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Presentation Overview
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1. Overview 25[?,5[;“!’“

Part I: Polynomial Matrices and Decompositions
2. Polynomial matrices and basic operations
3. Parahermitian matrix / polynomial eigenvalue decomposition (PhEVD /PEVD)
4. lterative PEVD algorithms
5. PEVD Matlab toolbox
Part II: Beamforming & Source Separation Applications
6. Broadband MIMO decoupling
7. Broadband angle of arrival estimation
8. Broadband beamforming
9. Source-sensor transfer function extraction
10. Weak transient signal detection
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What is a Polynomial Matrix?
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» A polynomial matrix is a polynomial with matrix-valued coefficients, e.g.:

A(z):[_i _;] + “ _”z‘1+ [_i _ﬂz‘Q; (1)

» a polynomial matrix can equivalently be understood a matrix with polynomial entries,
i.e.

1+271—272 —1+z71 42272 ] ‘

ao-| AL AR @

> we may also encounter matrix-valued power series, Laurent polynomials, and Laurent
series.
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Matrix-Valued Polynomials and Power Series
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> A power series a(z) arises as the z-transform

a(z) = Za[n]z_” or short a(z) e—o an|, (3)

> for a(z) to exist as a power series, a[n] must be
causal: a[n] =0Vn < 0;
absolutely convergent: " |a[n]| < co

> absolute convergence implies that a[n]| decays at least as fast as an exponential
function;

» a polynomial is a power series, but of finite length;

» polynomials or power series can form the entries of a matrix A(z).
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Example of a Power Series

» For the geometric series

Engineering
0, n<0

a[n]:{ (%)n’ nZO
we have

1 1 1
3 4ttt —9 : 5
n|a[n]| +2+4+8+ < 00} (5)

» therefore a[n] is an absolutely convergent power series, and a(z) exists as an analytic
function;

> here, for a(z):

gt a1 _ 1

> this looks like the transfer function of a causal infinite impulse response (IIR) filter.
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Laurent Series and Laurent Polynomials
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» A Laurent series a[n] is potentially infinite, but can include non-negative
terms for both n > 0 and n < 0;

» for a(z) e—o aln] to exist, a[n| needs to decay at least exponentially in both positive
and negative time direction;

(3" |
PR, o | T 2 1 e
2 4

-—a—ihk ! |
5 4 g 0 l

> if it possesses finite support, a(z) is a Laurent polynomial.
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Analyticity and Polynomial Approximation

[T,

» Absolute convergence of a[n] implies analyticity of a(z) e—o a[n|; ”s“{'FS'E‘ﬁ’clyde

Engineering

> the best approximation of an infinite order, analytic a(z) in the least squares
sense is by truncation (power series — polynomial);

P likewise, a Laurent series can be approximated by a polynomial through truncation
(— Laurent polynomial) and an appropriate delay (— polymomial);

b aln —1]
g ST n
— =9 | : ' 4 T g >
-4 -3 2 T7E--_ 0 1 3 [

» hence polynomials can typically approximate any general analytic function well, and
arbitrarily closely.
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Where Do Polynomial Matrices Arise?

» A multiple-input multiple-output (MIMO) system could be made up of a
number of finite impulse response (FIR) channels:

x1[n] D— y1[n]
z2[n] D— 12[n]

» writing this as a matrix of impulse responses:

h11 [n] h12 [n] ]

H[n] - [ hgl[n] hgg[n]
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Transfer Function of a MIMO System

. . <)
» Example for MIMO matrix H[n] of impulse responses: nbersiyof '
Strathclyde
Engineering
1 1
— 05 — 05
< <
= o P ? T ole T T e
oS l l <
-05 05
0 1 2 3 4 0 1 2 3 4
1 1
= ] =] ¢ T
= 0 o A o0
< l é < l )
05 05
0 1 2 3 4 0 1 2 3 4
discrete time index n discrete time index n

» the transfer function of this MIMO system is a polynomial matrix:

H(z) = Z H[n|z ! or  H(z) e—o Hln| (8)
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Analysis Filter Bank

» Critically decimated H(2) @
ﬁi;]c;-annel analysis filter Hj(2) @
; | ;
| :
» equivalent polyphase representation: Hi(2) @
(K .
o _
Z_l H(Z) -
B[ Hia(z) o Hix(e) |
| Hy,1(2) Hy i (2)
= z z
Ryl Hal) - il
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Polyphase Analysis Matrix
y p y University of

> With the K-fold polyphase decomposition of the analysis filters Strathclyde

Engineering

K
Hi(z) = Z Hy p(25) 271
n=1

il T ‘ K=1
T B K
» the polyphase analysis matrix is a polynomial matrix:
Hyi(2) Hia(2) ... Hyig(2)
H(z) = H2,'1(Z) H27.2(z) 5 Hu.((z) )
HK,.l(Z) HK;Q(Z) HK.K(Z)
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Synthesis Filter Bank

» Critically decimated
K-channel synthesis filter
bank:

Universityof <&

Strathclyde
Engineering

® GG

» equivalent polyphase representation:

T G(2) =

e[ Gri(z) ... Gik(2) GR)—C
G271(2) ‘e GQ’K(Z) U |H
Gra(z) ... Grx(2) le

. JLGx KK (R)—
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Polyphase Synthesis Matrix

¢
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» Analoguous to analysis filter bank, the synthesis filters G;(z) can be split Strathclyde
into K polyphase components, creating a polyphse synthesis matrix
Gii(z) Gia(2) ... Gik(2)
Gl2) = GQ,?(Z) Gz,.z(z) G2J.<(z) a
GK,Il(Z) GK,.Q(Z) .. GK,}{(Z)

P operating analysis and synthesis back-to-back, perfect reconstruction is achieved if
G(z)H(z)=1; (12)

> i.e. for perfect reconstruction, the polyphase analysis matrix must be invertible:
G(z) = H '(2).
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Space-Time Covariance Matrix
University of

. . Strathclyde
» Measurements obtained from M sensors are collected in a Engineering

vector x[n] € CM:

x T

n| = [z1[n] z2[n] ... zmn]] ; (13)

> with the expectation operator £{-}, the spatial correlation is captured by
R = &{x[n]x"[n]};
» for spatial and temporal correlation, we require a space-time covariance matrix

R[] = E{X[n]XH[n — 7']} (14)
> this space-time covariance matrix contains auto- and cross-correlation terms, e.g. for

M =2
[n— 7]} (15)
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Cross-Spectral Density Matrix

. . . *“*
» example for a space-time covariance matrix R[7] € R?*2; St
Engineering
1 1
X os = o5 T
L T T ¢ Foeg ? |
-05 -0.5

Ty, 1]
o
o 5
——0
=)
T-Tzlz [TL]
o
o (4]
—
——0
—o

-0.5 -0.5
-2 -1 0 1 2 -2 -1 0 1 2
lag 7 lag 7
» the cross-spectral density (CSD) matrix
R(z) o—e R[] (16)

is a polynomial matrix.
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Parahermitian Operator

» A parahermitian operation is indicated by {-}¥', and compared to the
Hermitian transposition of a matrix additionally performs a time-reversal;

> example:
1 1
% T ? ) PR | ? o
_05 ! & _05 l
A(Z) = , 0 1 2 3 4 1 0 1 2 3 4
I J e 1§
03[0 ¢ ool & ®
0 1 2 3 4 0 1 2 3 4
> parahermitian AY(2) = AH(1/2%):
1 1
% ) T e o 1
- -05 s ) 05 ® !
A(Z) = -4 -3 -2 -1 0 -4 -3 -2 -1 0
1 1
o @ ? . o8 P e f
-0.5 l -0.5 6 &

-4
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Parahermitian Property

[T,
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> A polynomial matrix R(z) is parahermitian if RY(z) = RY(1/2*) = R(2); Strathclyde

Engineering

> this is an extension of the symmetric (if R € R) or or Hermitian (if R € C)
property to the polynomial case:
transposition, complex conjugation and time reversal (in any order) do not alter a
parahermitian R(z);

» any CSD matrix is parahermitian;
> example:
0 e 7 W T ¢ " 5 ? T
0.5 05 & l
R(z) — ‘ 2 1 0 1 2 |72 -1 0 1 2 — RP(z)
) [ ol [
05l L -0.5 l l
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Paraunitary Matrices
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» Recall that A € C (or A € R) is a unitary (or orthonormal) matrix if
AAY = AHA =T,

» in the polynomial case, A(z) is paraunitary if
A(2)AP(2) = AP (2)A(z) =1 (17)
> therefore, if A(z) is paraunitary, then the polynomial matrix inverse is simple:
A7(z) = AP(2) (18)

» example: polyphase analysis or synthesis matrices of perfectly reconstructing (or
lossless) filter banks are usually paraunitary.
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Attempt of Gaussian Elimination

