, vol. 15, no. 1, pp. 192–227, 2022. https://doi.org/10.1137/21M1427541

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation

toy examples and applications

Application 1: scalable image restoration using EP with patch-based GMM prior

Image denoising $\, oldsymbol{x} \in \mathbb{R}^{256 imes 256} \,$

	LIDIA [1]	BM3D [2]	MAP- GMM [3]	MAP – GMM [4]	EP- GMM
			Cameraman		
10/255	-	34.12	33.99	33.94	<u>34.04</u>
15/255	32.41	<u>31.90</u>	31.79	31.65	31.71
20/255	_	30.45	<u>30.36</u>	30.10	30.19
25/255	29.91	<u>29.21</u>	29.04	28.77	28.83
30/255	-	28.61	<u>28.34</u>	27.99	28.09
50/255	26.83	<u>25.39</u>	25.08	24.55	24.52
			House		
10/255	_	36.79	35.77	35.79	<u>35.82</u>
15/255	35.09	<u>34.97</u>	34.18	34.06	34.12
20/255	_	33.83	<u>33.05</u>	32.75	32.82
25/255	33.08	<u>32.91</u>	32.14	31.66	31.72
30/255	_	32.08	<u>31.25</u>	30.60	30.68
50/255	30.14	<u>29.45</u>	28.91	27.91	27.82
			Lena		
10/255	_	33.95	33.66	33.66	<u>33.67</u>
15/255	32.27	<u>31.93</u>	31.61	31.53	31.56
20/255	_	30.41	<u>30.18</u>	30.04	30.05
25/255	29.91	<u>29.45</u>	29.28	29.05	29.05
30/255	_	28.62	28.44	28.15	28.13
50/255	26.86	<u>26.18</u>	25.99	25.55	25.44

[1] G. Vaksman, M. Elad, and P. Milanfar. "Lidia: Lightweight learned image denoising with instance adaptation", IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 524– 525, 2020.
[2] K. Daboy, A. Eoi, V. Katkovnik, and K. Egiazarian

16/26

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. *"Image denoising by sparse 3-D transform-domain collaborative filtering"*, IEEE Transactions on image processing, ol. 16, no. 8, pp. 2080–2095, 2007.
[3] D. Zoran and Y. Weiss. *"From learning models of natural image patches to whole image restoration"*, IEEE International Conference on Computer Vision (ICCV), pp. 479–486, 2011.
[4] A. M. Teodoro, M. S. Almeida, and M. A.

Figueiredo. "Single-frame image denoising and inpainting using Gaussian mixtures", ICPRAM (2), pp. 283–288, 2015.

Dan Yao, Stephen McLaughlin, and Yoann Altmann. "Patch-based Image Restoration using Expectation Propagation," SIAM Journal on Imaging Sciences, vol. 15, no. 1, pp. 192–227, 2022. https://doi.org/10.1137/21M1427541

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}$ 3. Applications – EP for scalable imaging inverse problems

17/26

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Toy example 2: 1d sparse prior (Gaussian likelihood + Laplace prior)

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ • exact likelihood (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ • exact likelihood (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$

• EP approximation:
$$q(x) \approx p(x|y)$$
 $q(x) = \mathcal{N}(x;\mu,\sigma^2)$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}$

• EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x;y,\sigma^2)$ (no approximation)

