Introduction to Array Processing

Stephan Weiss
Centre for Signal \& Image Processing
Department of Electronic \& Electrical Engineering University of Strathclyde, Glasgow, Scotland, UK
\section*{UDRC-EURASIP Summer School, Edinburgh, 30 June 2022}

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the MOD University Defence Research Collaboration in Signal Processing.

Introduction to Array Processing - Overview

Contents:

1. Introduction .. 1
2. Spatial Sampling ... 2
3. Steering Vector .. 3
4. Data Independent Beamformer Design 4
5. Statistically Optimum Beamformer Design .. 8
6. Beamforming and MIMO 9
7. Broadband beamforming 10
8. Summary .. 11

1.1 Intuitive Beamforming

- A farfield wavefront arrives at a sensor array:

- due to the direction of arrival (DOA) and finite propagation speed, the wavefront will arrive at different sensors with a delay $\Delta \tau$;
- with appropriate processing (beamforming), the sensor signals can be aligned to create constructive interference at the output $x(t)$.

1.2 Spatial Sampling

- For unambiguous spatial sampling, we need to take at least two samples per wavelength of the highest frequency component in the array signals;
- analogy from temporal sampling (Nyquist): take at least two samples per period (relating to the highest frequency component);
- Wavelength λ and frequency f are related by the propagation speed c in the medium: $\lambda=\frac{c}{f}$;

- maximum sensor distance

$$
d=\frac{\lambda_{\max }}{2}=\frac{c}{2 f_{\max }}
$$

- time delay between sensors

$$
\Delta \tau=\frac{d \sin (\vartheta)}{c}=\frac{\sin (\vartheta)}{2 f_{\max }}
$$

Spatial and Temporal Sampling

- Consider the array signals $x_{0}(t)$ and $x_{1}(t)$ due to a source $e^{j\left(\omega t+\varphi_{0}\right)}$:

- sampling with $t=n T_{\mathrm{s}}$ leads to

$$
x_{0}[n]=e^{j \omega n T_{\mathrm{s}}} \quad \text { and } \quad x_{1}[n]=e^{j \omega\left(n T_{\mathrm{s}}-\Delta \tau\right)}
$$

- with $f_{\max }=\frac{f_{\mathrm{s}}}{2}=\frac{1}{2 T_{\mathrm{s}}}$ and normalised angular frequency $\Omega=\omega T_{\mathrm{s}}$,

$$
x_{0}[n]=e^{j \Omega n} \quad \text { and } \quad x_{1}[n]=e^{j \Omega n} \cdot e^{-j \Omega \sin (\vartheta)}
$$

1.3 Steering Vector

- A narrowband source with norm. angular frequency Ω illuminates an M-element linear array of equi-spaced sensors:

$$
\mathbf{x}[n]=\left[\begin{array}{c}
x_{0}[n] \\
x_{1}[n] \\
\vdots \\
x_{M-1}[n]
\end{array}\right]=e^{j \Omega n} \cdot\left[\begin{array}{c}
1 \\
e^{-j \Omega \sin (\vartheta)} \\
\vdots \\
e^{-j(M-1) \Omega \sin (\vartheta)}
\end{array}\right]=e^{j \Omega n} \cdot \mathbf{s}_{\Omega, \vartheta}
$$

- the vector $\mathbf{s}_{\Omega, \vartheta}$ characterises the phase shifts of waveform with frequency Ω and DOA ϑ measured at the array sensors;
- since a narrowband signal $e^{j \Omega n}$ only causes phase shifts rather than delays, constructive interference can be accomplished by a set of complex multipliers rather than processors $\delta(t-m \Delta \tau), m=0,1, \ldots(M-1)$;
- beamforming problem: how to select the set of complex coefficients?