¢
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» System of polynomial equations: Strathclyde

e o %0150

» modification of 2nd row:

A (?) ., Ai2(2) ' [ Xi(z) ] _ |, Bi(z) (20)
A11(2) A;ggAQQ(z) Xo(2) T By (2)
» upper triangular form by subtracting 1st row from 2nd:
An1(2) Ar2(2) X1(2) Bi(2)
0 Au@inGAu@ine) | [ X,(2) ] - [ Bo(2) } (21)

» penalty: we end up with rational functions rather than polynomials.
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Parahermitian Matrix Eigenvalue Decomposition |

University of

» For a Hermitian matrix R = RH, we know that an eigenvalue decomposition BEELEE

Engineering

(EVD) R = QAQ! exists [18, 22];
> for eigenvalues A = diag{\1,..., Ay} and eigenvectors Q = [q1, ..., qu]:

Ram = Amam

> eigenvalues \ € R;

> eigenvectors can be chosen as orthonormal, but may have an arbitary phase shift:

q,, = €/%°qy, is also an eigenvector;

P in case of an algebraic multiplicity C: A\, = App41 = -+ - = Amac—1, only a
C-dimensional subspace is defined, within which the eigenvectors can form an
arbitrary orthonormal basis, with any unitary V:

[ - Amroa] = lAm; - Gmic—] V, (22)
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Parahermitian Matrix Eigenvalue Decomposition Il
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» A standard EVD can diagonalise R(z) e—o R|[7] only for one specific value
of z or of 7, respectively;

» we are interested in the EVD of a parahermitian matrix R(z) such that
R(z) = Q(2) A(2) Q"(2) (23)
> Q(z) =1[q1(2),...,q(2)] must be paraunitary, such that
Q(:)Q"(x) = Q"(:)Q(z) =1; (24)

> A(z) =diag{A\i(2),...,Ax} must be diagonal and parahermitian;
> the parahermitian property implies that on the unit circle, A(e/?) = \(2)],_.ie € R;
> we call (23) a parahermitian matrix EVD.
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Analyticity of R(z2)

» The analyticity of R(z) e—o S{X Hip — 7 } can be tied to a source g"tvF;'Eyﬁfclyde
mOde| [26, 40] Engineering
up[n] Fi(2) —— x1[n]
| —— Y ¥ £
us|n] Fy(z) 2l
H(z)

ug[n] Fi(2) zm(n]

» the innovation filters Fy(z), £ = 1,..., L describe the spectral shape of the L

contributing source signals;
» a convolutive mixing system H(z) : C — CM*N models the transfer paths between
the L sources and M sensors;
> if Fy(z) and H(z) are stable and causal, then R(z) = H(2)F(2)FY (2)H" (z) is
analytic.
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Analytic EVD
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» Franz Rellich (1939,[28]) for a
self-adjoint, analytic R(t) = R (¢),
teR:

R(t) = Q)A)Q" (1) ;

» Q(t) and A(t) can be chosen analytic;

» similarly for an arbitrary (i.e. not necessarily Hermitian or square) analytic matrix, de
Moor & Boyd (1989, [14]) and Bunse-Gerstner (1991,[10]) established an analytic
SVD.
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EVD on the Unit Circle
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> Analyticity: R(z) is uniquely definited by its representation on the unit circle,
R(e?) = R(2)].ai0;

> R(e?) is self-adjoint: R(el?) = RY(eI?), i.e. Hermitian for every ;

» EVD on the unit circle:

R(¢7) = Q(Q)- A(Q) - Q"(Q) . (25)

> for every Q, Q(£2) and A(Q) fulfill the properties of the EVD;
> (25) is covered by Rellich [28];

> R(e?) is 2m-periodic, but the same periodicity cannot be guaranteed for Q(2) and
A(Q) [41].
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Matrix Perturbation Theory

> Intuitive explanation of Rellich [28]: if we know that R(e/?) varies smoothly, Strathclyde

what can be say about Q(€2) and A(Q)? Engineering
» eigenvalues (Hoffman-Wielandt, 1953,[22]):

Z Ai(Q) = Ai(Q + AQ)| < [|R(F) — R(ICHED)||p (26)

» subspace distance for eigenvectors / eigenspaces (Golub & van Loan,[18]):

Q"() (R(AY) - R(e) Q(2) =

[ Eo (e, AQ) E;;(eJ AQ) } (27)
< MoC
dist{Q1(2), Q1 (2 + AQ)} < §||E21(ejﬂ, AQ)ls . (28)
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Existence and Uniqueness of an Analytic PhEVD

> If R(z) e—o &{x[n]x"[n — 7]} is analytic, and the data x[n] does not ik
originate from a mu|t|p|exmg operation, then we have

R(e™) = Q(e) - A(e) - Q7(e) ;
> the factors Q(¢/?) and A(e/?) are analytic in &;
> therefore, Q[n] o—e Q(/?) and A[r] o—e A[7] are absolutely convergent;
> we can reparameterise (29) as [40]
R(z) = Q(2) - A(2) - Q"(2) ; (30)

> the eigenvalues in A(z) are unique up to a permutation;

Strathclyde

Engineering

> if eigenvalues are distinct, then eigenvectors are unique up to an allpass filter Uy(z);
> with ¥(2) = diag{Vi(z),...,Vn(2)},

R(2) = Q(2)¥(2)A(2)¥" (2)Q" (2) = Q(2)A(2)¥(2)¥" (2)Q" (2) = Q(2)A(2)Q" (2) .
26125



Numerical Example for a 2x2 Matrix
» Consider the parahermitian matrix R(z) = U (2)T'(2)U¥ (2): Strathclyde

Engineering

¢
University of

1—j 145 —1 145 .2 ;| 1=5
Re) - | TLLET LA ()
» it can be shown that for the eigenvalues,

-1
A(z):[z+3+z —jz+3+jz‘1] 5 (32)

> for the eigenvectors, one possible solution is
U) = fui(2), wa(z)]  with  wia(z) = = [ = } . (3

V2 | £2

> we'll evaluate on the unit circle, and for the eigenvectors inspect the Hermitian angle
— |4H(nJ0 iQ
cos om = |qy (e17) - @ ()],
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Numerical Example for a 2x2 Matrix cont’d

- ~
’ r N
. 4+ (a)’ N 1
% ’ N
% 3¢ \\ 7
< [N
2+ > 1
S ,
S o . s
1 L L L " L -y L
0 w4 /2 37/4 m 57/4 37/2 774 2

3n/4 I
norm. angular frequency )

57/4 37/2
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> cigenvalues A(e/}) =
diag{)\l(eiQ) )\M(ejQ)};

» Hermitian angles
cos g = |1 () - g, ()],

28/125



Non-Existence of an Analytic PhEVD
Unlversltyof

» Recall due to Rellich [28] Strathclyde

R(?) =Q(Q) - A(Q) - Q" (Q) ; (34)

> if R(z) e—o &{x[n|x"[n — 7]} is analytic, but the data x[n] is K-fold multiplexed,
then Q(€2) and A(2) will be 2K7 periodic;

vln]o @ o 1[n]
» as such, we can only find an 71
analytic EVD if R(z) is K-fold o Z2[n]
oversampled [41]: |
|
R(:X) = Q()A)Q"(:) . (39) -
-
zk[n]
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Numerical Example
» Consider the analytic CSD matrix 33, 11]

2

R(z) = z+1

» this is a pseudo-circulant system [34] that can be created by the following

14271

2

|

multiplexing operation with uncorrelated u[n] € N(0, 1):

uln] o— H(z)=1+z"1

ELECTRONIC & ELECTRICAL ENGINEERING

-1

@ b

_.@_Q x2[n]

<)
Universityof <&
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(36)
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Numerical Example cont'd

» We can find

¢
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Strathclyde

- Engineering

1 _1 1
1 1 -1 22 +2+272 1 22
R(z) = 5 -1 1 1 _1 1
2 z72 z72 —22 42—z 2 -1 =22
4 T T T = T = T T
~
s o,
3k s > .
’ N
— 4 \
gzk ‘ h —_—m=1 |
g ¢’ --—- =2
~ s S mn
S
1 . ’ < 4
¥ o) S
f, ~
0 - 1 1 I 1 1 N
0 /2 T 37/2 2 5m/2 37 7r/2
Q

» note that the eigenvalues are modulated versions of each other.

