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Promise of scanned helium ion beam microscopy

Joens et al., Scientific Reports 3(3514), 2013

Comparison of HIM 
and FE-SEM 

imaging in 
Arabidopsis 

thaliana

• High resolution, surface sensitivity, and depth of focus
• Image insulators without metal coatings

• short de Broglie
wavelength

• low interaction
volume

• no charging

FE-SEM

FE-SEM

HIM

HIM



Limitation of scanned ion beam microscopy

As imaging time increases:
• shot noise reduced by 

averaging; but
• finer features destroyed by 

sputtering

Ability to accurately image delicate 
samples is fundamentally limited

Castaldo et al., J. Vac. Sci. Technol. B, 2009

Sn-ball sample
Dwell time:  50 𝜇𝜇s

FOV:  500 nm
~0.3 pA He+

~52 s of imaging ~364 s of imaging

~676 s of imaging ~988 s of imaging

~1300 s of imaging ~1560 s of imaging

Goal:  Make the 
most of any fixed 
ion dose, especially 
a low dose



Helium ion microscope

Notte / Zeiss, 2018

• Beam is raster scanned
• Some dwell time per pixel
• Detected electrons map to grayscale levels
• Like digital camera measuring one pixel at a time ?  No!  That’s defeatist



Helium ion microscope

electron
detector

helium ion 
source

Ion-sample interactions cause emission of electrons
• source beam is “primary”
• detected electrons called “secondary electrons”
Interesting things are happening within each dwell time

Conventional wisdom: 
only use the integral of 
this voltage waveform



Key idea:
Time-resolved 
sensing



Helium ion 
microscopy –
abstract model



Helium ion microscopy abstraction

dwell
time

time0

ions incident as Poisson process

number of ions 𝑀𝑀 ~ Poisson(𝜆𝜆)

burst of secondary electrons per ion

due to ion 𝑖𝑖, number of SEs 𝑋𝑋𝑖𝑖 ~ Poisson(𝜂𝜂)

observation at the pixel:  𝑌𝑌 = ∑𝑖𝑖=1𝑀𝑀 𝑋𝑋𝑖𝑖

Goal: compute an estimate of 𝜂𝜂 from 𝑌𝑌 (for each pixel, separately)

𝑋𝑋1 = 3 𝑋𝑋2 = 3 𝑋𝑋3 = 5 𝑋𝑋4 = 2

𝑀𝑀 = 4
𝑌𝑌 = 13

𝜆𝜆: known (“dose”)
𝜂𝜂: parameter of interest

(hidden)
(total observed)

Model: Poisson(𝜂𝜂)-distributed marks 𝑋𝑋𝑖𝑖 on rate-𝜆𝜆 Poisson process



Inspirational thought 
experiment
An oracle-aided microscope



Helium ion microscopy abstraction – with oracle

dwell
time

time0

ions incident as Poisson process

number of ions 𝑀𝑀 ~ Poisson(𝜆𝜆)

burst of secondary electrons per ion

due to ion 𝑖𝑖, number of SEs 𝑋𝑋𝑖𝑖 ~ Poisson(𝜂𝜂)

observation at the pixel:  𝑌𝑌 = ∑𝑖𝑖=1𝑀𝑀 𝑋𝑋𝑖𝑖

𝑋𝑋1 = 3 𝑋𝑋2 = 3 𝑋𝑋3 = 5 𝑋𝑋4 = 2

𝑀𝑀 = 4
𝑌𝑌 = 13

𝑀𝑀: known
𝜂𝜂: parameter of interest

provided

Conventional 𝜂̂𝜂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑌𝑌/𝜆𝜆

Oracle 𝜂̂𝜂𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑌𝑌/𝑀𝑀
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Mathematical details 
of model



Detailed probabilistic generative model

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 ; 𝜂𝜂 =
𝑒𝑒−𝜆𝜆𝜂𝜂
𝑦𝑦!

�
𝑚𝑚=0

∞
𝜆𝜆𝑒𝑒−𝜂𝜂 𝑚𝑚𝑚𝑚𝑦𝑦

𝑚𝑚!

