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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,

leads to an estimator based on the sample expectation;

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))
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Other Methods

Include:

representing pdfs as mixture of distributions;

algorithms for log-concave densities, such as the adaptive
rejection sampling scheme;

generalisations of accept-reject;

method of composition (similar to Gibbs sampling);

ad-hoc methods, typically based on probability
transformations and order statistics (for example, generating
Beta distributions with integer parameters).
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Markov chain Monte Carlo Methods

A Markov chain is the first generalisation of an independent
process, where each state of a Markov chain depends on the
previous state only.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an extremely flexible
method for producing a random sequence of samples from a
given density.

1. Generate a random sample from a proposal distribution:

Y ∼ g
(
y | X(k)

)
.

2. Set the new random variate to be:

X(k+1) =

{

Y with probability ρ(X(k), Y )

X(k) with probability 1− ρ(X(k), Y )

where the acceptance ratio function ρ(x, y) is given by:

ρ(x, y) = min

{

π (y)

g (y | x)

(
π (x)

g (x | y)

)−1

, 1

}

≡ min

{
π (y)

π (x)

g (x | y)
g (y | x) , 1

}
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The Metropolis-Hastings algorithm
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.

Using the probability chain rule,

π
(
{θm}Mm=1

)
= π

(
θℓ | {θm}Mm=1,m6=ℓ

)
π
(
{θm}Mm=1,m6=ℓ

)

The Gibbs sampler works by drawing random variates from the

marginal densities π
(

θℓ | {θm}Mm=1,m6=ℓ

)

in a cyclic iterative

pattern.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

•Gibbs Sampling

Passive Target Localisation

- p. 90/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Gibbs Sampling

First iteration:

θ
(1)
1 ∼ π

(

θ1 | θ(0)2 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)

θ
(1)
2 ∼ π

(

θ2 | θ(1)1 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)

θ
(1)
3 ∼ π

(

θ3 | θ(1)1 , θ
(1)
2 , θ

(0)
4 , . . . , θ

(0)
M

)

...
...

θ
(1)
M ∼ π

(

θM | θ(1)1 , θ
(1)
2 , θ

(1)
4 , . . . , θ

(1)
M−1

)
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Gibbs Sampling

Second iteration:

θ
(2)
1 ∼ π

(

θ1 | θ(1)2 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)

θ
(2)
2 ∼ π

(

θ2 | θ(2)1 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)

θ
(2)
3 ∼ π

(

θ3 | θ(2)1 , θ
(2)
2 , θ

(1)
4 , . . . , θ

(1)
M

)

...
...

θ
(2)
M ∼ π

(

θM | θ(2)1 , θ
(2)
2 , θ

(2)
4 , . . . , θ

(2)
M−1

)
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Gibbs Sampling

k + 1-th iteration:

θ
(k+1)
1 ∼ π

(

θ1 | θ(k)2 , θ
(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)

θ
(k+1)
2 ∼ π

(

θ2 | θ(k+1)
1 , θ

(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)

θ
(k+1)
3 ∼ π

(

θ3 | θ(k+1)
1 , θ

(k+1)
2 , θ

(k)
4 , . . . , θ

(k)
M

)

...
...

θ
(k+1)
M ∼ π

(

θM | θ(k)1 , θ
(k)
2 , θ

(k)
4 , . . . , θ

(k)
M−1

)

At the end of the j-th iteration, the samples θ
(j)
0 , θ

(j)
1 , . . . , θ

(j)
M

are considered to be drawn from the joint-density
π (θ0, θ1, . . . , θM ).
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Introduction

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛
☞ ✌ ✄ ✍ ✁

✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Source localisation and BSS.
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Introduction

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Humans turn their head in the direction of interest in order
to reduce interference from other directions; joint detection,

localisation, and enhancement.
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Introduction

This research tutorial is intended to cover a wide range of
aspects which link acoustic source localisation (ASL) and
blind source separation (BSS).

This tutorial is being continually updated, and feedback is
welcomed. The documents published on the USB stick may
differ to the slides presented on the day.

