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Receiver
(Mic Array)

Noise

desired signals

Source 2

Source localisation and blind source separation (BSS). An

example of topics using statistical signal processing.
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Walls
<4— and other
obstacles

Sound
Source 3

Observer

Source 2 Source 1

Humans turn their head in the direction of interest in order
to reduce inteference from other directions; joint detection,
localisation, and enhancement. An application of probability

and estimation theory, and statistical signal processing.
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® This research tutorial is intended to cover a wide range of
aspects which cover the fundamentals of statistical signal

processing.

® This tutorial is being continually updated, and feedback is

welcomed. The hardcopy documents published or online may

differ slightly to the slides presented on the day:.

mal | t o: | anes. hopgood@ed. ac. uk

(Update: The notes are no longer online due to the desire to
maintain copyright control on the document.)

® Extended thanks to the many MSc students over the past 16
years who have helped improve these documents.

® The latest version of this document can be obtained from the
author, Dr James R. Hopgood, by emailing him at:
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White noise signal
T T T

Transfer Function for Gramophone Horn

Correlated noise signal
T T T

00 5000 6000
Frequency (Hz)

Source Signal
e.g. Clean Speech

Channel

e.g. Room Acoustics

Signal processing is concerned with the modification or
manipulation of a signal, defined as an
information-bearing representation of a real process, to

Observed Signal

e.g. Reverberant Speech

the fulfillment of human needs and aspirations.

It is assumed you have a grounding in DSP. This module will

take you to the next level; a tour of the exciting, fascinating, and
active research area of statistical signal processing.
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® Random signals are extensively used in algorithms, and are
® constructively used to model real-world processes;

® described using probability and statistics.
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Signal Processing ® Their properties are often estimated by assumming:

Probability Theory

® an infinite or large number of observations or data points;

Scalar Random Variables

Multiple Random Variables

® time-invariant statistics.
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® Their properties are often estimated by assumming:
® an infinite or large number of observations or data points;

® time-invariant statistics.

® In practice, these statistics must be estimated from short
finite-length data signals in noise.
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® Their properties are often estimated by assumming:
® an infinite or large number of observations or data points;

® time-invariant statistics.

® In practice, these statistics must be estimated from short
finite-length data signals in noise.

® This module investigates relevant statistical properties, how
they are estimated from real signals, and how they are used.
|

|
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Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.
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processing.

Module Objectives At the end of these modules, a student should
be able to have:

to provide a unified introduction to the theory,
implementation, and applications of statistical signal

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;
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processing.

Module Objectives At the end of these modules, a student should
be able to have:

. developed an understanding of the basic concepts and

to provide a unified introduction to the theory,
implementation, and applications of statistical signal

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;

methodologies in statistical signal processing that provides
the foundation for further study, research, and application

to new problems.
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PETARS Learning Outcomes On completion of this course:

® Define, understand and manipulate scalar and
multiple random variables, using the theory of
probability; this should include the basic tools of
probability transformations and characteristic
functions, moments, the central limit theorem (CLT)
and its use in estimation theory and the sum of
random variables.
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PETARS Learning Outcomes On completion of this course:

® Define, understand and manipulate scalar and
multiple random variables, using the theory of
probability; this should include the basic tools of
probability transformations and characteristic
functions, moments, the central limit theorem (CLT)
and its use in estimation theory and the sum of
random variables.

® Understand the principles of estimation theory, and
estimation techniques such as maximum-likelihood,
least squares, minimum variance unbiased
estimator (MVUE) estimators, and Bayesian
estimation; be able to characterise the estimator
using standard metrics, including the Cramér-Rao
lower-bound (CRLB).
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PETARS Learning Outcomes On completion of this course:

® Explain, describe, and understand the notion of a
random process and statistical time series, and

characterise them in terms of its statistical properties.
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PETARS Learning Outcomes On completion of this course:

® Explain, describe, and understand the notion of a
random process and statistical time series, and
characterise them in terms of its statistical properties.

® Define, describe, and understand the notion of the
power spectral density of stationary random
processes, and be able to analyse and manipulate
them; analyse in both time and frequency the affect
of transformations and linear systems on random
processes, both in terms of the density functions, and
statistical moments.
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PETARS Learning Outcomes On completion of this course:

® Explain the notion of parametric signal models, and
describe common regression-based signal models in
terms of its statistical characteristics, and in terms of
its affect on random signals; apply least squares,
maximum-likelihood, and Bayesian estimators to
model based signal processing problems.
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The key themes covered are:

review of the fundamentals of probability theory;

random variables and stochastic processes;
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The key themes covered are:

1. review of the fundamentals of probability theory;
2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;
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The key themes covered are:

1.

2.

review of the fundamentals of probability theory;

random variables and stochastic processes;

. principles of estimation theory;
. Bayesian estimation theory;
. review of Fourier transforms and discrete-time systems;

. linear systems with stationary random inputs, and linear

system models;

. signal modelling and parametric spectral estimation;
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S — 7. signal modelling and parametric spectral estimation;
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8. an application investigating the estimation of sinusoids in

Passive Target Localisation : | :

- p. 9/181




@ Course overview and
exemplar applications

Aims and Objectives

Structure of the Module

@ Obtaining the Latest

Handouts
® Introduction and Overview

® Module Abstract
@ Description and Learning

Outcomes
@ Structure of the Module

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

— End-of-Topic 1: Course description, learning
outcomes, and prerequisites —

Any Questions?
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Passive and Active Target Localisation

A number of signal processing problems rely on knowledge of
® Gt ovsrewjand the desired source position:

exemplar applications

Aims and Objectives

1. Tracking methods and target intent inference.

Signal Processing

@ Passive and Active Target

B i 2. Estimating mobile sensor node geometry.
Methodology
® Source Localization

Strategies
@ Geometric Layout 3

. Look-direction in beamforming techniques (for example in
Ideal Free-field Model
o Indirct e difeence of speech enhancement).

arrival (TDOA)-based

Methods
® Hyperbolic Least Squares

Error Function 4. Camera steering for audio-visual BSS (including Robot

® TDOA estimation methods

® GCC TDOA estimation A'U_dition) .