» fractional powers of z are not analytic — we need to oversample by two.
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Exact Calculation for a 2 x 2 Matrix
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» Given an arbitrary parahermitian R(z) € C2*?;

> eigenvalues 7 2(2) can be directly computed in the z-domain as the roots of

det{¥(:)I - R(2)} = 72(2) — T(2)3(2) + D(2) = 0
» determinant D(z) = det{R(z)} and trace T'(z) = trace{R(z)};
> this leads to

12(2) = 5T(2) % 3/ T()TF () ~ 4D(2) ; (38)

» awkward: T(2)TY(z) — 4D(z) = S(2)S¥(2) is parahermitian, but so must be the
result of the square root.
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Exact Calculation cont'd -
University of

» Maclaurin series: for every root of S(z), Strathclyde

Engineering

V1= Bl = anﬂ”z‘” (39)

m (Z §na'z n) :7;))(71&”3_” (40)

» with coefficients

e (-G
(-G e
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Maclaurin Series .
University of

» Coefficients &, and x, forn =0...50: Strathclyde
Engineering
1 T T T
—O zero approximation
>§ % pole approximation
£ 05 - 1
up
=1 * x
ég . © on KK K X K K X K K KK % K K K K K K K
O U0
|5} %xxxa«x*%%a«%x*%x*
S . X K X * ¥ %
_05 ¥ Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

v

coefficient index n

these coefficients additionally dampen a geometric series;
only if S(z) has double zeros (and double poles) is a polynomial (rational) solution

possible;

P in general, the result are transcendental eigenvalues.
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Numerical Example

A (€?)

a[7]

2010gyg [ 7]

. .
0 w4 w2 3r/4 m 574 3xl2  Txl4 27
norm. angular freq.

(b)

-100

-200

-300

-400 &

-40 -30 -20 -10 0 10 20 30 40
lag 7
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Example from Icart & Comon (2012,[21]):

1 1
R)=1 .16 22_1]

(a) solution on unit circle;
(b) coefficients of analytic eigenvalues;

(c) decay of coefficients.

solution generally can be transcendental,

i.e. neither finite nor rationall
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Polynomial Eigenvalue Decomposition

» Polynomial EVD or McWhirter decomposition [24] of the CSD matrix

University of Q
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Engineering

U(z) D(2) U () (43)

> with paraunitary, polynomial U (z), s.t. U(2)UF (2) = I,

» diagonalised and spectrally majorised Laurent polynomial I'(z):

% w0 %
% % %
2 2 2
10 10 10

1%,
ki o 9 5 o X
0 w0 w0
w w %

a0 2 2
10 10 7 10
ki 5 9 o o X
0 w0 w0

ELECTRONIC & ELECTRICAL ENGINEERING

lat 7

0

1

101ogyo |1 / [dB]

o 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

normalised angular frequency £/(27)
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Numerical Example
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» We return to the previous example of a parahermitian matrix:

[ 243427t
Alz) = [ —jz+3+j271 }
. 1 1
Q) =la1(2), @2(2)]  with  qi2(2)=—2| | 1 |
> parahermitian matrix R(z) = Q(2)A(2)QF (2):
1=j 1+j5 -1 1+5.2 , 1-j
S+ 3+ 502 =zt 4+ =5
R(z)=| 2,7 2 2 7 _
0= [FEURE il
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Numerical Example — Analytic Solution

5 T - T T T T T

- ~ University of
¢ L Strathclyde
L P ~ i Engineering
4t .
& | e .
~< N 7 -
2+ A 7 4 » Recall from earlier:
7
’ .
1 1 1 1 | YA » analytic (and therefore
0 /4 /2 3n/4 71' 5n/4 37/2 Trl4 2 infinitely differentiable)
eigenvalues ), (e!));
/2 T T T T T T pud
Ss L’ » smooth Hermitian angles
378 F(b) S« . 1 _
—~ N . COS Py, =
% N al H(j0 i
L < . 1 lai (€7) - g, (7).
SN ~ o7
/8 S . —m=1 |4
S P - = m=2
0 1 1 1 hd ll, 1 1 1 \
0 /4 /2 3n/4 T 5n/4 37/2 7rnl4 27

norm. angular frequency €2
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Numerical Example — ldeal Spectral Majorisation

‘P?n(ejg)

/2

37/8

/4

/8

T T T T T T

(@), ’ <
.
le

~ oS

-
1 1 ! ~ - 1 P T

T

’

1

5n/4

3n/2

774

2

—m=1
= = m=2

1

37/4 ™
norm. angular frequency €2
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Analytic eigenvalues are
permuted where they
intersect;

resulting spectrally
majorised eigenvalues are
piecewise analytic but not
differentiable;

corresponding
eigenvectors are piecewise
analytic but not
continuous.
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Numerical Example — PEVD Algorithmic Solution

—~

Ch

PSBR2,m

5

N

( el Q )

w

n

/?SBRZ,m

/2

37/8

/4

/8

T T T T T

T

T

0 /4 /2 3rn/4 ™ 5n/4

3n/2

774

2

1 1 1 1

—m=1
= = m=2

1

0 /4 /2 3n/4 T 5n/4

norm. angular frequency €2
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Using the SBR2 algorithm
in [24] to approximate the
McWhirter factorisation;

spectrally majorised
eigenvalues I'(z) of order
24

corresponding
eigenvectors in U (z) of
order 84.
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lterative PEVD Algorithms

> Second order sequential best rotation (SBR2, McWhirter 2007, [24]); g‘{';;m’c

Engineering

P iterative approach based on an elementary paraunitary operation:

SO () = R(z)

= (i+1)

S (2) _ H""(2)8Y(2)HH) (2)

> H(i)(z) is an elementary paraunitary operation, which at the ith step eliminates the
largest off-diagonal element in s(—1)(2);

> stop after L iterations:

L .
AR =8P . Qe =[[HYE)

i=1
» sequential matrix diagonalisation (SMD) and
» multiple-shift SMD (MS-SMD) will follow the same scheme ...
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Elementary Paraunitary Operation

Universityof <&

Strathclyde

Engineering

» An elementary paraunitary matrix [34] is defined as
HO(z) =1 —vOyOH =150 y@H ;| v@e =1
> we utilise a different definition:
HY(z) = DO ()QW
» D@ () is a delay matrix:
DY (z) =diag{l ... 12771 ... 1}

» QU(z) is a Givens rotation.
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Sequential Best Rotation Algorithm (McWhirter [45])

<)
Universityof <&

. . . . i ; Strathclyde
» At iteration 4, consider SC 1)(2') o—e S(Z_l)[T] erlahied
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Sequential Best Rotation Algorithm (McWhirter [45])
> b(i)(z)S(i_l)(z)D(i)(z) Strathclyde

Engineering

<)
Universityof <&

ELECTRONIC & ELECTRICAL ENGINEERING 43/125



Sequential Best Rotation Algorithm (McWhirter [45])

University of

> b(i)(z) advances a row-slice of S~ (z) by T Strathclyde

Engineering
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Sequential Best Rotation Algorithm (McWhirter [45])

¢
University of

> the off-diagonal element at —T" has now been translated to lag zero Strathclyde

Engineering

N
N
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Sequential Best Rotation Algorithm (McWhirter [45])

» D@ (z) delays a column-slice of S~V (2) by T Strathclyde

Engineering

<)
Universityof <&
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Sequential Best Rotation Algorithm (McWhirter [45])

ﬂgﬂ
_ 1 i niversif oi
» the off-diagonal element at —7" has now bgen translate/d to lag zero UStraﬁ-lclyde

Engineering
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Sequential Best Rotation Algorithm (McWhirter [45])

> the step ﬁ(i)(z)S(i_l)(z)D(i)(z) has brought the largest off-diagonal elementSEa: gl

Engineering
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Sequential Best Rotation Algorithm (McWhirter [45])

<)
Universityof <&

. . . ) Strathclyde
> Jacobi step to eliminate largest off-diagonal elements by Q(?) sl
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Sequential Best Rotation Algorithm (McWhirter [45])

P iteration 7 is completed, having performed Strathclyde

<)
Universityof <&

Engineering

SO (z) = QD (2)S () DV (2)Q (=)
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SBR2 Outcome

a0

University of

Strathclyde

Engineering

» At the ith iteration, the zeroing of off-diagonal elements achieved during prev
steps may be partially undone;

» however, the algorithm has been shown to converge, transfering energy onto the main
diagonal at every step (McWhirter 2007);

> after L iterations, we reach an approximate diagonalisation
A(z) = 8P (2) = Q(2)R(2)Q(2)
with

L
Q) = [ PY()Q"

> diagonalisation of the previous 3 x 3 polynomial matrix ...
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SBR2 Example — Diagonalisation

40 40 40
30 30 30
20 20 20
10 10 10
o s?|%e o o

-10 0 0 -10 0 10 10 10
40 40 40
30 30 30

x

=20 20 20
10 10 10
0 0 VWWW\OQT%,WN,W o

-10 0 0 -10 0 10 10 10
40 40 40
30 30 30
20 20 20
10 10 10

0 0 0 Ve ala a'n ) o 'n e e’ e =avals

-10 0 0 -10 0 10 10 10

lat 7
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SBR2 Example — Spectral Majorisation

University of

Strathclyde

Engineering

> The on-diagonal elements are spectrally majorised
20

T
W =

101logyy|Ti| / [dB]

Il Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalised angular frequency Q/(27)
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SBR2 — Givens Rotation

University of
. . . . . Strathclyde
> A Givens rotation eliminates the maximum off-diagonal element once brought [OftEE: v

the lag-zero matrix;

> note |: in the lag-zero matrix, one column and one row are modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows in every matrix;

» Givens rotation is relatively low in computational cost!
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SBR2 — Givens Rotation

> A Givens rotation eliminates the maximum off-diagonal element once brought
the lag-zero matrix;

> note |: in the lag-zero matrix, one column and one row are modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows in every matrix;

» Givens rotation is relatively low in computational cost!