The latest version of this document can be found online and
downloaded at:

http://mod-udrc.org/events/2016-summer-school

Thanks to Xionghu Zhong and Ashley Hughes for borrowing
some of their diagrams from their dissertations.

http://mod-udrc.org/events/2016-summer-school
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Structure of the Tutorial

Recommended Texts

Conceptual link between ASL and BSS.

Geometry of source localisation.

Spherical and hyperboloidal localisation.

Estimating TDOAs.

Steered beamformer response function.

Multiple target localisation using BSS.

Conclusions.
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Recommended Texts

Recommended book chapters and the references therein.

Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and
Source Localization,” in Springer Handbook of Speech
Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp.
1043–1063, , Springer, 2008.
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Recommended Texts

Recommended book chapters and the references therein.

Chapter 8: DiBiase J. H., H. F. Silverman, and
M. S. Brandstein, “Robust Localization in Reverberant
Rooms,” in Microphone Arrays by M. Brandstein and D. Ward,
pp. 157–180, , Springer Berlin Heidelberg, 2001.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 94/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Recommended Texts

Recommended book chapters and the references therein.

Chapter 10 of Wolfel M. and J. McDonough, Distant Speech
Recognition, Wiley, 2009.

IDENTIFIERS – Hardback, ISBN13: 978-0-470-51704-8



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 94/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Recommended Texts

Some recent PhD thesis on the topic include:

Zhong X., “Bayesian framework for multiple acoustic source
tracking,” Ph.D. thesis, University of Edinburgh, 2010.

Pertila P., “Acoustic Source Localization in a Room Environment
and at Moderate Distances,” Ph.D. thesis, Tampere University
of Technology, 2009.

Fallon M., “Acoustic Source Tracking using Sequential Monte
Carlo,” Ph.D. thesis, University of Cambridge, 2008.
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Why Source Localisation?

A number of blind source separation (BSS) techniques rely on
knowledge of the desired source position:

1. Look-direction in beamforming techniques.

2. Camera steering for audio-visual BSS (including Robot
Audition).

3. Parametric modelling of the mixing matrix.

Equally, a number of multi-target acoustic source
localisation (ASL) techniques rely on BSS.
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ASL Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.
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ASL Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

Most ASL algorithms are designed assuming there is no
reverberation present, the free-field assumption.
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ASL Methodology

An uniform linear array (ULA) of microphones.

Typically, this acoustic sensor is a microphone; will primarily
consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.
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ASL Methodology

An ULA of microphones.

Typically, this acoustic sensor is a microphone; will primarily
consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.

Other measurement types include:

range difference measurements;

interaural level difference;

joint TDOA and vision techniques.
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ASL Methodology

Another sensor modality might include acoustic vector
sensors (AVSs) which measure both air pressure and air
velocity. Useful for applications such as sniper localisation.

An acoustic vector sensor.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 97/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

any localisation scheme relying upon an application of the
signal correlation matrix.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

any localisation scheme relying upon an application of the
signal correlation matrix.

3. approaches employing TDOA information.

source locations calculated from a set of TDOA estimates
measured across various combinations of microphones.
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Source Localization Strategies

Spectral-estimation approaches See Stephan Weiss’s talk :-)

TDOA-based estimators Computationally cheap, but suffers in the
presence of noise and reverberation.

SBF approaches Computationally intensive, superior performance
to TDOA-based methods. However, possible to dramatically
reduce computational load.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

Suppose there is a:

sensor array consisting of N microphones located at positions
mi ∈ R

3, for i ∈ {0, . . . , N − 1},

M talkers (or targets) at positions xk ∈ R
3, for

k ∈ {0, . . . ,M − 1}.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The TDOA between the microphones at position mi and mj due
to a source at xk can be expressed as:

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

where c is the speed of sound, which is approximately 344 m/s.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The distance from the target at xk to the sensor located at mi

will be defined by Dik, and is called the range.

