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Aims and Objectives

Handout 1

Source Signal ,
¢.g. Clean Speech

Channel

¢.g. Room Acoustics

» Observed Signal

e.g. Reverberant Speech
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Aims and Objectives

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

@ Indirect time-difference of
arrival (TDOA)-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation

[ ]
generalised cross
correlation (GCC)

Processors
® Direct Localisation

Methods
® Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Receiver
(Mic Array)

Source localisation and blind source separation (BSS). An

example of topics using statistical signal processing.

|
Multiple Random Variables
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Obtaining the Latest Handouts

Walls

Sound
Aims and Objectives 4— and Other
@ Obtaining the Latest SOUI‘CB 3
Handouts Ob Stac1es

® Module Abstract

@ Introduction and Overview

@ Description and Learning
Outcomes

@ Structure of the Module Observer

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

@ Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
’iffjjzjn““p"“e Power Source 2 Source 1
® Conclusions
Probability Theory Humans turn their head in the direction of interest in order
T to reduce inteference from other directions; joint detection,

localisation, and enhancement. An application of probability
and estimation theory, and statistical signal processing.

Multiple Random Variables

| EsStimation IHeory
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Obtaining the Latest Handouts

#® This research tutorial is intended to cover a wide range of

Aims and Objectives

o aspects which cover the fundamentals of statistical signal
odule Abstract S
: i\fltroduction and Overview proce SS lng °

® Description and Learning
Outcomes

e ® This tutorial is being continually updated, and feedback is
i P welcomed. The documents published on the USB stick may
o Sousia Losataion differ to the slides presented on the day.

Strategies
@ Geometric Layout

o e T e ® The latest version of this document can be obtained from the
o Eyperbolc Leas Square author, Dr James R. Hopgood, by emailing him at: at:

Error Function
® TDOA estimation methods

® GCC TDOA estimation

§ 5CC Processors mailto:;james.hopgood@ed.ac.uk
[ J gzgﬁ SResponse Power
Function . .
e (Update: The notes are no longer online due to the desire to
Probbility Theory maintain copyright control on the document.)

Scalar Random Variables

® Extended thanks are given to the many MSc students over the
past 12 years who have helped proof-read and improve these

Multiple Random Variables

| EsStimation I!ieory

documents. D, 41120
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Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview

o
g

® Description and Learning

Erpric Probotsiiy Denmly
& =
=

Outcomes

a0
@ Structure of the Module
. . an
@ Passive and Active Target
Localisation 17 2 J.
@ Passive Target Localisation D wBh

Methodology
® Source Localization
e This topic is covered in two related lecture modules:
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods 1. Probability, Random Variables, and Estimation Theory, and

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

GCC TDOA estimation s 0 . .
Rt 2. Statistical Signal Processing,
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

-I'Eml'ﬁory

MonteCarlo
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Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

o
g

Erpric Probotsiiy Denmly
= [ .
=

B
5]

@ Passive and Active Target 5k
Localisation g . H ®m w0 @
@ Passive Target Localisation N i al T
Methodology
@ Source Localization . . . .
Simuteges This topic is covered in two related lecture modules:

@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods 1. Probability, Random Variables, and Estimation Theory, and

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

GCC TDOA estimation s 0 . .
Rt 2. Statistical Signal Processing,
® Direct Localisation

Methods

® Stered Response Power #® Random signals are extensively used in algorithms, and are:
@ Conclusions
Probabilty Theory ® constructively used to model real-world processes;

Scalar Random Variables

® described using probability and statistics.

Multiple Random Variables

-I'Eml'ﬁory
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Module Abstract
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Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview

o
g

® Description and Learning

Erpric Probotsiiy Denmly
& =
=

Outcomes

a0
@ Structure of the Module
. . an
@ Passive and Active Target
Localisation 17 2 J.
@ Passive Target Localisation D wBh

Methodology
® Source Localization
Suategies ® Their properties are estimated by assumming:
@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods $ an infinite number of observations or data points;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation $ time-invariant statistics.
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables
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MonteCarlo
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Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target
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Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies ® Their properties are estimated by assumming:

@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods $ an infinite number of observations or data points;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation $ time-invariant statistics.
® GCC Processors
® Direct Localisation

Methods

R #® [n practice, these statistics must be estimated from
* Conclusons finite-length data signals in noise.
Probability Theory

Scalar Random Variables

Multiple Random Variables
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Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target
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B
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Localisation o - " B ®m N0 I o x
@ Passive Target Localisation g Wk

Methodology
® Source Localization

Strategies ® Their properties are estimated by assumming:

@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods $ an infinite number of observations or data points;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation $ time-invariant statistics.
® GCC Processors
® Direct Localisation

Methods

® Stered Response Power #® In practice, these statistics must be estimated from

® Conclusions finite-length data signals in noise.

Probability Theory

et ot ® Module investigates relevant statistical properties, how they

are estimated from real signals, and how they are used.

Multiple Random Variables
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Introduction and Overview

White noise signal
T T T

Transfer Function for Gramophone Horn x10* Correlated noise signal
. T T T T T T T

T
— Measured Response
—  AR(68) model

Aims and Objectives of
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview

o
Gain (dB)
] |

noise measurement

|

noise measurement
o

® Description and Learning 25!

Outcomes
@ Structure of the Module

@ Passive and Active Target sl

. . . . I . . I I . I . . . . . . . . . . 15 . I 1 I I I 1 I I
Locahsatlon 0 50 100 150 200 250 300 350 400 450 500 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 50 100 150 200 250 300 350 400 450 500

. . . time Frequency (Hz) time.
@ Passive Target Localisation

Methodology . o
® Source Localization Source Signal > Channel » Observed Signal

Strategies e.g. Clean Speech e.g. Room Acoustics e.g. Reverberant Speech
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Biror Funcion Signal processing is concerned with the modification or

® TDOA estimation methods

® GCC TDOA estimation manipulation of a signal, defined as an

® GCC Processors

® Direct Localisaion information-bearing representation of a real process, to

Methods

S s o the fulfillment of human needs and aspirations.