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$

Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}$

• EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x;\mu,\sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x;y,\sigma^2)$ (no approximation) $q_0(x) = \underset{q_0(x) = \mathcal{N}(x;\mu_0,\sigma_0^2)}{\operatorname{arg min}} KL(f(x)q_1(x)||q(x))$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ • exact likelihood (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ • exact likelihood (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$ $p_0(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \mathcal{N}(x;y,\sigma^2)$ $= \omega_{-} \mathcal{N}_{\mathbb{P}^{-}}(x;\mu_{-},\sigma_{-}^{2}) + \omega_{+} \mathcal{N}_{\mathbb{P}^{+}}(x;\mu_{+},\sigma_{+}^{2})$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$ $p_0(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \mathcal{N}(x;y,\sigma^2)$ $=\omega_-\mathcal{N}_{\mathbb{R}^-}(x;\mu_-,\sigma_-^2)+\omega_+\mathcal{N}_{\mathbb{R}^+}(x;\mu_+,\sigma_+^2)$ $\Longrightarrow \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$ $p_0(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \mathcal{N}(x;y,\sigma^2)$ $=\omega_-\mathcal{N}_{\mathbb{R}^-}(x;\mu_-,\sigma_-^2)+\omega_+\mathcal{N}_{\mathbb{R}^+}(x;\mu_+,\sigma_+^2)$ $\Longrightarrow \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$ $p_0(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \mathcal{N}(x;y,\sigma^2)$ $=\omega_-\mathcal{N}_{\mathbb{R}^-}(x;\mu_-,\sigma_-^2)+\omega_+\mathcal{N}_{\mathbb{R}^+}(x;\mu_+,\sigma_+^2)$ $\Longrightarrow \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ $\implies \left| \begin{array}{c} \mu \\ \mu^2 + \sigma^2 \end{array} \right| = \mathbb{E}_{tilted} \left| \begin{array}{c} x \\ x^2 \end{array} \right|$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ • exact likelihood (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$ $p_0(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \mathcal{N}(x;y,\sigma^2)$ $=\omega_-{\mathcal N}_{{\mathbb R}^-}(x;\mu_-,\sigma_-^2)+\omega_+{\mathcal N}_{{\mathbb R}^+}(x;\mu_+,\sigma_+^2)$ $\Longrightarrow \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ $\longrightarrow \left\lfloor \begin{array}{c} \mu \\ \mu^2 + \sigma^2 \end{array}
 ight
 ceil = \mathbb{E}_{tilted} \left[egin{array}{c} x \\ x^2 \end{array}
 ight]$ step 3. update $q_0(x) \propto \frac{q(x)}{q_0(x)}$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ • exact likelihood (y - f(y|x) - x - f(x)) $q_1(x) - q_0(x)$
- EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$ $p_0(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \mathcal{N}(x;y,\sigma^2)$ $=\omega_-{\mathcal N}_{{\mathbb R}^-}(x;\mu_-,\sigma_-^2)+\omega_+{\mathcal N}_{{\mathbb R}^+}(x;\mu_+,\sigma_+^2)$ $\Longrightarrow \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ $_ \Longrightarrow ig ig \mu^2 + \sigma^2 ig
 brace = \mathbb{E}_{tilted} ig x^2 ig x^2 ig$ step 3. update $q_0(x) \propto \frac{q(x)}{q_1(x)}$ $\implies (\mu_0, \sigma_0^2)$

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

• Bayesian model: $p(x|y) \propto f(y|x)f(x)$ Gaussian likelihood: $f(y|x) = \mathcal{N}(y;x,\sigma^2)$ Laplace prior: $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}$ • EP app $q_1(x)$ $q_0(x)$ step 1. co $g_1(x)$ $g_1(x)$ $g_1(x)$ $g_1(x)$ $g_2(x)$ $g_1(x)$ $g_2(x)$ $g_2(x)$ $g_2(x)$

• EP approximation: $q(x) \approx p(x|y)$ $q(x) = \mathcal{N}(x; \mu, \sigma^2)$ $q_1(x) = f(x) = \mathcal{N}(x; y, \sigma^2)$ (no approximation) $q_0(x) = \arg \min KL(f(x)q_1(x)||q(x))$ $q_0(x) = \mathcal{N}(x; \mu_0, \sigma_0^2)$ step 1. compute $\mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ tilted $p_0(x) = f(x)q_1(x)$ $p_0(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \mathcal{N}(x;y,\sigma^2)$ $=\omega_-{\mathcal N}_{{\mathbb R}^-}(x;\mu_-,\sigma_-^2)+\omega_+{\mathcal N}_{{\mathbb R}^+}(x;\mu_+,\sigma_+^2)$ $\Longrightarrow \mathbb{E}_{tilted} \begin{bmatrix} x \\ x^2 \end{bmatrix}$ step 2. moment matching $\mathbb{E}_{q}[x] = \mathbb{E}_{tilted} \begin{vmatrix} x \\ x^{2} \end{vmatrix}$ $_ \Longrightarrow ig ig \mu^2 + \sigma^2 ig
brace = \mathbb{E}_{tilted} ig x^2 ig x^2 ig$ step 3. update $q_0(x) \propto \frac{q(x)}{q_1(x)}$ $\implies (\mu_0, \sigma_0^2)$