Tij (xk) =
1

c
(Dik −Djk)
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Ideal Free-field Model

In an anechoic free-field acoustic environment, the signal
from source k, denoted by sk(t), propagates to the i-th sensor
at time t according to the expression:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.
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Ideal Free-field Model

In an anechoic free-field acoustic environment, the signal
from source k, denoted by sk(t), propagates to the i-th sensor
at time t according to the expression:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.

The TDOA between the i-th and j-th microphone is given by:

τijk = τik − τjk = T (mi, mj , xk)
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, vij =
mi+mj

2 .

(xk − vij)
T
Vij (xk − vij) = 1
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, vij =
mi+mj

2 .

(xk − vij)
T
Vij (xk − vij) = 1

For source with a large source-range to
microphone-separation ratio, the hyperboloid may be
well-approximated by a cone with a constant direction angle
relative to the axis of symmetry.

φij = cos−1

(
c T (mi, mj , xk)

|mi −mj |

)
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TDOA and Hyperboloids

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

Hyperboloid of two sheets

x2

a2
+

y2

b2
+

z2

c2
= −1
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TDOA and Hyperboloids

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

Hyperboloid, for a microphone separation of d = 0.1, and a

time-delay of τij =
d
4c .
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.

An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Spherical Least Squares Error Function

Suppose the first microphone is located at the origin of the

coordinate system, such that m0 =
[

0 0 0
]T

.

The range from target k to sensor i can be expressed as :

Dik = D0k +Dik −D0k

= Rs + c Ti0 (xk)

where Rsk = |xk| is the range to the first microphone which is
at the origin.
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Spherical Least Squares Error Function

In practice, the observations are the TDOAs and, given Rsk,
these ranges can be considered the measurement ranges.

Of course, knowing Rsk is half the solution, but it is just one
unknown at this stage.

D1

D2

D c1 2 12-D �=� t

Range and TDOA relationship.
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Ri = |mi| is the distance of the i-th microphone to the origin.
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)

=
1

2

{(

Rs + c T̂i0

)2

−
(
R2

s − 2mT
i xk +R2

i

)
}
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)

=
1

2

{(

Rs + c T̂i0

)2

−
(
R2

s − 2mT
i xk +R2

i

)
}

= mT
i xk + cRs T̂i0 +

1

2

(

c2T̂ 2
i0 − R2

i

)
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Spherical Least Squares Error Function

Concatenating the error functions for each microphone gives
the expression:

ǫik = Axk − (bk − Rskdk)
︸ ︷︷ ︸

vk

≡
[

A dk

]

︸ ︷︷ ︸

Sk

[

xk

Rsk

]

︸ ︷︷ ︸

θk

−bk

where

A =







mT
0

...

mT
N−1






, d = c







T̂00

...

T̂(N−1)0






, bk =

1

2







c2T̂ 2
00 − R2

0

...

c2T̂ 2
(N−1)0 −R2

N−1
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Spherical Least Squares Error Function

The LSE can then be obtained by using J = ǫTi ǫi :

J(xk) = (Axk − (bk −Rsk dk))
T (Axk − (bk −Rsk dk))

J (xk, θk) = (Skθk − bk)
T
(Skθk − bk)
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Spherical Least Squares Error Function

The LSE can then be obtained by using J = ǫTi ǫi :

J(xk) = (Axk − (bk −Rsk dk))
T (Axk − (bk −Rsk dk))

J (xk, θk) = (Skθk − bk)
T
(Skθk − bk)

Note that as Rsk = |xk|, these parameters aren’t independent.
Therefore, the problem can either be formulated as:

a nonlinear least-squares problem in xk;

a linear minimisation subject to quadratic constraints:

θ̂k = argmin
θk

(Skθk − bk)
T (Skθk − bk)

subject to the constraint

θk ∆θk = 0 where ∆ = diag [1, 1, 1, −1]
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Spherical Least Squares Error Function
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Two-step Spherical LSE Approaches

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in xk assuming the range to the target,
Rsk, is known;

2. and then solving for Rsk given an estimate of xk i. t. o. Rsk.
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Two-step Spherical LSE Approaches

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in xk assuming the range to the target,
Rsk, is known;

2. and then solving for Rsk given an estimate of xk i. t. o. Rsk.

