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1
Review of Fourier Transforms and

Discrete-Time Systems

This handout will review complex Fourier series and Fourier transforms, followed by a review of

discrete-time systems. It covers complex Fourier series, Fourier transforms, Discrete-time Fourier

transforms, Discrete Fourier Transforms, Parseval’s Theorem, the bilaterial Z-transform, frequency

response, and rational transfer functions.

1.1 Obtaining the Latest Version of these Handouts

New slide

• This research tutorial is intended to cover a wide range of aspects which cover the fundamentals

of statistical signal processing. It is written at a level which assumes knowledge of

undergraduate mathematics and signal processing nomenclature, but otherwise should be

accessible to most technical graduates.

2
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1.1. Obtaining the Latest Version of these Handouts 3
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Figure 1.1: Source localisation and BSS. An example of topics using statistical signal processing.
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obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Figure 1.2: Humans turn their head in the direction of interest in order to reduce inteference from

other directions; joint detection, localisation, and enhancement. An application of probability and

estimation theory, and statistical signal processing.
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KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The documents published

on the USB stick may differ to the slides presented on the day. In particular, there are likely to

be a few typos in the document, so if there is something that isn’t clear, please feel free to email

me so I can correct it (or make it clearer).

• The latest version of this document can be obtained from the author, Dr James R. Hopgood, by

emailing him at: at:

mailto:james.hopgood@ed.ac.uk

(Update: The notes are no longer online due to the desire to maintain copyright control on the

document.)

• Extended thanks are given to the many MSc students over the past 12 years who have helped

proof-read and improve these documents.

1.2 Introduction

This handout will review complex Fourier series and Fourier transforms, followed by a review of

discrete-time systems. The reader is expected to have previously covered most of the concepts in this

handout, although it is likely that the reader might need to revise the material if it’s been a while since

it’s been studied. Nevertheless, this revision material is included in the module as review material

purely for completeness and reference. It is not intended as a full introduction, although some parts

of the review cover the subject in detail.

As discussed in the first handout, if the reader wishes to revise these topics in more detail, the

following book comes highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,

and Applications, Pearson New International Edition, Fourth edition, Pearson Education,

2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

For undergraduate level text books covering signals and systems theory, which it is assumed you have

covered, the following book is recommmended:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing: Concepts and

Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.see.ed.ac.uk/˜{}pmg/SIGPRO

The latest edition was printed in 2002, but any edition will do. An alternative presentation of roughly

the same material is provided by the following book:

mailto:james.hopgood@ed.ac.uk
http://www.see.ed.ac.uk/~{}pmg/SIGPRO
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t0 Period T

x t( )

Figure 1.3: An example of a periodic signal with period T .

Balmer L., Signals and Systems: An Introduction, Second edition, Prentice-Hall, Inc.,

1997.

IDENTIFIERS – Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

In particular, the appendix on complex numbers may prove useful.

1.3 Signal Classification

New slideBefore considering the analysis of signals and systems, it is necessary to be aware of the general

classifications to which signals can belong, and to be aware of the significance of some subtle

characteristics that determine how a signal can be analysed. Not all signals can be analysed using

a particular technique.

1.3.1 Types of signal

New slideIn general, there are four distinct types of signals that must be analysed:

Continuous-time periodic Such signals repeat themselves after a fixed length of time known as the

period, usually denoted by T . This repetition continues ad-infinitum (i.e. forever).

Formally, a signal, x(t), is periodic if

x(t) = x(t+mT ) , ∀m ∈ Z (1.1)

where the notation ∀m ∈ Z means that m takes on all integer values: in other-words,

m = −∞, . . . , −2, −1, 0, 1, 2, . . . , ∞. The smallest positive value of T which

satisfies this condition is the defined as the fundamental period.

These signals will be analysed using the Fourier Series, and are used to represent

real-world waveforms that are near to being periodic over a sufficiently long period

of time.

An example of a periodic signal is shown in Figure 1.3. This kind of signal vaguely

represents a line signal in analogue television, where the rectangular pulses represent

line synchronisation signals.

October 11, 2016 – 19 : 08
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t0

x t( )

Figure 1.4: An example of an aperiodic signal.

n0 Period N

x n[ ]

5 10

Figure 1.5: A discrete-time periodic signal.

Continuous-time aperiodic Continuous-time aperiodic signals are not periodic over all time,

although they might be locally periodic over a short time-scale.

These signals can be analysed using the Fourier transform for most cases, and more

often using the Laplace transform. Aperiodic signals are more representative of

many real-world signals. Again, real signals don’t last for all time, although can

last for a considerably long time. An example of an aperiodic signal is shown in

Figure 1.4.

Discrete-time periodic A discrete-time periodic signal is shown in Figure 1.5, which is essentially

a sampled version of the signal shown in Figure 1.3. Note in this case, the period is

often denoted by N , primarily to reflect the fact the time-index is now n.

A discrete-time signal, x[n], is periodic if:

x[n] = x[n+mN ] , ∀m ∈ Z (1.2)

This is, of course, similar to Equation 1.1.

Discrete-time aperiodic Analogous to the continuous-time aperiodic signal in Figure 1.4, a

discrete-time aperiodic signal is shown in Figure 1.6.

Aperiodic discrete-time signals will be analysed using the z-transform and also the

discrete-time Fourier transform (DTFT).
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n0

x n[ ]

Figure 1.6: An example of a discrete-time aperiodic signal.

n0

x n[ ]

N-1

Figure 1.7: An example of a finite-duration signal.

Finite-length discrete-time signals Discrete-time signals can also be classified as being finite in

length. In other words, they are not assumed to exist for all-time, and what happens

outside the window of data is assumed unknown. These signals can be modelled

using the so-called discrete Fourier transform (DFT).

1.3.2 Energy and Power Signals

New slideAs stated in Section 1.3.1, signals can be analysed using a variety of frequency-domain transform

methods, such as the Fourier series, Fourier transform, Laplace transform, and for discrete-time,

the z-transform. For example, the Fourier transform is used to analyse aperiodic continuous-time

signals.

However, not all aperiodic signals can be analysed using the Fourier transform, and the reason for this

can be directly related to a fundamental property of a signal: a measure of how much signal there is.

Therefore it is relevant to consider the energy or power as a means for characterising a signal. The

concepts of power and energy intuitively follow from their use in other aspects of the physical

sciences. However, the concept of signals which exist for all time requires careful definitions, in

order to determine when it has energy and when it has power.

Intuitively, energy and power measure how big a signal is. A motivating example of measuring the

size of something is given in Sidebar 1.

1.3.2.1 Motivation for Energy and Power Expressions

New slideConsidering power from an electrical perspective, if a voltage x(t) is connected across a resistance

R, the dissipated power at time τ is given by:

October 11, 2016 – 19 : 08
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Sidebar 1 Size of a Human Being

Suppose we wish to devise a signal number V as a measure of the size of a human being. Then

clearly, the width (or girth) must also be taken into account as well as the height. One could make the

simplifying assumption that the shape of a person is a cylinder of variable radius r (which varies with

the height h). Then one possible measure of the size of a person of height H is the person’s volume,

given by:

V = π

∫ H

0

r2(h) dh (1.3)

This can be found by dividing the object into circular discs (which is an approximation), where each

disc has a volume δV ≈ πr2(h) δh. Then the total volume is given by V =
∫
dV .

t0

x t
2
( )

dt

t+dtt

Figure 1.8: Energy Density.

P (τ) =
x2(τ)

R
∝ x2(τ) (1.4)

where ∝ denotes proportional to. Since energy and power are related through the expression

Energy = Power × Time, (1.5)

the energy dissipated between times τ and τ + δτ , as indicated in Figure 1.8, is:

δE(τ) ∝ P (τ) δτ ∝ x2(τ)δτ (1.6)

The total energy over all time can thus be found by integrating over all time:

E ∝

∫ ∞

−∞

x2(τ) dτ (1.7)

This leads to the formal definitions of energy and power.

1.3.2.2 Formal Definitions for Energy and Power

New slide Based on the justification in Section 1.3.2.1, the formal abstract definitions for energy and power that

are independent of how the energy or power is dissipated are defined below.

Energy Signals A continuous-time signal x(t) is said to be an energy signal if the total energy, E,

dissipated by the signal over all time is both nonzero and finite. Thus:

0 < E < ∞ where E =

∫ ∞

−∞

|x(t)|2 dt (1.11)
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Sidebar 2 Other signal measures

1. While the area under a signal x(t) is a possible measure of its size, because it takes account not

only of the amplitude but also of the duration, is defective since even for a very large signal, the

positive and negative areas could cancel each other out, indicating a signal of a small size.

2. Using the sum of square values can potentially give undue weighting to any outliers in the

signal, where an outlier is defined as an unusual signal variation that is not characteristic of the

rest of the signal; an example might be a high-energy shot burst of interference.

3. Therefore, taking the absolute value, |x(t) | ≡ absx(t) is a possible measure, and in some

circumstances can be used. Unfortunately, dealing with the absolute value of a function can be

difficult to manipulate mathematically. However, using the area under the square of the function

is not only more mathematically tractable but is also more meaningful when compared with the

electrical examples and the volume in Sidebar 1.