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory

MonteCarlo
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
Alms and Objectives implementation, and applications of statistical signal

@ Obtaining the Latest

Handouts process:i_ng.

® Module Abstract
@ Introduction and Overview

@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,

Alms and Objectivs implementation, and applications of statistical signal
@ Obtaining the Latest .
° ﬁz(l)rcll?l(l):ibstract proceSS]'ng'

@ Introduction and Overview
@ Description and Learning
Outcomes

o Structure of the Module Module Objectives At the end of these modules, a student should

@ Passive and Active Target

Localisation be able tO have:

@ Passive Target Localisation
Methodology
® Source Localization

Statesies 1. acquired sufficient expertise in this area to understand and

@ Geometric Layout

o ldeal Free field Model implement spectral estimation, signal modelling,

® Indirect TDOA-based

Methods parameter estimation, and adaptive filtering techniques;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,

Alms and Objectivs implementation, and applications of statistical signal
@ Obtaining the Latest .
° ﬁz(l)r(fl(l):ibstract proceSS]'ng°

@ Introduction and Overview
@ Description and Learning
Outcomes

o Structure of the Module Module Objectives At the end of these modules, a student should

@ Passive and Active Target

Localisation be able tO have:

@ Passive Target Localisation
Methodology
® Source Localization

Statesies 1. acquired sufficient expertise in this area to understand and

@ Geometric Layout

o ldeal Free field Model implement spectral estimation, signal modelling,

® Indirect TDOA-based

Methods parameter estimation, and adaptive filtering techniques;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

o 2. developed an understanding of the basic concepts and
® Direc Localsation methodologies in statistical signal processing that provides
© Steeted Response Power the foundation for further study, research, and application

@ Conclusions

to new problems.

Probability Theory

Scalar Random Variables

Multiple Random Variables
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
@ Introduction and Overview

® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables
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MonteCarlo
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Structure of the Module

Aims and Objectives

@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
@ Introduction and Overview
® Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module
@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

These topics are:

Tmatl €0ty

MonteCarlo
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Structure of the Module

Aims and Objectives

@ Obtaining the Latest

Handouts ]_ .
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes 2
@ Structure of the Module °

@ Passive and Active Target

Localisation
@ Passive Target Localisation 3
L]

Methodology
® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

These topics are:

review of the fundamentals of probability theory;
random variables and stochastic processes;

principles of estimation theory;

Tmatl €0ty

MonteCarlo
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Structure of the Module

Aims and Objectives

@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
@ Introduction and Overview
® Description and Learning

Outcomes 2
@ Structure of the Module °

@ Passive and Active Target

Localisation
@ Passive Target Localisation 3
L]

Methodology
® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model 4 o
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

These topics are:

random variables and stochastic processes;
principles of estimation theory;

Bayesian estimation theory;

Tmatl €0ty

MonteCarlo
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes 2. random variables and stochastic processes;

® Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation

® GCC Processors

® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
@ Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

® Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation
® GCC Processors

& Direct Localisacion 6. linear systems with stationary random inputs, and linear
OIiLTCrZ:nResponse Power Sys tem mo dels;

@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
@ Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

® Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation
® GCC Processors

& Direct Localisacion 6. linear systems with stationary random inputs, and linear
OIiLTCrZ:HResponse Power Sys tem mo dels;

@ Conclusions

Probability Theory 7

. signal modelling and parametric spectral estimation;

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
@ Introduction and Overview

® Description and Learning

Outcomes 2. random variables and stochastic processes;

® Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation
® GCC Processors

& Direct Localisacion 6. linear systems with stationary random inputs, and linear
OIiLTCrZ:HResponse Power Sys tem mo dels;

@ Conclusions

Probability Theory 7

. signal modelling and parametric spectral estimation;

Scalar Random Variables

Muliple Random Variabes 8. an application investigating the estimation of sinusoids in
i noise, nn‘rpprfnrming the Fourier transform

- p. 8/120

MonteCarlo



Aims and Objectives

Passive and Active Target Localisation

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

A number of signal processing problems rely on knowledge of
the desired source position:

1. Tracking methods and target intent inference.
2. Mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in
speech enhancement).

4. Camera steering for audio-visual BSS (including Robot
Audition).

5. Speech diarisation.

Tmatl €0ty

MonteCarlo
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Aims and Objectives

Passive Target Localisation Methodology

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Sensors
(microphones)

x,[7] xz%n] x[n] - x[n]

Source

s[#]

Ideal free-field model.

® Most passive target localisation (PTL) techniques rely on the
fact that an impinging wavefront reaches one sensor before it

reaches another.

| EsStimation I!ieory

MonteCarlo
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Aims and Objectives

Passive Target Localisation Methodology

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory

Sensors
(microphones)

x,[7] xz%n] x[n] - x[n]

Source

s[#]

Ideal free-field model.

® Most PTL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

® Most PTL algorithms are designed assuming there is no
multipath or reverberation present, the free-field assumption

MonteCarlo
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Aims and Objectives

Source Localization Strategies

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
@® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)

of a beamformer:

® Jocation estimate derived directly from a filtered, weighted,

and sum version of the signal data;

Tmatl €0ty

MonteCarlo
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Aims and Objectives

Source Localization Strategies

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

@ Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

® Jocation estimate derived directly from a filtered, weighted,
and sum version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

#® any localisation scheme relying upon an application of the
signal correlation matrix;

Tmatl €0ty

MonteCarlo

- p. 11/120



Source Localization Strategies

Existing source localisation methods can loosely be divided into:

Aims and Objectives
@ Obtaining the Latest

tndous 1. those based on maximising the steered response power (SRP)
@ Introduction and Overview Of a beamformer:

® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

s ® Jocation estimate derived directly from a filtered, weighted,

@ Passive Target Localisation

Methodology and sum version of the signal data;

® Source Localization

Strategies
@ Geometric Layout

® ideal Free feld Mo 2. techniques adopting high-resolution spectral estimation

® Indirect TDOA-based

Methods .
® Hyperbolic Least Squares Concepts °

Error Function
® TDOA estimation methods

® GCC TDOA estimation

906 Processors #® any localisation scheme relying upon an application of the
e signal correlation matrix;

Function
@ Conclusions

3. approaches employing TDOA information:

Probability Theory

Scalar Random Variables

e Random Varable ® source locations calculated from a set of TDOA estimates
measured across various combinations of sensors.
-I'EMOW
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Aims and Objectives

Geometric Layout

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
® Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory

77 Targets
(sound sources)

Ln] @ m,

Ol Sensors
(microphones)

X[n] @ m,

Geometry assuming a free-field model.