Assuming an estimate of Rsk this can be solved as

x̂k = A† vk = A†
(

bk − R̂skdk

)

where A† =
[

ATA
]−1

AT

Note that A† is the pseudo-inverse of A.
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 104/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0

The unique, real, positive root is taken as the spherical
intersection (SX) estimator of the source range. Hence, the
estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 105/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Spherical Interpolation Estimator

The spherical interpolation (SI) estimator again uses the
spherical least squares error (LSE) function, but this time the
range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting the LSE gives:

ǫik = A
[

ATA
]−1

AT
(

bk − R̂skdk

)

− (bk −Rsk dk)
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting the LSE gives:

ǫik = A
[

ATA
]−1

AT
(

bk − R̂skdk

)

− (bk −Rsk dk)

Defining the projection matrix as PA = IN −A
[

ATA
]−1

AT ,

ǫik = Rsk PAdk −PAbk



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 105/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Defining the projection matrix as PA = IN −A
[

ATA
]−1

AT ,

ǫik = Rsk PAdk −PAbk

Minimising the LSE using the normal equations gives:

Rsk =
dT
kPAbk

dT
k PAdk



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 105/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting back into the LSE for the target position gives the
final estimator:

x̂k = A†

(

IN − dk

dT
kPA

dT
k PAdk

)

bk

This approach is said to perform better, but is computationally
slightly more complex than the SX estimator.
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Other Approaches

There are several other approaches to minimising the spherical
LSE function .

In particular, the linear-correction LSE solves the constrained
minimization problem using Lagrange multipliers in a two
stage process.

For further information, see: Huang Y., J. Benesty, and
J. Chen, “Time Delay Estimation and Source Localization,” in
Springer Handbook of Speech Processing by J. Benesty,
M. M. Sondhi, and Y. Huang, pp. 1043–1063, , Springer, 2008.
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Hyperbolic Least Squares Error Function

If a TDOA is estimated between two microphones i and j,
then the error between this and modelled TDOA is:

ǫij(xk) = τijk − T (mi, mj , xk)

The total error as a function of target position

J(xk) =
N∑

i=1

N∑

j 6=i=1

(τijk − T (mi, mj , xk))
2

Unfortunately, since T (mi, mj , xk) is a nonlinear function of
xk, the minimum LSE does not possess a closed-form solution.
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Linear Intersection Method

The linear intersection (LI) algorithm works by utilising a sensor
quadruple with a common midpoint, which allows a bearing line
to be deduced from the intersection of two cones.

mj1 mj2

mj4

mj3

yj

xj

zj

aj

bj

gj

I’j

Quadruple sensor arrangement and local Cartesian
coordinate system.
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Linear Intersection Method

Given the bearing lines, it is possible to calculate the points sij
and sji on two bearing lines which give the closest
intersection. This is basic gemoentry.

The trick is to note that given these points sij and sji, the
theoretical TDOA, T (m1i, m2i, sij), can be compared with
the observed TDOA.

mi

x (m)mj

Ii

Ij

sij

sji

dij

Calculating the points of closest intersection.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

fail when room reverberation is high;

focus of current research is on combating the effect of
room reverberation.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

AED Algorithm Approaches the TDOA estimation approach from a
different point of view from the traditional GCC method.

adopts a reverberant rather than free-field model;

computationally more expensive than GCC;

can fail when there are common-zeros in the room impulse
response (RIR).
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

=

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

where the CPSD is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
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CPSD for Free-Field Model

For the free-field model , it follows that for i 6= j:

Pxixj
(ω) = E [Xj (ω)Xj (ω)]

= E
[(
αik Sk (ω) e

−jω τik + Bik (ω)
) (

αjk Sk (ω) e
−jω τkk +Bjk (ω)

)]

= αikαjke
−jω T (mi,mj ,xk)E

[

|Sk (ω)|2
]

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0.
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CPSD for Free-Field Model

For the free-field model , it follows that for i 6= j:

Pxixj
(ω) = E [Xj (ω)Xj (ω)]

= E
[(
αik Sk (ω) e

−jω τik + Bik (ω)
) (

αjk Sk (ω) e
−jω τkk +Bjk (ω)

)]

= αikαjke
−jω T (mi,mj ,xk)E

[

|Sk (ω)|2
]

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0.