ELECTRONIC & ELECTRICAL ENGINEERING

Strathclyde
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Sequential Matrix Diagonalisation (SMD, [27]) -

University of

> Main idea — the zero-lag matrix is diagonalised in every step; Strathclyde

Engineering

> initialisation: diagonalise R[0] by EVD and apply modal matrix to all matrix
coefficients — S(O);

> at the ith step as in SBR2, the maximum element (or column with max. norm) is
shifted to the lag-zero matrix:

» an EVD is used to re-diagonalise the zero-lag matrix;
» a full modal matrix is applied at all lags — more costly than SBR2.
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Sequential Matrix Diagonalisation (SMD, [27])

» Main idea — the zero-lag matrix is diagonalised in every step; Strathclyde

> initialisation: diagonalise R[0] by EVD and apply modal matrix to all matrix
coefficients — S(O);

> at the ith step as in SBR2, the maximum element (or column with max. norm) is
shifted to the lag-zero matrix:

2
University of

» an EVD is used to re-diagonalise the zero-lag matrix;
» a full modal matrix is applied at all lags — more costly than SBR2.
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Multiple Shift SMD (SMD) =

&
—_— 1 niversity of

» SMD converge:% fast.er than SBR2 more energy is UStraEyhclyde
transfered per iteration step; Engineering

» SMD is more expensive than SBR2 — full matrix multiplication at every lag;
» this cost will not increase further if more columns / rows are shifted into the lag-zero
matrix at every iteration

> MS-SMD will transfer yet more off-diagonal energy per iteration;
» because the total energy must remain constant under paraunitary operations, SBR2,
SMD and MS-SMD can be proven to converge.
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Multiple Shift SMD (SMD)

> J— 1 niversi of
SMD converge:% fast.er than SBR2 more energy is uStra{yhclyde
transfered per iteration step; Engineering

» SMD is more expensive than SBR2 — full matrix multiplication at every lag;
» this cost will not increase further if more columns / rows are shifted into the lag-zero
matrix at every iteration

> MS-SMD will transfer yet more off-diagonal energy per iteration;
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Multiple Shift SMD (SMD) =

T

NS,

> PR 1 niversi of

SMD converge:% fast.er than SBR2 more energy is uStraEyhclyde
transfered per iteration step; Engineering

» SMD is more expensive than SBR2 — full matrix multiplication at every lag;
» this cost will not increase further if more columns / rows are shifted into the lag-zero
matrix at every iteration

> MS-SMD will transfer yet more off-diagonal energy per iteration;
» because the total energy must remain constant under paraunitary operations, SBR2,
SMD and MS-SMD can be proven to converge.
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SBR2/SMD/MS-SMD Convergence

» Measuring the remaining normalised off-diagonal energy
over an ensemble of space-time covariance matrices:

normalised off-diagonal energy /[dB]

1

1

1 1 1

T T
—o— SBR2
—*— SMD
MS-SMD I
—6— C-MS-SMD
— — —95% conf. intervals | |

/

40 !
0 10

ELECTRONIC & ELECTRICAL ENGINEERING

20

30

40 50 60
iteration index i

University of

Strathclyde

Engineering
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SBR2/SMD/MS-SMD Application Cost 1

. . . (%,
» Ensemble average of remaining off-diagonal energy vs. order %“?FS'E’ﬁ'clfde
of paraunitary filter banks to decompose 4x4x16 matrices: FEBEI
0 T
j— —— SBR2
m —#— SMD
= MS-SMD
™~ 51 —©— C-MS-SMD ]
%
g
5 -10 4
I
=1
&
£ -15f 1
3
s
o
= 20 B
Z 4
: b
= _o5h . : 4
g 'é’z
f
% ‘ ‘ ‘ =
0 5 10 15 20 25

paraunitary filter bank order
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SBR2/SMD/MS-SMD Application Cost 2

» Ensemble average of remaining off-diagonal energy vs. order
of paraunitary filter banks to decompose 8x8x64 matrices:

0

University of

Strathclyde

Engineering

510830 M{ B} /[dB]

= = =SMDv2
—SM

T

I I I I I I

-30 T T

10 15

ELECTRONIC & ELECTRICAL ENGINEERING

20

25 30 3 40 45 50
paraunitary filter bank order

60
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MATLAB Polynomial EVD Toolbox

» The MATLAB polynomial EVD toolbox can be downloaded from
pevd-toolbox.eee.strath.ac.uk

] Polynomial EVD To

< @ [} pevd-toolbox.eee.strath.ac.uk

PEVD Toolbox Index
Overview

About this toolbox

PEVD and iterative algorithms
Licence

Download
Acknowledgements
Feedback and contact

Directories
4\ Decompositions
4 Demos
4 General

Generated by m2htmi © 2005

Polynomial EVD Toolbox

This toolbox contains a number of Matlab i ions of iterative to the i
eigenvalue decomposition (EVD) of a parahermitian matrix. Parahermitian matrices arise e.g. when formulating
covariance matrices for broadband array signals, and the term parahermitian hints as an extension of the
(narrowband) Hermitian property to an generalised symmetry property of the polynomial matrix case.

The toolbox files are organised in four subdirectories:

"General" contains a number of utility functions to generate, manipulate and display polynomial matrices;
“Decompositions” contains the two decomposition algorithms, SBR2 and SMD; these algorithms continue to
«evolve with various options, and are provided within this toolbox as p-code, i.e. are executable but cannot be
viewed;

“"Demos" provides a number of examples of how to apply the PEVD algorithms to a number of applications;
"Docs" contains an auto-generated htm| documentation of the tool box. This manual can be navigated using
the lower menu in the left sidebar.

To find out more about the PEVD, the contained algorithms, the toolbox license and related issues, please follow
the links provided on the left.

We hope that you find this toolbox useful, and we look forward to any comments or feedback.
Stephan Weiss, Jamie Corr and Keith Thompson (University of Strathclyde, Glasgow, Scotland)

John G. McWhirter (Cardiff University, Wales)
lan K. Proudier (Loughborough University, England)

University of

Strathclyde

Engineering

» the toolbox contains a number of iterative algorithms to calculate an approximate

PEVD, related functions,

ELECTRONIC & ELECTRICAL ENGINEERING

and demos.
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Narrowband MIMQO Communications

» a narrowband channel is characterised by a matrix C containing
complex gain factors;

» problem: how to select the precoder and equaliser?

f——
f——

|

» overall system;

ELECTRONIC & ELECTRICAL ENGINEERING

10
DG
University of

Strathclyde

Engineering
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Narrowband MIMQO Communications

. . . .. DG
P a narrowband channel is characterised by a matrix C containing %“'t'FS'E’ﬁ'c
complex gain factors; Engineering

» problem: how to select the precoder and equaliser?

|
‘ |
‘ | m—
| |
|
? AR ) U | ?
| |
|
|
i S —
1 C =UXVH !

» the singular value decomposition (SVD) factorises C into two unitary matrices U and
VH and a diagonal matrix X3;
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Narrowband MIMQO Communications

P a narrowband channel is characterised by a matrix C containing g'ltvF;'ftyﬁ;:lyde
complex gain factors; Engineering

» problem: how to select the precoder and equaliser?

|
|

|

: | >
|

: | .
|

A% : VvH > U o | UH

: ¥

|

‘ | >
|

|

i A

 C=UxVH !

> we select the precoder and the equaliser from the unitary matrices provided by the
channel's SVD;

> the overall system is diagonalised, decoupling the channel into independent
single-input single-output systems by means of unitary matrices.
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Broadband MIMQO Channel

>

v

¢
University of

The channel is a matrix of FIR filters; example for a 3 x 4 system C[n]: 25[3,511“!/"‘*

Il dees ]l ;T%

0

o 1t 2 3 0 1 2 3 0 1 2 3 0 2 3
=2 2 2 2
)
o1 1 1TT1
)
S T I e 1, JT o
o 1t 2 3 0 1 2 3 0 1t 2 3 0 1 2 3
2 2 2 2

O?QOT

0 1 2 3 0 1

N 0

1 1
Jd P d T

3 0 1 2 3 0

N
w

discrete time index n

the transfer function C(z) e—o Cin]| is a polynomial matrix;

an SVD can only diagonalise C[n] for one particular lag n.