One acquisition at one pixel with dose 𝜆𝜆

“Neyman Type A”

𝐸𝐸 𝑌𝑌 = λ𝜂𝜂 ⇒ baseline estimate 𝜂̂𝜂 = 𝑌𝑌/λ is unbiased

⇒ making an image of 𝑌𝑌 is reasonable

var 𝑌𝑌 = λ𝜂𝜂(𝜂𝜂 + 1) ⇒ estimate 𝜂̂𝜂 = 𝑌𝑌/λ has MSE  𝜂𝜂(𝜂𝜂+1)
𝜆𝜆

Hypothetical deterministic beam with λ ions  ⇒ var 𝑌𝑌 = λ𝜂𝜂

Factor of (𝜂𝜂 + 1) is price of a random beam (“source shot noise”)



Poisson(𝜂𝜂)-distributed marks 𝑋𝑋𝑖𝑖 on rate-𝜆𝜆 Poisson process

Unobservable underlying 
process

Conventional to observe only a single scalar total



TruncatedPoisson(𝜂𝜂)-distributed marks �𝑋𝑋𝑖𝑖 on
rate-𝜆𝜆(1 − exp −𝜂𝜂 ) Poisson process

Unobservable underlying 
process

Thinned process
(“continuous-time model”)



Thinned process
(“continuous-time model”)

Continuous-time observation:
�𝑀𝑀 ~ Poisson(𝜆𝜆(1 − exp −𝜂𝜂 ))

TruncatedPoisson(𝜂𝜂)-distributed marks �𝑋𝑋𝑖𝑖

Omitting discrete-time model today (messier)



Analysis through Fisher information

• Fisher information about parameter 𝜂𝜂 in measurement 𝑌𝑌
• How does Fisher information per ion behave?

Nontrivial numerical 
computation, nontrivially 
derived asymptotes

FI for continuous-time 
observation is exactly 
𝜆𝜆 1

𝜂𝜂
− 𝑒𝑒−𝜂𝜂

Improvement factor almost 
the full price of source shot 
noisePlotted for  𝜂𝜂 = 3

Ratio:
𝜂𝜂 + 1 1 − 𝜂𝜂𝑒𝑒−𝜂𝜂



Continuous-time estimators

Quotient mode:  Treat �𝑀𝑀 as the the number of ions:

𝜂̂𝜂𝑄𝑄𝑄𝑄 = 𝑌𝑌/ �𝑀𝑀

Lambert Quotient mode:  Treat 1 − 𝑒𝑒−𝜂𝜂 −1 �𝑀𝑀 as the number of ions:

𝜂̂𝜂𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑊𝑊 −𝜂̂𝜂𝑄𝑄𝑄𝑄exp(−𝜂̂𝜂𝑄𝑄𝑄𝑄) + 𝜂̂𝜂𝑄𝑄𝑄𝑄

Maximum likelihood:  Root of

𝜂̂𝜂𝑀𝑀𝑀𝑀 =
𝑌𝑌

�𝑀𝑀 + 𝜆𝜆 exp(−𝜂̂𝜂𝑀𝑀𝑀𝑀)

�𝑀𝑀 ~ Poisson(𝜆𝜆(1 − exp −𝜂𝜂 ))

TruncatedPoisson(𝜂𝜂)-distributed marks �𝑋𝑋𝑖𝑖

𝑌𝑌 = �
𝑖𝑖=1

�𝑀𝑀

�𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑀𝑀

𝑋𝑋𝑖𝑖



Continuous-time estimator performances

Conventional 𝜂̂𝜂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑌𝑌/𝜆𝜆

Oracle 𝜂̂𝜂𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑌𝑌/𝑀𝑀

Quotient mode 𝜂̂𝜂𝑄𝑄𝑄𝑄 = 𝑌𝑌/ �𝑀𝑀

Lambert Quotient mode

Maximum likelihood

𝜆𝜆 = 20 Roughly:electrons 𝜂𝜂 ∈ [0.2, 1]
helium ions 𝜂𝜂 ∈ [1, 8]
heavier ions larger