In particular, note that it follows:

∠Pxixj
(ω) = −jω T (mi, mj , xk)

In otherwords, all the TDOA information is conveyed in the
phrase rather than the amplitude of the CPSD. This therefore
suggests that the weighting function can be chosen to remove
the amplitude information.
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GCC Processors

Processor Name Frequency Function

Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1

√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)

Pn1n1 (e
jωTs)Pn2n2 (e

jωTs)

Hannon-Thomson or ML

∣
∣γx1x2

(
ejωTs

)∣
∣
2

|Px1x2 (e
jωTs)|

(

1− |γx1x2 (e
jωTs)|2

)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence

function
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GCC Processors

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)| |Px1x2

(
ejωTs

)
|ej∠Px1x2(e

jωTs) ejℓωT dω

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(e
jωTs)) dω

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))

= δ(ℓ Ts − T (mi, mj , xk))
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GCC Processors

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)| |Px1x2

(
ejωTs

)
|ej∠Px1x2(e

jωTs) ejℓωT dω

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(e
jωTs)) dω

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))

= δ(ℓ Ts − T (mi, mj , xk))

In the absence of reverberation, the GCC-PHAT algorithm
gives an impulse at a lag given by the TDOA divided by the
sampling period.
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GCC Processors

−1 0 1

x 10
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2
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x 10
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0
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1
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P
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A
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−
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C
C
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nc

tio
n

Normal cross-correlation and GCC-PHAT functions for a
frame of speech.
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GCC Processors
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The effect of reverberation and noise on the GCC-PHAT can
lead to poor TDOA estimates.
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Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
identification problem, which then seeks to identify the channel
coefficients corresponding to the direct path elements.
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Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
identification problem, which then seeks to identify the channel
coefficients corresponding to the direct path elements.

Suppose that the acoustic impulse response (AIR) between
source k and i is given by hik[n] such that

xik[n] =

∞∑

m=−∞

hik[n−m] sk[m] + bik[n]

then the TDOA between microphones i and j is:

τijk =

{

argmax
ℓ

|hik[ℓ]|
}

−
{

argmax
ℓ

|hjk[ℓ]|
}

This assumes a minimum-phase system, but can easily be
made robust to a non-minimum-phase system.
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Adaptive Eigenvalue Decomposition
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A typical room acoustic impulse response.

Reverberation plays a major role in ASL and BSS.

Consider reverberation as the sum total of all sound
reflections arriving at a certain point in a room after room has
been excited by impulse.
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Adaptive Eigenvalue Decomposition

Early and late reflections in an AIR.

Trivia: Perceive early reflections to reinforce direct sound, and
can help with speech intelligibility. It can be easier to hold a
conversation in a closed room than outdoors
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Adaptive Eigenvalue Decomposition

Room transfer functions are often nonminimum-phase since
there is more energy in the reverberant component of the RIR
than in the component corresponding to direct path.

Sound
Source

Reflected Paths

Direct Path

Received
Sound

θk

Demonstrating nonminimum-phase properties

Therefore AED will need to consider multiple peaks in the
estimated AIR.
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Direct Localisation Methods

Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω

Taking expectations, Φpq

(
ejωTs

)
= Wp

(
ejωTs

)
W ∗

q

(
ejωTs

)

E [S (x̂)] =
N∑

p=1

N∑

q=1

∫

Ω

Φpq

(
ejωTs

)
Pxpxq

(
ejωTs

)
ejωτ̂pqk dω

=
N∑

p=1

N∑

q=1

rxi xj
[τ̂pqk] ≡

N∑

p=1

N∑

q=1

rxi xj

[ |xk −mi| − |xk −mj |
c

]
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Steered Response Power Function
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SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at [2.0, 2.5]m. The grid density is set to 40 mm.
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Steered Response Power Function

An example video showing the SBF changing as the source
location moves.