4. These notions lead onto the more general subject of signal norms. The Lp-norm is defined by:

Lp(x) ,

(∫ ∞

−∞

|x(t)|p dt

) 1

p

, p ≥ 1 (1.8)

In particular, the expression for energy is related to the L2-norm, while using the absolute value

of the signbal gives rise to the L1-norm:

L1(x) ,

∫ ∞

−∞

|x(t)| dt (1.9)

which is the integral of the absolute value as described above in part 3.

5. While Parseval’s theorem exists between the time-domain and frequency-domain for relating

the L2-norms, in general no relation exists for other values of p.

6. Note that the Lp-norm generalises for discrete-time signals as follows:

Lp(x) ,

(
∞∑

−∞

|x[t]|p
) 1

p

, p ≥ 1 (1.10)

October 11, 2016 – 19 : 08
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x t( )

2

0 t t
0

Figure 1.9: Rectangular pulse of length τ .

where |x(t) | means the magnitude of the signal x(t). If x(t) is a real-signal, this is just

its amplitude. If x(t) is a complex-signal, then |x(t) |2 = x(t) x∗(t) where ∗ denotes

complex-conjugate. In this course, however, only real signals will be encountered.

A necessary condition for the energy to be finite is that the signal amplitude |x(t) | →
0 as |t| → ∞, otherwise the integral in Equation 1.11 will not exist. When the

amplitude of x(t) does not tend to zero as |t| → ∞, the signal energy is likely to be

infinite. A more meaningful measure of the signal size in such a case would be the

time average of the energy if it exists. This measure is called the power of the signal.

Power signals If the average power delivered by the signal over all time is both nonzero and finite,

the signal is classified as a power signal:

0 < P < ∞ where P = lim
W→∞

1

2W

∫ W

−W

|x(t)|2 dt (1.12)

where the variable W can be considered as half of the width of a window that covers

the signal and gets larger and larger.

Example 1.1. Name a type of signal which is not an example of an energy signal?

SOLUTION. A periodic signal has finite energy over one period, so consequently has infinite energy.

However, as a result it has a finite average power and is therefore a power signal, and not an energy

signal.

Example 1.2 (Rectangular Pulse). What is the energy of the rectangular pulse shown in Figure 1.9

as a function of τ , and for the particular case of τ = 4?

SOLUTION. The signal can be represented by

x(t) =

{

2 0 ≤ t < τ

0 otherwise
(1.13)

so that the square of the signal is also rectangular and given by

x2(t) =

{

4 0 ≤ t < τ

0 otherwise
(1.14)

Since an integral can be interpreted as the area under the curve (see Figure 1.10, the total energy is

thus:

E = 4τ (1.15)

�

When τ = 4, E = 16.
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x t
2
( )

4

0 t t
0

Figure 1.10: The total energy of the signal in Figure 1.9 can be found as the area under the curve

representing the square of the rectangular pulse, as shown here.

1.3.2.3 Units of Energy and Power

New slideIt is important to consider the physical units associated with energy and power, and therefore to

determine how the abstract definitions of E and P in Equation 1.11 and Equation 1.12 can be

converted into real energy and power.

Consider again power from an electrical perspective. When considering “direct current” (DC) signals,

power is given by

PDC =
V 2

R
=

Volts2

Ohms
= Watts (1.16)

where V is the signal voltage, and R is the resistance through which the power is dissipated. Consider

now the units of the abstract definition of power, P in Equation 1.12:

P =
1

time
× Volts2 × time = Volts2 = Watts × Ohms (1.17)

where the second unit of time comes from the integral term dt, and in which the integral may be

considered as a summation. Therefore, by comparing Equation 1.16 and Equation 1.12, the abstract

definition of power, P , can be converted to real power by Ohms for the case of electrical circuits.

Similarly, the units of energy in Equation 1.11 is given by

E = volts2 × time (1.18)

Therefore, to convert the abstract energy to Joules, it is again necessary to divide by Ohms by noting

that energy is power multiplied by time.

1.3.2.4 Power for Periodic Signals

The expression in Equation 1.12 can be simplified for periodic signals. Consider the periodic signal

in Figure 1.3. Note here that there might be confusion with using the same symbol T to mean both the

period of a periodic signal and the limit in Equation 1.12. To avoid ambiguity, rewrite Equation 1.12

with W instead of T where W denotes a window length over which the power is calculated, and

define:

PW =
1

2W

∫ W

−W

|x(t)|2 dt (1.19)

Thus, the average power over two periods is PT , and the average power over 2N periods is PNT . It

should becomes clear that

PT = PNT , ∀N ∈ Z (1.20)

October 11, 2016 – 19 : 08
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since the average in each period is the same. Consequently, power for a periodic signal with period

T may be defined as:

P =
1

T

∫ T

0

|x(t)|2 dt (1.21)

Note that the limits in Equation 1.21 may be over any period and thus can be replaced by (τ, τ + T )
for any value of τ .

1.4 Fourier Series and Fourier Transforms

New slide In this review of Fourier series and transforms, the topics covered are:

• Complex Fourier series

• Fourier transform

• The discrete-time Fourier transform

• Discrete Fourier transform

1.4.1 Complex Fourier series

New slide The complex Fourier series is a frequency analysis tool for continuous time periodic signals.

Examples of periodic signals encountered in practice include square waves, triangular waves,

sawtooth waves, pulse waves and, of course, sinusoids and complex exponentials, as well as half-wave

recitifed, full-wave rectified and p-phased rectified sinusoids. The basic mathematical representation

of periodic signals is the Fourier series, which is a linear weighted sum of harmonically related

sinusoids or complex exponentials.

A periodic continuous-time deterministic signal, xc(t), with fundamental period Tp can be expressed

as a linear combination of harmonically related complex exponentials:

xc(t) =
∞∑

k=−∞

X̌c(k) e
jkω0t, t ∈ R, (M:2.2.1)

where ω0 = 2πF0 = 2π
Tp

is the fundamental frequency. Here, ω0 is in radians per second, and the

fundamental frequency, in Hertz, is given by F0 =
1
Tp

. Moreover,

X̌c(k) =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt, k ∈ Z (M:2.2.2)

are termed the Fourier coefficients, or spectrum of xc(t). Note that although the region of integration

in Equation M:2.2.2 is from 0 to Tp, it can actually be over any period of the waveform, since the

signal, xc(t), is periodic with period Tp.

The kth frequency component corresponds to frequency ωk = kω0 = k 2π
Tp

. The set of exponential

functions

F(t) = {ejω0kt, k ∈ Z} (1.22)

can be thought of as the basic building blocks from which periodic signals of various types can be

constructed with the proper choice of fundamental frequency and Fourier coefficients.
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Figure 1.11: Function f(t) of Example 1.3

Example 1.3 (Complex Fourier Series). Find the complex form of the Fourier series expansion of

the periodic function f(t) defined by:

f(t) = cos
1

2
t (−π < t < π)

f(t+ 2π) = f(t)
(1.23)

SOLUTION. A graph of the function f(t) over the interval −π ≤ t ≤ 3π is shown in Figure 1.11. The

period Tp = 2π, so therefore the complex coefficients, denoted by Fn, are given by Equation M:2.2.2

as:

Fn =
1

Tp

∫ Tp

0

f(t) e−jnω0t dt, n ∈ Z (1.24)

=
1

2π

∫ π

−π

cos
t

2
e−jnt dt =

1

4π

∫ π

−π

(

ej
t
2 + e−j t

2

)

e−jnt dt (1.25)

=
1

4π

∫ π

−π

(

e−j(n− 1

2)t + e−j(n+ 1

2)t
)

dt (1.26)

which, after some trivial integration, gives:

Fn =
1

4π

[

−2e−j(2n−1) t
2

j(2n− 1)
−

2e−j(2n+1) t
2

j(2n+ 1)

]π

−π

(1.27)

=
j

2π

[(
e−jnπ ej

π
2

2n− 1
+

e−jnπ e−j π
2

2n+ 1

)

−

(
ejnπ e−j π

2

2n− 1
+

ejnπ ej
π
2

2n+ 1

)]

(1.28)

Noting that e±j π
2 = ±j, and e±jnπ = cosnπ = (−1)n, then it follows that:

Fn =
j

2π

(
j

2n− 1
−

j

2n+ 1
+

j

2n− 1
−

j

2n+ 1

)

(−1)n (1.29)

=
(−1)n

π

(
1

2n + 1
−

1

2n− 1

)

=
2(−1)n+1

(4n2 − 1)π
(1.30)

Note that in this case, the coefficients Fn are real. This is expected, since the function f(t) is an even

function of t. The complex Fourier series expansion for f(t) is therefore:

f(t) =
∞∑

n=−∞

2(−1)n+1

(4n2 − 1)π
ejnt (1.31)

�
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1.4.1.1 Common Fourier Series Expansions

In the following Fourier series expansions, ω0 =
2π
T

is the fundamental frequency.