1.4 Data Independent Beamformer

- Find a set of complex multipliers $w_{m}, m=0,1, \ldots(M-1)$:

- to steer the array characteristic towards this source, the output

$$
y[n]=\left[\begin{array}{llll}
w_{0} & w_{1} & \ldots & w_{M-1}
\end{array}\right] e^{j \Omega n}\left[\begin{array}{c}
1 \\
e^{-j \Omega \sin (\vartheta)} \\
\vdots \\
e^{-j(M-1) \Omega \sin (\vartheta)}
\end{array}\right]=e^{j \Omega n} \mathbf{w}^{\mathrm{H}} \mathbf{S}_{\Omega, \vartheta}
$$

should satisfv $u[n]=e^{j \Omega n}$, leading to $\mathbf{w}^{\mathrm{H}} \mathbf{S}_{\Omega, \vartheta}=1$.

Coefficient Vector

- For later convenience and compatibility, the Hermitian transpose operator $\{\cdot\}^{\mathrm{H}}$ is used to denote the coefficient vector

$$
\mathbf{w}^{\mathrm{H}}=\left[\begin{array}{llll}
w_{0} & w_{1} & \ldots & w_{M-1}
\end{array}\right]
$$

- as a result, the vector \mathbf{w} hold the complex conjugates of the coefficients,

$$
\mathbf{w}=\left[\begin{array}{c}
w_{0}^{*} \\
w_{1}^{*} \\
\vdots \\
w_{M-1}^{*}
\end{array}\right]
$$

- to access the actual unconjugated coefficients, the beamforming vector \mathbf{w}^{*} has to be considered
- note that

$$
\mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega, \vartheta}=1 \quad \longrightarrow \quad \mathbf{s}_{\Omega, \vartheta}^{\mathrm{H}} \mathbf{w}=1
$$

Narrowband Beamforming - Single Source

- general solution to an underdetermined system $\mathbf{A x}=\mathbf{b}$ is the right pseudo-inverse \mathbf{A}^{\dagger},

$$
\mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}=\mathbf{A}^{\mathrm{H}}\left(\mathbf{A} \mathbf{A}^{\mathrm{H}}\right)^{-1} \mathbf{b}
$$

- here:

$$
\mathbf{w}=\left(\mathbf{s}_{\Omega, \vartheta}^{\mathrm{H}}\right)^{\dagger} \cdot 1=\mathbf{s}_{\Omega, \vartheta} \cdot\left(\mathbf{s}_{\Omega, \vartheta}^{\mathrm{H}} \mathbf{s}_{\Omega, \vartheta}\right)^{-1} \cdot 1=\frac{\mathbf{s}_{\Omega, \vartheta}}{\left\|\mathbf{s}_{\Omega, \vartheta}\right\|_{2}^{2}}=\frac{1}{M} \mathbf{s}_{\Omega, \vartheta}
$$

- the complex conjugation for \mathbf{w}^{*} inverts and therefore compensates the phase of the steering vector, which could have been foreseen
- the formulation via the pseudo-inverse will be powerful for more complicated cases.

Narrowband Beamformer Example

- Source parameters: $\Omega=\frac{\pi}{2}$ and $\vartheta=30^{\circ}$; array parameter: $M=5$;
- steering vector (with $\Omega \sin (\vartheta)=\frac{1}{4} \pi$):

$$
\mathbf{s}_{\Omega, \vartheta}^{\mathrm{T}}=\left[\begin{array}{llll}
1 & e^{-j \frac{1}{4} \pi} & \ldots & e^{-j \frac{4}{4} \pi}
\end{array}\right]
$$

- coefficient vector is given by $\mathrm{w}=\left(\mathbf{s}_{\Omega, \vartheta}^{\mathrm{H}}\right)^{\dagger}$;
- numerical solution in Matlab;

Omega=1/4; theta = pi/6; M=5;
$\mathrm{s}=\exp \left(-\operatorname{sqrt}(-1) *\right.$ Omega $* \sin ($ theta $\left.) *\left(0:(\mathrm{M}-1)^{\prime}\right)\right)$;
$\mathrm{w}=\operatorname{pinv}\left(\mathrm{s}^{\prime}\right)$;