ELECTRONIC & ELECTRICAL ENGINEERING 55/125



Standard Broadband MIMO Approaches

O]

&
> OFDM '(If approximate channel length is known [20]): Sirathcyde
1. divide spectrum into narrowband channels; Engineering

2. address each narrowband channel independently using narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known [30, 31, 29]):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
» both techniques invest DOFs into the guard intervals, which are generally not
balanced against other error sources.

y(z) = ( Co + Ciz7t ) - x(2)
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2. address each narrowband channel independently using narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known [30, 31, 29]):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
» both techniques invest DOFs into the guard intervals, which are generally not
balanced against other error sources.

A

vz = (G ) - x(2)
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Polynomial Singular Value Decompositions

¢
University of

> lterative algorithms have been developed to determine a polynomial Strathclyde
eigenvalue decomposition (EVD) for a parahermitian matrix e
R(z) = RP(2) = R1 (27 1):

R(z) ~ H(2)['(2)HY (2)

» paraunitary H(z)HY (z) =1, diagonal and spectrally majorised I'(z);
» polynomial SVD of channel C(z) can be obtained via two EVDs:

finally:
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MIMO Application Example

S
University of

4 4 4 4 Strathclyde
Engineering
2 ? 2 2 2
osd HLY .

N T A T R S I R » Polynomial SVD of
= 4 4 4 4 the previous
202 2 2 2 CZ:(C—}(C3X4;
L, o ?T?‘P% obees 0 (2)

0 5 10 0 5 10 0 5 10 0 5 10

4 4 4 4

2 2 2 2

0 0 o Feafo 0

0 5 10 0 5. 10 i 0_ 5 10 0 5 10

discrete time index n
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ > the singular value

@ 1ol \\/ spectra are
foa ) ..
=0 LIS majorised.
9) on P (6{ ) b
o P C)

~10 T T I I I I I

1 1
0 005 0.1 015 02 025 03 035 04 045 05
norm. angular frequency /(27)
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Narrowband Source Model

<)
Universityof <&

» Scenario with sensor array and far-field sources: ggeaeﬁ..hgdyde
O—— 11[n]
sl[n] [ ] >
O—— x3[n]
O—— a3[n]
O—— zum(n]

» for the narrowband case, the source signals arrive with delays, expressed by phase
shifts in a steering vector

» data model:
x[n] =

ELECTRONIC & ELECTRICAL ENGINEERING 59/125



Narrowband Source Model

X
(%,
» Scenario with sensor array and far-field sources: g"t';g'ﬁ.‘l"clyde
/ Engineerin;
, / , g g
O———> x1[n]
[ ] . / / /
s1n S // /
/
O a2[n]
;7 /
/
;7 /
/
S D——— x3[n]
/ / /
S /
St /
S /
S /
Y /
F) D zun]

» for the narrowband case, the source signals arrive with delays, expressed by phase
shifts in a steering vector s;

» data model:
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Narrowband Source Model

<)
Universityof <&

» Scenario with sensor array and far-field sources: ggeaeﬁ..hgdyde
O—— 11[n]
sl[n] [ ] >
O—— x3[n]
O—— a3[n]

O——— zu[n]
» for the narrowband case, the source signals arrive with delays, expressed by phase
shifts in a steering vector s

» data model:
x[n] = s1[n] - s1
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Narrowband Source Model

10
DG
University of

» Scenario with sensor array and far-field sources: Strathclyde

Engineering

52[”] ® >> \\ \\ \\ \\

» for the narrowband case, the source signals arrive with delays, expressed by phase
shifts in a steering vector si, so

> data model:
x[n] = s1[n] - s1 + s1[n] - s2

ELECTRONIC & ELECTRICAL ENGINEERING 59/125



Narrowband Source Model

<)
Universityof <&

» Scenario with sensor array and far-field sources: ggeaeﬁ..hgdyde
O—— 11[n]
sl[n] [ ] >
O—— x3[n]
srln] @ >>> O a3ln]

so[n] @ )>> '
O—— zyn

» for the narrowband case, the source signals arrive with delays, expressed by phase
shifts in a steering vector si, so

» data model:
x[n] = s1[n| - s1 + s1[n] - s2
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Narrowba.nd .Source Model |
» Scenario with sensor array and far-field sources: it i

= Siaiyae
siln] ® >>> i O @iln]
SR[Tl] [ J >>> : [j)—;—> x3[n]

sa[n] @ )>>
O———— zu[n]

» for the narrowband case, the source signals arrive with delays, expressed by phase
shifts in a steering vector si, so, ...Spg;
> data model:

R
x[n] = s1[n]-s1+ s1[n] -s2+ -+ sg[n]-sp = Zsr[n] - Sy
r=1
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Steering Vector

» A signal s[n| arriving at the array can be characterised by g'i';;'m'c
the delays of its wavefront (neglecting attenuation): Eusinesing
xo[n] sln — 7o] d[n — 0]
x1[n] _ s[n — 1] _ 5[n — 1] s 5[] o—e ay(2)S(2)
xp—1[n] s[n — tar—1) d[n — mar—1]

> if evaluated at a narrowband normalised angular frequency €2;, the time delays 7,,, in
the broadband steering vector ay(z) collapse to phase shifts in the narrowband

steering vector ay ,,

e~ I8
e_jTlQ'L

9,0, = aﬂ(z)|z=emi =

eI 182
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Data and Covariance Matrices

University of

Strashclyde
. Engineerin;
» A data matrix X € CM*L can be formed from L measurements: i

X=[x[n x[n+1] ... x[n+L-1] ]

» assuming that all z,,[n], m = 1,2,... M are zero mean, the (instantaneous) data

covariance matrix is

R = &{x[n]x"[n]} ~ %XXH

where the approximation assumes ergodicity and a sufficiently large L;

» Problem: can we tell from X or R (i) the number of sources and (ii) their orgin /
time series?

» w.r.t. Jonathon Chamber's introduction, we here only consider the underdetermined
case of more sensors than sources, M > K, and generally L > M.
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SVD of Data Matrix

» Singular value decomposition of X:

X

U

» unitary matrices U = [uy...upy] and V = [vy ...

VH

<)
Universityof <&

Strathclyde

Engineering

> diagonal 3 contains the real, positive semidefinite singular values of X in descending

order:

with o1 > 09> -+ > oy > 0.

ELECTRONIC & ELECTRICAL ENGINEERING
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Singular Values

a0

o
> If the array is iIIu_mi.nated by R < M linearly independent sources, the rank g'g;;:yﬁ;:lyde
of the data matrix is Engineering

rank{X} =R
> only the first R singular values of X will be non-zero;

> in practice, noise often will ensure that rank{X} = M, with M — R trailing singular

values that define the noise floor:
1 T T T

0.8 q
.06 b
©
041 B
0.2+ B
0 ) 0} @ & &
1 2 3 4 5 6 7 8 9 10

ordered index m

» therefore, by thresholding singular values, it is possible to estimate the number of
linearly independent sources R.
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Subspace Decomposition

&
> If rank{X} = R, the SVD can be split: g‘{';;'ﬁ.‘,"c
_ 0 vi
x-wu| g || Vi

» with U, € CM*E and VI € CE*L corresponding to the R largest singular values;
» U, and VI define the signal-plus-noise subspace of X:

M R
X = E amumv}i ~ E amumv}i
m=1 m=1

» the complements U,, and V,If,
vllu,=0 , v,vli=o

define the noise-only subspace of X.
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SVD via Two EVDs

University of

Strathclyde

Engineering

» Any Hermitian matrix A = AH allows an eigenvalue decomposition

A =QAQY
with Q unitary and the eigenvalues in A real valued and positive semi-definite;
» postulating X = UXVH, therefore:
xx! = (uzviyvsiul) =vaul (44)
xix = (viul)yuzvl) =vavt (45)

» (ordered) eigenvalues relate to the singular values: \,, = o2 ;

» the covariance matrix R = %XX has the same rank as the data matrix X, and with
U provides access to the same spatial subspace decomposition.
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Narrowband MUSIC Algorithm

» EVD of the narrowband covariance matrix identifies signal-plus-noise and ey
. trathclyde
noise-only subspaces Engineering
As 0 Ul
R-wval s 3 ]|l

» scanning the signal-plus-noise subspace could only help to retrieve sources with
orthogonal steering vectors;

» therefore, the multiple signal classification (MUSIC) algorithm scans the noise-only
subspace for minima, or maxima of its reciprocal