Half-wave rectified cosine-wave:

xc(t) =
1

π
+

1

2
cosω0t+

2

π

∞∑

n=1

(−1)n+1 cos(2nω0t)

4n2 − 1

p-phase rectified cosine-wave (p ≥ 2):

xc(t) =
p

π
sin

π

p

[

1 + 2

∞∑

n=1

(−1)n+1 cos(pnω0t)

p2n2 − 1

]

Square wave:

xc(t) =
4

π

∞∑

n=1

sin(2n− 1)ω0t

2n− 1

Triangular wave:

xc(t) =
8

π2

∞∑

n=1

(−1)n+1 sin(2n− 1)ω0t

(2n− 1)2

Sawtooth wave:

xc(t) =
2

π

∞∑

n=1

(−1)n+1 sin nω0t

n

Pulse wave:

xc(t) =
τd

T

[

1 + 2
∞∑

n=1

sin(nπ τd
T
)

(nπ td
T
)

cos(nω0t)

]

1.4.1.2 Dirichlet Conditions

An important issue that arises in the representation of the continuous time periodic signal xc(t) by the

Fourier series representation,

x̄c(t) =

∞∑

k=−∞

X̌c(k) e
jkω0t, (P:4.1.5)
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is whether or not the series converges for every value of t ∈ R; i.e., is it true that

x̄c(t)
?
= xc(t), ∀t ∈ R (1.32)

The so-called Dirichlet conditions guarantee that the Fourier series converges everywhere except

at points of discontinuity. At these points, the Fourier series representation x̄c(t) converges to the

midpoint, or average value, of the discontinuity.

The Dirichlet conditions require that the signal xc(t):

1. has a finite number of discontinuities in any period;

2. contains a finite number of maxima and minima during any period;

3. is absolutely integrable in any period; that is:
∫

Tp

|xc(t)| dt < ∞ (P:4.1.6)

where the integral is over one period. Many periodic signals of practical interest easily satisfy

these conditions, and it is reasonable to assume that all practical periodic signals do. However, it

is important to beware that pathological cases can make certain proofs or algorithms collapse.

1.4.1.3 Parseval’s Theorem (for Fourier series)

New slideIt is sometimes relevant to consider the energy or power as a means for characterising a signal.

These concepts of power and energy intuitively follow from their use in other aspects of the physical

sciences. However, the concept of signals which exist for all time requires careful definitions for

when it has energy and when it has power. Consider the following signal classifications:

Energy Signals A signal xc(t) is said to be an energy signal if the total energy, E, dissipated by the

signal over all time is both nonzero and finite. Thus:

0 < E < ∞ where E =

∫ ∞

−∞

|xc(t)|
2
dt (1.33)

Power signals If the average power delivered by the signal over all time is both nonzero and finite,

the signal is classified as a power signal:

0 < P < ∞ where P = lim
T→∞

1

2T

∫ T

−T

|xc(t)|
2
dt (1.34)

A periodic signal has infinite energy, but finite average power. The average power of xc(t) is given by

Parseval’s theorem:

Px =
1

Tp

∫ Tp

0

|xc(t)|
2 dt =

∞∑

k=−∞

|X̌c(k)|
2 (M:2.2.3)

The term |X̌c(k)|2 represents the power in the kth frequency component, at frequency ωk = k 2π
Tp

.

Hence,

P̌x(k) = |X̌c(k)|
2, −∞ < k < ∞, k ∈ Z (1.35)

is called the power spectrum of xc(t). Consequently, it follows Px may also be written as:

Px =

∞∑

k=−∞

P̌x(k) (1.36)
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Figure 1.12: Continuous-time periodic train of rectangular pulses.

PROOF. Starting with

Px =
1

Tp

∫ Tp

0

xc(t) x
∗
c(t) dt (1.37)

then substituting for the Fourier series expansion of xc(t) gives:

Px =
1

Tp

∫ Tp

0

xc(t)

{
∞∑

k=−∞

X̌c(k) e
jkω0t

}∗

dt (1.38)

Noting that the conjugate of a summation (multiplication) is the summation (multiplication) of the

conjugates, then:

Px =
1

Tp

∫ Tp

0

xc(t)

∞∑

k=−∞

X̌∗
c (k) e

−jkω0t dt (1.39)

Rearranging the order of the integration and the summation gives:

Px =

∞∑

k=−∞

X̌∗
c (k)

{
1

Tp

∫ Tp

0

xc(t) e
−jkω0t(t) dt

}

︸ ︷︷ ︸

Xc(k)

(1.40)

�

which is the desired result and completes the proof.

Later in this course, the notion of a power spectrum will be extended to stochastic signals.

Example 1.4 ( [Proakis:1996, Example 4.1.1, Page 237]). Determine the Fourier series and the

power density spectrum of a rectangular pulse train that is defined over one period as follows:

xc(t) =







0 if −Tp

2
≤ t < − τ

2

A if − τ
2
≤ t < τ

2

0 if τ
2
≤ t <

Tp

2

(1.41)

where τ < Tp.

SOLUTION. The signal is periodic with fundamental period Tp and, clearly, satisfies the Dirichlet

conditions. Consequently, this signal can be represented by the Fourier series. Hence, it follows that

X̌c(k) =
1

Tp

∫ Tp

2

−
Tp

2

xc(t) e
−jkω0t dt =

A

Tp

∫ τ
2

− τ
2

e−jkω0t dt (1.42)
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Two different integrals need to be performed depending on whether k = 0 or not. Considering the

case when k = 0, then the average value of the signal is obtained and given by:

X̌c(0) =
1

Tp

∫ τ
2

− τ
2

xc(t) dt =
1

Tp

∫ τ
2

− τ
2

Adt =
Aτ

Tp

(1.43)

For k 6= 0, then

X̌c(k) =
A

Tp

∫ τ
2

− τ
2

e−jkω0t dt =
A

Tp

[
e−jkω0t

−jkω0

] τ
2

− τ
2

(1.44)

=
A

jkω0Tp

(
ejkω0

τ
2 − e−jkω0

τ
2

)
=

Aτ

Tp

sin τω0k
2

kω0
τ
2

(1.45)

=
Aτ

Tp

sinc
τω0k

2
where sincx ,

sin x

x
(1.46)

Hence, the power density spectrum for the rectangular pulse is:

∣
∣X̌c(k)

∣
∣
2
=

(
Aτ

Tp

)2

sinc2
τω0k

2
, k ∈ Z (P:4.1.19)

�

where it is noted that sinc (0) = 1.

1.4.2 Fourier transform

New slideAn aperiodic continuous-time deterministic signal, xc(t), can be expressed in the frequency domain

using the Fourier transform pairs:

xc(t) =
1

2π

∫ ∞

−∞

Xc(ω) e
jωt dω (M:2.2.5)

and

Xc(ω) =

∫ ∞

−∞

xc(t) e
−jωt dt (M:2.2.4)

Xc(ω) is called the spectrum of xc(t). Again, note that [Manolakis:2000] uses the defintion F = ω
2π

.

Continuous-time aperiodic signals have continuous aperiodic spectra.

There are a few mathematical requirements that xc(t) must satisfy for Xc(ω) to exist; these can

be summarised by the phrase that the signal must be well-behaved. More specifically, the set of

conditions that guarantee the existence of the Fourier transform are the Dirichlet conditions which are

the same as for Fourier series.

Example 1.5 (Fourier Transforms). Find the Fourier transform of the one-sided exponential

function

f(t) = H(t) e−at where a > 0 (1.47)

and where H(t) is the Heaviside unit step function show in Figure 1.13 and given by:

H(t) =

{

1 if t ≥ 0

0 otherwise
(1.48)
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Figure 1.13: The Heaviside step function H(t).

Figure 1.14: Exponential decaying function, f(t) = H(t) e−at for a > 0.

SOLUTION. Since f(t) → 0 as t → ∞, then the signal energy is bounded, as indicated by plotting

the graph of f(t) as shown in Figure 1.14.

A Fourier transform therefore exists, and is given by:

Xc(ω) =

∫ ∞

−∞

H(t) e−at e−jωt dt (1.49)

=

∫ ∞

0

e−(a+jω)t dt =

[

−
e−(a+jω)t

a+ jω

]∞

0

(1.50)

giving

Xc(ω) =
1

a + jω
, for −∞ < ω < ∞ (1.51)

�

1.4.2.1 Parseval’s theorem (for Fourier transforms)

New slide The energy of xc(t) is, as for Fourier series, computed in either the time or frequency domain by

Parseval’s theorem:

Ex =

∫ ∞

−∞

|xc(t)|
2 dt =

1

2π

∫ ∞

−∞

|Xc(ω)|
2 dω (M:2.2.7)

The function |Xc(ω)|2 ≥ 0 shows the distribution of energy of xc(t) as a function of frequency, ω,

and is called the energy spectrum of xc(t).

PROOF. The derivation of Parseval’s theorem for Fourier transforms follows a similar line to the

derivation of Parseval’s theorem for Fourier series; it proceeds as follows:

Ex =

∫ ∞

−∞

xc(t) x
⋆
c(t) dt =

∫ ∞

−∞

xc(t)
1

2π

∫ ∞

−∞

X⋆
c (ω) e

−jωt dω dt

=
1

2π

∫ ∞

−∞

X⋆
c (ω)

∫ ∞

−∞

xc(t) e
−jωt dt dω =

1

2π

∫ ∞

−∞

X⋆
c (ω)Xc(ω) dω

(1.52)

�
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1.4. Fourier Series and transforms 19

1.4.3 The discrete-time Fourier transform

New slideTurning to discrete-time deterministic signals, the natural starting point is to consider aperiodic signals

that exist for all discrete-time; i.e. {x[n]}∞−∞. It is interesting to note that there are fewer convergence

issues with transforms for discrete-time signals than there are in the continuous-time case.