3. Applications – EP for scalable imaging inverse problems

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

3. Applications – EP for scalable imaging inverse problems

18/26

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

Application 2: fast scalable image restoration using EP with TV prior

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- (j) = (i)
- Image denosing/deconvolution/CS

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- $(\overline{y}_{x_i-x_j})$
- Image denosing/deconvolution/CS

$$ext{total variation prior: } f_x(oldsymbol{x}|oldsymbol{ heta}) \propto \, e^{\, extstyle \lambda \, TV(oldsymbol{x})} \, \quad TV(oldsymbol{x}) = \sum_{i,j} |x_{i+1,j} \!-\! x_{i,j}| \!+\! |x_{i,j+1} \!-\! x_{i,j}|$$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Image denosing/deconvolution/CS

total variation prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto e^{-\lambda TV(\boldsymbol{x})}$ $TV(\boldsymbol{x}) = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|$ Gaussian likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y};\mathbf{H}\boldsymbol{x},\sigma^2)$ or $\mathcal{P}(\mathbf{H}\boldsymbol{x})$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Image denosing/deconvolution/CS

total variation prior: $f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto e^{-\lambda TV(\boldsymbol{x})}$ $TV(\boldsymbol{x}) = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|$ Gaussian likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y};\mathbf{H}\boldsymbol{x},\sigma^2)$ or $\mathcal{P}(\mathbf{H}\boldsymbol{x})$ exact posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Ð

 $x_i - x_j \! \in \! \mathcal{V}_3$

Application 2: fast scalable image restoration using EP with TV prior

Image denosing/deconvolution/CS $ext{total variation prior: } f_x(oldsymbol{x}|oldsymbol{ heta}) \propto e^{-\lambda \, TV(oldsymbol{x})} \quad TV(oldsymbol{x}) = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|$ Gaussian likelihood: $f_{y|x}(\boldsymbol{y}|\boldsymbol{\mathbf{H}x}) = \mathcal{N}(\boldsymbol{y};\boldsymbol{\mathbf{H}x},\sigma^2) \ or \ \mathcal{P}(\boldsymbol{\mathbf{H}x})$ exact posterior: $p(\boldsymbol{x}|\boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\boldsymbol{\theta})$ ightharpowine k how to factorize: $f_x(m{x}|m{ heta}) \propto \prod e^{-\lambda |x_i - x_j|}$ $\propto \prod_{(i,j) \in \mathcal{V}_1}^{(i,j) \in \mathcal{V}} e^{-\lambda |x_i - x_j|} \prod_{(i,j) \in \mathcal{V}_2} e^{-\lambda |x_i - x_j|} \prod_{(i,j) \in \mathcal{V}_3} e^{-\lambda |x_i - x_j|} \prod_{(i,j) \in \mathcal{V}_4} e^{-\lambda |x_i - x_j|}$ Ì (i) $x_i - x_j \in \mathcal{V}$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

 $x_i - x_j \! \in \! \mathcal{V}_3$

Application 2: fast scalable image restoration using EP with TV prior

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

 $x_i - x_j \! \in \! \mathcal{V}_3$

Application 2: fast scalable image restoration using EP with TV prior

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

19/26

Dan Yao, Stephen McLaughlin, and Yoann Altmann. "Fast Scalable Image Restoration using Total Variation Priors and Expectation Propagation," Arxiv. https://doi.org/10.48550/arxiv.2110.01585

3. Applications – EP for scalable imaging inverse problems

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

20/26

observation $oldsymbol{y}$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

20/26

observation $oldsymbol{y}$ single band

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

observation $oldsymbol{y}$ single band low photon-count

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

observation **y** single band low photon-count Poisson noise

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

observation **y** single band low photon-count Poisson noise recovered color image