1
Swmusic (V) = TTnasolB
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Narrowband Source Separation

[T,

University of

Strathclyde

Engineering

» Via SVD of the data matrix X or EVD of the covariance matrix R, we can determine
the number of linearly independent sources R;

> using the subspace decompositions offered by EVD/SVD, the directions of arrival can
be estimated using e.g. MUSIC;

» based on knowledge of the angle of arrival, beamforming could be applied to X to
extract specific sources;

» overall: EVD (and SVD) can play a vital part in narrowband source separation;

» what about broadband source separation?
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Broadband Array Scenario

X
*‘l:

University of

Strathclyde
Engineering
s1[n] \j\o_. woln]
\ S o= mn]
J O :cM_l[n]

» Compared to the narrowband case, time delays rather than phase shifts bear
information on the direction of a source.
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Broadband Steering Vector

» A signal s[n| arriving at the array can be characterised by g'i';;'m'c
the delays of its wavefront (neglecting attenuation): Eusinesing
xo[n] sln — 7o] d[n — 0]
x1[n] _ s[n — 1] _ 5[n — 1] s 5[] o—e ay(2)S(2)
xp—1[n] s[n — tar—1) d[n — mar—1]

> if evaluated at a narrowband normalised angular frequency €2;, the time delays 7,,, in
the broadband steering vector ay(z) collapse to phase shifts in the narrowband

steering vector ay ,,

e~ I8
e_jTlQ'L

9,0, = aﬂ(z)|z=emi =

eI 182
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Space-Time Covariance Matrix

University of

> If delays must be considered, the (space-time) covariance matrix must Strathclyde

Engineering

capture the lag 7:
R[] = &{x[n] - xH[n — 7]}

20 20 20
. 15 15 15
» R|[7] contains auto- and 10 0 10
cross-correlation sequences: N ; 1T N
-2 0 2 -2 0 2 -2 0 2
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Cross Spectral Density Matrix

University of

Strathclyde

Engineering

» z-transform of the space-time covariance matrix is given by
R[r] = E{x,x)_,} o—e R(2)= Z Si(2)ay,(2)ag, (2) + 0% 1
1
with 9; the direction of arrival and S;(z) the PSD of the ith source;

> R(z) is the cross spectral density (CSD) matrix;

> the instantaneous covariance matrix (no lag parameter 7)

R = &{x,x} } = R[0] .
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Polynomial MUSIC (PMUSIC, [3])

» Based on the polynomial EVD of the broadband covariance matrix

Engineering

SCRICTORNO) R SN | et
Q(2) NE
Al2)

> paraunitary Q(z2), s.t. Q(2)Q(2) =1,

» diagonalised and spectrally majorised A(z):

20 30| |
20 20| 20|
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PMUSIC cont'd

University of

Strathclyde

Engineering

» Idea —- scan the polynomial noise-only subspace @, (z) with broadband steer
vectors

F(Za 19) = éﬂ(z)Qn(z)Qn(z)aﬁ(z)

» looking for minima leads to a spatio-spectral PMUSIC
Spss—music(?, Q) = (I'(z,9)],—ei0) "

» and a spatial-only PMUSIC

Sps music() = (zﬂ f I‘(z,ﬁ)|z:emd§2) i

with Ty[r] o—e I'(2,9).
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Simulation | — Toy Problem

University of

» Linear uniform array with critical spatial and temporal sampling; Strathclyde

Engineering

» broadband steering vector for end-fire position:

ap(z) =1 27" ZMANT
» covariance matrix
1 A .. M-l
~ 21 1
R(Z) = aw/2(z)aﬂ'/2('z) =
Z_MH 1
» PEVD (by inspection)
Q(z) = Tprrdiag{1 ="' --- z""*'}  A(z) = diag{10 --- 0}

» simulations with M =4 ...
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Simulation | — PSS-MUSIC
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Simulation Il

> M = 8 element sensor array illuminated by three sources; g'iv;;m'c
» source 1: 3 = —30°, active over range () € [%r; 7l; e
> source 2: Y5 = 20°, active over range Q € [T; 7;

2 7T

0 m

NE]

-90 -60 -30 0 20 40 60 90

B —

3/[e]

> filter banks as innovation filters, and broadband steering vectors to simulate AoA;
> space-time covariance matrix is estimated from 10* samples.
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Simulation I — PSS-MUSIC

Spss (19, €7 /[dB]
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PS-MUSIC Comparison

» Simulation | (toy problem): peaks normalised to unity:

s 'T=—- AFMUSIC (=7 /2) 5 SN 1
= —— AF-MUSIC (integrated) / \
£ 081 PS-MUSIC (SBR2) / v b
g — — — PS-MUSIC (ideal) / \
@ 0.6 H v \ B
el / \
[
L 04 7 N g
: / "
£ 02f P N R
2 _ - S
0 S e 1 I I ey _
87 88 89 90 91 92 93
9/o
» Simulation II: inaccuracies on PEVD and broadband steering vector
0 T

normalised spectrum / [dB]
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AoA Estimation — Conclusions —

University of

Strathclyde

Engineering

» We have considered the importance of SVD and EVD for narrowband source
separation;

» narrowband matrix decomposition real the matrix rank and offer subspace
decompositions on which angle-of-arrival estimation alhorithms such as MUSIC can
be based;

broadband problems lead to a space-time covariance or CSD matrix;

such polynomial matrices cannot be decomposed by standard EVD and SVD;
a polynomial EVD has been defined;

iterative algorithms such as SBR2 can be used to approximate the PEVD,;

this permits a number of applications, such as broadband angle of arrival estimation;

vVvyVvYyVvVvVYyvyy

broadband beamforming could then be used to separate broadband sources.
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Narrowband Minimum Variance Distortionless
Response Beamformer Sirathclyde

Engineering

Universityof <&

» Scenario: an array of M sensors receives data x[n], containing a desired signal with
frequency €25 and angle of arrival ¥g, corrupted by interferers;

» a narrowband beamformer applies a single coefficient to every of the M sensor signals:

N
T2 [n] o—-@w— e[n]
xp[n] L
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Narrowband MVDR Problem

¢
University of

Strathclyde

Engineering

» Recall the space-time covariance matrix:
R[r] = 5{x[n]xH[n -7}

» the MVDR beamformer minimises the output power of the beamformer:

mving{\e[n]|2} = n}hi,nWHR[O]w (46)
st al(ds,Q)w=1, (47)

> this is subject to protecting the signal of interest by a constraint in look direction ¥s;

> the steering vector ay, . defines the signal of interest's parameters.
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Broadband MVDR Beamformer

<)
Universityof <&

» Each sensor is followed by a tap delay line of dimension L, giving a total of Eﬁ[iﬁﬂ‘“’"e

ML coefficients in a vector v € CM! [9, 8, 35]

z1[n] o . B
Wi
: e[n]
el o477
W1
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Broadband MVDR Beamformer

a0

University of

Strathclyde

Engineering

» A larger input vector x,, € CMZ is generated; also including lags;
> the general approach is similar to the narrowband system, minimising the power of
_ JHy .
e[n] = vixy;

» however, we require several constraint equations to protect the signal of interest, e.g.
C= [8(195, QQ), S(ﬁs, Ql) N S(ﬁs, QLfl)] (48)

P these L constraints pin down the response to unit gain at L separate points in
frequency:
Ccllv=1; (49)

» generally C € CMLXL byt simplifications can be applied if the look direction is
towards broadside.
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Generalised Sidelobe Canceller

University of

> A quiescent beamformer v, = (CH)Jr 1 € CME picks the signal of interest;  EEEEGEEE

Engineering

» the quiescent beamformer is optimal for AWGN but generally passes structured
interference;

> the output of the blocking matrix B contains interference only, which requires [BC]
to be unitary; hence B € CMLx(M-1)L,

» an adaptive noise canceller v, € CM-1L 3ims to remove the residual interference:

ol (2) dln]
Xy  o—» /4
B uln] vil(2) yln] _{[} e[n]
(

» note: all dimensions are determined by {M, L}.
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Polynomial Matrix MVDR Formulation

» Power spectral density of beamformer output: R.(z) = w(z)R(z)w(z) g'iv;;m'c
» proposed broadband MVDR beamformer formulation: FEBEI
dz
min Re(z)— 50
min Rl (50)
stt. a(Vs, z)w(z) = F(z) . (51)

» precision of broadband steering vector, |a(ds, z)a(Vs, z) — 1|, depends on the length
T of the fractional delay filter:

0 T T
-10H = = - T=100

!
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalised angular frequency 2/(27)
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Generalised Sidelobe Canceller

¢
University of

. . S ) Strathclyde
> Instead of performing constrained optimisation, the GSC projects the data Rty

and performs adaptive noise cancellation:

ﬁ’q(z) din]
x[n] —, #
B(z) P g o) LG o L eln]
[

» the quiescent vector wq(2) is generated from the constraints and passes signal plus
interference;