An aperiodic discrete-time deterministic signal, {x[n]}∞−∞, can be synthesised from its spectrum

using the inverse-discrete-time Fourier transform, given by:

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω, n ∈ Z (M:2.2.13)

and the discrete-time Fourier transform (DTFT):

X
(
ejωT

)
=
∑

all n

x[n] e−jωn, ω ∈ R (M:2.2.12)

X
(
ejωT

)
is the spectrum of x[n].

Since X
(
ejωT

)
= X

(
ej(ω+2πk)

)
, discrete-time aperiodic signals have continuous periodic spectra

with fundamental period 2π. However, this property is just a consequence of the fact that the

frequency range of any discrete-time signal is limited to [−π, π) or [0, 2π); any frequency outside

this interval is equivalent to some frequency within this interval.

There are two basic differences between the Fourier transform of a discrete-time finite-energy

aperiodic signal, as represented by the discrete-time Fourier transform, and the Fourier transform

of a finite-energy continuous-time aperiodic signal:

1. For continuous-time signals, the Fourier transform, and hence the spectrum of the signal, have

a frequency range of (−∞,∞). In contrast, the frequency range for a discrete-time signal is

unique over the frequency range [−π, π) or, equivalently, [0, 2π).

2. Since X
(
ejωT

)
in the DTFT is a periodic function of frequency, it has a Fourier series

expansion, provided that the conditions for the existence of the Fourier series are satisfied. In

fact, from the fact that X
(
ejωT

)
is given by the summation of exponentially weighted versions

of x[n] is is clear that the DTFT already has the form of a Fourier series. This is not true for the

Fourier transform.

In order for X
(
ejωT

)
to exist, x[n] must be absolutely summable:

∑

all n

|x[n] | < ∞ (M:2.2.11)

Finally, as for the Fourier series, and the Fourier transform, discrete-time aperiodic signals have

energy which satisfies Parseval’s theorem:

Ex =

∞∑

n=−∞

|x[n] |2 =
1

2π

∫ π

−π

|X
(
ejωT

)
|2 dω (P:4.2.41)

1.4.4 Discrete Fourier transform

New slideAny finite-length or periodic discrete-time deterministic signal, {x[n]}N−1
0 , can be written by the

Fourier series, or inverse-DFT (IDFT):

x[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
nk, n ∈ N (M:2.2.8)
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where N = {0, 1, . . . , N − 1} ⊂ Z
+, and where the DFT:

Xk =
N−1∑

n=0

x[n] e−j 2π
N

nk, k ∈ N (M:2.2.9)

are the corresponding Fourier coefficients. The sequence Xk, k ∈ R is the spectrum of x[n]. Xk is

discrete and periodic with the same period as x[n].

Note that a finite-length discrete-time signal of length N has the same Fourier transform, through

the DFT, as an infinite-length discrete-time periodic signal of period N . Hence, these equivalent

perspectives will be considered synonymous.

PROOF (DERIVATION OF DISCRETE FOURIER TRANSFORM). If the discrete-time signal x[n] is

periodic over N samples, then it can be written over one period in continuous time as:

xc(t) = Tp

∑

n∈N

x[n] δ(t− nTs) , 0 ≤ t < Tp (1.53)

where N = {0, . . . , N − 1}, Ts is the sampling period, and Tp = N Ts is the period of the process.

Substituting into the expression for the Fourier series, using the sifting property and noting that

ω0 =
2π
Tp

= 2π
NTs

, gives:

Xk =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt (1.54)

=
1

Tp

∫ Tp

0

{

Tp

∑

n∈N

x[n] δ(t− nTs)

}

e−jkω0t dt (1.55)

=
∑

n∈N

x[n]

∫ Tp

0

δ(t− nTs) e
−jkω0t dt (1.56)

=
∑

n∈N

x[n] e−j 2π
N

nk (1.57)

�

The IDFT can be obtained using the appropriate identities to ensure a unique inverse.

1.4.4.1 Parseval’s Theorem for Finite Length Discrete-Time Signals

The average power of a finite length or periodic discrete-time signal with period N is given by

Px =
N−1∑

n=0

|x[n] |2 (P:4.2.10)

Through the same manipulations as for Parseval’s theorems in the cases presented above, which are

left as an exercise for the reader, it is straightforward to show that:

Px =

N−1∑

n=0

|x[n] |2 =
1

N

N−1∑

k=0

|Xk|
2 (P:4.2.11)
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1.4.4.2 The DFT as a Linear Transformation

New slide The formulas for the DFT and IDFT may be expressed as:

Xk =

N−1∑

n=0

x[n] W nk
N , k ∈ N (P:5.1.20)

x[n] =
1

N

N−1∑

k=0

Xk W
−nk
N , n ∈ N (P:5.1.21)

where, by definition:

WN = e−j 2π
N (P:5.1.22)

which is the N th root of unity. Note here that, if WN has been pre-calculated, then the computation

of each point of the DFT can be accomplished by N complex multiplications and N − 1 complex

additions. Hence, the N-point DFT can be computed in a total of N2 complex multiplications and

N(N − 1) complex additions.

It is instructive to view the DFT and IDFT as linear transformations on the sequences {x[n]}N−1
0 and

{Xk}
N−1
0 . Defining the following vectors and matrices:

xN =






x[0]
...

x[N − 1]




 , XN =






X0
...

XN−1




 (1.58)

WN =










1 1 1 · · · 1
1 WN W 2

N · · · WN−1
N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

... ·
...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)(N−1)
N










(1.59)

Observe that Xk can be obtained by the inner-product of the (k − 1) th-order row with the column

xN :

Xk =
[

1 W k
N W 2k

N · · · W
(N−1)k
N

]






x[0]
...

x[N − 1]




 (1.60)

Then the N-point DFT may be expressed in vector-matrix form as:

XN = WNxN (P:5.1.24)

where WN is the matrix of the linear transformation. Observe that WN is a symmetric matrix.

Assuming that the inverse of WN exists, then Equation P:5.1.24 can be inverted by pre-multiplying

both sides by W−1
N , to obtain:

xN = W−1
N XN (P:5.1.25)

This is the expression for the IDFT, which can also be expressed in matrix form as:

xN =
1

N
W∗

NXN (P:5.1.26)

where W∗
N denotes the complex conjugate of the matrix WN . Hence, it follows that:

W−1
N =

1

N
W∗

N or WNW
∗
N = NIN (P:5.1.27)

where IN is the N ×N identity matrix. Hence, WN is an orthogonal or unity matrix.
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1.4.4.3 Properties of the discrete Fourier transforms

New slideThere are some important basic properties of the DFT that should be noted. The notation used to

denote the N-point DFT pair x[n] and Xk is

x[n]
DFT
⇋ Xk (1.61)

Periodicity If x[n]
DFT
⇋ Xk, then:

x[n+N ] = x[n] for all n (P:5.2.4)

Xk+N = Xk for all k (P:5.2.5)

These periodicities in x[n] and Xk follow immediately from the definitions of the

DFT and IDFT.

Linearity If x[n]
DFT
⇋ Xk and y[n]

DFT
⇋ Yk, then

α1x[n] + α2y[n]
DFT
⇋ α1Xk + α2Yk (P:5.2.6)

for any real or complex-valued constants α1 and α2.

Symmetry of real-valued sequences If the sequence x[n]
DFT
⇋ Xk is real, then

XN−k = X∗
k = X−k (P:5.2.24)

Complex-conjugate properties If x[n]
DFT
⇋ Xk then

x∗[n]
DFT
⇋ X∗

N−k (P:5.2.45)

PROOF. The DFT of the sequence x[n] is given by:

Xk =

N−1∑

n=0

x[n] e−j 2π
N

nk, k ∈ N (M:2.2.9)

and the DFT of y[n] = x∗[n] is given by:

Yk =
N−1∑

n=0

x∗[n] e−j 2π
N

nk (1.62)

Taking complex conjugates, and noting that ej
2π
N

mk = e−j 2π
N

m(N−k), then:

Y ∗
k =

N−1∑

n=0

x[n] e−j 2π
N

m(N−k) = XN−k (1.63)

�

Hence, giving x∗[n]
DFT
⇋ X∗

N−k as required.

Time reversal of a sequence If x[n]
DFT
⇋ Xk then

x[N − n]
DFT
⇋ XN−k (P:5.2.42)

Hence, reversing the N-point sequence in time is equivalent to reversing the DFT

values in frequency.
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PROOF. From the definition of the DFT, if y[n] = x[N − n], then:

Yk =

N−1∑

n=0

x[N − n] e−j 2π
N

nk =

N∑

m=1

x[m] e−j 2π
N

(N−m)k (1.64)

where the second summation comes from changing the index from n to m = N − n.

Noting then, that x[N ] = x[0],then this may be written as

Yk =

N−1∑

m=0

x[m] e−j 2π
N

(N−m)k =

N−1∑

m=0

x[m] ej
2π
N

mk (1.65)

=
N−1∑

m=0

x[m] e−j 2π
N

m(N−k) = XN−k (1.66)

�

as required.