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \succ
- toy examples and applications \geq

observation \boldsymbol{y} single band low photon-count Poisson noise

recovered color image

uncertainty

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \succ
- toy examples and applications \succ

observation \boldsymbol{y} single band low photon-count Poisson noise

recovered color image

uncertainty

 $\ell_1 - \text{norm TV prior:} f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto f_x(\boldsymbol{x}_R|\boldsymbol{\theta}_R) f_x(\boldsymbol{x}_G|\boldsymbol{\theta}_G) f_x(\boldsymbol{x}_B|\boldsymbol{\theta}_B)$

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \succ
- toy examples and applications \succ

recovered color image

observation \boldsymbol{y} single band low photon-count Poisson noise

uncertainty

 $\ell_1 - \text{norm TV prior:} f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto f_x(\boldsymbol{x}_R|\boldsymbol{\theta}_R) f_x(\boldsymbol{x}_G|\boldsymbol{\theta}_G) f_x(\boldsymbol{x}_B|\boldsymbol{\theta}_B)$ Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\boldsymbol{\mathbf{H}}\boldsymbol{x}) = \mathcal{P}(\boldsymbol{\mathbf{H}}_{R}\boldsymbol{x}_{R} + \boldsymbol{\mathbf{H}}_{G}\boldsymbol{x}_{G} + \boldsymbol{\mathbf{H}}_{B}\boldsymbol{x}_{B})$

'26

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \succ
- toy examples and applications \succ

uncertainty

observation \boldsymbol{y} single band low photon-count Poisson noise

 $\ell_1 - \text{norm TV prior:} f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto f_x(\boldsymbol{x}_R|\boldsymbol{\theta}_R) f_x(\boldsymbol{x}_G|\boldsymbol{\theta}_G) f_x(\boldsymbol{x}_B|\boldsymbol{\theta}_B)$ Poisson likelihood: $f_{u|x}(\boldsymbol{y}|\boldsymbol{H}\boldsymbol{x}) = \mathcal{P}(\boldsymbol{H}_{R}\boldsymbol{x}_{R} + \boldsymbol{H}_{G}\boldsymbol{x}_{G} + \boldsymbol{H}_{B}\boldsymbol{x}_{B})$ exact posterior: $p(\boldsymbol{x}_{R}, \boldsymbol{x}_{G}, \boldsymbol{x}_{B} | \boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y} | \mathbf{H} \boldsymbol{x}) f_{x}(\boldsymbol{x} | \boldsymbol{\theta})$
- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \geq
- toy examples and applications \succ

observation \boldsymbol{y} single band low photon-count Poisson noise

uncertainty

 $\ell_1 - \text{norm TV prior:} f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto f_x(\boldsymbol{x}_R|\boldsymbol{\theta}_R) f_x(\boldsymbol{x}_G|\boldsymbol{\theta}_G) f_x(\boldsymbol{x}_B|\boldsymbol{\theta}_B)$ Poisson likelihood: $f_{u|x}(\boldsymbol{y}|\boldsymbol{H}\boldsymbol{x}) = \mathcal{P}(\boldsymbol{H}_{R}\boldsymbol{x}_{R} + \boldsymbol{H}_{G}\boldsymbol{x}_{G} + \boldsymbol{H}_{B}\boldsymbol{x}_{B})$

exact posterior: $p(\boldsymbol{x}_{R}, \boldsymbol{x}_{G}, \boldsymbol{x}_{B} | \boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y} | \mathbf{H} \boldsymbol{x}) f_{x}(\boldsymbol{x} | \boldsymbol{\theta})$

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \geq
- toy examples and applications \succ