» the blocking matrix B(z) has to be orthonormal to wq(z) and only pass interference.
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Design Considerations

University of

> The blocking matrix can be obtained by completing a paraunitary matrix fromiiwes s

» this can be achieved by calculating a PEVD of the rank one matrix wq(2)Wq(
» this leads to a block matrix of order IV that is typically greater than L;

» maximum leakage of the signal of interest through the blocking matrix:
-25

‘truncat‘ion 1e—4‘7 N = i64
_30H = = =truncation le-3, N = 140

|
w
o

I
N
o

20log,q | By (e”)]
1
S

0 005 01 015 02 025 03 035 04 045 05
normalised angular frequency /(27)
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Computational Cost

> With M sensors and a TDL length of L, the complexity of a standard beamfo

dominated by the blocking matrix;

» in the proposed design, w, € CM~! has degree L;

> the quiescent vector wq(z) € CM has degree T;
> the blocking matrix B(z) € CM~1D*M has degree N;

» cost comparison in multiply-accumulates (MACs):

GSC cost
component polynomial ‘ standard
quiescent beamformer MT ML
blocking matrix M(M-1)N | M(M-1)L?
adaptive filter (NLMS) | 2(M-1)L 2(M-1)L

ELECTRONIC & ELECTRICAL ENGINEERING
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Example

¢
University of

> We assume a signal of interest from ¥ = 30°; Strathclyde

> three interferers with angles ¥; € {—40°, —10°,80°} active over the buisstve
frequency range Q = 27 - [0.1; 0.45] at signal to interference ratio of -40 dB;

o

Q

0 —

-90° —40° —10° 0° 30° 80° 90°

» M = 8 element linear uniform array is also corrupted by spatially and temporally
white additive Gaussian noise at 20 dB SNR;

» parameters: L = 175, T = 50, and N = 140;
» cost per iteration: 10.7 kMACs (proposed) versus 1.72 MMACs (standard).
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Quiescent Beamformer

University of Q

» Directivity pattern of quiescent standard broadband beamformer: Strathclyde

Engineering

-30 —|

20logyo [A(V, €™)] / [dB]
1

-40 —|

-50 —!

40 20 0 20

40 80 o

angle of arrival ¥ /[°]
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Quiescent Beamformer
» Directivity pattern of quiescent proposed broadband beamformer: Strathclyde

Engineering

N
University of .

201log,, |A(9,€’)| / [dB]

40 20 0 20

40 80 o

angle of arrival ¥ /[°]
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Adaptation

University of

Strathclyde

Engineering

» Convergence curves of the two broadband beamformers, showing the residual mean
squared error (i.e. beamformer output minus signal of interest):

E T T T T T T T T T
g. 0 Hidlis standard broadband GSC
= polynomial GSC
()

@ 5

[

S

F -10F

c

5

c -151

discrete time index n
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Adapted Beamformer

University of

» Directivity pattern of adapted proposed broadband beamformer: Strathclyde

Engineering

201ogy, |A(9,¢'?)| / [dB]

angle of arrival ¥ /[°]
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Adapted Beamformer
» Directivity pattern of adapted standard broadband beamformer: g"t';g'ﬁ.‘,"cl;de

Engineering

201ogy, |A(9,¢'?)| / [dB]

80 60 40 20 0

20 -0 80 g0 °
angle of arrival ¥ /[°]
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Gain in Look Direction

)
» Gain in look direction 95 = 30° before and after adaptation: g"t';;'{‘ﬁ'c
Engineering
2 T T T T ™ ¥
by ', 1, fu
151 Ve e

1
0.5

04

standard quies.cent :

L
L

- = =standard adapted ! il

-1 % point constraints i1 "

_151 polynomial quiescent 1! u

201ogy, |A(0s, ¢/?)| /[dB]

- = =polynomial adapted

_2 Il Il
0 005 01 015 02 025 03 035 04 045 05
normalised angular frequency /(27)

» due to signal leakage, the standard broadband beamformer after adaptation only
maintains the point constraints but deviates elsewhere.
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Broadband Beamforming Conclusions

O]

University of

) ) ) ) Strathclyde
» Based on the previous AoA estimation, beamforming can help to extract i

source signals and thus perform “source separation”;

» broadband beamformers usually assume pre-steering such that the signal of interest
lies at broadside;

v

this is not always given, and difficult for arbitary array geometries;

» the proposed beamformer using a polynomial matrix formulation can implement
abitrary constraints;

» the performance for such constraints is better in terms of the accuracy of the
directivity pattern;

» because the proposed design decouples the complexities of the coefficient vector, the
quiescent vector and block matrix, and the adaptive process, the cost is significantly
lower than for a standard broadband adaptive beamformer.
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Source Extraction Application

.

<)

> - 1 . University of

We take M-array megsurements of a single source: Strathclyde
1 Engineering

sensor 1 sensor m sensor M

» 2nd order statistics: R;(2) = S(2)a;(2)al (2) = vim(2)ui(2)ul’.

)
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Application Example

Universityof <&

Strathclyde
» 2nd order stats: R;(2) = S(2)a;(2)al (2) = yim(2)ui(2)ul; S

> difference: w;(2) is normal, u! (2)u;(2) = 1, while a;(2) is not:

a; (2)ai(2) = Ai () (2) Ay (1) (2) = A} () (2) A (1) (2)

with minimum-phase A((2);
> therefore:

ai(z)
Ai (1 (2)
Yi(2) = Ai7(+)(z)S(z)Af7(+) (2),

’U,Z(Z) =

> for a single measurement, we can say nothing about a!’(z) or S(z).
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Application — Multiple Measurements

Universityof <&

Strathclyde

Engineering

» If we have several measurements 7 =1...1:

u;(z) = —ai(z)
i(2) Ai,(-i—)(z)
7i(2) = Ay (1) (2)S()AF () (2) |

> we can extract S(z) as the greatest common divisor

~

S(z) = GCD{A1(2) ... A\1(2)}; (52)

> we can also extract the A; (1)(2), and hence determine the vectors a;(z) save of an
arbitrary phase response.
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Application — Frequency Domain Attempt

¢
University of

ESt_rat_hclyde
> As an alternative, we take measurements in independent frequency bins: S
R = Ri(e’™) = a;(¢/*)S (7 )al (™) + 071 (53)
= Qe ik, g - (54)

» principal eigenvectors and eigenvalues for the measurement campaigns are

B ai(emk)
Qi = W s (55)
ik = S(ejQ’C)]ai(ejQ’@)|2 ) (56)

» because of the normalisation, nothing can be extracted about the source or the
transfer functions.

ELECTRONIC & ELECTRICAL ENGINEERING 100/125



Application — Results |

» Eigenvalues / source PSD for two measurements i = {0,1}: Sirathclyde

Engineering

04

-2

-6

normalised power spectral density / [dB]

8 Ay A
Ayl
(+) ()2 N
e M@IAPR) . \
-10H A2AP )P SO
T T 1 1 1 1 1 1 1 -
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

normalised angular frequency Q/(2m)
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Application — Results |l

» Eigenvectors / magnitude response for measurement i = {0}: Sirathclyde

Engineering

o

-5

normnalised magnitude / [dB]

-15 1 1 1 1 1 T T J

1 1
0 005 041 0.15 0.2 0.25 03 035 04 0.45 05
normalised angular frequency Q/(2m)
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Application — Summary

a0

University of

Strathclyde

Engineering

> we can extract the source PSD and the magnitude responses once we have at least
two measurements;

v

an independent frequency bin approach does not yield anything;

» the polynomial approach rests on an accurate parahermitian EVD, and an accurate
root finding / GCD algorithm;

» root finding is numerically challenging;

P nevertheless the example gives a glimpse of the type of advantages that a “holistic”
broadband approach offers.
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Problem & Model

» A number of broadband stationary
sources sg[n], £ =1,..., L, illuminate an
M-element sensor array;

» each transfer path is modelled by a vector
of impulse responses a,[n] € CM;

P stationary additive, spatially and
temporally uncorrelated noise v[n] € CM;

ELECTRONIC & ELECTRICAL ENGINEERING

¢
University of

Strathclyde

Engineering

s1[n] o\

) e i
E b oxln
ol ar[n]
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Problem & Model

. g‘g;;?ﬁ;:lyde
» A number of broadband stationary EnEesiie

sources sg[n], £ =1,..., L, illuminate an
M-element sensor array;

» each transfer path is modelled by a vector
of impulse responses ay[n] € CM;

P stationary additive, spatially and
temporally uncorrelated noise v[n] € CV;

» a broadband transient signal sy41[n]
enters the scene at some point in time;

> aim: we want to detect the onset of this
transient signal, which may be weak in
power [38];