Circular Convolution As with many linear transforms, convolution in the time-domain becomes

multiplication in the frequency domain, and vice-versa. Since the signals are periodic,

it is necessary to introduce the idea of circular convolution. Details of this are

discussed in depth in [Proakis:1996, Section 5.2.2, Page 415] and are currently

ommitted here. However, assuming that convolution is interpreted in the circular

sense (i.e. taking advantage of the periodicity of the time-domain signals), then if

x[n]
DFT
⇋ Xk and y[n]

DFT
⇋ Yk, then:

x[n] ∗ y[n]
DFT
⇋ Xk Yk (P:5.2.41)

1.5 Review of discrete-time systems

New slideThe following aspects of discrete-time systems are reviewed:

• Basic discrete-time signals

• The z-transform

• Review of linear time-invariant systems

• Rational transfer functions

1.5.1 Basic discrete-time signals

New slideIn general, the notation x[n] is used to denote a sequence of numbers that represent a discrete-time

signal. The nth sample refers to the value of this sequence for a specific value of n. In a strict

sense, this terminology is only correct if the discrete-time signal has been obtained by sampling a

continuous-time signal xc(t). In the case of periodic sampling with sampling period T , then x[n] =
xc(nT ) , n ∈ Z; that is, x[n] is the nth sample of xc(t).

There are some basic discrete-time signals that will be used repeatedly throughout the course, and

these are shown in Figure 1.15:
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n0

d[ ]n

(a) The unit sample

or unit impulse sequence

δ[n].

n0

u[ ]n

(b) The unit step sequence

u[n].

n0

x[ ]n

(c) The exponential decay sequence.

Figure 1.15: Basic discrete-time signals.

1. The unit sample or unit impulse sequence δ[n] is defined as:

δ[n] =

{

1 n = 0

0 n 6= 0
(M:2.1.1)

2. The unit step sequence, u[n] is defined as:

u[n] =

{

1 n ≥ 0

0 n < 0
(M:2.1.2)

3. The exponential sequence is of the form

x[n] = an, −∞ < n < ∞, n ∈ Z (M:2.1.3)

If a is a complex number, such that a = r ejω0 for r > 0, ω0 6= 0, π, then x[n] is complex

valued and given by:

x[n] = rn ejω0n = xR[n] + jxI [n] (M:2.1.4)

= rn cosω0n + jrn sinω0n (1.67)

where xR[n] and xI [n] are real sequences given by:

xR[n] = rn cosω0n and xI [n] = rn sinω0n (M:2.1.5)

4. The critical decay sequence is of the form

x[n] = a n rn u[n] , n ∈ Z (1.68)

which is discussed further in Sidebar 3.

1.5.2 The z-transform

New slide The z-transform of a sequence is a very powerful tool for the analysis of discrete linear and

time-invariant systems; it plays the same role in the analysis of discrete-time signals and linear

time-invariant (LTI) systems as the Laplace transform does in the analysis of continuous-time signals

and LTI systems. For example, as will be seen, in the z-domain, also known as the complex z-plane,
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1.5. Discrete-time systems 25

Sidebar 3 The signal n rn

The discrete-time signal

x[n] = a n rn (1.69)

is equivalent to the continuous-time signal x[t] = t e−αt, and both are important, as they represent the

response of a critically damped system, as will be seen later. Note in both cases that:

lim
n→∞

n rn → 0 (1.70)

The shape of x[n] is shown below for r = 0.9, and note the relationship derived in Sidebar 4 that:

n rn
z+

⇋
r

(1− r)2
if |r| < 1 (1.71)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

n

x[
n]

The simple signal nrn
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the convolution of two time-domain signals is equivalent to multiplication of their corresponding

z-transforms. This property greatly simplifies the analysis of the response of an LTI system to various

inputs.

Although the Fourier transform also satisfies the property that convolution in the time domain

becomes multiplication in the frequency domain, it is not always possible to calculate the Fourier

transform of a signal, x[n], even for some elementary signals that are important for the analysis of

systems. For example, if x[n] is a power signal (having finite power), rather than an energy signal,

the discrete-time Fourier transform (DTFT) does not exist.

One such signal, of practical importance, is the unit step function, u[t], as can be illustrated by

attempting to evaluate the DTFT:

U
(
ejωT

)
=

∞∑

n=−∞

u[n] e−jωn =

∞∑

n=0

e−jωn (1.72)

This is a geometric series, of the form
∞∑

n=0

rn where r = e−jω; however, this series diverges since

|r| = 1. Therefore, the DTFT does not exist; this could also have been deduced from the fact that

u[n] is not absolutely summable, which a necessary condition for a Fourier transform to exist:

∑

all n

|u[n]| =
∞∑

n=0

1 6< ∞ (1.73)

The solution is to multiply the signal by a convergence factor, which leads to the z-transform. Details

of the derivation can be found in some text books.

1.5.2.1 Bilateral z-transform

New slide
The bilateral z-transform is defined by the following pairs of equations:

X (z) , Z[x[n]] =

∞∑

n=−∞

x[n] z−n (M:2.2.29)

x[n] =
1

2πj

∮

C

X (z) zn−1 dz (M:2.2.30)

where z is a complex variable. This is usually denoted as:

x[n]
z
⇋ X (z) or X (z) = Z[x[n]] (1.74)

The set of values of z for which the power series in the (direct) z-transform converges is called the

region of convergence (ROC) of X (z). A sufficient condition for convergence is:

∞∑

n=−∞

|x[n] ||z−n| < ∞ (M:2.2.31)

The unilateral or one-sided z-transform, which is more commonly encountered in undergraduate

Engineering courses, is discussed below in Section 1.5.2.3. For the moment, it suffices to mention that

the difference between them usually comes down to the initial conditions, and therefore a discussion

of the bilateral transform is not too restrictive at this point.
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Sidebar 4 The Ubiquitous Geometric Progression

The geometric progresson occurs frequently in discrete-time analysis due to the existance of the

summation operator and the commonality of exponential decay functions. It is essentially the

discrete-time equivalent of integrating an exponential function. The geometric progression is given

by

N∑

n=0

a rn = a
1− rN+1

1− r
(1.75)

∞∑

n=0

a rn = a
1

1− r
if |r| < 1 (1.76)

More interesting are variants of the geometric progression that can be obtained by simple

manipulations, such as differentiating both sides of Equation 1.76 with respect to (w. r. t.) r:

d

dr

[
∞∑

n=0

a rn

]

=
d

dr

[

a
1

1− r

]

(1.77)

∞∑

n=0

a n rn−1 = a
1

(1− r)2
(1.78)

or, multiplying both sides by r, gives:

∞∑

n=0

a n rn = a
r

(1− r)2
if |r| < 1 (1.79)

which is also a useful identity. The signal x[n] = n rn is an important one and discussed further in

Sidebar 3. Differentiating repeated times gives a general expresion for
∑

np rn which can often be

useful.

By evaluating the z-transform on the unit circle of the z-plane, such that z = ejω, then:

X (z)|z=ejω = X
(
ejωT

)
=

∞∑

n=−∞

x[n] e−jωn (M:2.2.32)

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω (M:2.2.33)

which are the DTFT and inverse-DTFT relating the signals x[n] and X
(
ejωT

)
. This relation holds

only if the unit circle is inside the ROC.

Example 1.6 ( [Proakis:1996, Example 3.1.3, Page 154]). Determine the z-transform of the signal:

x[n] = αn u[n] ≡

{

αn n ≥ 0

0 n < 0
(1.80)

SOLUTION. From the definition of the z-transform, it follows that:

X (z) =

∞∑

k=0

αnz−n =

∞∑

n=0

(
α z−1

)n
(1.81)

October 11, 2016 – 19 : 08



A
u
th

o
r:

 J
. 
R

. 
H

o
p
g
o
o
d
; 
C

o
p
y
ri

g
h
t:

 U
n
iv

er
si

ty
 o

f 
E

d
in

b
u
rg

h

O
ct

o
b
er

 1
1
, 
2
0
1
6
--

 1
9
:0

8

Author: J. R. Hopgood; Copyright: University of Edinburgh  --  

28 Linear Systems Review

Figure 1.16: The region of convergence (ROC) for the transfer function in Equation P:3.1.7.

n0

x a[ ]n =
| |n

Figure 1.17: The sequence x[n] = a|n|.

The summation on the right is a geometric progression, and converges to 1
1−α z−1 if, and only if, (iff)

|αz−1| < 1 or, equivalently, |z| > |α|. Further details on the geometric progression are given in

Sidebar 4. Thus, this gives the z-transform pair:

x[n] = αn u[n]
z
⇋ X (z) =

1

1− αz−1
ROC: |z| > |α| (P:3.1.7)

Note that, in general, α need not be real. The ROC is the exterior of a circle having radius |α|. The

ROC is shown in Figure 1.16. The z-transform in Equation P:3.1.7 may be written as:

X (z) =
z

z − α
ROC: |z| > |α| (1.82)

�

and therefore it has a pole at z = α and a zero at z = 0. The position of the pole is outside the ROC,

which is as expected since the z-transform does not converge at a pole; it tends to infinity instead.

However, simply because there is a zero at the origin does not mean the z-transform converges at that

point – it doesn’t, since it is outside of the ROC. However, the concept of the zero is still important

and is thus still drawn on the pole-zero diagram.

Example 1.7 (Two-sided exponential (Laplacian exponential)). What is the bilateral z-transform

of the sequence x[n] = a|n| for all n and some real constant a, where |a| < 1?