Peng, Murray-Bruce & Goyal, IEEE Trans. Computational Imaging, 2021



Recap

• Particle beam microscopy as a quantitative imaging modality is the 
estimation of secondary electron yield 𝜂𝜂

• Randomness of incident beam (“source shot noise”) is a nuisance

• Using time-resolved data mitigates source shot noise

• MSE lower roughly by factor of 𝜂𝜂 + 1 (uniform across 𝜆𝜆)

• Could be used to lower dose roughly by factor of 𝜂𝜂 + 1

Peng, Murray-Bruce & Goyal, IEEE Trans. Computational Imaging, 2021
Peng, Murray-Bruce, Berggren & Goyal, Ultramicroscopy, 2020



Peng, Kitichotkul, Seidel, Yu & Goyal, IEEE Trans. Computational Imaging, 2023

Watkins, Seidel, Peng, Agrawal, Yu & Goyal, Microscopy & Microanalysis, 2021

Remainder of the talk – more time-resolved sensing

• Improved feature detection (abstracted as hypothesis testing)

• Improved resolution

• Online estimation of beam current

• Combining with regularization

Seidel, Watkins, Peng, Agrawal, Yu & Goyal, IEEE Trans. Computational Imaging, 2022

Agarwal, Kasei, Schultz, Feldman & Goyal, Microscopy & Microanalysis, 2023

Agrawal, Peng & Goyal, IEEE J. Sel. Areas Inform. Theory, 2023

Seidel, Watkins, Peng, Agrawal, Yu & Goyal, Microscopy & Microanalysis, 2022



Feature detection 
(heavily abstracted)



A detection problem

vs.

Substrate with SE yield 𝜂𝜂 = 𝜂𝜂0

Does the pixel have SE yield 𝜂𝜂 = 𝜂𝜂0 or 𝜂𝜂 = 𝜂𝜂1 ?

Study through probability of missed detection 𝑃𝑃MD with 
probability of false alarm held constant

𝜂𝜂0 𝜂𝜂0 𝜂𝜂1pixel under
consideration



Error exponents – Kullback-Leibler divergence

lim
𝑛𝑛→∞

−
1
𝑛𝑛

log𝑃𝑃MD = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝0||𝑝𝑝1)

relevant distributions

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 ; 𝜂𝜂 =
𝑒𝑒−𝜆𝜆𝜂𝜂
𝑦𝑦!

�
𝑚𝑚=0

∞
𝜆𝜆𝑒𝑒−𝜂𝜂 𝑚𝑚𝑚𝑚𝑦𝑦

𝑚𝑚!

Conventional observation:

Continuous-time observation:

�𝑀𝑀 ~ Poisson(𝜆𝜆(1 − exp −𝜂𝜂 ))

TruncatedPoisson(𝜂𝜂)-distributed marks �𝑋𝑋𝑖𝑖



Analysis through Kullback-Leibler divergence

𝜂𝜂0 = 𝜂𝜂1: decision is 
hopeless

Probability of error 
decreases with increasing 
𝜂𝜂0 − 𝜂𝜂1

Improvement with time-
resolved observations

Almost matches 
deterministic beam

Gap can be arbitrarily large

Plotted for
𝜂𝜂0 = 4, 𝜆𝜆 = 20

Agrawal, Peng & Goyal, IEEE J. Sel. Areas Inform. Theory, 2023



Resolution 
improvement



Resolution as distinguishing a feature

Size of smallest feature reliably determined to be present
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Acquisition not easily 
interpretable

One scan line cross-section
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Resolution as distinguishing a feature

Size of smallest feature reliably determined to be present
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Acquisition not easily 
interpretable



0 100 200 300 400 500
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Statistics

• Simulations with Gaussian beam spatial cross-section
• Compute mean and standard deviation per pixel
• Non-overlapping error bars: confident feature is present
• Resolution: smallest feature giving non-overlapping error bars 
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Statistics

• Simulations with Gaussian beam spatial cross-section
• Compute mean and standard deviation per pixel
• Non-overlapping error bars: confident feature is present
• Resolution: smallest feature giving non-overlapping error bars 
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Resolution improvements