» assumption: M > L.
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Model

» Each source, s¢[n], contributes to the data
vector x[n] = [z1[n], ... ,zm[n]]" via a
steering vector
agn] = [Ag1[n],... Agmn]]"

» compact with A[n] = [a;[n]...ar[n]] and

seln] o

University of

Strathclyde
Engineering

Ae,l[n]44 )$1[n]

Ag o [n]——0 22[n]

sn) = [s1[n], . s fo]] Ayl ol
x[n] = Aln] xs[n] +v[n] ;
> space-time covariance: R[7] = £{x[n]x"[n — 7]}:
R[r] = A[r] x E{s[n|s"[n — 7]} * AN [—7] + E{v[n]v'[n — 7]} (57)
= A[r] * T[] * AH[—7] + o21,6[7] . (58)
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Cross-Spectral Density Matrix

» Transfer function matrix A(z) =), A[n]z~" (short A(z) e—o A[n]) is a

>

\4

polynomial in z € C;

cross-spectral density R(z) e—o R|[7]:
R(z) = A(2)T(2) AP (2) + 021y ;
parahermitian property:

R"(z) = R"(1/2") = R(2) ;

Ty, [7]

Tay (1]

-0.5

University of

Strathclyde

Engineering

= T
? 1 | ?
=~
05 l
-1 0 2 -2 -1 0 1 2
1
T = o5 T
9 s oo J, ?
05
-1 0 2 -2 -1 0 1 2
lag 7 lag 7

when evaluated for a specific normalised angular frequency Qy: R = R(2)|,_dio0;

Ry is a constant matrix that describes a narrowband problem;

Ry is Hermitian — eigenvalue decomposition (EVD) Ry = QoAoQL.
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Narrowband EVD and Subspace Decomposition

University of

» We assume an ordered EVD Ry = QOAOQg, where Ag = diag{\1,..., Ay} Bt Ll

Engineering

with )\gZ)\g_H,f:l,...,(M—l);

> partitioning enables a subspace decomposition:

|

A+ O‘?)ILI QH
|
Qn |

______ FEP B
|
(o5l V) Q)
|

R'O = Qs

P source enumeration: eigenvalues above noise floor = number of uncorrelated sources;
> yln] = QHx[n] € CM=L only contains noise;
> power in y[n 8{||y 113 } (M — L)o? because of orthonormality of Q.
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Broadband EVD

University of
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> Space-time covariance R|[7] or equivalently the CSD matrix R(z) are only
diagonalised by the EVD for a specific value 7 or z;

» for an analytic R(z) that is not derived from multiplexed data, there exists a
parahermitian matrix EVD [40, 41]

R(z) = Q(2)A(:)Q" (2) ; (59)

» A(z) is diagonal, parahermitian, analytic, and unique;

> eigenvectors in Q(z) are paraunitary, analytic, and unique up to an arbitrary allpass
function;

> paraunitarity Q(2)Q% (2) = Q¥ (2)Q(z) = I implies losslessness;
» a number of algorithms can approximate (59) [24, 26, 27, 44, 42, 43].
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Broadband Subspace Decomposition

Universityof <&

Strathclyde
» The parahermitian matrix EVD R(z) = Q(2)A(2)QF (2) enables a S
broadband subspace decomposition:
T T
| A ( ) |
l o QL (2)
[ +o I
R(z)= | Qi(2) 1Qu(2) .
| N I
l e | QR)
| |

> Qn] o—e Q(z) describes a lossless filter bank;
» data vector component in the noise-only subspace: y[n] = Q[—n] * x[n];
> again, it can be shown that ideally £{||y([n]||3} = (M — L)o?2.
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‘Syndrome’ Idea

University of

» We estimate R(z) e—o RJ[7] over a window of data, with L < M stationary BEEiTE

Engineering

sources present;

» compute parahermitian matrix EVD, perform source enumeration, and determine the
eigenvectors spanning the noise-only subspace, Q,(2);

» if an additional source sy 1[n] enters the scene, it will likely protrude into the
noise-only subspace;

> we therefore monitor the syndrome vector
H
yl[n] = Qu[—n] * x[n] (60)
for a change in power, or for any structured / correlated components.
x[n] o Qlf[—n] o ¥[n]
M M-L
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Intuitive Example |

» M = 6 sensors, L = 3 stationary sources; weak transient source at n = 5000; BFLERE

L Strathclyde
> monitoring a sensor output z1[n]: Eienis

0 2000 4000 6000 8000 10000
1000 : : : :
(b)
= 500
A
0
0 2000 4000 6000 8000 10000

discrete time n
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Intuitive Example Il

FCE

» M = 6 sensors, L = 3 stationary sources; weak transient source at n = 5000; BFLEERIEN
Strathclyde

» monitoring a syndrome element y;[n]: Englnoering

@

1 1 1 1

0 2000 4000 6000 8000 10000
(b)
60
=40 |
~
20 - AR UL ] M L R
0 . mlm.mm.‘lm\ oot bl s bl )

0 2000 4000 6000 8000 10000
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Proposed Approach

> We use the statistics and evaluated parahermitian matrix EVD of a previous
time window, and utilise the broadband noise-only subspace spanned by the

vy

v

columns of Q,(2);

University of

Strathclyde

Engineering

O]

being analytic, Q,,(z) can typically be approximated well by low-order polyomials, and

is relatively inexpensive to implement;

(K)
——oSn,D

vyl ylv]
x[n] ool QU [—nl} (D) I [FF—{ X«
M M-L M-L

because of the processing, elements of the syndrome vector y[n| are spatially and

temporally correlated;

decimation by D can break temporal correlation and further reduces complexity;

we can average over consecutive syndrome vectors to increase discrimination;

57(112 is generalised x? distributed if temporal correlation is suppressed [32, 13].
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Decimated Processor
Unlversltyof

T . . Strathclyde
» The proposed subspace projection is followed by a decimation by D: e

yinl [l
x[n] oS QU ]} (D) AT S o0
M M—-L M-L

P> cost advantage: a polyphase implementation integrates the decimation with the
processor, reducing operations by a factor of D;

» temporal decorrelation: if the temporal correlation does not exceed D lags, the
decimation will temporally decorrelate susequent snapshots of the syndrome vector

ylv].
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Results | — Statistics

> M = 6 sensors, L. = 2 stationary sources, transfer functions determined by

radio propagation model for dense urban environment (polynomial order ~ 40

> statistics of output for Iy: no transient versus I7:

2.5

ELECTRONIC & ELECTRICAL ENGINEERING

transient present; K = 1;

/AN,
DG

University of

Strathclyde

Engineering

— — — generalised x| |

estimate

©

3.5
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Results | — Statistics =
2

» M = 6 sensors, L = 2 stationary sources, transfer functions determined by %“?FS'E’ﬁ'clyde

radio propagation model for dense urban environment (polynomial order ~~ 40 RS
P statistics of output for Ip: no transient versus I1: transient present; K = 10;

2 T T T T T T T T T
estimate
— — —generalised x?
15 -
w T ]
ISH
05 r _
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(10)
&n.10
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Results |l — Sources and Propagation Environment

» Realistic 20MHz urban scenario with dispersive impulse responses;

» M = 6 sensors;

> total power of contributions of three different sources:

P> we use either source 2 or 3 as transient signal; the two remaining sources are

stationary.

ELECTRONIC & ELECTRICAL ENGINEERING

signal H power ‘
source 1 0.0000 dB
source 2 -4.3494 dB
source 3 || -13.2865 dB
noise -16.2865 dB
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Results Il — Discrimination vs Decision Time o
» Averaging increasingly separates the distributions for Iy and I; — measured U"'"fs"v"'

as discrimination D: derived from the ROC [19]; =
> averaging also 10° <
increases the '
time to compute
§(T) .
n,D
decision time T 10°F ]
(for a 20MHz |
channel); Q
» N here is the —— N =100
window over L N N N = 1000 |1
which the - *% = 10000
space.—time_ | . o sou;; ;O
covariance is I | % source 2
estimated [15, 10-15 x D x s s .

1A 0 2 4 6 8 10 12 14
sl 1177195



Summary

University of

» We have discussed a broadband subspace approach to detect the presence of [EEEIGT

Engineering

weak transient signals;

P this is based on second order statistics of sensor array data — the space-time
covariance matrix — and a polynomial matrix EVD;

» this covariance matrix and its decomposition can be computed off-line; for low-cost
implementations, see e.g. [12, 23]

» a subspace decomposition for the noise-only subspace determines a syndrome vector;

v

in the absence of a transient signal, this syndrome only contains noise;

P a transient signal is likely to protrude into the noise-only subspace, and a change in
energy can be detected even if the signal is weak;

v

discrimination can be traded off against decision time;

v

in audio, the approach is utilised to detect the onset of weak speakers;

» in future, we may investigate time-varying channels and subspace leakage.
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