Suppose there is a:

#® sensor array consisting of NV nodes located at positions
m; € R3, fori e {0,...,N — 1},

® ) talkers (or targets) at positions x;, € R?, for
ke{o,...,M —1}.

MonteCarlo
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Aims and Objectives

Geometric Layout

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation
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Probability Theory

Scalar Random Variables

Multiple Random Variables

77 Targets
(sound sources)

Ln] @ m,

Ol Sensors
(microphones)

X[n] @ m,

Geometry assuming a free-field model.

The TDOA between the sensor node at position m; and m; due
to a source at x;, can be expressed as:

X — 1My | — (X — 1INy
T(mz-, mj7 Xk) éTz(Xk) — ‘ ’L‘ ‘ ]‘

C

where c is the speed of the impinging wavefront.
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#® In an anechoic free-field environment, the signal from source
k, denoted si(t), propagates to the i-th sensor at time ¢ as:

Lk (t) = Ok Sk(t — Tik:) + bzk (t)
where b;;(t) denotes additive noise.
#® Note that, in the frequency domain, this expression becomes:
Xk (w) = o Sk (w) e IWTik 4 B (cu)

B The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.
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Ideal Free-field Model

#® [n an anechoic free-field environment, the signal from source
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o Pithe ot where b;,(t) denotes additive noise.
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@ Passive Target Localisation

Methodology
® Source Localization

Strtegies #® Note that, in the frequency domain, this expression becomes:

@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based _ ,] W Tik
Methods ;(Zk (CU) — O[Zk; Sk; (w) & ! + B’Lk? (w)
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

S e e B The additive noise source is assumed to be uncorrelated with
[ ) TOCESSOrs .
e bica Lt the source and noise sources at other sensors.

Methods

@ Steered Response Power
Function

® Conclusions ® The TDOA between the i-th and j-th sensor is given by:
Probability Theory
Scalar Random Variables T’L]k — T’Lk - T]k‘ — T (mz, mj7 Xk)

Multiple Random Variables
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Aims and Objectives
@ Obtaining the Latest

o ® Typically, TDOAs are extracted using the GCC function, or an

® Module Abstract
® Introduction and Overview adaptive eigenvalue decomposition (AED) algorithm.
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

#® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
Sensor.
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Indirect TDOA-based Methods

@ Obtaining the Latest
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

#® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
Sensor.

® The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:
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® GCC Processors

® birect Localsation ® Accurate and robust TDOA estimation is the key to the
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

#® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
Sensor.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.

#® An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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® [f a TDOA is estimated between two sensor nodes i and 7,
then the error between this and modelled TDOA is

€i(Xk) = Tijr — T (m;, my;, Xg)

® The total error as a function of target position

#® Unfortunately, since 7' (m;, m;, X ) is a nonlinear function of
X1, the minimum least-squares estimate (LSE) does not
possess a closed-form solution.
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Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

® computationally efficient, and hence short decision delays;

® perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
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Methodology
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Strategies
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: leirelzt TDﬁOzlAd-li\:s:dl
Methods
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Error Function .
® TDOA estimation methods environme nts .
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® GCC Processors
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Methods However, GCC-based methods
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Function
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#® fail when multipath is high;

Probability Theory
Scalar Random Variabls ® focus of current research is on combating the effect of
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC

Al and Ofjeetees function and the adaptive eigenvalue decomposition (AED)
algorithm.

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

SE AED Algorithm Approaches the TDOA estimation approach from a

ocalisation . . . o
o Fasov Targes Localsaton different point of view from the traditional GCC method.

Methodology
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Strategies

S ® adopts a multipath rather than free-field model,;

@ Ideal Free-field Model
® Indirect TDOA-based
Methods

® Hyperbolic Least Squares ® computationally more expensive than GCC;

Error Function
® TDOA estimation methods

® GCC TDOA estimation
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The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

#® The TDOA estimate between two microphones 7 and j

Tij = arg MAX Ty, /]

® The cross-correlation function is given by
o [é] _ JT_-—l ((I) (eijs) Paclcvg (eijs))
where the cross-power spectral density (CPSD) is given by

lem <€ijS) .y [Xl (ejWTS) X2 <€ijs>]
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The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

#® The TDOA estimate between two microphones 7 and j
Tij = argmaxry, o |/]

l

® The cross-correlation function is given by
Pz, 0] = F 1 (@ (77%) Pyyay (€797%))
where the CPSD is given by
Pz, (6797°) =E [ X3 (297%) X3 (e7¥75)]
B TFor the free-field model, it can be shown that:

LPpz (W) = —jwT (m;, mj;, Xi)
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Processor Name

Frequency Function
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PHAT

Roth Impulse Response

SCOT

Eckart

(e7T)

Hannon-Thomson or ML

Vorws (€7475) |

. . 2
Peras (€77 (1= Py, (€747

where v,, ., (e/“%+) is the normalised CPSD or coherence
function

Multiple Random Variables
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® Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

® However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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The steered beamformer (SBF) or SRP function is a measure of
correlation across all pairs of microphone signals for a set of
relative delays that arise from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to
spatial position xj such that 7, = |X — m,|:

2

N
S (}A() — / Z Wp (eijs) Xp (eijs) ejw ol deo

Q Ip=l

d
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The SBF or SRP function is a measure of correlation across all

pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position xj such that 7, = |X — m,|:

S(:?c):/

Q

N
Z W, (e7“7%) X, (e77%) /¥ vk | duw

p=1

p=1
N
p=1

q=1
N
q=1

2
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Conclusions

To fully appreciate the algorithms in PTL, we need:
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Handous 1. Signal analysis in time and frequency domain.

® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes 2. Least Squares Estimation Theory.

@ Structure of the Module
@ Passive and Active Target

Localisation
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N 3. Expectations and frequency-domain statistical analysis.
Source Localization

.Strategies

® Geometric Layout . .

o ldeal Free feld Model 4. Correlation and power-spectral density theory.

® Indirect TDOA-based

Methods
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Error Function 5. And, of course, all the theory to explain the above!
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Probability Theory
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® Set Theory
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How many water taxis are there in Venice?
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How does your answer change when you see more taxis?
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@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
® Axiomatic Definition

® Set Theory
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Multiple Random Variables

Estimation Theory
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Passive Target Localisation

#® The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

® this might include radar detection, signal detection,
anomaly detection, parameter estimation, ...

® By considering fundamentals such as the probability of

individual events, we can develop a probabilistic framework

for analysing signals.

B It is observed that certain averages approach a constant value

as the number of observations increases; and that this value
remains the same if the averages are evaluated over any
sub-sequence specified before the experiment is performed.
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If an experiment is performed n times, and the event A
occurs n 4 times, then with a high degree of certainty, the
relative frequency 74 /n is close to Pr (A), such that:

Pr(A)

Y
Y

nA

n

provided that n is sufficiently large.

Note that this interpretation and the language used is all very

imprecise.
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For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determine a priori without actual experimentation. It

is given by the ratio:

where:

B N is the total number of outcomes,

® and N4 is the total number of outcomes that are favourable to

the event A, provided that all outcomes are equally probable.
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Consider a circle C' of radius r; what is the probability p that the

length /¢ of a randomly selected cord AB is greater than the
length, /3, of the inscribed equilateral triangle?

@f

Bertrand’s paradox, problem deﬁnltlon.
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Different selection methods.

1. In the random midpoints method, a cord is selected by
choosing a point M anywhere in the full circle, and two
end-points A and B on the circumference of the circle, such

NS

that the resulting chord AB through these chosen points has

M as its midpoint.
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Different selection methods.

In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

21r 1
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VAN

Different selection methods.

1. Finally, in the random radius method, a radius of the circle is
chosen at random, and a point on the radius is chosen at
random. The chord AB is constructed as a line perpendicular
to the chosen radius through the chosen point.

There are thus three different but reasonable solutions to the

SAIN

e-problem.Which-one-is-valid?
] 4L V CALLGA o

UGALLL
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1. The term equally probable in the definition of probability is

making use of a concept still to be defined!
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. The definition can only be applied to a limited class of

problems.

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the

probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.
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1. The term equally probable in the definition of probability is

making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the

probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.

3. If the number of possible outcomes is infinite, then some other

measure of infinity for determining the classical probability
ratio is needed, such as length, or area. This leads to
difficulties, as discussed in Bertrand’s paradox.
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Axiomatic Definition

The axiomatic approach to probability is based on the following

Aims and Objectives three postulates and on nothing else:

Probability Theory

® Introduction 1
@ Classical Definition of

. The probability Pr (A) of an event A is a non-negative number
N Ju— assigned to this event:

@ Difficulties with the

Classical Definition
@ Axiomatic Definition

® Set Theory PI‘ (A) Z O
® Properties of Axiomatic
Probability.
« Condiionl prbabily 2. Defining the certain event, S, as the event that occurs in

every trial, then the probability of the certain event equals 1,

Scalar Random Variables

such that:

Multiple Random Variables

Estimation Theory PI‘ ( S) _ 1
MonteCarlo
N — 3. If the events A and B are mutually exclusive, then the

probability of one event or the other occurring separately is:

Pr(AUB)=Pr(A)+ Pr(B)
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Unions and Intersections

AUB=BUA,

AB = BA,

(AB)C = A(BC),

Unions and intersections are
commutative, associative, and distributive, such that:

(AuUB)UC =AU (BUC()

A(BUC)=ABUAC
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Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

AUB=BUA, (AUB)UC=AU((BUC(C)
AB=BA, (AB)C=A(BC), ABUC)=ABUAC

Complements The complement A of a set A C S is the set
consisting of all elements of S that are not in A. Note that:

AUA=S and ANA=AA= {0}
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Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

AUB=BUA, (AUB)UC=AU((BUC(C)
AB=BA, (AB)C=A(BC), ABUC)=ABUAC

Complements The complement A of a set A C S is the set
consisting of all elements of S that are not in A. Note that:

AUA=S and ANA=AA= {0}

Partitions A partition U of a set S is a collection of mutually
exclusive subsets A; of S whose union equations S

o

i=

A; =8, AiﬂAj:{@}, 1£ ) = U:[Al,,An]
1
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De Morgan's Law Using Venn diagrams, it is relatively

straightforward to show

AUB=ANB=AB

and ANB=AB=AUB

- p. 28/120



Aims and Objectives

Set Theory

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
® Axiomatic Definition

® Set Theory

® Properties of Axiomatic
Probability

® The Real Line

® Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

De Morgan's Law Using Venn diagrams, it is relatively

straightforward to show

AUB=ANB=AB and ANnB=AB=AUB

As an application of this, note that:

AU BC
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therefore:

Pr(0) =0

Complements Since AU A = S and AA = {0}, then
Pr(AUA) =Pr(A) +Pr(A) =Pr(S) =1, such that:

Pr(A) =1—Pr(A)

Impossible Event The probability of the impossible event is 0, and
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Impossible Event The probability of the impossible event is 0, and

therefore:
Pr(0) =0

Complements Since AU A = S and AA = {0}, then
Pr(AUA) =Pr(A) +Pr(A) =Pr(S) =1, such that:

Pr(A) =1—Pr(A)

Sum Rule The addition law of probability or the sum rule for
any two events A and B is given by:

Pr(AUB)=Pr(A)+Pr(B)—-Pr(ANB)
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Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write A U B and B as the union of two mutually
exclusive events.

