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Outline

* Sonar Systems
— Towed Arrays, Flank Arrays, Bow Mount, Dipping Sonars, Sonobuoys,
Torpedoes,...
Signal Propagation and Noise
— Ray Tracing & Wave Propagation
— Reverberation & Biologicals

Direction-of-Arrival

— Conventional beamformer

— Adaptive/Capon beamformer
— Bayesian/MCMC beamformer

Target Tracking in Clutter
— Sensor Noise Characterisation
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Sonar
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Towed Arrays — E.g. Thales CAPTAS Family
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Towed Array — Active Sonar Propagation
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Towed Array — Transmitter Placement
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Reflected signals...
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Simulation and Modelling

» Heterogenous versus Layered Ocean Models
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— Investigating the effects of realistic ocean structures on sonar propagation models

— Gradient versus layered models
— 3D versus 2D models
— Inclusion of real ocean data
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Simulation and Modelling

» Comparison of 2D and 3D Ocean Models

b) Inline of 3D data at y=1m
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— Same configuration, No travel time differences
2D model shows higher amplitudes for near offset traces, but lower for the far offsets.

If a source is to be detected from signal amplitude, then 2D modelling may give over-
optimistic results compared to 3D case.
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Velocity varies horizontally — shelf areas
Data from top 200m

No seafloor in modelling
Signal data below are presented ‘flattened’ in

the y-axis to compare signals at different
distances.
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INTERMITTENT AND LOCAL EFFECTS
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Reverberation

* Reverberation is noise arising from scattering of the transmitted sonar by
environmental factors not associated with the target of interest.

— Underwater boundaries (refraction and reflection of sound waves)
— Scatterers — obstacles, ocean floor clutter, debris, bubbles, and fish & &« &

* Reverberation ultimately limits the power that can be used by active sonar.
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Beamforming

%4 UNIVERSITY OF

Beamforming is a technique used to determine the direction of arrival
(DoA) of a wave (e.g. radio, sonar).

The beamformer spectrum shows the amount of energy arriving from
each angular direction, with the target DoA showing as a peak.
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Conventional Beamformer

« Conventional beamformers are a specific class of beamforming
algorithms. One of the most common is the delay-and-sum (DAS)
beamformer, which combines the signals si of the receiver array using
fixed time delays corresponding to each angular direction.

Sensor Time
signals delays
si(t) > | At,(6) ]
s(t) > | ALB) | —— | Y 5 Bea:)n;:‘::?er
sn(t) > | Aty(6) T
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Conventional Beamformer

* For the angle 8, the amplitude of the beamformer is defined as

1 N 1 T—At,(@)
F 0) = — (t)s;(t + At;(0))dt 1
@)=y [Tomem [ SOsr a0
T
At(9) = 25 (2)
C
where M = the number of array sensors
T = the length of the measured signals in time
c = the wave speed
ag = the Cartesian unit vector corresponding to 6
z; = the Cartesian position vector of the sensor

H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, Wiley, 2002

K4 UNIVERSITY OF

National
& LIVERPOOL @ S e




Conventional Beamformer
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Adaptive Beamformers

« Adaptive beamformers are another class of beamforming algorithms.
They are distinguished by the fact that the filter design contains
variable delays and amplitude weights.

» The Capon beamformer minimizes the influence of signals from angular
directions close to 8 by using weights defined as

min w”Rw such that w"v(d) =1 (3)
V(Q):Z [ejwagzl7egwa522,...76Jwa52N} (4)
1 _ _
Rnm = [ —1 Z(Sn(t) — 5p)(sm(t) — 5m) (5)
t
1
= FCapon(e) — m (6)

where L is the number of samples in the time series.
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Capon Beamformer

« DoA

0 0 05 1 1.9

¢

J. Capon, High-Resolution Frequency-Wavenumber Spectrum Analysis, Proceedings of the IEEE, 57(8):1408-1418, 1969
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Bayesian/MCMC Beamformer

« Rather than considering DoA estimation a spectral analysis problem we
can instead propose a statistical model for the measured data:

S=Gyb+e (7)
[ sin(wt +a11(0))  sin(wt+a12(0)) ... sin(wt+ a;m(F)) |
. sin(wt + az1(0)) sin(wt+ a22(0)) ... sin(wt+ az m(6))
6 = . : _ :
| sin(wt +apn,1(0)) sin(wt +an(0)) ... sin(wt+anm(d))
(8)
where S = [s1(t), s2(t), - - ., sn(t)]
b = 1 X M vector of weights
M = the number of signals (sonar targets)
ajm(f) = the phase differences between the sensors
€ = additive Gaussian noise with a variance o
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Bayesian/MCMC Beamformer

(7) can be rewritten as the equivalent probabilistic equation

p(S|o?, b,0) = N(S; Gyb,0?), (9)

which denotes the likelihood (goodness of fit) of the parameters o2, b
and 0 to the data.

However, we are interested in the probability p(6|S). A solution can be
found by using Bayes' rule,

p(510)p(0)

p(S)

where p(6|S) is known as the posterior probability and p(#) is the prior
probability.

p0|S) =

(10)

Christophe Andrieu, Nando De Freitas, and Arnaud Doucet. Robust full Bayesian
learning for radial basis networks. Neural Computation, 13(10):2359-2407, 2001.
Christophe Andrieu and Arnaud Doucet. Joint Bayesian model selection and
estimation of noisy sinusoids via reversible jump MCMC. Signal Processing, IEEE

Bayesian model determination, Biometrika, 82(4):711-732, 1995.