- angle([s conj(w)])/pi yields:

$$
\begin{array}{ll}
-0.00000 & 0.00000 \\
-0.25000 & 0.25000 \\
-0.50000 & 0.50000 \\
-0.75000 & 0.75000 \\
-1.00000 & 1.00000
\end{array}
$$

Beam Pattern I

- The beamformer has a unit gain towards a source with frequency Ω and $\operatorname{DoA} \theta$; what is its gain response towards other angles of arrivat?
- the beam pattern measures the response of a beamformer by sweeping the angle ψ of a source with frequency Ω

$$
g(\Omega, \psi)=\mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega, \psi}
$$

- beam pattern for the previous example:

Beam Pattern II

- Below are a number of beam patterns for the case $\Omega=\frac{\pi}{2}$ and $\vartheta=30^{\circ}$ for variable M;

- increasing the sensor number M narrows the main beam, and increases the number of spatial zeros;
- analogous characteristic in the time domain: increased temporal support leads to higher frequency resolution.

Interference

- Many scenarios contain a source of interest and a number of interferers: signal of interest:
$\left\{\Omega_{0}, \vartheta_{0}\right\}$
two interferers:

- we would like to control the beampattern to place spatial nulls in the directions of the interfering sources;
- Problem formulation and solution :

$$
\left[\begin{array}{c}
\mathbf{s}_{\Omega_{0}, \vartheta_{0}}^{\mathrm{H}} \\
\mathbf{s}_{\Omega_{1}, \vartheta_{1}}^{\mathrm{H}} \\
\mathbf{s}_{\Omega_{2}, \vartheta_{2}}^{\mathrm{H}}
\end{array}\right] \mathbf{w}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \longrightarrow \quad \mathbf{w}=\left[\begin{array}{c}
\mathbf{s}_{\Omega_{0}, \vartheta_{0}}^{\mathrm{H}} \\
\mathbf{s}_{\Omega_{\Omega_{0}}, \vartheta_{1}}^{\mathrm{H}} \\
\mathbf{s}_{\Omega_{2}, \vartheta_{2}}^{\mathrm{H}}
\end{array}\right]^{\dagger}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Narrowband BF Example - Multiple Sources

- The signal of interest illuminates an $M=5$ element array at a frequency $\Omega_{0}=\frac{\pi}{2}$ with a DoA $\vartheta_{0}=30^{\circ}$
- two interferers at $\Omega_{1}=\Omega_{2}=\Omega_{0}$ are present with DoA $\vartheta_{1}=-45^{\circ}$ and $\vartheta_{2}=60^{\circ}$
- results via right pseudo-inverse of steering vectors

$\angle \mathrm{s}_{\Omega_{0}, \vartheta_{0}}$	$\angle \mathrm{~s}_{\Omega_{1}, \vartheta_{1}}$	$\angle \mathrm{~s}_{\Omega_{2}, \vartheta_{2}}$	$\angle \mathrm{w}^{*}$	$\|\mathrm{w}\|$
0.00	0.00	0.00	-42.81	0.3172
45.00	63.64	-77.94	-105.01	0.3004
90.00	127.28	-155.89	-90.00	0.2343
135.00	-169.08	126.17	-74.99	0.3004
180.00	-105.44	48.23	-137.19	0.3172

- the angle of \mathbf{w} is no longer intuitive; also note that the coefficients in \mathbf{w} no longer have the same modulus
- amongst a manifold of solutions, the right pseudo-inverse provides the minimum norm solution.

Multiple Source Example - Beampattern

- Beam pattern one source of interest and two interferers:

- the pseudo-inverse is the minimum norm solution, keeping the general gain response as low as possible;
- the minimum norm property protects against spatially white noise.