Size of feature:  50

improvedconventional
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 

Scan steps: 10
Gaussian beam 𝜎𝜎: 15



Resolution improvements

Size of feature:  45

improvedconventional
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Scan steps: 10
Gaussian beam 𝜎𝜎: 15



Resolution improvements

Size of feature:  40

improvedconventional
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Scan steps: 10
Gaussian beam 𝜎𝜎: 15



Resolution improvements

Size of feature:  30

improvedconventional
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Scan steps: 10
Gaussian beam 𝜎𝜎: 15
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Resolution improvements

Size of feature:  25

improvedconventional



Scan steps: 10
Gaussian beam 𝜎𝜎: 15
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Resolution improvements

Size of feature:  22

improvedconventional



Scan steps: 10
Gaussian beam 𝜎𝜎: 15
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Size of feature:  20

improvedconventional

 

Resolution has been improved 
from ~45 to ~22

Scan steps: 10
Gaussian beam 𝜎𝜎: 15



Mitigating beam 
current fluctuation



Beam current fluctuation

• Beam current lacks stability
• Worse with contamination
• Source tip ages
• Alleviated by re-forming

(baking) the trimer

• Roughly:
• Electron and helium ion

beams have continuous
fluctuation

• Neon ion beams “flicker”
between discrete values

• Existing techniques are post
facto removal of horizontal
stripe content without
physical modeling



Physics-based model + principled estimation

Seidel, Watkins, Peng, Agrawal, Yu & Goyal, IEEE Trans. Computational Imaging, 2022

Continuous (helium ion beam-inspired)

Discrete (neon ion beam-inspired)

Conventional estimate
(RMSE: 1.0689)

TR ML ”oracle”
(RMSE: 0.5147)

Hidden Markov chain estimation
(RMSE: 0.5149)

Conventional estimate
(RMSE: 1.1129)

TR ML “oracle” 
(RMSE: 0.4874) 

Joint estimation
(RMSE: 0.4979) 

Joint estimation w/TV
(RMSE: 0.2296) 



Spatial 
regularization



Plug-and-play methods for particle beam microscopy

PnP methods combine a denoiser with maximizing a likelihood

Need gradient or proximal operator of (troublesome) log likelihood

• Derived a simple approximation through Touchard polynomials

Peng, Kitichotkul, Seidel, Yu & Goyal, IEEE Trans. Computational Imaging, 2023



PnP FISTA with
BM3D denoiser

N
o 

re
gu

la
riz

at
io

n

RMSE: 0.265, SSIM = 0.776

Peng, Kitichotkul, Seidel, Yu & Goyal, IEEE Trans. Computational Imaging, 2023

Ground truth

Conventional Time-resolved

W
ith

 re
gu

la
riz

at
io

n
RMSE: 0.561, SSIM = 0.493RMSE: 1.171, SSIM = 0.261

𝜆𝜆 = 20, insets are absolute error

RMSE: 0.363, SSIM = 0.675



Take-home messages

Time resolution finer than the pixel dwell time changes particle beam 
microscopy substantially:

• MSE lower roughly by factor of 𝜂𝜂 + 1 (uniform across 𝜆𝜆)

• Improves feature detection and resolution

• Mitigates beam current variation

Peng, Murray-Bruce & Goyal, IEEE Trans. Computational Imaging, 2021

Seidel, Watkins, Peng, Agrawal, Yu & Goyal, IEEE Trans. Computational Imaging, 2022

Peng, Murray-Bruce, Berggren & Goyal, Ultramicroscopy, 2020

Watkins, Seidel, Peng, Agrawal, Yu & Goyal, Microscopy & Microanalysis, 2021

Peng, Kitichotkul, Seidel, Yu & Goyal, IEEE Trans. Computational Imaging, 2023
Agarwal, Kasei, Schultz, Feldman & Goyal, Microscopy & Microanalysis, 2023

Agrawal, Peng & Goyal, IEEE J. Sel. Areas Inform. Theory, 2023
Seidel, Watkins, Peng, Agrawal, Yu & Goyal, Microscopy & Microanalysis, 2022



More information:  www.vivekgoyal.org

@ProfessorGoyal

Join the team!

Earn referral bonuses!
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