╋

observation \boldsymbol{y} single band low photon-count Poisson noise

 $\ell_1 - \text{norm TV prior:} f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto f_x(\boldsymbol{x}_R|\boldsymbol{\theta}_R) f_x(\boldsymbol{x}_G|\boldsymbol{\theta}_G) f_x(\boldsymbol{x}_B|\boldsymbol{\theta}_B)$ Poisson likelihood: $f_{u|x}(\boldsymbol{y}|\boldsymbol{H}\boldsymbol{x}) = \mathcal{P}(\boldsymbol{H}_{R}\boldsymbol{x}_{R} + \boldsymbol{H}_{G}\boldsymbol{x}_{G} + \boldsymbol{H}_{B}\boldsymbol{x}_{B})$ exact posterior: $p(\boldsymbol{x}_{R}, \boldsymbol{x}_{G}, \boldsymbol{x}_{B} | \boldsymbol{y}) \propto f_{y|x}(\boldsymbol{y} | \mathbf{H} \boldsymbol{x}) f_{x}(\boldsymbol{x} | \boldsymbol{\theta})$

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \geq
- toy examples and applications \succ

observation \boldsymbol{y} single band low photon-count Poisson noise


```
Poisson likelihood: f_{u|x}(\boldsymbol{y}|\boldsymbol{H}\boldsymbol{x}) = \mathcal{P}(\boldsymbol{H}_{R}\boldsymbol{x}_{R} + \boldsymbol{H}_{G}\boldsymbol{x}_{G} + \boldsymbol{H}_{B}\boldsymbol{x}_{B})
exact posterior: p(\boldsymbol{x}_{B}, \boldsymbol{x}_{G}, \boldsymbol{x}_{B}|\boldsymbol{y}) \propto f_{u|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_{x}(\boldsymbol{x}|\boldsymbol{\theta})
```


- parallel update of approximating factor over R,G,B channels in the prior 2.
- 3. automatic hyperparameter estimation over R,G,B channels

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

observation **y** single band low photon-count Poisson noise

 $\ell_1 - \text{norm TV prior:} f_x(\boldsymbol{x}|\boldsymbol{\theta}) \propto f_x(\boldsymbol{x}_R|\boldsymbol{\theta}_R) f_x(\boldsymbol{x}_G|\boldsymbol{\theta}_G) f_x(\boldsymbol{x}_B|\boldsymbol{\theta}_B)$ Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) = \mathcal{P}(\mathbf{H}_R \boldsymbol{x}_R + \mathbf{H}_G \boldsymbol{x}_G + \mathbf{H}_B \boldsymbol{x}_B)$

1. parallel update of approximating factors over R,G,B channels in likelihood

exact posterior: $p(\boldsymbol{x}_{B}, \boldsymbol{x}_{G}, \boldsymbol{x}_{B}|\boldsymbol{y}) \propto f_{u|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_{x}(\boldsymbol{x}|\boldsymbol{\theta})$

uncertainty

- 2. parallel update of approximating factor over R,G,B channels in the prior
- 3. automatic hyperparameter estimation over R,G,B channels

 $\overset{\text{\tiny \ensuremath{\&}}}{\underset{\scriptstyle k=1}{\overset{\scriptstyle l}{\underset{\scriptstyle k=1}{\underset{\scriptstyle k=1}{\overset{\scriptstyle l}{\underset{\scriptstyle k=1}{\underset{\scriptstyle k=1}{\overset{\scriptstyle l}{\underset{\scriptstyle k=1}{\underset{\scriptstyle k=1}{\underset{\scriptstyle k=1}{\atop\atop l}{\underset{\scriptstyle k=1}{\atop\atop l}{\underset{\scriptstyle k=1}{\atop\atop l}{\underset{\scriptstyle k=1}{\atop\atop l}{\underset{\scriptstyle k=1}{\atop\scriptstyle k=1}{\atop\atop l}{\atop\atop l}{\atop\atop l}{\atop\atop l}{\atop\scriptstyle k=1}{\atop\atop l}{\atop\atop l}}{\atop\atop l}{\atop\atop l}{\atop\atop$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

 $oldsymbol{x} \in \mathbb{R}^{512 imes 512 imes 3 ext{ (channels)}}$

Application 3: color image restoration in the low-photon count regime

Dan Yao, Stephen McLaughlin, and Yoann Altmann. "Color Image Restoration in the Low Photon-Count Regime using Expectation Propagation," IEEE International Conference in Image Processing 2022 (accepted).