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer I

- $M=5$ sensors, source of interest towards $\theta_{0}=30^{\circ}$, interferer variable:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer II

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one fixed and one variable interferer:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Beamforming Example - Variable Interferer III

- $M=5$ sensors, SOI $\theta_{0}=30^{\circ}$, one variable and three fixed interferers:

Data Independent Beamforming

- Previous beamformer designs were based on the knowledge of DoA of the signal of interest and of interfering sources;
- remaining degrees of freedom are invested to suppress spatially white noise;
- using the analogy between spatial and temporal processing, classical filter design techniques can be invoked to design arrays with a bandpass-type angular response;
- beamformers based on source parameters (frequency, DoA) rather the actual received waveforms are termed data independent beamformers;
- this is in contrast to statistically optimum beamformers, which take the received signal statistics into account.

1.8 Statistically Optimum Beamforming

- Statistically optimum beamformer minimise e.g. the signal power of the beamformer output, $y[n]$;
- to avoid the trivial solution $\mathbf{w}=\mathbf{0}$, the signal of interest needs to be protected by constraints;
- this results in e.g. the following constrained optimisation problem

$$
\min _{\mathbf{w}^{*}} \mathcal{E}\left\{|y[n]|^{2}\right\} \quad \text { subject } \quad \text { to } \quad \mathbf{s}_{\Omega, \vartheta}^{\mathrm{H}} \mathbf{w}=1
$$

- the solution to this specific statistically optimum beamformer is known as the minimum variance distortionless response (MVDR).

MVDR Beamformer

- Solving the MVDR problem: minimise the power of
$y[n]=\mathbf{w}^{\mathrm{H}} \mathbf{x}$ subject to the contraint $\mathbf{w}^{\mathrm{H}} \mathbf{S}_{\Omega_{0}, \vartheta_{0}}=1$;
- Formulation using a Lagrange multiplier λ :

$$
\frac{\partial}{\partial \mathbf{w}^{*}}\left(\mathbf{w}^{\mathrm{H}} \mathcal{E}\left\{\mathbf{x} \mathbf{x}^{\mathrm{H}}\right\} \mathbf{w}-\lambda\left(\mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega_{0}, \vartheta_{0}}-1\right)\right)=\mathbf{R}_{x x} \mathbf{w}-\lambda \mathbf{s}_{\Omega_{0}, \vartheta_{0}}=\mathbf{0}
$$

- the solution $\mathbf{w}=\lambda \mathbf{R}_{x x}^{-1} \mathbf{s}_{\Omega_{0}, \vartheta_{0}}$ is inserted into the constraint equation to determine λ :

$$
\lambda \mathbf{s}_{\Omega_{0}, \vartheta_{0}}^{\mathrm{H}} \mathbf{R}_{x x}^{-1} \mathbf{s}_{\Omega_{0}, \vartheta_{0}}=1
$$

- therefore

$$
\mathbf{w}_{\mathrm{MVDR}}=\left(\mathbf{s}_{\Omega_{0}, \vartheta_{0}}^{\mathrm{H}} \mathbf{R}_{x x}^{-1} \mathbf{s}_{\Omega_{0}, \vartheta_{0}}\right)^{-1} \mathbf{R}_{x x}^{-1} \mathbf{s}_{\Omega_{0}, \vartheta_{0}}
$$

- this statistically optimum beamformer has various other names, e.g. Capon beamformer.

MVDR Beamformer - Simple Case

- In the case of spatially white noise input, such that

$$
\mathbf{R}_{x x}=\sigma_{x x}^{2} \mathbf{I} \quad \longrightarrow \quad \mathbf{R}_{x x}^{-1}=\sigma_{x x}^{-2} \mathbf{I}
$$

the MVDR solution reduces to

$$
\mathbf{w}_{\mathrm{MVDR}}=\frac{\mathbf{s}_{\Omega_{0}, \vartheta_{0}}}{\left\|\mathbf{s}_{\Omega_{0}, \vartheta_{0}}\right\|_{2}^{2}}=\frac{\mathbf{s}_{\Omega_{0}, \vartheta_{0}}}{M} ;
$$