[ J
generalised cross
correlation (GCC)

Processors
® Direct Localisation 5

Methods
® Steered Response Power

. Speech diarisation.

Function
® Conclusions

o Probabilty; Randon ® Passive localisation is particularly challenging.

Variables, and Estimation
Theory

Probability Theory

: |
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® Direct Localisation
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® Steered Response Power

Function
® Conclusions

@® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

I Multinle Random Variables

Sensors
(microphones)

xllj‘n] x#n] x[n]  x,[n]

m,

Direct
paths
Sound
Source
s[n]

Ideal free-field model.

® Most passive target localisation (PTL) techniques rely on the
fact that an impinging wavefront reaches one sensor before it
reaches another (spatio-temporal diversity).

Estimation Theory
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Variables, and Estimation
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Probability Theory

Scalar Random Variables

I Multinle Random Variables

Sensors
(microphones)

xllj‘n] x#n] x[n]  x,[n]

m,

Direct
paths
Sound
Source
s[n]

Ideal free-field model.
® Most PTL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another

(spatio-temporal diversity).

® Many PTL algorithms are designed assuming there is no

multipath or reverberation present, the free-field assumption.

Estimation Theory
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Function
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Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

I Multinle Random Variables

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

® ]location estimate derived directly from a filtered, weighted,
and summed version of the signal data;

Estimation Theory
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Probability Theory

Scalar Random Variables

I Multinle Random Variables

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

® ]location estimate derived directly from a filtered, weighted,
and summed version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

® any localisation scheme relying upon an application of the
signal correlation matrix;

Estimation Theory
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

@ Course overview and
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1. those based on maximising the steered response power (SRP)
of a beamformer:

Aims and Objectives

Signal Processing

@ Passive and Active Target
Localisation

S ® ]location estimate derived directly from a filtered, weighted,
ethodology 5 o
S Do and summed version of the signal data;

@ Geometric Layout
@ Ideal Free-field Model

® indirec OO bised 2. techniques adopting high-resolution spectral estimation
concepts:

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors

® Direct Localsaion ® any localisation scheme relying upon an application of the
signal correlation matrix;

® Steered Response Power

Function
® Conclusions

@® Probability, Random

men 3. approaches employing TDOA information:
Probability Theory
Scalar Random Variables ® source locations calculated from a set of TDOA estimates
Al B v measured across various combinations of sensors. |
-p. 13/181
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Geometric Layout

s Targets Sensors
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Aims and Objectives

Signal Processing

@ Passive and Active Target
Localisation

@ Passive Target Localisation
Methodology

@ Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

@ Indirect TDOA-based
Methods

o Fiyperbolic Leas Squares Geometry assuming a free-field model.

Error Function
® TDOA estimation methods

® GCC TDOA estimation .
® GGG Processors Suppose there is a:
@ Direct Localisation

Methods
® Steered Response Power

Function ® sensor array consisting of N nodes located at positions

® Conclusions

@® Probability, Random m'L E RB, for ’I, E {O, 0 0 O ,N - ].},

Variables, and Estimation

Theory

brobability Theory ® )/ talkers (or targets) at positions x;, € R?, for
Scalar Random Variables k E {07 ) M T 1}'

I Multinle Random Variables I

| |
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Geometric Layout

s Targets Sensors
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Aims and Objectives

Signal Processing

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

@ Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

@ Indirect TDOA-based
Methods

o Fiyperbolic Leas Squares Geometry assuming a free-field model.

Error Function
® TDOA estimation methods

® GCC TDOA estimation

® GCC Procesors The TDOA between the sensor node at position m; and m; due
® Direct Localisation
Methods to a source at x; can be expressed as:

® Steered Response Power

Function
® Conclusions

S L T (g, my, xp) 2 Ty () = 2ok = il = P = 1|

Theory C

Probability Theory

where c is the speed of the impinging wavefront.

Scalar Random Variables

I Multinle Random Variables I

| |
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Methods
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® Direct Localisation
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@® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

I Multinle Random Variables

® In an anechoic free-field environment, the signal from source
k, denoted s (t), propagates to the i-th sensor at time ¢ as:

ik (t) = ik Sk(t — Tix) + bik(t)

where b;;(t) denotes additive noise, and ay, is the
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® The additive noise source is assumed to be uncorrelated with
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ik (t) = ik Sk(t — Tix) + bik(t)

where b;;(t) denotes additive noise, and ay, is the
attenuation.

® Note that, in the frequency domain, this expression becomes:
Xk (w) — ik Sk (w) e IWTik + B (w)

® The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.

® The TDOA between the i-th and j-th sensor is given by:

Tijk = Tik — Tjk = 1 (m;, m;, xi)
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
SENSor.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.

® An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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® If a TDOA is estimated between two sensor nodes 7 and j,
then the error between this and modelled TDOA is

€(Xk) = Tijr — T (my, my, xi)

® The total error as a function of target position

N N N N
=2 D el =) D (e — T (my, my, x))°
1=1 j#i=1 1=1 j#i=1
where
X — 1My | — | X — Iy
T (my, my, x;) = Ty (x5) = | : c| !

® Unfortunately, since 7' (m;, m;, x5 ) is a nonlinear function o
X1, the minimum least-squares estimate (LSE) does not
possess a closed-form solution.

f
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algorithm.
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environments.
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Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

® computationally efficient, and hence short decision delays;

® perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

® fail when multipath is high;

® focus of current research is on combating the effect of
multipath.
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Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

AED Algorithm Approaches the TDOA estimation approach from a
different point of view from the traditional GCC method.

