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Outline
• Sonar Systems

− Towed Arrays, Flank Arrays, Bow Mount, Dipping Sonars, Sonobuoys, 
Torpedoes,…

• Signal Propagation and Noise
− Ray Tracing & Wave Propagation
− Reverberation & Biologicals

• Direction-of-Arrival
− Conventional beamformer
− Adaptive/Capon beamformer
− Bayesian/MCMC beamformer

• Target Tracking in Clutter
− Sensor Noise Characterisation
− Stone Soup

• Summary and Future Work



Sonar

https://news.usni.org/2015/08/04/navsea-cutting-weight-on-
littoral-combat-ship-asw-mission-package-not-a-new-problem



Towed Arrays – E.g. Thales CAPTAS Family

https://www.defesaaereanaval.com.br/artigos/thales-underwater-
systems-sas-brest?PageSpeed=noscript



Towed Array – Active Sonar Propagation



Towed Array – Transmitter Placement



Reflected signals…



Simulation and Modelling
• Heterogenous versus Layered Ocean Models

− Investigating the effects of realistic ocean structures on sonar propagation models
− Gradient versus layered models
− 3D versus 2D models
− Inclusion of real ocean data

• Velocity reduction has the effect of flattening all arrivals with an average velocity of 
1500 m/s, making visualisation easier; jittering of arrival times illustrate that 
heterogeneous water velocity causes ray path bending (refracted and reflected).

• First arrival signal can be followed only up to 35 km at least 10 km less than in the 
layered model

• 20 km of first arrival signals over 35 km correspond to the direct water wave arrival. 
Signals between 21 and 35 km offsets are propagating within the seabed of 2 km/s 

• Near offset traces (< 5 km) arrive earlier than 0 s in the reduced hydrophone data –
so travelled faster that 1.5 km/s i.e seabed with 2 km/s

Heterogeneous       vs          Layered water



Simulation and Modelling
• Comparison of 2D and 3D Ocean Models

− Same configuration, No travel time differences
− 2D model shows higher amplitudes for near offset traces, but lower for the far offsets.
− If a source is to be detected from signal amplitude, then 2D modelling may give over-

optimistic results compared to 3D case.

3D vs 2D • Same configuration
• No travel time 

differences
• 2D model shows 

higher amplitudes for 
near offset traces, 
but lower for the far 
offsets.

• If a source is to be 
detected from signal 
amplitude, then 2D 
modelling may give 
over-optimistic 
results compared to 
reality, as it gives 
higher amplitudes 
compare to the 3D 
case. 

a) Seismogram for 2D model 

 

b) Inline of 3D data at y=1m 

 
c) 2D overlapped on inline of 3D data at y=1m 

 

d) Inline of 3D data at y=1m overlapped on 2D

 
 



Water column data
• Velocity varies horizontally – shelf areas
• Data from top 200m 
• No seafloor in modelling
• Signal data below are presented ‘flattened’ in 

the y-axis to compare signals at different 
distances.



Sources of Noise
• Sea Noise

− Waves
− Bubbles and Spray
− Tides

• Weather
− Rain and Wind/Sea State

• Shipping
− Lower frequency engine and 

propeller noise
− Other Sonar

• Biological Sources
− Whales and other Cetaceans 
− Snapping Shrimps

416 Sources and scatterers of sound [Ch. 8

Figure 8.13. Typical ambient noise spectra. The x-axis covers five decades of frequency from
1Hz to 100 kHz. The y-axis is the noise spectrum level from 0dB to 140 dB re mPa2/Hz (adapted
from Wenz, 1962, American Institute of Physics, with permission).#

Typical ambient noise spectra (Michael A. Ainslie
“Principles of Sonar Performance Modeling” (Springer, 2010), 
originally in Wenz, 1962, American Institute of Physics)



Reverberation
• Reverberation is noise arising from scattering of the transmitted sonar by 

environmental factors not associated with the target of interest.
− Underwater boundaries (refraction and reflection of sound waves)
− Scatterers – obstacles, ocean floor clutter, debris, bubbles, and fish 🐟🐟🐟

• Reverberation ultimately limits the power that can be used by active sonar.

Colin W. Jemmott, and William K. Stevens “The impact of reverberation on 
active sonar optimum frequency ”, Proc. Mtgs. Acoust. 12, 070001 (2011)

FIG. 4. Reverberation level (RL) for frequency-independent (µi, solid lines) and data-derived, frequency-
dependent (µd, dashed lines) scattering strengths at one-way travel distances of 5, 10, 20 and 40 kilometers.

FIG. 5. Reverberation level (RL) due to volume scattering from biologics, in this case anchovies.