- this is identical to the data independent beamformer in the absence of interference (i.e. no spatially structured noise);

Generalised Sidelobe Canceller (GSC)

- The generalised sidelobe canceller is a specific implementation of the MVDR beamformer; it transforms the constrained MVDR problem into an unconstrained optimisation problem;
- a first guess at the solution is performed by the quiescent beamformer \mathbf{w}_{q}, which is identical to the previously defined data independent beamformer, obtained by inverting the constraint equation

$$
\mathbf{C}^{\mathrm{H}} \mathbf{w}_{\mathrm{q}}=\mathbf{f} \quad \longrightarrow \quad \mathbf{w}_{\mathrm{q}}=\left(\mathbf{C}^{\mathrm{H}}\right)^{\dagger} \mathbf{f}
$$

- the quiescent beamformer eliminates interferers captured by \mathbf{C} and \mathbf{f}, but passes the signal of interest, any interferers unaccounted for in the constraints, and spatially distributed noise.

GSC — Idea

- GSE idea: produce array signals that are free of any contribution from the signal of interest, and use the resulting signal vector $\mathbf{u}[n]$ to eliminate remaining interference from the quiescent output:

- the blocking matrix \mathbf{B} eliminates the signal of interest and any interferers captured by the constraints;
- the vector \mathbf{w}_{a} will be based on the statistics of $\mathbf{u}[n]$ and $d[n]$ to minimise the beamformer output variance $\mathcal{E}\left\{|e[n]|^{2}\right\}$.

GSC - Blocking Matrix

- In order to project away from the constraints,

$$
\mathbf{B} \cdot \mathbf{C}=\mathbf{B} \cdot\left[\begin{array}{llll}
\mathbf{s}_{\Omega_{0}, \vartheta_{0}} & \mathbf{s}_{\Omega_{1}, \vartheta_{1}} & \ldots & \mathbf{s}_{\Omega_{r-1}, \vartheta_{r-1}}
\end{array}\right]=\mathbf{0}
$$

- assuming that the r constraints are linearly independent, the singular value decomposition of the constraint matrix yields

$$
\mathbf{B} \cdot\left[\begin{array}{ll}
\mathbf{U}_{0} & \mathbf{U}_{0}^{\perp}
\end{array}\right]\left[\begin{array}{lll|l}
\sigma_{0} & & & \\
& \ddots & & \mathbf{0} \\
& & \sigma_{r-1} & \\
\hline & \mathbf{0} & & \mathbf{0}
\end{array}\right] \cdot \mathbf{V}^{\mathrm{H}}=\mathbf{0}
$$

- the matrix $\mathbf{U}_{0}^{\perp} \in \mathbb{C}^{M \times(M-r)}$ spans the nullspace of \mathbf{C}^{H}, and

$$
\mathbf{B}=\left(\mathbf{U}_{0}^{\perp}\right)^{\mathrm{H}} \in \mathbb{C}^{(M-r) \times M}
$$

has the required property, as $\left(\mathbf{U}_{0}^{\perp}\right)^{\mathrm{H}} \cdot\left[\begin{array}{ll}\mathbf{U}_{0} & \mathbf{U}_{0}^{\perp}\end{array}\right] \boldsymbol{\Sigma}=\left[\begin{array}{ll}\mathbf{0} & \mathbf{I}\end{array}\right] \cdot \boldsymbol{\Sigma}=\mathbf{0}$.