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

- **3. Applications –** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

observation $oldsymbol{y}$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

observation $oldsymbol{y}$ multispectral Lidar data

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

observation **y** multispectral Lidar data low photon-count

3. Applications – EP for scalable imaging inverse problems

22/26

- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

Application 4: multispectral Lidar data anomaly detection

observation **y** multispectral Lidar data low photon-count Poisson noise

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- > toy examples and applications

observation **y** multispectral Lidar data low photon-count Poisson noise

detected anomalies

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

observation **y** multispectral Lidar data low photon-count Poisson noise

detected anomalies

uncertainty

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \succ
- toy examples and applications \succ

observation \boldsymbol{y} multispectral Lidar data low photon-count Poisson noise

detected anomalies

uncertainty

Poisson likelihood:
$$f_{y|x}(\boldsymbol{y}|\boldsymbol{\mathrm{H}}\boldsymbol{x},\boldsymbol{z},\boldsymbol{r}) = \mathcal{P}((1-\boldsymbol{z})\odot\boldsymbol{\mathrm{H}}\boldsymbol{x}+\boldsymbol{z}\odot\boldsymbol{r})$$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

uncertainty

detected anomalies

es

low photon-count

Poisson noise

observation \boldsymbol{y}

multispectral Lidar data

```
Poisson likelihood: f_{y|x}(\boldsymbol{y}|\boldsymbol{\mathrm{H}}\boldsymbol{x},\boldsymbol{z},\boldsymbol{r}) = \mathcal{P}((1-\boldsymbol{z})\odot\boldsymbol{\mathrm{H}}\boldsymbol{x}+\boldsymbol{z}\odot\boldsymbol{r})
```

positive & sparse & Bernoulli priors: $f_x(\boldsymbol{x}|\theta_x), f_r(\boldsymbol{r}|\theta_r), f_z(\boldsymbol{z}|\theta_z)$

- **3. Applications** EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation \succ
- toy examples and applications \succ

observation y

multispectral Lidar data

low photon-count Poisson noise

detected anomalies

uncertainty

Poisson likelihood: $f_{y|x}(\boldsymbol{y}|\boldsymbol{H}\boldsymbol{x},\boldsymbol{z},\boldsymbol{r}) = \mathcal{P}((1-\boldsymbol{z}) \odot \boldsymbol{H}\boldsymbol{x} + \boldsymbol{z} \odot \boldsymbol{r})$

positive & sparse & Bernoulli priors: $f_x(\boldsymbol{x}|\theta_x), f_r(\boldsymbol{r}|\theta_r), f_z(\boldsymbol{z}|\theta_z)$

exact posterior: $p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{z}) \propto f_{y|x}(\boldsymbol{y}|\mathbf{H}\boldsymbol{x}) f_x(\boldsymbol{x}|\theta_x) f_{v,z}(\boldsymbol{v}, \boldsymbol{z}|\theta_v, \theta_z)$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

22/26

scalability: 1. combining full, diagonal, isotropic covariance matrices for flexible and efficient approximation

2. automatic hyperparameter estimation

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

 $egin{aligned} q(m{r}) \propto q_{r,1}(m{r}) q_{r,0}(m{r}) \propto \mathcal{N}(\ ;m{\mu}_r,m{\Sigma}_r) \ q(m{z}) \propto q_{z,1}(m{z}) q_{z,0}(m{z}) \propto Bern(m{z}) \end{aligned}$

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

 $q(oldsymbol{z}) \propto q_{z,1}(oldsymbol{z}) q_{z,0}(oldsymbol{z}) \propto Bern(oldsymbol{z})$

anomaly presence: q(z)

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

23/26

Dan Yao, Stephen McLaughlin, Yoann Altmann, Michael E Davies. "Joint Robust Linear Regression and Anomaly Detection in Poisson noise using Expectation-Propagation", 28th European Signal Processing Conference (EUSIPCO). 2021. pp. 2463-2467. https://doi.org/10.23919/Eusipco47968.2020.9287355