B First, note that

AUB=(AUA)(AUB) =AU (AB)

and that since A (AB) = (AA) B = {0}B = {0}, then A and

A B are mutually exclusive events.
® Second, note that:
B=(AUA)B=(AB)U (AB)

and that (AB) N (AB) = AAB = {0} B = {0} and are
therefore mutually exclusive events.
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Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr(AUB) =Pr(AU(AB)) =Pr(A4)+Pr(AB)
Pr(B) =Pr ((AB)U(AB)) =Pr(AB)+Pr(AB)

Eliminating Pr (Z B) by subtracting these equations gives the
desired result:

Pr(AUB) —Pr(B)=Pr(AU (AB)) =Pr(4)—Pr(4AB) O
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Example (Sum Rule). Let A and B be events with probabilities

Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.
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Example (Sum Rule). Let A and B be events with probabilities
Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.

SOLUTION. Using the sum rule, that:

Pr(AB)=Pr(A)+Pr(B)-Pr(AUB) > Pr(A)+Pr(B)-1 = —

which is the case when the whole sample space is covered by

the two events. The second bound occurs since A N B C B and
similarly AN B C A, where C denotes subset. Therefore, it can

be deduced Pr (A B) < min{Pr (A), Pr(B)} = 1/a.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

- p. 30/120



Aims and Objectives

The Real Line

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
® Axiomatic Definition

® Set Theory

® Properties of Axiomatic
Probability

® The Real Line

® Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < x9, and their countable unions and intersections.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < x9, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x < z;}.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < x9, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x < z;}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.
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If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.
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If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are

observed. Suppose that only those outcomes for which B occurs

are considered, and all other experiments are disregarded.

In this smaller collection of trials, the proportion of times that A
occurs, given that B has occurred, is:

Pr(A‘B)z

NAB

np

nas/n _ Pr(AB)

nB/n

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov

Axioms.

Pr(B)
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Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or

female, and it is assumed that each is equally likely.
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sample space,
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A graphical representation of a random variable.
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A random variable (RV) X (() is a mapping that assigns a real
number X € (—oo, 00) to every outcome ¢ from an abstract
probability space.

1. the interval { X ({) < x} is an event in the abstract probability
space for every x € R;

2. Pr(X (¢) = 00) = 0 and Pr (X (¢) = —0) = 0.
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Example (Rolling die). Consider rolling a die, with six outcomes
{¢i, i € {1,...,6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X (() is given by:

X(G)=X((3)=X(¢)=0 and X (¢2) =X (C4) =X () =1
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A F(x)

‘ >

The cumulative distribution function.

#® The probability set function Pr (X ({) < z) is a function of
the set { X ({) < x}, and therefore of the point x € R.
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A F(x)

‘ >

The cumulative distribution function.

#® The probability set function Pr (X ({) < z) is a function of
the set { X ({) < x}, and therefore of the point x € R.

#® This probability is the cumulative distribution
function (cdf), F'x (x) of a RV X ((), and is defined by:

Fx (z) = Pr(X () < z)
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A F(x)

‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x,| is given by:

Pr(zy < X (¢) < ar) =Pr (X (¢) <ar) — Pr(X (¢) < av)
= Fx (x;) — Fx ()
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A F(x)

‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x,| is given by:

Pr(zy < X (¢) < ar) =Pr (X (¢) <ar) — Pr(X (¢) < av)
= Fx (x;) — Fx ()

® For small intervals, it is clearly apparent that gradients are
important.

- p. 34/120



Aims and Objectives

Kolmogorov’s Axioms

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

The events { X < z1} and {z; < X < 25} are mutually exclussive

events. Therefore, their union equals {z < x5}, and therefore:

Pr(X <z1)+Pr(z; < X <x3) =Pr(X < x5)

/ p(v) dU+PT(5E1<X§ZC2)=/ p(v) dv
= Pr(x1<X§:c2):/ p(v) dv

Moreover, it follows that Pr (—oco < X < co) = 1 and the
probability of the impossible event, Pr (X < —oco) = 0. Hence,
the cdf satisfies the axiomatic definition of probability.
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#® The probability density function (pdf), fx (x) of a RV X ((),
is defined as a formal derivative:

N dFX (CE‘)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Az = Fx (x + Azx)—Fx () = Pr(z < X ({) <z + Ax)
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@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

#® The probability density function (pdf), fx (z) of a RV X ((),

is defined as a formal derivative:

N dFX (CE‘)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Az = Fx (x + Azx)—Fx () = Pr(z < X ({) <z + Ax)

® It directly follows that:

Fx(o)= [ ; Fx(v) do
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Density functions

#® The probability density function (pdf), fx (z) of a RV X ((),
Aims and Objectives is defined as a formal derivative:

Probability Theory

N dFX (CE)

Scalar Random Variables f ( :C )
® Definition X

dx

@ Distribution functions
® Kolmogorov’s Axioms

A Note fx () is not a probability on its own; it must be
G BT multiplied by a certain interval Az to obtain a probability:

@ Probability transformation

rule
@ Expectations

® Properties of expectation
e fx () Az~ Fx (r+ Ax)—Fx (z) = Pr(z < X () <z + Ax)
@ Higher-order statistics

Multiple Random Variables

® It directly follows that:

Estimation Theory

MonteCarlo

T
Passive Target Localisation FX (x) — / f X (’U) dv
— OO

® For discrete-valued RV, use the pmf, p;, the probability that
X (¢) takes on a value equal to x,: p, = Pr (X (¢) = x4,)

\ D/ p s \ 92/ LAV
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Aims and Objectives

Density functions

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

4 1) A F\(x)