® adopts a multipath rather than free-field model,;
® computationally more expensive than GCC;

® can fail when there are common-zeros in the channel.
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The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

® The TDOA estimate between two microphones ¢ and j
Tij = arg MAX Ty, /]
® The cross-correlation function is given by
T z; L] = F1 (<I> (eijs) Py ., (eijs))
where the cross-power spectral density (CPSD) is given by

Pray (€77°) = E [X1 (€™77) Xz (e7)]

1T2
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The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

® The TDOA estimate between two microphones ¢ and j
Tij = arg MAX Ty, /]
® The cross-correlation function is given by
T z; L] = F1 (<I> (eijs) Py ., (eijs))
where the CPSD is given by
Py o <€ij5) ) [Xl (ejWTS) e <€ijs)]
® For the free-field model, it can be shown that:

LPpz,; (W) = —jwT (m;, mj;, Xg)

Estimation Theory

- p. 19/181



@ Course overview and
exemplar applications

Aims and Objectives

GCC Processors

Signal Processing

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout

® Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
® Steered Response Power

Function
® Conclusions

@® Probability, Random
Variables, and Estimation
Theory

Probability Theory

Scalar Random Variables

I Multinle Random Variables

Processor Name

Frequency Function

Cross Correlation

PHAT

Roth Impulse Response

SCOT

Eckart

Hannon-Thomson or ML

where v, ., (e/“%+) is the normalised CPSD or coherence

function
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® Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

® However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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The steered beamformer (SBF) or SRP function is a measure of

correlation across all pairs of microphone signals for a set of
relative delays that arise from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a

spatial position %X, such that 7, = |Xx — m,,|:

2

N
S (ﬁ) — / ZWP <€ij3) Xp <€ij5) ejw Tiol dw

o Ip=l
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The SBF or SRP function is a measure of correlation across all

pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position %X, such that 7,; = |Xx — m,,|:
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SBF response
N
o
o
/

2 .
y—coordinate/m - 1

3
2

x—coordinate/m

SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at (2.0, 2.5]m. The grid density is set to 40 mm.
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To fully appreciate the algorithms in PTL, we need:

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.

4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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To motivate the need for probability theory, consider the simplest

of problems in the presence of uncertainty:.

How many water taxis are there in Venice?
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How does your answer change when you see more taxis?

Stochastic Processes
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Kernel density estimation for modelling observation data.

® The notion of probability and random variables;

® The notion of probability density functions (pdfs);
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What tools are needed to study this problem?

Histogram of Data with KDE (red) and Population Density
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Kernel density estimation for modelling observation data.

® The notion of probability and random variables;
® The notion of probability density functions (pdfs);

® The notion of independence of observations;

® The notion of estimation theory & uncertainty quantification.

These will be studies in turn throughout this course; we will start

off looking at the basics of probability.
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Students are exposed to probability at school from a relatively
young age. It is not the intention of this course to go over basic
probability again. Instead, the purpose is to:

® enhance a fundamental understanding of probability that
enable us develop more complex concepts;

® identify limitations of classical definitions;

® reaffirm that intuition with regards to probability is often
wrong; careful and systematic analysis is often needed.

Is the infamous Monty-Hall problem counter-intuitive?
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® The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

® e.g. signal/anomaly detection, parameter estimation, ...

® Starting from probability of individual events, can develop a

probabilistic framework for analysing signals.
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Average dice roll vs number of rolls
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Illustrating law-of-large numbers through throwing dice.

® Start by observing certain averages approach a constant value
as the number of observations increases; and remains

constant even if evaluated over any specified sub-sequences.
|
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Illustrating law-of-large numbers through throwing dice.

As the number of rolls in the sequence increases, the average of
the values of all the results approaches the theoretical mean

1 6 _
valueof z » ,_, k= 3.5.
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Illustrating law-of-large numbers through throwing dice.

It follows from the law of large numbers that the empirical
probability of success in a series of Bernoulli trials will converge
to the theoretical probability.
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If an experiment is performed n times, and the event A
occurs n 4 times, then with a high degree of certainty, the
relative frequency 74 /n is close to Pr (A), such that:

Pr(A) ~ A
n

provided that n is sufficiently large.

This is the empirical probability, or relative frequency,
and is an estimator of probability.

Note this frequentist interpretation and language is imprecise.
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If an experiment is performed n times, and the event A
occurs n 4 times, then with a high degree of certainty, the
relative frequency 74 /n is close to Pr (A), such that:

Pr(A) ~ A
n

provided that n is sufficiently large.

This is the empirical probability, or relative frequency,
and is an estimator of probability.

Note this frequentist interpretation and language is imprecise.

® Moreover, another problem with this definition is that it
implies an experiment needs to be performed in order to
define a probability. In the next set of slides, we will move
away from this restriction.
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— End-of-Topic 11: Introduction to Probability,
The Law-of-Large Numbers, and Empirical
Probability —

Any Questions?
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For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an

event A is determined a priori without actual experimentation.
is given by the ratio:

where:

® N is the total number of outcomes,

® and N4 is the total number of outcomes that are favourable
the event A, provided that all outcomes are equally probable.

It

to

Stochastic Processes
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For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determined a priori without actual experimentation. It
is given by the ratio:

where:

® N is the total number of outcomes,

® and N4 is the total number of outcomes that are favourable to

1

2

the event A, provided that all outcomes are equally probable.

. Probability of a specific number rolled on a six-sided die (1/6);

. Probability of rolling an even number on a six-sided die (3/s).
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1. The term equally probable in the definition of probability is

making use of a concept still to be defined!

Stochastic Processes
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1. The term equally probable in the definition of probability is

making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the

probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.

Stochastic Processes

- p. 29/181



Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
Gt oz making use of a concept still to be defined!

exemplar applications

Aims and Objectives

2. The definition can only be applied to a limited class of
problems.

Signal Processing

Probability Theory

@ Introduction
® The Notion of Probability

o Classical Defniion of In the die experiment, for example, it is applicable only if the

Probability

o Difculties wih the six faces have the same probability. If the die is loaded and the
Classical Definition

o biscusson: Bertrand probability of a “4” equals 0.2, say, then this cannot be

Paradox

® Axiomatic Definition determined from the classical ratio.

@ Properties of Axiomatic
Probability

® Set Theory

ocomalespessandmal 3 [f the number of possible outcomes is infinite, then some other

Probability

e e iy measure of infinity for determining the classical probability
o Bayes' e ratio is needed, such as length, or area. This leads to
Scalar Random Variabes difficulties, such as Bertrand’s paradox.

