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LIDAR
Solid-state Mechanical scanning

• Compact, robust system 

• Lower cost 

• Reduced motion artefacts 

• Simpler receiver architecture 

• Higher SNR 
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Time-correlated single-photon counting (TCSPC)
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• CMOS-compatible → arrays with integrated processing

• Output is digital → all-digital receiver

• Low jitter (<100ps) → high resolution in z

• Low noise, even at room temp. and above→ no need for cooling

Advantages of SPADs
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• High photon detection efficiency (PDE) (NIR)→ long range 
(250m)

• High photon throughput → high frame rates even under 
high ambient levels (100klux)

• Scalable architecture→ large FOV with high angular 
resolution (120°×30°, <0.1°)

• Low power consumption (class 1 laser source)

Challenges
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SPAD ToF Imagers  
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Aim: High resolution, solid-state, scanning/flash imagers for LIDAR
• SPAD Interface (front-end) : quench, buffer, level shift
• Photon Combine : combine or correlate multiple SPADs 
• Timing : measure the arrival time of photons
• Histogram : assemble photon event times into a histogram
• Process ToF : Background removal, time of flight fitting, pile-up correction, 

compress data



8

3D-Stacked Architectures

Partial Histogram ToF Adaptive Histogram ToF Full histogram ToF
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Top and Bottom Tier Usage
Partial Histogram ToF Adaptive Histogram ToF Full histogram ToF

Zhang, OJSSCS 2021Stoppa, IISW 2021 Kumagai, ISSCC 2021
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First photon TDC

Low ambient High ambient

• The approach breaks downs, resulting in pile-up distortion, as the number of photon 
detections/TDC channel/laser cycle approaches 1

missing (or hard-to-

detect) signal peak!signal peak

• Traditional single-photon LIDAR systems use “first-photon” time-to-digital converters 
(TDCs) which register only the first photon event per laser cycle and frame
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Mitigating TDC pile-up

• Multi-event histogramming TDC 
(e.g. [Hutchings, 2019]) which 
registers multiple events per 
laser cycle and builds a 
histogram over multiple cycles 

• Coincidence detection (e.g. [Beer, 2018]) which filters photon events in an attempt 
to ensure that only “signal” events are processed by the first-photon TDC

• Time gating (e.g. [Padmanabhan, 2021])

peak 

preserved
missing

peak
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Multi-event Histogramming (Quantic4x4)

[Hutchings, JSSC, 2019]

• 4x4 sharing of shift register-based Multi event TDC
• 16x14b bins, 560ps/bin
• Good background tolerance
• Other implementations: 

[Van Blerkom, ISSW, 2020], [Seo, JSSC 2021], [Srowig, ISE, 2022] 
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Synchronous Summation Technique (SST)

[Patanwala, PhD Thesis, U. Edinburgh, 2021]

• SST combines readily with a multi-event TDC operating on CLK
• Pipelined TDC operation required for faster clock rates
• Modelling/emulated comparison with OR, XOR and coincidence combining
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Synchronous Summation Technique (SST)

• Only SST + short conversion time tc able to recover target

OR    

XOR   

Coincidence
Detection   

SST   

[Patanwala, PhD Thesis, U. Edinburgh, 2021]

Simulated histograms: 115m range, 100kLux ambient, 10% reflectivity target
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How many histogram bins?

[Koerner, ISSW, 2022]

[Gyongy, TED, 2022]

Abit = Normalised Area per Bit

• Choose bin width a to be around laser IRF FWHM
• Few 100ps and 100’s bin for short range (0-10m) flash LIDAR
• Few ns and 1000’s bins for long range scanning/flash (50-300m) LIDAR
• Large SRAM histogram has energy overhead
• Smaller SRAM histogram has high access logic overhead – counters better
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Partial Histogramming
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e.g. Lindner (2018), Zhang (2021), Park (2022)

e.g. Stoppa (2021)
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• Only subrange of full depth held in pixel
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Partial Histogram – Power Penalty

[Taneski, JLT, 2022]

• Histograms of 1/4-1/8th full scale depth range provide acceptable compromise
• Scaling laser cycles with sub-range can save significant emitter power
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Partial Histogram – peak tracking (HSLIDAR)

• Pixels with multi-event histogramming
• Peak tracking in pixel with in-pixel background estimator
• Dynamic vision mode outputs only pixels with change in depth

[Gyongy, ISSW 2022]
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HSLIDAR – peak tracking

ℎ𝑡ℎ𝑟𝑒𝑠ℎ = 𝐵 + 1.75𝛼 𝐵

• Peak detection threshold is calculated as

where B is the estimated background 
level and α = 1 or 2. 
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HSLIDAR – short range

Single frame (1kFPS)
(bin width = 8 ns)

HR: Combination of 
16 frames (20FPS)

Average of 20 HR 
images
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Partial Histogram – peak tracking



22

Partial Histogram – peak tracking
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Sliding vs peak tracking
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Dynamic vision using peak tracking
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Depth upscaling
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Depth upscaling (cont.)
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High-speed object detection
F1 score

SBR < 0.1

0.1 < SBR < 0.5

SBR > 0.5
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Reconfigurable/Neural Net Processing

• Processor under the SPAD array [Ardelean, PhD Thesis, EPFL, 2023]
• Higher-level (AI) processing for scene interpretation akin the 2D vision sensors?

Source: https://www.sony-semicon.com/ 
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Reconfigurable/Neural Net Processing (cont.)

• SPAD array with on-chip logic to generate 
events depending on order that neighbouring 
SPADs fire

• Overlapping “receptive fields” with 4×4 SPADs

• 81 fold reduction in data rate

• Asynchronous readout to FPGA with spiking 
neural network for object classification

[S. Afshar, IEEE Sensors 2020]
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Conclusions

• Recent advances in stacked 3D SPAD technology have resulted 
in high PDE SPADs, and enabling focal-plane photon 
processing in advanced technology nodes

• There is still a lot of opportunity for circuit and system 
innovation to address angular resolution, power reduction and 
dynamic range challenges, especially in longer-range LIDAR

• In the coming years, we are likely to see more sophisticated 
embedded processing, including programmable logic, machine 
learning, and SNNs.
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