! >

: %

A probability density function and its corresponding

S

cumulative distribution function for a RV which is a mixture

of continuous and discrete components.
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Aims and Objectives

Properties: Distributions and Densities

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
® Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® Properties of cdf:

lim FX (CE)

T——00

0,

lim FX (:C)

r—r 00

Fx(x) is a monotonically increasing function of z:

F'x (CL) < Fx (b)

if a<b

1

- p. 37/120



Properties: Distributions and Densities

® Properties of cdf:

Aims and Objectives

Probability Theory

0< Fx(x)<1l, lim Fx(x)=0, lim Fx(z)=1

Scalar Random Variables r—r—00 Tr—r o0

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms . o . . o

® Deusiy fncions Fx () is a monotonically increasing function of z:
® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation F b'e (a) < F X (b) if a S b

rule
@ Expectations

® Properties of expectation

o Moments ® Properties of pdfs:

@ Higher-order statistics

Multiple Random Variables

fX(iU)ZO, [wfx(m)d$:1

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Properties: Distributions and Densities

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® Properties of cdf:

0< Fx(x)<1l, lim Fx(x)=0, lim Fx(z)=1

T——00 r—r 00
Fx(x) is a monotonically increasing function of z:

Fx(a)<Fx(b) if a<b

® Properties of pdfs:
Ix (37) > 0, / fx (Cl?) dr =1

#® Probability of arbitrary events:

Pr(z; < X (() <x3) = Fx (x2) — Fx (x1) = [r@ fx () dx

- p. 37/120



Common Continuous RVs

Uniform distribution

Aims and Objectives L if a < i S b,

_ b—
Probability Theory f X (:C) T O “ O the]j'Wise

Scalar Random Variables

® Definition 5 . .
@ Distribution functions N orm al d ISt Fl b Utl on

® Kolmogorov’s Axioms
® Density functions

® Properties: Distributions 1 ]_ €T — ILL X 2 ]R
o éréi]r)lﬁ)nnmgsztinuous RVs fX (x) = /o2 eXp - 5 Cox ’ v E

@ Probability transformation 2 vixea X

rule
@ Expectations

® Properties of expectation CaUChy d IStrl butlon

operator
® Moments

@ Higher-order statistics 6 1

fx (z) ==

Multiple Random Variables T ( r — ILL X ) 2 _|_ /8 2

Estimation Theory

MonteCalo The Cauchy random variable is symmetric around the value

x = [1x, but its mean and variance do not exist.

Passive Target Localisation
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Aims and Objectives

Common Continuous RVs

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Gamma distribution

fx (2) 0 if z <0,
XA = Lol P le 2 ifx >0,

Gamma pdf Gamma cdf
0.4 ‘ ‘ :
. B =2
0.35¢ — B=25
, — =3
0.3 =35
0.25f — B=4
= =X
X 02 =
0.157
0.1t
0.05
0 L L L
0 2 4 6 8
X

The Gamma density and distribution functions, for the

case when o« = 1 and for various values of 5.
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Aims and Objectives

Common Continuous RVs

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Weibull distribution

Weilbull pdf
1.4 ; :
— a=05
1.2¢ — a=0.75
—a=1
1r — a=13 |
— a=15
_ 0.8r 1
X
S
0.6f 1
0.4r 1
0.2+ 1
0 1
0 1 2 3 4
X

F, ()

e x>0
Weilbull cdf
1
0.8}
0.6
Af
0 a=0.5
a=0.75
0.2} a=1
a=1.3
a=1.5
0 1
0 2
X

The Weibull density and distribution functions, for the
case when o = 1, and for various values of the parameter

8.
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Suppose a random variable Y (¢) is a function, g, of a random
variable X ((), which has pdf given by fx (z). What is fy (y)?

A
Y
y=g(x)
v
y
A
ox, ox,
> < > <
- >
x2 3 x

The mapping y = g(x), and the effect of the mapping on
intervals.

- p. 39/120



Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Suppose a random variable Y (¢) is a function, g, of a random

variable X ((), which has pdf given by fx (z). What is fy (y)?

X()

Y(C)

1 M Q=X Q)

v

Jdx)

>

'

)

The mapping y = g(z).

A

Y
y=gx)
v
Y
A
ox, ox, ox,
<« > >
>
X2 x3 x

The mapping y = g(x), and the effect of the mapping on

intervals.
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

A

y
y=g(x)
v
’ E
ox, ox, ox,
< >« >
>
/ X, X, X, ¥
The mapping y = g(x), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule).  Denote the real roots of
y = g(x) by {z,,, n € N}, such that

y=g(x1) = °~=g(a?N)

O

\%
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

A
Y
y=g(x)
v
y
A
ox, ox, ox,
< > <« > <«
/ = x 5 >
1 2 3 x

The mapping y = g(x), and the effect of the mapping on

intervals.

Theorem (Probability transformation rule).  Denote the real roots of
y = g(x) by {z,,, n € N}, such that

y=g(z1)="---=g(zN)

Then, if the Y (¢) = ¢g|X (¢)], the pdf of Y ({) in terms of the pdf

of X (¢) is given by:

fr ) = S X @)

|
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
® Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY'.
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Probability transformation rule

Example (Log-normal distribution). Let Y = e* , Where

Aims and Objectives X ~U N (O’ ]_). Find the pdf for the RV Y-

Probability Theory

Scalar Random Variables

© Deiiton SOLUTION. Since X ~ N (0, 1), then:

@ Distribution functions
® Kolmogorov’s Axioms
® Density functions 1 2

@ Properties: Distributions f (x) — e
and Densities X
@ Common Continuous RVs 27'('

@ Probability transformation

rule |:|

@ Expectations
® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

- p. 39/120



Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY'.

SOLUTION. Since X ~ N (0, 1), then:

]. 13‘2
— &Z__
\/ 2;{

fx (z) =

Considering the transformation y = g(z) = €7, there is one root,
given by x = Iny. Therefore, the derivative of this expression is

gilzli=e =y

Hence, it follows:

fry) = =75 = e T
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Expectations

To completely characterise a RV, the pdf must be known.