Yoann Altmann, Dan Yao, Stephen McLaughlin, Michael E Davies. "Robust Linear Regression and Anomaly Detection in the Presence of Poisson Noise Using Expectation-Propagation", Advances in Condition Monitoring and Structural Health Monitoring: WCCM 2019 (pp. 143-158). Springer. <u>https://doi.org/10.1007/978-981-15-9199-0_14</u>

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

23/26

Dan Yao, Stephen McLaughlin, Yoann Altmann, Michael E Davies. "Joint Robust Linear Regression and Anomaly Detection in Poisson noise using Expectation-Propagation", 28th European Signal Processing Conference (EUSIPCO). 2021. pp. 2463-2467. https://doi.org/10.23919/Eusipco47968.2020.9287355

Yoann Altmann, Dan Yao, Stephen McLaughlin, Michael E Davies. "Robust Linear Regression and Anomaly Detection in the Presence of Poisson Noise Using Expectation-Propagation", Advances in Condition Monitoring and Structural Health Monitoring: WCCM 2019 (pp. 143-158). Springer. <u>https://doi.org/10.1007/978-981-15-9199-0_14</u>

- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

Other applications:

Model selection:

K. Drummond, D. Yao, S. McLaughlin, A. Pawlikowska, R. Lamb, Y. Altmann. '*Efficient joint surface detection and depth estimation of single-photon Lidar data using assumed density filtering*', Submitted to SSPD 2022.

Online processing:

Y. Altmann, S. McLaughlin, Michael E Davies. '*Fast Online 3D Reconstruction of Dynamic Scenes from Individual* <u>Single-Photon Detection Events</u>', IEEE Transactions on Image Processing, vol. 29, pp. 2666-2675, 2020, doi: 10.1109/TIP.2019.2952008.

This talk is about

Expectation Propagation

- **1. Problem formulation and challenges**
- Imaging inverse problems
- Bayesian estimation strategy
- challenges
- 2. Solution EP for approximate Bayesian inference
- basic idea
- KL divergence minimization
- factor graph
- 3. Applications EP for scalable imaging inverse problems
- how to construct an EP algorithm to solve image inverse problems
- how to achieve scalable posterior approximation
- toy examples and applications

4. Conclusion

By the end of this talk,

you will know how to implement your own EP algorithm to:

Scalable solution by Expectation Propagation:

Scalable solution by Expectation Propagation:

 $\boldsymbol{y}, \mathbf{H} \xrightarrow{\mathsf{Input}} > \operatorname{scalable} \mathsf{EP}$

Scalable solution by Expectation Propagation:

y, $\mathbf{H} \xrightarrow{\text{Input}}$ scalable EP posterior approximation $\hat{x}_{\text{uncertainty:}}^{\text{point estimate: approximate MMSE estimate}} \hat{x}_{\text{uncertainty:}}^{\text{point estimate: approximate posterior covariance}}$

Scalable solution by Expectation Propagation:

Applications:

26/26

Some EP references

EP tutorial videos:

1. Thomas Minka: Approximate Inference http://videolectures.net/mlss09uk_minka_ai/

2. Simon Barthelmé: The Expectation-Propagation algorithm: a tutorial - Part 1 https://youtu.be/0tomU1q3AdY

Homepages:

1. Thomas Minka **A roadmap to research on EP** <u>https://tminka.github.io/papers/ep/roadmap.html</u>

2. Matt Wand

Statistics Methodology and Theory http://matt-wand.utsacademics.info/statsPapers.html

3. José Miguel Hernández-Lobato

Scalable methods for approximate inference https://jmhl.org/publications/

- 4. Matthias Seeger, Young-Jun Ko Scalable variational approximate inference algorithms <u>https://mseeger.github.io/</u>
- 5. Yoann Altmann

Our group https://yoannaltmann.weebly.com/publications.html

Thanks for you attention !

Expectation Propagation for Scalable Inverse Problems in Imaging

Dan Yao

Heriot-Watt University

dy2008@hw.ac.uk

Y.Altmann@hw.ac.uk