Multiple Random Variables

Estimation Theory

;| MonteCarlo l
1

| |
- p. 29/181

Stochastic Processes




@ Course overview and
exemplar applications

Aims and Objectives

Discussion: Bertrand’s Paradox

Signal Processing

Probability Theory

@ Introduction

® The Notion of Probability

@ Classical Definition of
Probability

@ Difficulties with the

Classical Definition
® Discussion: Bertrand’s

Paradox
@ Axiomatic Definition

@ Properties of Axiomatic
Probability

® Set Theory

® Countable Spaces and Total
Probability

® The Real Line

® Conditional Probability

@ Bayes’s Rule

Scalar Random Variables

Multiple Random Variables

Estimation Theory

;| MonteCarlo
1

The Bertrand paradox is a problem within the classical
interpretation of probability theory.

Consider a circle C' of radius r; what is the probability p that the

length /¢ of a randomly selected cord AB is greater than the
length, /3, of the inscribed equilateral triangle?

Circle C
B -
A

Bertrand’s paradox, problem definition.

Stochastic Processes
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® In the random midpoints method, a cord is selected by
choosing a point M anywhere in the full circle, and two
end-points A and B on the circumference, such that the
resulting chord AB through these chosen points has M as its
midpoint.

N
Yy
N[ =3
SN——"
[\
—_

Different selection methods.

Stochastic Processes
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® In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

Different selection methods.

Stochastic Processes
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#® Finally, in the random radius method, a radius of the circle is

chosen at random, and a point on the radius is chosen at

random. The chord AB is constructed as a line perpendicular

to the chosen radius through the chosen point.

_7“_1
P=5,. 773

(VD

N N\
A\/ R \/B
\\v/

\/ Av .
Different selection methods.

There are three different reasonable solutions. Which is valid?
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IS

W

than the length, /3, of the inscribed equilateral triangle?

3.

N[ =

4. Need more information.

Stochastic Processes
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Example (Multi-choice). Consider a circle of radius ». What is the

probability that the length of a randomly selected cord is greater

than the length, /3, of the inscribed equilateral triangle?

3.

=
N[ =

4. Need more information.

W

The solution to this paradox is indeed quite complicated, and has
been discussed in a number of research papers! A discussion will

take place in the hybrid classes, but if you are interested in
finding out more, you are encouraged to look into this further.

Stochastic Processes
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— End-of-Topic 12: Awareness of the difficulties
with the Classical Definition of Probability —

Any Questions?
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Impossible Event The probability of the impossible event is 0O:
Pr(0) =0

Complements Since AU A = S and AA = {0}, then
Pr(AUA) =Pr(A) +Pr(A) =Pr(S) =1, such that:

Pr(A) =1—Pr(A)

Stochastic Processes
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Impossible Event The probability of the impossible event is 0O:

Pr (0)

Complements Since AU A = S and AA = {0}, then
Pr(AUA) =Pr(A) +Pr(A) =Pr(S) =1, such that:

Pr(A) =1—Pr(A)

Sum Rule The addition law of probability or the sum rule for

=0

any two events A and B is given by:

Pr(AUB)=Pr(A)+Pr(B)—-Pr(ANBDB)

A

Certain Event
S

Stochastic Processes

EventA N B
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Example (Sum Rule). Let A and B be events with probabilities
Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.
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Example (Sum Rule). Let A and B be events with probabilities
Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.

SOLUTION. Using the sum rule, that:

Pr(AB) =Pr(A)+Pr(B)-Pr(AUB) > Pr(A)+Pr(B)—1 =

which is the case when the whole sample space is covered by
the two events.

Stochastic Processes

- p. 32/181



@ Course overview and
exemplar applications

Aims and Objectives

Properties of Axiomatic Probability

Signal Processing

Probability Theory

@ Introduction

® The Notion of Probability

@ Classical Definition of
Probability

@ Difficulties with the

Classical Definition
® Discussion: Bertrand’s

Paradox
@ Axiomatic Definition

@ Properties of Axiomatic
Probability

® Set Theory

® Countable Spaces and Total
Probability

@ The Real Line

® Conditional Probability

® Bayes’s Rule

Scalar Random Variables

Multiple Random Variables

Estimation Theory

;| MonteCarlo
1

Example (Sum Rule). Let A and B be events with probabilities
Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.

SOLUTION. Using the sum rule, that:

Pr(AB) =Pr(A)+Pr(B)-Pr(AUB) > Pr(A)+Pr(B)—1 =

which is the case when the whole sample space is covered by
the two events.

® The second bound occurs since AN B C B and similarly
AN B C A, where C denotes subset. Therefore, it can be
deduced Pr (A B) < min{Pr(A), Pr(B)} = 1/s.

]

Stochastic Processes
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— End-of-Topic 13: Properties of axiomatic
probability theory, and an interesting
example —

Any Questions?

Stochastic Processes
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Unions & Intersections Unions and intersections are commutative,
associative, distributive:

AUB=BUA, (AUB)UC=AU(BUC)
AB =BA, (AB)C = A(BC), ABUC)=ABUAC
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Unions & Intersections Unions and intersections are commutative,

associative, distributive:

AUB=BUA, (AUB)UC=AU(BUC)
A(BUC)=ABUAC

AB = BA, (AB)C = A(BO),

Complements The complement A of a set A C S is the set
consisting of all elements of S that are not in A. Note that:

AUA=S and ANA=AA= {0}

7

Certain Event
S

EV_ent

Stochastic Processes
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Partitions A partition U of a set S is a collection of mutually
exclusive subsets A; of S whose union equates to S

UAZ:S, AimAj:{(D}a i E] = U:[Ala---aAn]

1=1

Certain Event
S

Stochastic Processes
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Partitions A partition U of a set S is a collection of mutually
exclusive subsets A; of S whose union equates to S

oo

1=

De Morgan's Law Using Venn diagrams, it it can be shown

AUB=ANB=AB

and ANDB

AB=AURB

A

Certain Event
S

Event4 U B

UAZ:S, AimAj:{(D}a i E] = U:[Ala---aAn]
1
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Partitions A partition U of a set S is a collection of mutually

exclusive subsets A; of S whose union equates to S

oo

1=

De Morgan's Law Using Venn diagrams, it it can be shown

AUB=ANB=AB and AnB=AB=AUB

As an application of this, note that:

AU BC

= AUBC

UAZ:S, AimAj:{(D}a i E] = U:[Ala---aAn]
1

Stochastic Processes
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De Morgan's Law Using Venn diagrams, it it can be shown
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Sl B As an application of this, note that:

Probability Theory

@ Introduction
® The Notion of Probability - -
® Classical Definition of - -
Gl AUBC=ABC=A(BUC)
@ Difficulties with the

o Dicvsion: Baands = (AB)U(AC)=AUBUAUC
(AU U

Paradox

@ Axiomatic Definition

@ Properties of Axiomatic j A U B O — B ) (A O)
Probability

@ Set Theory

® Countable Spaces and Total
Probability

® The Real Line

® Conditional Probability
@ Bayes’s Rule

Certain Event
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Example (Proof of the Sum Rule). Prove the addition law of
probability (or sum rule), namely:

SOLUTION.

Pr(AUuB)=Pr(A)+Pr(B)-Pr(AnB)
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Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write each of AU B and B as the union of two
mutually exclusive events.

® First, to write A U B in this way, use S:
AUB=S(AUB)=(AUA)(AUB) =AU (AB)

Since the intersection AN (AB) = (AA) B = {0}B = {0},
then A and A B are mutually exclusive events, as required.

® Second, and using a similar approach, note that:

B=SB=(AUA)B=(AB)U(AB)

[]

Since the intersection (AB)N (AB) = AAB = {0} B = {0}

and are therefore mutually exclusive events.

Stochastic Processes
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Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr(AUB) =Pr(AU(AB)) =Pr(A4)+Pr(AB)
Pr(B) =Pr ((AB)U(AB)) =Pr(AB)+Pr(AB)

Stochastic Processes
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Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr(AU B)
Pr(B)

Pr(AU (AB)) =Pr(A) +Pr(AB)
Pr((AB)U(AB)) =Pr(AB) +Pr(AB)

Eliminating Pr (Z B) by subtracting these equations gives the
desired result:

Pr(AUB) —Pr(B)=Pr(AU (AB)) =Pr(4)—Pr(4B) O

Stochastic Processes
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— End-of-Topic 14: Set theory and its used in
probability theory. —

Any Questions?

Stochastic Processes
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Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the

second child to get a third, and the third child to get a ninth. As

seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

Stochastic Processes
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Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the

second child to get a third, and the third child to get a ninth. As

seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

X

However, a local statistician lends them a horse so that they have

eighteen. The children then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.

Stochastic Processes
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Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the

second child to get a third, and the third child to get a ninth. As

seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

X

However, a local statistician lends them a horse so that they have

eighteen. The children then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.

What is wrong with this story?

Stochastic Processes
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If the certain event, S, consists of NV outcomes, and N is a finite

number, then the probabilities of all events can be expressed in
terms of the probabilities Pr ((;) = p; of the elementary events

{Gi}-

From the basic axioms, it follows that p; > 0 and that

N
> pi=1
o=

Stochastic Processes

- p. 34/181



@ Course overview and
exemplar applications

Aims and Objectives

Countable Spaces and Total Probability

Signal Processing

Probability Theory

@ Introduction

® The Notion of Probability

@ Classical Definition of
Probability

@ Difficulties with the

Classical Definition
® Discussion: Bertrand’s

Paradox
@ Axiomatic Definition

@ Properties of Axiomatic
Probability

® Set Theory

® Countable Spaces and Total
Probability

@ The Real Line

® Conditional Probability

@ Bayes’s Rule

Scalar Random Variables

Multiple Random Variables

Estimation Theory

;| MonteCarlo
1

probability.

P Let Al, AQ, Ag, ..
mutually exclusive and collectively exhaustive events, then

From the basic axioms, it follows that p; > 0 and that

N
> pi=1
o=

® This can be used in obtaining the principle of total

. be a finite or countably infinite set of

> Pr(4;NB) =Pr(B)

If the certain event, S, consists of NV outcomes, and N is a finite
number, then the probabilities of all events can be expressed in
terms of the probabilities Pr ((;) = p; of the elementary events

{Gi}-

Stochastic Processes
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Certain Event
S

® This can be used in obtaining the principle of total
probability.

® Let Ay, Ay, A3, ... be a finite or countably infinite set of
mutually exclusive and collectively exhaustive events, then

Y Pr(4;NB) =Pr(B)

Stochastic Processes
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After this lecture, try the following example in the notes:

Example (Detection and Classification). ~ An acoustic scene analysis
algorithm is monitoring animal sounds, and makes sound
classifications, either being labelled as bird, fox, or pet sounds.

® 29% of the detected sounds are false alarms;

® 3% of labelled bird sounds are false alarm detections;
® 12% of detected bird sounds are correctly labelled;

® 5% of labelled fox sounds are false alarm detections;

® 32% are correct detections of domestic pet sounds.

The following events are defined: correctly classified — C;
mis-classified — M; bird sound — B; fox sound - F'; pets — D.

Stochastic Processes
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Probabili
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o Discusson: Bertrandss 1. What is the probability that a detection is classified as a bird
Paradox

® Axiomaric Definiton sound, either correctly or incorrectly?

@ Properties of Axiomatic
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® Set Theory

ecomblespcesand ol 2 What is the probability that a detection is a false alarm and/or

Probability

® The Real Line a labelled bird sound?

® Conditional Probability
@ Bayes’s Rule

Scalar Random Variabls 3. What is the probability that a sound is correctly classified as a
fox or domestic pet sound?

Multiple Random Variables

Estimation Theory

4. What is the probability of a false alarm for a pet sound?

;| MonteCarlo l
1

| |
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Stochastic Processes
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < 29, and their countable unions and intersections.

Stochastic Processes
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < 29, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x < x;}.

Stochastic Processes
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < 29, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x < x;}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.

Stochastic Processes
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— End-of-Topic 15: Countable Spaces, Total
Probabilities, and Uncountable Spaces on the
Real line -

Any Questions?