Alms and Objerives However, it is desirable to summarise key aspects of the pdf by
Probabiliy Theory using a few parameters rather than having to specify the entire
Scalar Random Variables denSity funCtion'

® Definition

@ Distribution functions . .
S s ® The expected or mean value of a function of a RV X (() is
@ Properties: Distributions given by:

and Densities
® Common Continuous RVs

@ Probability transformation

rule

@ Expectations E [ X ( C ) ] — f ( )

® Properties of expectation L X L daj
operator R

® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Expectations

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® [f X (() is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fx(x) =) prd(z—x)
k

where the Dirac-delta, § (x — i), is unity if z = z, and zero

otherwise.
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Aims and Objectives

Expectations

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® [f X (() is discrete, then its corresponding pdf may be written

in terms of its pmf as:

fx(x) =) prd(z—x)
k

where the Dirac-delta, § (x — i), is unity if z = z, and zero

otherwise.

® Hence, for a discrete RV, the expected value is given by:

MxZ/Rffx(x)W:/Rx ;kas(f—%)dx:;mkPk

where the order of integration and summation have been
interchanged, and the sifting-property applied.
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Aims and Objectives

Properties of expectation operator

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

The expectation operator computes a statistical average by using

the density fx(z) as a weighting function. Hence, the mean .
can be regarded as the center of gravity of the density.
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Aims and Objectives

Properties of expectation operator

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

The expectation operator computes a statistical average by using

the density fx(z) as a weighting function. Hence, the mean .
can be regarded as the center of gravity of the density.

® If fx(x) is an even function, then ux = 0. Note that since
fx(z) > 0, then fx (x) cannot be an odd function.

® If fy(x)is symmetrical about x = a, such that
fx(a—x) = fx(x +a), then ux = a.
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Aims and Objectives

Properties of expectation operator

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

The expectation operator computes a statistical average by using

the density fx(z) as a weighting function. Hence, the mean .
can be regarded as the center of gravity of the density.

® If fx(x) is an even function, then ux = 0. Note that since
fx(z) > 0, then fx (x) cannot be an odd function.

® If fy(x)is symmetrical about x = a, such that
fx(a—x) = fx(x +a), then ux = a.

® The expectation operator is linear:

ElaX () +p]l=aux +5
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Properties of expectation operator

The expectation operator computes a statistical average by using

Ams and Objectivs the density fx(x) as a weighting function. Hence, the mean p,
Probabilty Theory can be regarded as the center of gravity of the density.

Scalar Random Variables

STERT ® If fx(x) is an even function, then px = 0. Note that since
It i fx(z) > 0, then fx(x) cannot be an odd function.

® Density functions
@ Properties: Distributions
and Densities

e ® If fx(x) is symmetrical about x = a, such that
OE)I(l;ectations fX (a/ — SC) = fX (CL‘ —|_ CL), theIl ,LLX = Q.

) l;r;gr);a:;lres of expectation

ettt #® The expectation operator is linear:

Multiple Random Variables

ElaX () +p]l=aux +5

Estimation Theory

MonteCarlo

8 fY(()=9g{X ({)}is a RV obtained by transforming X ()

Passive Target Localisation

through a suitable function, the expectation of Y (() is:

EY(O] 2E (X (O} = [ () fx(x)de

N

- p. 41/120



Aims and Objectives

Moments

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Recall that mean and variance can be defined as:

E[X (¢)] = pix = / v fx(z) da

R

var [X (¢)] = 0% = /Ra:? fx(z)dr — p5x = E [X*(Q)] —E* [X (¢)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X" (()], m € {1, 2} are known.
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Aims and Objectives

Moments

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Recall that mean and variance can be defined as:

E[X (¢)] = pix = / v fx(z) da

R

var [X (¢)] = 0% = /Ra:? fx(z)dr — p5x = E [X*(Q)] —E* [X (¢)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X" (()], m € {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X ({): the m-th moment of X ({) is given by:

o 2 E[X7(0)] = / 7™ fx(c) do

Note, of course, that in general: E [ X" ({)] # E™ [X (()].
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Higher-order statistics

Two important and commonly used higher-order statistics that

Aims and Objectives are useful for characterising a random variable are:

Probability Theory

STETr— Skewness characterises the degree of asymmetry of a

et o distribution. It is a normalised third-order central moment:

® Density functions
@ Properties: Distributions

and Densities 3
® Common Continuous RVs " (3) A E { X (C) - ,LLX } _ 1 (3)

® Probability transformation —
rule X

@ Expectations
® Properties of expectation

operator
® Moments

o Higher-order stasis and is a dimensionless quantity.

3 /X
0x

X

Multiple Random Variables

A ) 4 A)

Estimation Theory

MonteCarlo

Passive Target Localisation

Negative Skew Positive Skew
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

(3 X (¢) — px : I e
mg()éE{ - :gvy

and is a dimensionless quantity.

The skewness is:

(<0 if the density leans or stretches out towards the left
/Z:g?) =<0 if the density is symmetric about u x
| > 0 if the density leans or stretches out towards the right
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Kurtosis measures relative flatness or peakedness of a distribution

about its mean value.
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

/%(4) A

x =

i

X(C) — KX

D¢

}4 P

1
ot

(4) _
X

3
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Kurtosis measures relative flatness or peakedness of a distribution

about its mean value.

It is defined based on a normalised fourth-central moment:

~(4) a

D¢

X () — 4 1
RS AR { (C) MX} —3:—47§?)_3

0x

This measure is relative with respect to a normal distribution,

which has the property ~
kurtosis.

(4)
X

= 30%, therefore having zero
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Handout 4
Multiple Random Variables

- p. 44/120



Aims and Objectives

Abstract

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

#® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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Aims and Objectives

Abstract

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

#® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Note that each element of a random vector is not necessarily

generated independently from a separate experiment.
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Aims and Objectives

Abstract

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

#® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Note that each element of a random vector is not necessarily

generated independently from a separate experiment.