SOLUTION. The bilateral z-transform of a sequence x[n] = a|n|, shown in Figure 1.17, is given by:

X (z) =

∞∑

n=−∞

x[n] z−n =

∞∑

n=−∞

a|n| z−n (1.83)

=

−1∑

n=−∞

a−n z−n +

∞∑

n=0

an z−n (1.84)
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Im( )z

Re( )z

1

a

ROC

unit
circle

pole at z�=�a

and z�=�1/a

outside of ROC

zero
at origin

1/a

Figure 1.18: The region of convergence (ROC) for the transfer function in Equation 1.88.

Setting m = −n in the first summation, noting that when n = −∞ then m = ∞, and when n = 0
then m = 0, gives:

X (z) =

∞∑

n=1

(az)n +

∞∑

n=0

(a

z

)n

(1.85)

=
∞∑

n=0

(az)n − 1 +
∞∑

n=0

(a

z

)n

(1.86)

=
1

1− az
− 1 +

1

1− a
z

(1.87)

where the expression for an infinite geometric progression has been used. Note, however, that each

summation has different convergence constraints. Thus, note that the first summation only exists for

|az| < 1, while the second summation only exists for
∣
∣a
z

∣
∣ < 1. This means that the ROC for this

transform is the ring |a| < z < 1
|a| . The ROC is thus shown in Figure 1.18.

Combining the various terms and a slight rearrangement gives the expression

X (z) =
1− a2

(1− az) (1− az−1)
(1.88)

�

which has a zero at z = 0 and poles at z = a and z = 1
a
.

1.5.2.2 Properties of the z-transform

The power of the z-transform is a consequence of some very important properties that the transform

possesses. Some of these properties are listed below, as a re-cap. Note that the proof of many of these

properties follows immediately from the definition of the property itself and the z-transform, and is

left as an exercise for the reader. Alternatively, cheat and look in, for example, [Proakis:1996].

Linearity If x1[n]
z
⇋ X1 (z) and x2[n]

z
⇋ X2 (z), then by linearity

x[n] = α1x1[n] + α2x2[n]
z
⇋ X (z) = α1X1 (z) + α2X2 (z) (P:3.2.1)

for any constants α1 and α2. Obviously, this property can be generalised for an

arbitrary number of signals, and therefore if xm[n]
z
⇋ Xm (z) for m = {1, . . . ,M}

x[n] =
M∑

m=1

αmxm[n]
z
⇋ X (z) =

M∑

m=1

αmXm (z) (1.89)

for any constants {αm}M1 .
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Time shifting If x[n]
z
⇋ X (z) then:

x[n− k]
z
⇋ z−kX (z) (1.90)

The ROC of z−kX (z) is the same as that of X (z) except for z = 0 if k > 0 and

z = ∞ if k < 0.

Scaling in the z-domain If x[n]
z
⇋ X (z) with ROC r1 < |z| < r2, then

an x[n]
z
⇋ X(a−1 z) ROC: |a|r1 < |z| < |a|r2 (P:3.2.9)

for any constant a.

Time reversal If x[n]
z
⇋ X (z) with ROC r1 < |z| < r2, then

x[−n]
z
⇋ X(z−1) ROC:

1

r1
< |z| <

1

r2
(P:3.2.12)

Differentiation in the z-domain If x[n]
z
⇋ X (z) then

nx[n]
z
⇋ −z

dX (z)

dz
(P:3.2.14)

PROOF. Since

X (z) =

∞∑

n=−∞

x[n] z−n (1.91)

then differentiating both sides gives:

dX (z)

dz
= −z−1

∞∑

n=−∞

[nx[n]] z−n = −z−1Z[nx[n]] (1.92)

�

Both transforms have the same ROC.

Convolution If x1[n]
z
⇋ X1(z) and x2[n]

z
⇋ X2(z), then

x[n] = x1[n] ∗ x2[n]
z
⇋ X (z) = X1(z)X2(z) (3.2.17)

The ROC of X (z) is, at least, the intersection of that for X1(z) and X2(z).

PROOF. The convolution of x1[n] and x2[n] is defined as:

x[n] =

∞∑

k=−∞

x1[k] x2[n− k] (1.93)

The z-transform of x[n] is:

X (z) =

∞∑

n=−∞

x[n] z−n =

∞∑

n=−∞

[
∞∑

k=−∞

x1[k] x2[n− k]

]

z−n (1.94)

Upon changing the order of the summations, then:

X (z) =
∞∑

k=−∞

x1[k]

[
∞∑

n=−∞

x2[n− k] z−n

]

︸ ︷︷ ︸

X2(z) z−k

= X2(z)
∞∑

k=−∞

x1[k] z
−k

︸ ︷︷ ︸

X1(z)

(1.95)

�

giving the desired result.
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The Initial Value Theorem If x[n] = 0, n < 0 is a causal sequence, then

x[0] = lim
z→∞

X (z) (P:3.2.23)

PROOF. Since x[n] is causal, then:

X (z) = x[0] + x[1] z−1 + x[2] z−2 + · · · (1.96)

�

Hence, as z → ∞, z−n → 0 since n > 0, and thus the desired result is obtained.

1.5.2.3 The Unilateral z-transform

The two-sided z-transform requires that the corresponding signals be specified for the entire time

range n ∈ Z. This requirement prevents its used for systems that are described by difference equations

with nonzero initial conditions. Since the input is applied at a finite time, say n0, both input and

output signals are specified for n ≥ n0, but are not necessarily zero for n < 0. Thus the two sided

z-transform cannot be used

The one-sided unilateral z-transform of a signal x[n] is defined by:

X+(z) ≡
∞∑

n=0

x[n] z−n (P:3.5.1)

This is usually denoted as:

x[n]
z+

⇋ X+(z) or X+(z) = Z+[x[n]] (1.97)

The unilateral z-transform differs from the bilateral transform in the lower limit of the summation,

which is always zero, whether or not the signal x[n] is zero for n < 0 (i.e., causal). Therefore, the

unilateral z-transform contains no information about the signal x[n] for negative values of time, and is

therefore unique only for causal signals. The unilateral and bilateral z-transforms are, consequentially,

identical for the signal x[n] u[n] where u[n] is the step function. Since x[n] u[n] is causal, the ROC of

its transform, and hence the ROC of X+(z), is always the exterior of a circle. Thus, when discussing

the unilateral z-transform, it is not necessary to refer to their ROC - which perhaps explains why this

is the more commonly discussed transform in undergraduate courses.

Almost all the properties for the bilateral z-transform carry over to the unilateral transform with the

exception of the shifting property.

Shifting property: Time Delay If x[n]
z+

⇋ X+(z) then:

x[n− k]
z+

⇋ z−kX (z) +

−1∑

n=−k

x[n] z−(n+k)

︸ ︷︷ ︸

initial conditions

, k > 0 (1.98)

PROOF. Since

X+(z) ≡
∞∑

n=0

x[n] z−n (P:3.5.1)

October 11, 2016 – 19 : 08



A
u
th

o
r:

 J
. 
R

. 
H

o
p
g
o
o
d
; 
C

o
p
y
ri

g
h
t:

 U
n
iv

er
si

ty
 o

f 
E

d
in

b
u
rg

h

O
ct

o
b
er

 1
1
, 
2
0
1
6
--

 1
9
:0

8

Author: J. R. Hopgood; Copyright: University of Edinburgh  --  

32 Linear Systems Review

then it follows that

Z+[x[n− k]] =

∞∑

n=0

x[n− k] z−n =

∞∑

m=−k

x[m] z−(m+k) (1.99)

by the change of index m = n− k,

= z−k

−1∑

m=−k

x[m] z−m + z−k

∞∑

m=0

x[m] z−m

︸ ︷︷ ︸

X+(z)

(1.100)

�

This is the desired result.

Shifting property: Time Advance If x[n]
z+

⇋ X+(z) then:

x[n+ k]
z+

⇋ zkX (z)−
k−1∑

n=0

x[n] zk−n, k > 0 (1.101)

PROOF. From the definition of the unilateral transform, it follows

Z+[x[n + k]] =

∞∑

n=0

x[n + k] z−n =

∞∑

m=k

x[m] z−(m−k) (1.102)

by the change of index m = n+ k. Thus,

= zk
∞∑

0

x[m] z−m

︸ ︷︷ ︸

X+(z)

−zk
k−1∑

m=1

x[m] z−m (1.103)

�

This is the desired result.

Final Value Theorem If x[n]
z+

⇋ X+(z) then:

lim
n→∞

x[n] = lim
z→1

(z − 1)X+(z) (P:3.5.6)

The limit on the right hand side (RHS) exists if the ROC of (z − 1)X+(z) includes

the unit circle.

Further information can be found in books on discrete-time systems, for example [Proakis:1996,

Section 3.5, Page 197].

1.5.3 Review of linear time-invariant systems

New slide • Systems which are LTI can be elegantly analysed in both the time and frequency domain:

convolution in time, multiplication in frequency.