Stochastic Processes
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If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.

Stochastic Processes
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If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences two events A and B are

observed. Suppose that only those outcomes for which B occurs

are considered, and all other experiments are disregarded.

In this smaller collection of trials, the proportion of times that A
occurs, given that B has occurred, is:

Pr(A‘B)%

NAB

np

nas/n _ Pr(AB)

TLB/n

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov

Axioms.

Pr(B)

Stochastic Processes
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Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?
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Example (Two Children).

A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or
female, and it is assumed that each is equally likely.

%!

C

Outcome

Gender

Gender

Relevant?

Desired?

B

B

v

v

v

v

QIO

B
G
G

Count

3

1

Therefore, using classical probability, since the events are all
equally probable, the answer is p = Na/N = 1/3,
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Conditional probability leads onto Bayes’s theorem.

Pr(AB) =Pr (A|B)Pr(B) =Pr(B|A)Pr(A)
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Conditional probability leads onto Bayes’s theorem.

giving

Pr (B|A) =

Pr(AB) =Pr (A|B)Pr(B) =Pr(B|A)Pr(A)

Pr (A|B) Pr(B)

Pr(A)
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Conditional probability leads onto Bayes’s theorem.

giving

® Bayes’s rule will be used throughout this course, and

Pr (B|A) =

Pr(AB) =Pr (A|B)Pr(B) =Pr(B|A)Pr(A)

Pr (A|B) Pr(B)

Pr(A)

commonly arises in the analysis of signal and communication
systems, machine learning, and data science.

® Bayesian inference is typically a computationally expensive

problem, but can be solved efficiently using graphical models,

sparsity, and numerical Bayesian methods such as Monte

Carlo and Message Passing techniques.
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- p. 37/181



@ Course overview and
exemplar applications

Aims and Objectives

Bayes’s Rule

Signal Processing

Probability Theory

@ Introduction
® The Notion of Probability
® Classical Definition of

Probability
@ Difficulties with the

Classical Definition
® Discussion: Bertrand’s

Paradox
@ Axiomatic Definition

@ Properties of Axiomatic
Probability

® Set Theory

® Countable Spaces and Total

Probability
® The Real Line

® Conditional Probability
@ Bayes’s Rule

Scalar Random Variables

Multiple Random Variables

Estimation Theory

;| MonteCarlo
1

Example (Prisoner’s Problem). Three prisoners, A, B and C, are in
separate cells. The governor has selected one of them at random
to be pardoned. The warden knows which one is to be released,
but is not allowed to say. Prisoner A begs the warden to be told

the identity of one of the others who will not be released.

Prisoner A says: If B is to be pardoned, give me C’s name,
and vice-versa. And if I'm to be pardoned, flip a coin to
decide whether to name B or C.

The warden tells A that B will not be released.

Stochastic Processes
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Example (Prisoner’s Problem). Three prisoners, A, B and C, are in
separate cells. The governor has selected one of them at random
to be pardoned. The warden knows which one is to be released,
but is not allowed to say. Prisoner A begs the warden to be told

the identity of one of the others who will not be released.

Prisoner A says: If B is to be pardoned, give me C’s name,
and vice-versa. And if I'm to be pardoned, flip a coin to
decide whether to name B or C.

The warden tells A that B will not be released.

Prisoner A believes that the probability of being released has
gone up from 1/3 to 1/2, as it is now between A and C'. Prisoner
tells C' the news, who reasons that A still has a chance of 1/3 to

A

be the pardoned one, but C’s chance has gone up to 2/3. What is

the correct answer?
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Example (Prisoner’s Problem).
pardoned, give me C’s name, and vice-versa. And if I'm to be

Prisoner A says: If B is to be

pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. Solve using total probability and Bayes’s theorem.

® Let A, B, and C be the events that the corresponding prisoner

will be pardoned.

® Note that A, B, and C are independent events, before the

warden has provided any information.

® lLet b be the event that the warden tells A that B is not to be

released.
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Example (Prisoner’s Problem).

pardoned, give me C’s name, and vice-versa. And if I'm to be

Prisoner A says: If B is to be

pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. Using Bayes’s theorem, it follows that:

Pr(A‘b):

Pr(b|A) Pr(4)

Pr (b)
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Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C’s name, and vice-versa. And if I'm to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. Using the principal of total probability:

Z Pr (b,17)

i€{A,B,C}
= Pr (b, A) + Pr (b, B) + Pr (b,C)
=Pr(b| A)Pr(A) +Pr (b| B) Pr(B) +Pr (b|C) Pr(C)
1 1 1

1 1
RN VIS RV
5 X3 TUXgTixg=3

Pr (b)

]
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Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C’s name, and vice-versa. And if I'm to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. ® If A is to be released, the warden can tell A either

B or C through the toss of the coin=Pr (b| 4) = 3.

® If C is to be released, the warden is now constraned to say B

will not be released, so Pr (b | C) = 1.

[]
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o set Theor will not be released, so Pr (b | C) = 1.
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® Classical Definition of

e SOLUTION. ® If A is to be released, the warden can tell A either
e B or C through the toss of the coin=Pr (b| 4) = 3.

Paradox
@ Axiomatic Definition

® Propertis of Axiomatic ® If C is to be released, the warden is now constraned to say B

Probability

o set Theor will not be released, so Pr (b | C) = 1.

® Countable Spaces and Total

Probability
@ The Real Line
® Conditional Probability

@ Bayes’s Rule l
Pr (A|b) = Pr(b|A) Pr(4) _ 3

Wl

Scalar Random Variables

NI X

Multiple Random Variables

(
Estimation Theory Pr ( C ‘ b) — )( —

;| MonteCarlo
1

|—U
=
S
N——"
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Wl
Wl Do | =
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Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C’s name, and vice-versa. And if I'm to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. The tendency of people to provide the answer 1/2

neglects to take into account that the warden may have tossed a
coin before giving an answer. The warden may have answered B

because either:

® A is to be released and the wardan tossed a coin;

® or (' is to be released.