G. Ambient Noise

If detection is not reverberation limited, then it is usually limited by ambient noise. The am-
bient noise level can be highly variable, and the source of the noise depends on location, weather,
shipping, biological activity and the acoustical frequency of interest. Wenz noise curves describe
noise generated at the surface by wind induced waves, and have a frequency response of f−2 from
roughly 500 Hz to the thermal noise limit around 100 kHz.5 The scenario considered here is an
ambient noise level of 75 dB re 1 µPa at 1 kHz. A plot of the ambient noise levels as a function of
frequency is shown in Figure 6. The noise is assumed to be isotropic and stationary.
Wenz curves were developed based on deep water measurements, and the change to shallow water

may result in ambient noise rolloff with frequency slower than f−2. The frequency dependence

C. Jemmott and W. Stevens
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Reverberation level (RL) for frequency-independent (solid lines) and 
data-derived, frequency- dependent (dashed lines) scattering 
strengths at one-way travel distances of 5, 10, 20 and 40 kilometres. 

Reverberation level (RL) due to volume scattering from 
biologics, in this case anchovies 



BEAMFORMING



Beamforming
• Beamforming is a technique used to determine the direction of arrival 

(DoA) of a wave (e.g. radio, sonar). 
• The beamformer spectrum shows the amount of energy arriving from 

each angular direction, with the target DoA showing as a peak. 



Conventional Beamformer
• Conventional beamformers are a specific class of beamforming 

algorithms. One of the most common is the delay-and-sum (DAS) 
beamformer, which combines the signals si of the receiver array using 
fixed time delays corresponding to each angular direction. 



Conventional Beamformer
• For the angle θ, the amplitude of the beamformer is defined as 

Background
Bayesian approach

Comparison

Beamforming
Conventional beamformer
Capon beamformer

For the angle ✓, the amplitude of the beamformer is defined as
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where M = the number of array sensors
T = the length of the measured signals in time
c = the wave speed
a✓ = the Cartesian unit vector corresponding to ✓
zi = the Cartesian position vector of the sensor

Sonar array processing using beamformers and Bayesian algorithms

H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, Wiley, 2002 



Conventional Beamformer



Adaptive Beamformers
• Adaptive beamformers are another class of beamforming algorithms. 

They are distinguished by the fact that the filter design contains 
variable delays and amplitude weights. 

• The Capon beamformer minimizes the influence of signals from angular 
directions close to θ by using weights defined as 
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Beamforming
Conventional beamformer
Capon beamformer

Adaptive beamformers are another class of beamforming algorithms.
They are distinguished by the fact that the filter design contains variable
delays and amplitude weights.

The Capon beamformer minimizes the influence of signals from angular
directions close to ✓ by using weights defined as

min
w
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where L is the number of samples in the time series.

Sonar array processing using beamformers and Bayesian algorithms



Capon Beamformer

J. Capon, High-Resolution Frequency-Wavenumber Spectrum Analysis, Proceedings of the IEEE, 57(8):1408–1418, 1969 



Bayesian/MCMC Beamformer
• Rather than considering DoA estimation a spectral analysis problem we 

can instead propose a statistical model for the measured data: 

Background
Bayesian approach
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Model fitting using MCMC
Specific challenges in the sonar problem

Rather than considering DoA estimation a spectral analysis problem we
can instead propose a statistical model for the measured data:

S = G✓b + " (7)

G✓ =

2
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,
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where S = [s1(t), s2(t), . . . , sN(t)]
b = 1⇥M vector of weights
M = the number of signals (sonar targets)
↵i,m(✓) = the phase di↵erences between the sensors
" = additive Gaussian noise with a variance �2

Sonar array processing using beamformers and Bayesian algorithms



Bayesian/MCMC Beamformer

Background
Bayesian approach

Comparison

Model fitting using MCMC
Specific challenges in the sonar problem

(7) can be rewritten as the equivalent probabilistic equation

p(S |�2, b, ✓) = N (S ;G✓b,�
2), (9)

which denotes the likelihood (goodness of fit) of the parameters �2, b
and ✓ to the data.

However, we are interested in the probability p(✓|S). A solution can be
found by using Bayes’ rule,

p(✓|S) = p(S |✓)p(✓)
p(S)

, (10)

where p(✓|S) is known as the posterior probability and p(✓) is the prior
probability.

Sonar array processing using beamformers and Bayesian algorithms

Christophe Andrieu, Nando De Freitas, and Arnaud Doucet. Robust full Bayesian 
learning for radial basis networks. Neural Computation, 13(10):2359–2407, 2001. 
Christophe Andrieu and Arnaud Doucet. Joint Bayesian model selection and 
estimation of noisy sinusoids via reversible jump MCMC. Signal Processing, IEEE 
Transactions on, 47(10):2667–2676, 1999. 
Peter J. Green. Reversible jump Markov chain Monte Carlo computation and 
Bayesian model determination, Biometrika, 82(4):711–732, 1995. 



Bayesian/MCMC Beamformer
• We can numerically sample from a posterior probability distribution 

using Markov chain Monte Carlo (MCMC). 
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Model fitting using MCMC
Specific challenges in the sonar problem

We can numerically sample from a posterior probability distribution using
Markov chain Monte Carlo (MCMC).

Define p(✓|S) as the stationary
target distribution of a
stochastic process.

The Markov chain has a higher
chance of accepting a
randomly-proposed step in the
parameter space if the p(✓|S)
at that location is high.

Each step then represents a
sample from p(✓|S).