GSC - Unconstrained Optimisation

- The beamforming vector \mathbf{w}_{a} is adjusted to minimise the output power;
- the MMSE or Wiener solution is given by

$$
\mathbf{w}_{\mathrm{a}}=\mathbf{R}_{u u}^{-1} \cdot \mathbf{p}=\frac{\mathbf{B R}_{x x}\left(\mathbf{C}^{\mathrm{H}}\right)^{\dagger} \mathbf{f}}{\mathbf{B R}_{x x} \mathbf{B}^{\mathrm{H}}}
$$

with the covariance matrix

$$
\mathbf{R}_{u u}=\mathcal{E}\left\{\mathbf{u}[n] \cdot \mathbf{u}^{\mathrm{H}}[n]\right\}=\mathbf{B} \mathcal{E}\left\{\mathbf{x}[n] \cdot \mathbf{x}^{\mathrm{H}}[n]\right\} \mathbf{B}^{\mathrm{H}}=\mathbf{B R}_{x x} \mathbf{B}^{\mathrm{H}}
$$

and the cross-correlation vector

$$
\mathbf{p}=\mathcal{E}\left\{\mathbf{u}[n] \cdot d^{*}[n]\right\}=\mathbf{B R}_{x x} \mathbf{w}_{\mathbf{q}}
$$

- iterative optimisation schemes, such as the least mean squares (LMS) algorithm may be used to approximate the MMSE solution.

1.9 Beamforming and MIMO Processing

- Assume a transmission scenario with an M-element transmit (Tx) antenna array and an N-element receive (Rx) array;
- in the absence of scatterers and any attenuation, the farfield transmission from the transmit antenna is characterised by a steering vector $\mathrm{s}_{\mathrm{Tx}}^{\mathrm{H}}$;
- the incoming waveform at the Rx device is described by another steering vector s_{Rx};
- the overall MIMO system between a $T x$ vector $\mathbf{x} \in \mathbb{C}^{M}$ and an Rx vector $\mathbf{y} \in \mathbb{C}^{N}$ is described as

$$
\mathbf{y}=\mathbf{s}_{\mathrm{Rx}} \cdot \mathbf{s}_{\mathrm{Tx}}^{\mathrm{H}} \cdot \mathbf{x}=\mathbf{H x}
$$

- the MIMO system matrix $\mathbf{H}=\mathbf{s}_{\mathrm{Rx}} \cdot \mathbf{s}_{\mathrm{Tx}}^{\mathrm{H}}$ is rank one only.

MIMO Requirements

- The farfield assumption is convenient for beamforming, but leads to a rank one MIMO system matrix which is incompatible with the desire to extract multiple independent subchannels or with to achieve diversity;
- rich scattering in connection with MIMO usually implies multiple reflections of signals;
- together with a sufficiently large antenna spacing means that the farfield assumption is invalid and the MIMO system matrix is not rank deficient;
- some suggestions of "sufficiently large spacing" imply an antenna element distance of $d>10 \lambda$;
- recall spatial sampling requires $d<\frac{1}{2} \lambda$!

Beamforming with Spatial Aliasing

- For a flexible spatial sampling with $d=\alpha \lambda, 0<\alpha \in \mathbb{R}$, the steering vector for a waveform with normalised angular frequency Ω and DoA ϑ is

$$
\mathbf{y}=e^{j \Omega n}\left[\begin{array}{c}
1 \\
e^{j 2 \alpha \Omega \sin (\vartheta)} \\
\vdots \\
e^{j 2 \alpha(M-1) \Omega \sin (\vartheta)}
\end{array}\right]=\mathbf{s}_{2 \alpha \Omega, \vartheta} \cdot e^{j \Omega}
$$

- inspecting $\mathbf{s}_{2 \alpha \Omega, \vartheta}$ the steering vector is aliased to a different frequency $2 \alpha \Omega$;
- although the correct frequency can be retrieved unambigiously from temporal sampling of any array element, at Ω various different angles could provide the same steering vector $\mathbf{s}_{2 \alpha \Omega, \vartheta}$;
- the array performs spatial undersampling, resulting in spatial aliasing.