Show video!
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Conceptual Intepretation

t0

rx1x2(t)

True TDOA

Incorrect TDOA

t0

t0

rx1x3(t)

rx2x3(t)

GCC-PHAT for different microphone pairs.

T (mi, mj , x̂k) =
|x̂k −mi| − |x̂k −mj |

c
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DUET Algorithm

The degenerate unmixing estimation technique (DUET)
algorithm is an approach to BSS that ties in neatly to ASL. Under
certain assumptions and circumstances, it is possible to separate
more than two sources using only two microphones.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

• Indirect TDOA-based

Methods
•Spherical Least Squares

Error Function
•Two-step Spherical LSE

Approaches

•Spherical Intersection

Estimator
•Spherical Interpolation

Estimator
•Other Approaches

•Hyperbolic Least Squares

Error Function
•Linear Intersection Method

•TDOA estimation methods

- p. 117/120

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

DUET Algorithm

The DUET algorithm is an approach to BSS that ties in neatly to
ASL. Under certain assumptions and circumstances, it is possible
to separate more than two sources using only two microphones.

DUET is based on the assumption that for a set of signals
xk[t], their time-frequency representations (TFRs) are
predominately non-overlapping. This condition is referred to
as W-disjoint orthogonality (WDO):

Sp (ω, t) Sq (ω, t) = 0 ∀p 6= q, ∀t, ω
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DUET Algorithm
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W-disjoint orthogonality of two speech signals. Original
speech signal (a) s1[t] and (b) s2[t]; corresponding STFTs (c)
|S1 (ω, t)| and (d) |S2 (ω, t)|; (e) product |S1 (ω, t)S2 (ω, t)|.
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DUET Algorithm

Consider taking a particular time-frequency (TF)-bin, (ω, t),
where source p is known to be active. The two received signals in
that TF-bin can be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)
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DUET Algorithm

Consider taking a particular TF-bin, (ω, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

Taking the ratio and ignoring the noise terms gives:

Hikp (ω, t) ,
Xip (ω, t)

Xjp (ω, t)
=

αip

αjp

e−jωτijp
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DUET Algorithm

Consider taking a particular TF-bin, (ω, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

Taking the ratio and ignoring the noise terms gives:

Hikp (ω, t) ,
Xip (ω, t)

Xjp (ω, t)
=

αip

αjp

e−jωτijp

Hence,

τijp = − 1

ω
argHikp (ω, t) , and

αip

αjp

= |Hikp (ω, t)|
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DUET Algorithm
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Illustration of the underlying idea in DUET.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the
mixtures.

6. Return each demixed TFR to the time domain.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

DUET for multiple sources.
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Effect of Reverberation and Noise
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The TFR is very clear in the anechoic environment but
smeared around by the reverberation and noise.
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Estimating multiple targets
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TDOA
estimates
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Flow diagram of the DUET-GCC approach. Basically, the
speech mixtures are separated by using the DUET in the TF

domain, and the PHAT-GCC is then employed for the
spectrogram of each source to estimate the TDOAs.
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GCC function from DUET approach and traditional PHAT
weighting. Two sources are located at (1.4, 1.2)m and (1.4,
2.8)m respectively. The GCC function is estimated from the
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Further Topics

Reduction in complexity of calculating SRP. This includes
stochastic region contraction (SRC) and hierarchical searches.

Multiple-target tracking (see Daniel Clark’s Notes)

Simultaneous (self-)localisation and tracking; estimating
sensor and target positions from a moving source.
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Acoustic source tracking and localisation.
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Further Topics

Joint ASL and BSS.

Explicit signal and channel modelling! (None of the material
so forth cares whether the signal is speech or music!)

Application areas such as gunshot localisation; other sensor
modalities; diarisation.
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