The probabilities of these two events are not equal.
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After this lecture, try the following example in the notes:

Normal Rhythm

1000 T
- QRS
>
£
2 500
2
=
S
<
ok
Il 1 Il Il Il
4000 4200 4400 4600 4800 5000 5200
Atrial Fibrillation
1500 T T
N
E 1000
()
=}
2
3 500
£
<
ok
| f | ]
4000 4200 4400 4600 4800 5000 5200

Samples

Example (Classification Accuracy).  An algorithm using
electrocardiogram (ECG) data is used to test for a certain

irregular heartbeat and is 95% accurate. A person submits to the
test and the results are positve. Suppose the person comes from

a population of 10°, where 2000 people suffer the irregularity.

Stochastic Processes
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Normal Rhythm

1000

500 [

Amplitude (mV)

QRS

4000

Il
4200

1
4400

Atrial Fibrillation
T T

Il Il Il
4600 4800 5000 5200

1500

1000 -

500

Amplitude (mV)

4000

I
4200

4400

Example (Classification Accuracy).

electrocardiogram (ECG) data is used to test for a certain

{ I N
4600 4800 5000 5200

Samples

An algorithm using

irregular heartbeat and is 95% accurate. A person submits to the
test and the results are positve. Suppose the person comes from

a population of 10°, where 2000 people suffer the irregularity.

What can we conclude about the probability that the person
under test has that particular heartbeat irregularity?

Stochastic Processes
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— End-of-Topic 16: Conditional Probability, and
a basic but important Introduction to Bayes
Rule -

Any Questions?

[=]

[=]

[=]
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Physical
Experiment

N > R
X,=

X(C)—s > R

X(G)

o> R

x,=4

Abstract
sample space, S

real number line

A graphical representation of a random variable for a more
specific example.

® Note that for continuous random variables, the outcomes
are events, such as small intervals on the real axis as
described in the previous lecture.

|
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A random variable (RV) X ({) is a mapping that assigns a real
number X € (—oo, 00) to every outcome ¢ from an abstract
probability space.

1. the interval { X ({) < x} is an event in the abstract probability
space for every x € R;

2. Pr(X(¢) = c0) = 0 and Pr (X (¢) = —o0) = 0.

® The second condition states that, although X (() is allowed to
take the values x = +oo, the outcomes form a set with zero
probability:.

|
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Example (Rolling die). Consider rolling a die, with six outcomes
{¢i, € {1,...,6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X (() is given by:

X(C1) =X((3) =X(¢s) =0 and X((2) = X(Ca) = X(G) =1

|
Power Spectral Density
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Example (Rolling die). Consider rolling a die, with six outcomes
{¢i, € {1,...,6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X (() is given by:

X(C1) =X((3) =X(¢s) =0 and X((2) = X(Ca) = X(G) =1

Example (Letters of the alphabet). Suppose the outcome of an
experiment is a letter A to Z, such that X (A4) =1,

X(B) =2, ..., X(Z) = 26. Then the event X ({) < 5 corresponds
to the letters A, B, C, D, or E.

|
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‘ >

The cumulative distribution function.

® The probability set function Pr (X ({) < x) is a function of
the set { X ({) < x}, and therefore of the point x € R.

|
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‘ >

The cumulative distribution function.

® The probability set function Pr (X ({) < x) is a function of
the set { X ({) < x}, and therefore of the point x € R.

® This probability is the cumulative distribution
function (cdf), F'x () of a RV X ((), and is defined by:

Fx (z) = Pr(X(¢) < z)

|
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‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x| is given by:
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‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x| is given by:

® For small intervals, it is clearly apparent that gradients are
important.
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Pr(X< x,) T
dF (x)/dx| _ .~

4 Fy(x)

,,,,, ?

>

X, X,Tox

The gradient of the cdf is important, and leads to the pdf.

This can be seen by setting z,, = x; + dx:

X

Pr(zy < X({) <xp+dx) =Pr(X(() <zxy+dx) — Pr(X(() < xy)

~ Pr(X(C) <) +

dFX (ZU)
dx

2
>,
8

CZFX (ZE)

dx

T=xy

dx — Pr(X(¢) < xy)
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AL
Pr(X < x+8x) | Fx) ¥
PriX<x) .o

dF (x)/ dx | .1

>
X, x,+0x X

The gradient of the cdf is important, and leads to the pdf.

This can be seen by setting z,, = x; + dx:

Pr(zy < X({) <xp+dx) =Pr(X(() <zxy+dx) — Pr(X(() < xy)

CZFX (ZE)

%PI(X(C) SZEK)—I— I

dx — Pr(X(¢) < xy)

rT=xy
dFX (ZE)
dx

2
>,
8

dFX (CC)

Shortly, it will be seen that is indeed the pdf.

|
Power Spectral Density

|
- p. 40/181



@ Course overview and
exemplar applications

Aims and Objectives

Kolmogorov’s Axioms

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

The events { X (¢) < x1} and {z; < X({) < x5} are mutually
exclusive events. Therefore, their union equals { X ({) < x5}, and
thus:

Pr(X({) <z1)+Pr(z1 < X({) <x3) =Pr(X(() < x3)

/991 p(v) dv+ Pr(z; < X(¢) < x9) :/x2p(v) dv

— 00 — 00
L2

= P <X(Q <o) = [

Z1

where p (v) is an probability density function (pdf) that will be
described in more detail in the next section.

Moreover, it follows that Pr (—oco < X ({) < c0) = 1 and the
probability of the impossible event, Pr (X ({) < —oco) = 0. Hence,
the cdf satisfies the axiomatic definition of probability.
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@ Course overview and
exemplar applications

Aims and Objectives

Kolmogorov’s Axioms

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

— End-of-Topic 17: Introduction to Random
Variables and Cummulative Distribution
Functions —

Any Questions?
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

It was seen in the previous section that gradients of the cdf are
important when determining the probability of being within
small intervals.

® The probability density function (pdf) of a RV, X ((), is:

é dFX (ZU)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Ax = Fx (r+ Ax)—Fx (z) ~ Pr(x < X({) < x + Ax)
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

It was seen in the previous section that gradients of the cdf are
important when determining the probability of being within
small intervals.