Spatial Undersampling Example

- Beamforming parameters: signal of interest with $\Omega=\frac{\pi}{2}$, direction of arrival $\vartheta=30^{\circ}, M=32$ array elements;
- data independent beamformer design with correct spatial sampling ($d=\lambda / 2$) and incorrect spatial sampling $(d=10 \lambda)$:

- MIMO systems perform beamforming, but may dissipate energy into aliased directions.

1.10 Broadband MVDR Beamformer

- Each sensor is followed by a tap delay line of dimension L, giving a total of $M L$ coefficients in a vector $\mathbf{v} \in \mathbb{C}^{M L}$

Broadband MVDR Beamformer Constraints

- A larger input vector $\mathbf{x}_{n} \in \mathbb{C}^{M L}$ is generated, also including lags;
- the general approach is similar to the narrowband system, minimising the power of $e[n]=\mathbf{v}^{\mathrm{H}} \mathbf{x}_{n}$;
- however, we require several constraint equations to protect the signal of interest, e.g.

$$
\begin{equation*}
\mathbf{C}=\left[\mathbf{s}\left(\vartheta_{\mathbf{s}}, \Omega_{0}\right), \mathbf{s}\left(\vartheta_{\mathbf{s}}, \Omega_{1}\right) \ldots \mathbf{s}\left(\vartheta_{\mathbf{s}}, \Omega_{L-1}\right)\right] \tag{1}
\end{equation*}
$$

- these L constraints pin down the response to unit gain at L separate points in frequency:

$$
\begin{equation*}
\mathbf{C}^{\mathrm{H}} \mathbf{v}=\mathbf{1} ; \tag{2}
\end{equation*}
$$

- generally $\mathbf{C} \in \mathbb{C}^{M L \times L}$, but simplifications can be applied if the look direction is towards broadside.

Broadband Generalised Sidelobe Canceller

- A quiescent beamformer $\mathbf{v}_{\mathrm{q}}=\left(\mathbf{C}^{\mathrm{H}}\right)^{\dagger} \mathbf{1} \in \mathbb{C}^{M L}$ picks the signal of interest;
- the quiescent beamformer is optimal for AWGN but generally passes structured interference;
- the output of the blocking matrix \mathbf{B} contains interference only, which requires $[\mathbf{B C}]$ to be unitary; hence $\mathbf{B} \in \mathbb{C}^{M L \times(M-1) L}$;
- an adaptive noise canceller $\mathbf{v}_{\mathrm{a}} \in \mathbb{C}^{(M-1) L}$ aims to remove the residual interference:

- note: all dimensions are determined by $\{M, L\}$.

Broadband Beamformer Example

- We assume a signal of interest from $\vartheta=30^{\circ}$;
- three interferers with angles $\vartheta_{i} \in\left\{-40^{\circ},-10^{\circ}, 80^{\circ}\right\}$ active over the frequency range $\Omega=2 \pi \cdot[0.1 ; 0.45]$ at signal to interference ratio of -40 dB ;

- $M=8$ element linear uniform array is also corrupted by spatially and temporally white additive Gaussian noise at 20 dB SNR;
- tap-delay-line length: $L=150$;
- cost per iteration: approx. 2 MMACs (standard), can be reduced to 10 kMACs when efficiently implemented.

Broadband Quiescent Beamformer

- Directivity pattern of quiescent standard broadband beamformer:

Optimised Broadband Beamformer

- Directivity pattern of the broadband beamformer:

1.11 Summary

- Spatial sampling by an array of sensors (e.g. antenna elements) has been explored;
- the spatial data window of a narrowband source is characterised by the steering vector;
- appropriate data independent beamformers can be designed based on the steering vectors of desired sources and interferers;
- statistically optimum beamformers are based on the signal statistics;
- a specific statistically optimum beamformer, the generalised sidelobe canceller, has been reviewed - it uses signal statistics to improve the performance of a data independent beamformer derived from the constraint equations;
- some similarities and differences between beamforming and MIMO systems have been highlighted;
- broadband beamforming requires the inclusion of tap delay lines.