Bayesian/MCMC Beamformer

» We can numerically sample from a posterior probability distribution
using Markov chain Monte Carlo (MCMC).

@ Define p(#|S) as the stationary
target distribution of a
stochastic process.

@ The Markov chain has a higher
chance of accepting a
randomly-proposed step in the
parameter space if the p(6|S)
at that location is high.

@ Each step then represents a
sample from p(0|S).
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Bayesian/MCMC Beamformer
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The number of targets M is unknown, which means it must also be
estimated by the model. This can be achieved using reversible-jump
MCMC.

Propose birth and death moves to add and remove potential targets

Ensures detailed balance is preserved = Markov chain is not biased by
the direction it travels

p(0|S) contains many dot products between S and Gg. If we did this for
every MCMC step the algorithm would be very slow!

Can pre-calculate prior to running the MCMC algorithm (equivalent to
using phasors) e.g.
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BayeS|an/MCMC Beamformer

Zs,(t )sin(wt + i m)

5
= [ sin(aim) sin(w+aim) .. sin(w(l—1)+aim) ]|
s(L—1) |

S,'(O)
ol ) ey [ sin(0) sin(w) ... sin(w(L—1)) si(1)
= [ cos(aim) CEON | cos(0) cos(w) ... cos(w(L—1))

| si(L—1) ]
= COS| «xvj sin( o - [Sin(wt)]TSi(t)
= [ cos(aim) (a,m) ] | [cos(wt)]” si(t)
| | l J

can be computed prior
to MCMC algorithm
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Bayesian/MCMC Beamformer
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TRACKING AND LOCALISATION




Tracking with real measurements
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Single target measurements
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Measurement model

« Turning a sequence of extracted plots v, ., into a track x;., requires
that the measurement model i () and noise characteristics are

known to the filter.

» A standard model of bearing-range sensor located in s, is given by
Ve = h(xk sk) +wy,

[90(9% Sk)

r(xk,sk)

where w;, is additive Gaussian noise with known covariance.

—+ Wi,

* In practice, the noise characteristics are unknown and determined by
many factors:
— Internal: own heading, Tx/Rx separation, platform motion, beamwidth,
range-doppler ambiguity
— External: speed of sound, sea surface/bed multipath reflections,
reverberation
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Computing noise statistics from data

®(xk, Sk) + Ppigs + OpNy

Yk = [ ]
T'(xkrsk) T Thigs + Oy

 One way is to involve a known target in x,.,,, so the noise statistics
can be computed from y,.y = {¢;,1;})_, using

Y (pi—o(xisi) YN (@i~ Pbias)?
@Ppias = il N ) and%:\/ 1 N b )

« Otherwise, techniques like expectation maximization can be used
6" = argmaxlogp(y1.x|0),

T
for a vector 6 = [@pias, Thias 0, 0| Of unknown parameters.
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Obtaining noise statistics for a known target

Measurement noise covariance
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Cluttered measurements in littoral environment
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Stone Soup S

« Stone Soup provides a collection

of standard tracking algorithms for — ) -
comparison ) o
« Simulation of an analogous scenario 25000 - £ i i
to understand how to ‘connect the " g B
dots’ in Stone Soup (green tracks over — . B
broad truths) B . ) .
» Currently working on processing the é _ ) . " )
real LCAS data in a compatible format =000 x g o
Stone Soup code base: htips://github.com/dstl/Stone-Soup 10000 ** » x

Stone Soup Jupyter Notebooks: https://github.com/dstl/Stone-
Soup-Notebooks

Stone Soup documentation https://stonesoup.readthedocs.io/ 5000 A
ISIF Open Source Tracking and Estimation Working Group
https://isif-ostewq.org/

Stone Soup data: htips:/isif-ostewg.org/data 0 . ; . . .
Stone Soup community forum https://qitter.im/dstl/Stone-Soup 0 5000 10000 15000 20000 25000
X,[m]
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Summary

« Sonar processing is extremely challenging
— Sonars cover a wide range of sensor types and applications
— Propagation, noise and clutter are non-trivial

« Beamforming — Bayesian approach provides several advantages over
standard beamforming techniques.

— Generates an estimate of the DoA for the source of the energy in the signal,
rather calculating the energy associated with each direction

— Unaffected by issues such as sidelobes, and can combine uncertainties to
reduce variance in the parameter estimates (0, ¢, M)

— Robust to the effects of noise if the noise component is included within the
model itself

« Tracking — Very high clutter levels and non-trivial sensor noise models
— Tracking algorithms rely on the knowledge of measurement noise statistics

— Statistics usually not known in practice, and are a function of many factors
affecting the measurement process (both internal and external)

— In principle, they can be extracted from data itself in case additional information

is available to reduce the uncertainty
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Further Work

« Beamforming:
— Fusion of data from multiple narrowband frequencies

— Application to more challenging settings involving a mix of both passive and
active sonar

— Using sequential Monte Carlo instead of MCMC to make full use of parallel
processing capabilities (i.e. higher accuracy and precision in a shorter
timeframe)

« Tracking:
— Using Stone Soup trackers on cluttered data across several datasets
(obtained through variation in the processing of received signals)

— Tracking performance evaluation and comparison across the processing
schemes
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