• For signals and sequences, it is common to write {y[n]}∞n=−∞, or even {y[n]}n∈Z rather than

simply y[n]: the latter is sufficient for these notes.
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• Output, y[n], of a LTI system is the convolution of the input, x[n], and the impulse response

of the system, h[n]:

y[n] = x[n] ∗ h[n] ,
∑

k∈Z

x[k] h[n− k] (M:2.3.2)

• By making the substitution k̂ = n− k, it follows:

y[n] =
∑

k∈Z

h[k] x[n− k] = h[n] ∗ x[n] (M:2.3.3)

1.5.3.1 Matrix-vector formulation for convolution

New slideIf x[n] and h[n] are sequences of finite duration, the convolution operation can be written in

matrix-vector form. Let x[n] , 0 ≤ n ≤ N − 1 and h[n] , 0 ≤ n ≤ M − 1 be finite-duration

sequences, then y[n] , 0 ≤ n ≤ L− 1, where L = N +M − 1, can be written as:



















y[0]
y[1]

...

y[M − 1]
...

y[N − 1]
...

y[L− 2]
y[L− 1]



















=




















x[0] 0 · · · 0

x[1] x[0]
. . .

...
...

. . . 0
x[M − 1] · · · · · · x[0]

...
. . .

. . .
...

x[N − 1] · · · · · · x[N −M ]

0
. . .

...
...

. . . x[N − 1] x[N − 2]
0 · · · 0 x[N − 1]



























h[0]
h[1]

...

h[M − 1]








(M:2.3.4)

or

y = Xh (M:2.3.5)

• Here, y ∈ R
L, X ∈ R

L×M , and h ∈ R
M .

• The matrix X is termed an input data matrix, and has the property that it is toeplitz. 1

• The observation or output vector y can also be written in a similar way as:

y = Hx (M:2.3.6)

in which H is also toeplitz.

• A system is causal if the present output sample depends only on past and/or present input

samples.

• Assume system is asymptotically stable.

1.5.3.2 Transform-domain analysis of LTI systems

New slideTime-domain convolution:

y[n] =
∑

k∈Z

x[k] h[n− k] (M:2.3.2)

1 A Toeplitz matrix is one in which the elements along each diagonal, parallel to the main diagonal each descending

from left to right, are constant. Note that the anti-diagonals are not necessarily equal.
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or

y[n] =
∑

k∈Z

h[k] x[n− k] (M:2.3.3)

Taking z-transforms gives:

Y (z) = H (z) X (z) (M:2.3.8)

where X (z), Y (z) and H (z) are the z-transforms of the input, output, and impulse response

sequences respectively. H (z) = Z[h[n]] is the system function or transfer function.

1.5.3.3 Frequency response of LTI systems

New slide The frequency response of the system is found by evaluating the z-transform on the unit circle, so

z = ejω:

Y
(
ejωT

)
= H

(
ejωT

)
X
(
ejωT

)
(M:2.3.9)

• |H(ejω)| is the magnitude response of the system, and argH(ejω) is the phase response.

• The group delay of the system is a measure of the average delay of the system as a function of

frequency:

τ(ejω) = −
d

dω
argH(ejω) (M:2.3.11)

1.5.3.4 Frequency response to Periodic Inputs

New slide Although the convolution summation formula can be used to compute the response of a stable system

to any input, the frequency-domain input-output relationship for a LTI cannot be used with periodic

inputs, since periodic signals do not strictly possess a z-transform. However, it is possible to develop

an expression for the frequency response of LTI from first principles. Let x[n] be a periodic signal

with fundamental period N . This signal can be expanded using an IDFT as:

x[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
kn, n ∈ {0, . . . , N − 1} (M:2.3.19)

where Xk are the Fourier components.

Hence, it follows that on substitution into the convolution equation:

y[n] =

∞∑

m=−∞

h[m] x[n−m] =
1

N

∞∑

m=−∞

h[m]

N−1∑

k=0

Xk e
j 2π

N
k(n−m) (M:2.3.20)

which, by interchanging the order of summation (noting that the limits are over a rectangular region

of summation), gives;

y[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
kn

∞∑

m=−∞

h[m] e−j 2π
N

km

︸ ︷︷ ︸

H(ej
2π
N

k)

(1.104)

where H(ej
2π
N

k) are samples of H(ejω). Hence,

y[n] =
1

N

N−1∑

k=0

{

H(ej
2π
N

k)Xk

}

ej
2π
N

kn (1.105)
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1.5. Discrete-time systems 35

However, this is just the inverse-DFT expansion of y[n], and therefore:

Yk = H(ej
2π
N

k)Xk k ∈ {0, . . . , N − 1} (M:2.3.21)

Thus, the response of a LTI system to a periodic input is also periodic with the same period.

The magnitude of the input components is modified by |H(ej
2π
N

k)|, and the phase is modified by

argH(ej
2π
N

k).

1.5.4 Rational transfer functions

New slideMany systems can be expressed in the z-domain by a rational transfer function. They are described

in the time domain by:

y[n] = −
P∑

k=1

ak y[n− k] +

Q
∑

k=0

dk x[n− k] (M:2.3.12)

Taking z-transforms gives:

H (z) =
Y (z)

X (z)
=

∑Q

k=0 dk z
−k

1 +
∑P

k=1 ak z
−k

,
D (z)

A (z)
(M:2.3.13)

This can be described in the complex z-plane as:

H (z) =
D (z)

A (z)
= G

∏Q

k=1(1− zk z
−1)

∏P

k=1(1− pk z−1)
(M:2.3.14)

where pk are the poles of the system, and zk are the zeros.

October 11, 2016 – 19 : 08



A
u
th

o
r:

 J
. 
R

. 
H

o
p
g
o
o
d
; 
C

o
p
y
ri

g
h
t:

 U
n
iv

er
si

ty
 o

f 
E

d
in

b
u
rg

h

O
ct

o
b
er

 1
1
, 
2
0
1
6
--

 1
9
:0

8

Author: J. R. Hopgood; Copyright: University of Edinburgh  --  

2
Discrete-Time Stochastic Processes

Introduces the notion of time-series or random processes. Gives an interpretation using ensembles,

and covers second-order statistics including correlation sequences. Discusses types of stationary

processes, ergodicity, joint-signal statistics, and correlation matrices.

2.1 A Note on Notation

Note that, unfortunately, for this module, a slightly different (and abusive use of) notation for random

quantities is used than what was presented in the first four handouts of the Probability, Random

Variables, and Estimation Theory (PET) module. In the literature, most time series are described

using lower-case letters, primarily since once the notation for the representation of a random process

in the frequency domain is discussed, upper-case letters are exclusively reserved to denote spectral

representations. Moreover, lower-case letters for time-series are generally more recognisable and

readable, and helps with the clarity of the presentation. Hence, random variables and vectors in this

handout will not always be denoted using upper-case letters.

2.2 Definition of a Stochastic Process

New slide After studying random variables and vectors, these concepts can now (easily) be extended to

discrete-time signals or sequences.

• Natural discrete-time signals can be characterised as random signals, since their values cannot

be determined precisely; that is, they are unpredictable. A natural mathematical framework

for the description of these discrete-time random signals is provided by discrete-time stochastic

processes.

• To obtain a formal definition, consider an experiment with a finite or infinite number of

unpredictable outcomes from a sample space S = {ζk, k ∈ Z
+}, each occurring with

probability Pr (ζk). Assign by some rule to each ζk ∈ S a deterministic sequence x[n, ζk] , n ∈
Z.

36
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2.2. Definition of a Stochastic Process 37

Figure 2.1: A graphical representation of a random process.

• The sample space S, probabilities Pr (ζk), and the sequences x[n, ζk] , n ∈ Z constitute a

discrete-time stochastic process, or random sequence.

• Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic process if, for a fixed value

n0 ∈ Z
+ of n, x[n0, ζ ] , n ∈ Z is a random variable.

• A random or stochastic process is also known as a time series in the statistics literature.

• It is an infinite sequence of random variables, so could be thought of as an infinite-dimensional

random vector. Indeed, finite-length random signals and sequences can specifically be

represented by the concept of a random vector.

2.2.1 Interpretation of Sequences

New slideThe set of all possible sequences {x[n, ζ ]} is called an ensemble, and each individual sequence

x[n, ζk], corresponding to a specific value of ζ = ζk, is called a realisation or a sample sequence of

the ensemble. Hence, when a random process is observed through the outcome of a single experiment,

one member of the ensemble is selected randomly and presented. A graphical representation of a

random process is shown in Figure 2.1.

There are four possible interpretations of x[n, ζ ]:

ζ Fixed ζ Variable

n Fixed Number Random variable

n Variable Sample sequence Stochastic process

Use simplified notation x[n] ≡ x[n, ζ ] to denote both a stochastic process, and a single realisation.

The word stochastic is derived from the Greek word stochasticos, which means skillful in aiming or

guessing. Use the terms random process and stochastic process interchangeably throughout this

course.
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38 Stochastic Processes

2.2.2 Predictable Processes

New slide A deterministic signal is by definition exactly predictable; it assumes there exists a certain functional

relationship that completely describes the signal, even if that functional relationship is not available

or is extremely difficult to describe. The unpredictability of a random process is, in general, the

combined result of the following two characteristics:

1. The selection of a single realisation of a stochastic process is based on the outcome of a random

experiment; in other-words, it depends on ζ .

2. No functional description is available for all realisations of the ensemble. In other-words, even

if a functional relationship is available for a subset of the ensemble, it might not be available

for all members of the ensemble.

In some special cases, however, a functional relationship is available. This means that after the

occurrence of all samples of a particular realisation up to a particular point, n, all future values can

be predicted exactly from the past ones.

If this is the case for a random process, then it is called predictable, otherwise it is said to be

unpredictable or a regular process.