® Random vectors also lead to the notion of the relationship
between the random elements.
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A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

#® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Note that each element of a random vector is not necessarily

generated independently from a separate experiment.

® Random vectors also lead to the notion of the relationship
between the random elements.

® This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.
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A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N = {1,..., N}, is denoted by

the column-vector:

X (€)= [X1(¢)

X5(¢)

Xn(¢)

T
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A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N = {1,..., N}, is denoted by
the column-vector:

T

X (€)= |X1(¢) Xa2(¢) -+ Xn(Q)

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R .
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A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N = {1,..., N}, is denoted by

the column-vector:

X (€)= [X1(¢)

X5(¢)

Xn(¢)

T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R .

Denote a specific value for a random vector as:

Then the notation X () < x is equivalent to the event

X = |:.I‘1 i)

{(X,¢) <z, neNL

LN

T
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The joint cdf completely characterises a random vector, and is

defined by:

Fx (x) 2 Pr({X,(¢) < 2, n € N}) = Pr (X ()

<X

)
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The joint cdf completely characterises a random vector, and is

defined by:

Fx (%) 2 Pr({Xn(¢) < wny n € N}) = Pr(X () < %)

A random vector can also be characterised by its joint pdf,

which is defined by

fx (%)

Pr ({zn, < Xn(¢) < zp + Az, n € N})

lim
Ax—0

o 0

B 8371 8332

0

(%N

Axq - Az

FX (X)
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The joint cdf completely characterises a random vector, and is

defined by:

Fx (%) 2 Pr({Xn(¢) < wny n € N}) = Pr(X () < %)

A random vector can also be characterised by its joint pdf,

which is defined by

fx (%)

Pr ({zn, < Xn(¢) < zp + Az, n € N})

= lim
Ax—0

o 0

B 8371 8332

Hence, it follows:

Fex) = [ o [ fx () dowedos= [ fx(v)dv
[ /.

0

(%N

Axq - Az

FX (X)
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® Properties of joint-cdf:
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® Properties of joint-cdf:

lim FX (X)

X—— 00

0,

lim FX (X)

X— 00

Fx (x) is a monotonically increasing function of x:

Fx (a) < Fx (b)

® Properties of joint-pdfs:

if a<b

fx (x) >0, [wfx(x)dx:l

1
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® Properties of joint-cdf:

lim FX (X) — O,

X—— 00

lim FX (X) =1

X— 00
Fx (x) is a monotonically increasing function of x:

Fx(a)SFx(b) if aéb

® Properties of joint-pdfs:

fx (x) >0, [wfx(x)dx:l

#® Probability of arbitrary events; note that

Pr(x; < X ({) < x2) # Fx (x2) — Fx (x1) = /X2 fx (v)dv
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Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(() which has two elements and therefore two
random variables given by X (() and Y (({) is given by:

lz+3y) 0<z,y<1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).
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Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a

random vector Z(() which has two elements and therefore two

random variables given by X (() and Y (({) is given by:

fz (z) =

lz+3y) 0<z,y<1
0 otherwise

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. First note that the pdf integrates to unity since:

/::fz(z) dz:/olfolé(:c—l—i%y)dxdy:/ol

1

2

|

1
—0F

2

2+ Sxy]

1

0

dy

[]
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
Alms and Objecives random vector Z(() which has two elements and therefore two

probability Theory random variables given by X (() and Y (({) is given by:

Scalar Random Variables

Dfi:g:aiandomVariables fZ (Z) _ %(aj —|_ Sy) O S :IJ, y S 1

® Definition of Random O Othe I'WiS e

Vectors
® Distribution and Density

Functions

® Marginal Densiy Funcrion Calculate the joint-cumulative distribution function, Fy (z).

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule | SOLUTION. First note that the pdf integrates to unity since:

@ Polar Transformation

@ Auxiliary Variables

@ Multivariate Gaussian
Density Function

1
. 1171
Estimation Theory / fz dZ _ / / .’L‘ _|_ Sy d:I; dy _ _ [_sz _|_ Sxy] dy
MonteCarlo O 2 2 0
1
Passive Target Localisation y 3 y 2 ]. 3
— [ = dy = 7 S+t =1
/04+2yy [4+4]0 171
L]
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Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. The pdf is shown here:

PDF

xz+3y) 0<z,y<l1
0 otherwise

Non-zero
region

Region of support for pdf.

|
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Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. For x < 0Oory <0, fz (z) =0, and thus Fz (z) =0.
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Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. For x < 0Oory <0, fz (z) =0, and thus Fz (z) =0.

If0 <x<1land 0 < y < 1, the cdf is given by:

Fae) = [ fa@da= [ [ ]+ dodg
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Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z) =

s(x+3y) 0<z,y<1
0

otherwise

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. Forx < 0ory <0, fz(z) =0, and thus Fz (z)

If0 <x<1land 0 < y < 1, the cdf is given by:

=0.
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Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. For x < 0Oory <0, fz (z) =0, and thus Fz (z) =0.

If0 <x<1land 0 < y < 1, the cdf is given by:

o= [_swa- [ [}

T T2 3zy? TY
= — d _= — o = —
/02(2+3:L‘y> Y 2<2y+ 2) , @+ 3

Finally, if x > 1 or y > 1, the upper limit of integration for the

T+ 3y) dz dy

corresponding variable becomes equal to L. - p. 47/120
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Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z)

Calculate the joint-cumulative distribution function, Fy (z).

s(x+3y) 0<z,y<1

0

otherwise

SOLUTION. Hence, in summary, it follows:

g O

Yy

4

N NS

(
(

(x + 3y)
z + 3)
1+ 3y)

r<0 or y<o0
O<z,y<l1
O<z<l1l, 1<y
O<y<1l, 1<z
1<z, y<oo
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Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. The cdf is plotted here:

SeeSSoS

(T2

/)
¥l
ZIESSEN

A plot of the cumulative distribufion function.

|
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