Sonar array processing using beamformers and Bayesian algorithms



Bayesian/MCMC Beamformer
• The number of targets M is unknown, which means it must also be 

estimated by the model. This can be achieved using reversible-jump 
MCMC. 

• Propose birth and death moves to add and remove potential targets 

• Ensures detailed balance is preserved ⇒ Markov chain is not biased by 
the direction it travels 

• p(θ|S) contains many dot products between S and Gθ. If we did this for 
every MCMC step the algorithm would be very slow! 

• Can pre-calculate prior to running the MCMC algorithm (equivalent to 
using phasors) e.g. 



Background
Bayesian approach
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Model fitting using MCMC
Specific challenges in the sonar problem

Sonar array processing using beamformers and Bayesian algorithms

Bayesian/MCMC Beamformer



Bayesian/MCMC Beamformer
Background

Bayesian approach
Comparison

Model fitting using MCMC
Specific challenges in the sonar problem

Sonar array processing using beamformers and Bayesian algorithms



TRACKING AND LOCALISATION



Tracking with real measurements
Sonar 

SNR data

Threshold

Cluster

Extract 
[plots]

Track



Single target measurements



Measurement model
• Turning a sequence of extracted plots 𝑦!:# into a track #𝑥!:# requires 

that the measurement model ℎ(') and noise characteristics are 
known to the filter.

• A standard model of bearing-range sensor located in 𝑠# is given by
𝑦# = ℎ 𝑥# , 𝑠# + 𝑤# ,

= 𝜑(𝑥# , 𝑠#)
𝑟(𝑥# , 𝑠#)

+ 𝑤# ,

where 𝑤# is additive Gaussian noise with known covariance. 

• In practice, the noise characteristics are unknown and determined by 
many factors:
− Internal: own heading, Tx/Rx separation, platform motion, beamwidth, 

range-doppler ambiguity
− External: speed of sound, sea surface/bed multipath reflections, 

reverberation



Computing noise statistics from data

𝑦# =
𝜑 𝑥# , 𝑠# + 𝜑$%&' + 𝜎(𝑛(
𝑟 𝑥# , 𝑠# + 𝑟$%&' + 𝜎)𝑛)

• One way is to involve a known target in 𝑥!:*, so the noise statistics 
can be computed from 𝑦!:* = 𝜑% , 𝑟% %+!* using

𝜑$%&' =
∑!"#
$ (!-( .!,'!

*
and 𝜎( =

∑!"#
$ (!-(%!&' (

*
.

• Otherwise, techniques like expectation maximization can be used
𝜃∗ = argmax log 𝑝(𝑦!:*|𝜃) ,

for a vector 𝜃 = 𝜑$%&', 𝑟$%&', 𝜎(, , 𝜎)
1 of unknown parameters.



Obtaining noise statistics for a known target



Cluttered measurements in littoral environment



Stone Soup
• Stone Soup provides a collection 

of standard tracking algorithms for 
comparison

• Simulation of an analogous scenario 
to understand how to ‘connect the 
dots’ in Stone Soup (green tracks over 
broad yellow truths)

• Currently working on processing the 
real LCAS data in a compatible format

Stone Soup code base: https://github.com/dstl/Stone-Soup
Stone Soup Jupyter Notebooks: https://github.com/dstl/Stone-
Soup-Notebooks
Stone Soup documentation https://stonesoup.readthedocs.io/
ISIF Open Source Tracking and Estimation Working Group 
https://isif-ostewg.org/
Stone Soup data: https://isif-ostewg.org/data
Stone Soup community forum https://gitter.im/dstl/Stone-Soup

https://github.com/dstl/Stone-Soup
https://github.com/dstl/Stone-Soup-Notebooks
https://stonesoup.readthedocs.io/
https://isif-ostewg.org/
https://isif-ostewg.org/data
https://gitter.im/dstl/Stone-Soup


Summary
• Sonar processing is extremely challenging

− Sonars cover a wide range of sensor types and applications
− Propagation, noise and clutter are non-trivial

• Beamforming – Bayesian approach provides several advantages over 
standard beamforming techniques. 
− Generates an estimate of the DoA for the source of the energy in the signal, 

rather calculating the energy associated with each direction 
− Unaffected by issues such as sidelobes, and can combine uncertainties to 

reduce variance in the parameter estimates (θ, φ, M) 
− Robust to the effects of noise if the noise component is included within the 

model itself 
• Tracking – Very high clutter levels and non-trivial sensor noise models

− Tracking algorithms rely on the knowledge of measurement noise statistics
− Statistics usually not known in practice, and are a function of many factors 

affecting the measurement process (both internal and external)
− In principle, they can be extracted from data itself in case additional information 

is available to reduce the uncertainty



Further Work
• Beamforming:

− Fusion of data from multiple narrowband frequencies 
− Application to more challenging settings involving a mix of both passive and 

active sonar 
− Using sequential Monte Carlo instead of MCMC to make full use of parallel 

processing capabilities (i.e. higher accuracy and precision in a shorter 
timeframe) 

• Tracking:
− Using Stone Soup trackers on cluttered data across several datasets 

(obtained through variation in the processing of received signals)
− Tracking performance evaluation and comparison across the processing 

schemes