KEYPOINT! (Predictable Process). As an example of a predicatble process, consider the signal:

x[n, ζ ] = A sin (ω n+ φ) (2.1)

�

where A is a known amplitude, ω is a known normalised angular frequency, and φ is a random phase,

where φ ∼ fΦ (φ) is its probability density function (pdf).

As an outline of this idea, suppose that all the samples of a stochastic process x(n, ζ) upto sample

n − 1 are known; thus, {x[k, ζ ]}n−1
k=−∞ are known. Then the predicted value of x[n] might, for

example, be expressed as:

x̂[n] = −
∞∑

k=1

a∗k x[n− k] (T:7.189)

The error in this prediction is given by

ǫ[n] = x[n]− x̂[n] =
∞∑

k=0

a∗k x[n− k] (T:7.190)

where a0 = 1. The process is said to be predictable if the {ak}’s can be chosen such that:

σ2
ǫ = E

[
|ǫ[n] |2

]
= 0 (T:7.191)

Otherwise the process is not predictable. The phrase not predictable is somewhat misleading, since

the linear prediction in Equation T:7.189 can be applied to any process, whether predictable or not,

with satisfactory results. If a process is not predictable, it just means that the prediction error variance

is not zero.

An example of predictable process is the process x[n, ζ ] = c, where c is a random variable, since

every realisation of the discrete-time signal has a constant amplitude, and once x[n0, ζk] is known for

a particular realisation, all other samples of that process have also been determined.

The notion of predictable and regular processes is formally presented through the Wold

decomposition, and further details of this very important theorem can be found in [Therrien:1992,

Section 7.6, Page 390] and [Papoulis:1991, Page 420].
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2.3. Second-order Statistical Description 39

2.2.3 Description using pdfs

New slideFor fixed n = n0, it is clear from Figure 2.1 that x[n0, ζ ] is a random variable. Moreover, the

random vector formed from the k random variables {x[nj] , j ∈ {1, . . . k}} is characterised by the

joint-cumulative distribution function (cdf) and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk) (2.2)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · ·∂xk

(2.3)

In exactly the same way as with random variables and random vectors, it is:

• difficult to estimate these probability functions without considerable additional information or

assumptions;

• possible to frequently characterise stochastic processes usefully with much less information.

Thus, the density and distribution functions are characterised using moments and, in particular,

second-order moments.

2.3 Second-order Statistical Description

New slideRandom variables can be characterised, upto second-order statistics, using the mean and variance;

random vectors are characterised by the mean vector, auto-correlation and auto-covariance matrices.

Random processes, however, are characterised by sequences, where a particular sample, n0, of this

sequence characterises the random variable x[n0, ζ ]. These sequences are the mean and variance

sequence, the autocorrelation and autocovariance sequences, as outlined below.

Mean and Variance Sequence At time n, the ensemble mean and variance are given by:

µx[n] = E [x[n]] (M:3.3.3)

σ2
x[n] = E

[
|x[n]− µx[n] |

2
]
= E

[
|x[n] |2

]
− |µx[n] |

2 (M:3.3.4)

Both µx[n] and σ2
x[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic rxx[n1, n2] provides a measure of the

dependence between values of the process at two different times; it can provide

information about the time variation of the process:

rxx[n1, n2] = E [x[n1] x
∗[n2]] (M:3.3.5)

Autocovariance sequence The autocovariance sequence provides a measure of how similar the

deviation from the mean of a process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]

(M:3.3.6)

To show how these deterministic sequences of a stochastic process can be calculated, several examples

are considered in detail below.
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2.3.1 Example of calculating autocorrelations

New slideThese examples assume that the notion of stationarity has been met; this, in fact, is not discussed

until Section 2.5. Either the reader can skip these examples and return to read them after reading

Section 2.5, or for the moment the reader can proceed by using the simple definition that a “stationary”

process is one for which the autocorrelation function rxx(n,m) = rxx(n −m) = rxx(l) is simply a

function of the time (or sample index) differences, also called the lag: l = n−m.

Example 2.1 (Straightforward example). A random variable y(n) is defined to be:

y(n) = x(n) + x(n +m) (2.4)

where m is some integer, and x(n) is a stationary stochastic process whose autocorrelation function

is given by:

rxx(l) = e−l2 (2.5)

Derive an expression for the autocorrelation of the stochastic process y(n).

SOLUTION. In this example, it is simplest to form the product:

y(n) y∗(n− l) = [x(n) + x(n +m)] [x∗(n− l) + x∗(n +m− l)] (2.6)

= x(n) x∗(n− l) + x(n +m) x∗(n− l)

+ x(n) x∗(n+m− l) + x(n +m) x∗(n+m− l) (2.7)

then, taking expectations, noting x(n) is a stationary signal, it follows:

ryy(l) = rxx(l) + rxx(m+ l) + rxx(l −m) + rxx(l) (2.8)

giving, in this particular case,

ryy(l) = 2 e−l2 + e−(l+m)2 + e−(l−m)2 (2.9)

�

Example 2.2 ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process x[n] is defined by:

x[n] =
M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0 (M:3.3.50)

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are pairwise independent random variables

uniformly distributed in the interval [0, 2π].

1. Determine the mean of x(n).

2. Show the autocorrelation sequence is given by

rxx[ℓ] =
1

2

M∑

k=1

|Ak|
2 cosωkℓ, −∞ < ℓ < ∞ (2.10)
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SOLUTION. 1. The expected value of the process is straightforwardly given by:

E [x(n)] = E

[
M∑

k=1

Ak cos(ωkn + φk)

]

=

M∑

k=1

Ak E [cos(ωkn + φk)] (2.11)

Recall from results derived earlier in the course that if x(n, ζ) = g(n, φ(ζ)) is a random variable

obtained by transforming φ(ζ) through a known function, g, the expectation of x(n) = x(n, ζ)
is:

E [x(n)] =

∫ ∞

−∞

g(n, φ) pΦ(φ) dφ (2.12)

It is important to consider n as a constant.

Since a co-sinusoid is zero-mean, then:

E [cos(ωkn+ φk)] =

∫ 2π

0

cos(ωkn+ φk)×
1

2π
× dφk = 0 (2.13)

Hence, it follows:

E [x(n)] = 0, ∀n (2.14)

2. The autocorrelation rxx(n1, n2) = E [x(n1) x
∗(n2)] follows similarly:

rxx(n1, n2) = E

[
M∑

k=1

Ak cos(ωkn1 + φk)

M∑

j=1

A∗
j cos(ωjn2 + φj)

]

(2.15)

=

M∑

k=1

M∑

j=1

Ak A
∗
jE [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.16)

After some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2
cosωk(n1 − n2) k = j

0 otherwise
(2.17)

The proof of this statement is obtained by considering the term

r(φk, φj) = E [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.18)

for the cases when k 6= j, and when k = j. Considering the former case first, k 6= j, then

r(φk, φj) =
1

4π2

∫ 2π

0

∫ 2π

0

cos(ωkn1 + φk) cos(ωjn2 + φj) dφj dφk (2.19)

=
1

4π2

∫ 2π

0

cos(ωkn1 + φk) dφk

∫ 2π

0

cos(ωjn2 + φj) dφj (2.20)

= 0 (2.21)

An alternative derivation which might be considered more straightforward is to observe that

Equation 2.18 might also be written as:

r(φk, φj) = E [g(φk) h(φj)] = E [g(φk)]E [h(φj)] (2.22)

where g(φk) = cos(ωkn1 + φk) and h(φk) = cos(ωjn2 + φj), and the fact that φk and φj are

independent implies the expectation function may be factorised.
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For the case when k = j such that φ = φk = φj and ω = ωk = ωj , then:

r(φ, φ) =
1

2π

∫ 2π

0

cos(ωn1 + φ) cos(ωn2 + φ) dφ (2.23)

Using the trigonometric identity cosA cosB = 1
2
(cos(A+B) + cos(A− B)), then:

r(φk, φj) =
1

4π

∫ 2π

0

{cosω(n1 − n2) + cos(ω(n1 + n2) + 2φ)} dφ (2.24)

=
1

2
cosω(n1 − n2) (2.25)

giving the result above; namely:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =
1

2
cosωk(n1 − n2) δ(k − j) (2.26)

Substituting this expression into

rxx(n1, n2) =
1

2

M∑

k=1

M∑

j=1

Ak A
∗
jE [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.27)

thus leads to the desired result. It can be seen that the process x(n) must be a stationary process,

as it is only a function of the lag l:

rxx(l) =
1

2

M∑

k=1

|Ak|
2 cosωkl, −∞ < l < ∞ (2.28)

�

2.4 Types of Stochastic Processes

New slide Some useful types of stochastic properties, based on their statistical properties, are now introduced:

Independence A stochastic process is independent if, and only if, (iff)

fX (x1, . . . , xN | n1, . . . , nN) =

N∏

k=1

fXk
(xk | nk) (M:3.3.10)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x(n) is a sequence of independent random

variables.

An independent and identically distributed (i. i. d.) process is one where all the random variables

{x(nk, ζ), nk ∈ Z} have the same pdf, and x(n) will be called an i. i. d. random

process.

Example 2.3 (Independence: i. i. d. processes). I am selling my house, and have

decided to accept the first offer exceeding K pounds. Assuming that the offers

are i. i. d. random variables, with common cumulative distribution function FX (x),
where x is the offer price, find the expected number of offers received before I sell

the house.
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