® The probability density function (pdf) of a RV, X ((), is:

é dFX (ZB)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Ax = Fx (r+ Ax)—Fx (z) ~ Pr(x < X({) < x + Ax)

® It directly follows that:

Fx() = [ ; Fx(v) do

|
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Density functions

® For discrete-valued RV, use the probability mass
® ol orerien and function (pmf), p;, the probability that X () takes on a value

exemplar applications
equal to z: pr = Pr (X (¢) = ).

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables
® Definition
@ Distribution functions

@ Kolmogorov’s Axioms
@ Density functions
® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

|
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

® For discrete-valued RV, use the probability mass
function (pmf), p;, the probability that X () takes on a value

equal to z: pp = Pr (X (¢) = ).

The pmf for a discrete RVs can be written as a pdf through:
fx (x) = prdlz— zp)
k
where §(x) is the Dirac-delta function, and is given by:

ifx #£0

|
Power Spectral Density

- p. 42/181



@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Fx)}
NI E— -
S —

£ —
2/ -f--ereeeeaee- —
1/6-{-——

L X

The cdf and pdf for a fair six-sided die.

Example (die). Describe the cdf and pdf for a fair six-sided die.

SOLUTION. The probability mass function (pmf) is given by
pi =Pr(X(¢) =x;) = 5, where z; =4, i € {1,...,6}.

Note that Pr (X ({) < x1) = 0 whereas Pr (X ({) < z1) = /.
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

f )Z(X) A (Scale not in proportion)

(1/6) (1/6)
1T N N N N AN A

» X

1 2 3 4 5 6
The cdf and pdf for a fair six-sided die.

Example (die). Describe the cdf and pdf for a fair six-sided die.

SOLUTION. The pdf is obtained by differentiating the cdf:

fX(x):Zpi5($—xi):%Z(S(x—i) O]
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

4 /0) 4 F(x)

_p
c—b

e %

=

>

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture
of continuous and discrete components.

Moreover, a mixture of continuous and discrete components will
have a pdf composed of delta as well as continous functions:

fxm(x) = Zpk 0(x — xk) + fx,c ()
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

4 /0) 4 F(x)

_p
c—b

e %

=

>

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture
of continuous and discrete components.

The pdf for the distribution shown above can be written as:

fx (@) = (1= p) 8(z — @) + —— (u(x = b) — u(z - ©))

C_

where u(x) is the unit step function, such that u(z) =1ifz > 0
and zero otherwise.
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

4 /0) 4 F(x)

_p
c—b

e %

=

>

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture
of continuous and discrete components.

Integrating, it is can be shown that:

FX(oo):/_OO fx (x) da;:(l—p)JrC_bx(c—b):l
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@ Course overview and
exemplar applications

Aims and Objectives

Density functions

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

4 /0) 4 F(x)

_p
c—b

e %

=

>

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture
of continuous and discrete components.

Integrating, it is can be shown that:

FX(oo):/_OO fx (x) da;:(l—p)JrC_bx(c—b):l

Can you think of examples of a mixture of discrete and
continuous random variables?
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Properties: Distributions and Densities

® Properties of cdf:

@ Course overview and
exemplar applications

Aims and Objectives 0<Fx(xr)<1l, lim Fx(z)=0, lim Fyx(x)=1

T——00 T— 00

Signal Processing

Probability Theory

Fx(x) is a monotonically increasing function of z:

Scalar Random Variables
® Definition

@ Distribution functions FX ( CL) S F X (b) 1f a S b

@ Kolmogorov’s Axioms

@ Density functions
® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes
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Properties: Distributions and Densities

® Properties of cdf:

@ Course overview and
exemplar applications

Aims and Objectives 0<Fx(xr)<1l, lim Fx(z)=0, lim Fyx(x)=1

T——00 T— 00

Signal Processing

Probability Theory

Fx(x) is a monotonically increasing function of z:

Scalar Random Variables
® Definition

@ Distribution functions FX ( CL) S F X (b) 1f a S b

@ Kolmogorov’s Axioms

@ Density functions
® Properties: Distributions

d Densiti . .
® élgmme;lrflgg;tinuous RVs ’ Propertles Of Pdfs .
@ Probability transformation

rule
@ Expectations

©.@)
e fx (z) >0, / fx (z) dz =1
— 0

® Moments
@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

1 |
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@ Course overview and
exemplar applications

Aims and Objectives

Properties: Distributions and Densities

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

® Properties of cdf:

lim FX (ZE)

T——00

= 0,

lim Fx (z)=1

T— 00

Fx(x) is a monotonically increasing function of z:

Fx (a) < Fx (b)

® Properties of pdfs:

fx (2) > 0, /_OO fx (@) da

® Probability of arbitrary events:

PI’(SEl <X(C) SZEQ) = F'y (wg)—FX (5171)

if a<b

[:@ fx (z) dx
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@ Course overview and
exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

— End-of-Topic 18: Introduction to pdf and
their properties —

Any Questions?
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@ Course overview and
exemplar applications

Aims and Objectives

Common Continuous RVs

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Uniform distribution

Normal distribution

fx (z)

Cauchy distribution

The Cauchy random variable is symmetric around the value
x = [1x, but its mean and variance do not exist.

1

fx (z) =4

0

ifa <x <y,
otherwise

p
-

(= px)? + 52
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@ Course overview and
exemplar applications

Aims and Objectives

Common Continuous RVs

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Gamma distribution

fx (z) = 0 if z <0,
XA = L aP P le o jf x>0,

Gamma pdf Gamma cdf
0.4 w 1 ‘ ‘
. B =2
0.35¢ — B=25
- = 08'
0.37 B _ 3 |
— B=35
0.25 — B=4 | 0.6l
= =
X 02 =
0.15} 0.4¢
0.1t
0.2¢
0.05
0 : . : 0
0 2 4 6 8 0

X

The Gamma density and distribution functions, for the
case when « = 1 and for various values of 5.
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Common Continuous RVs

Weibull distribution

® Course overview and O aj < O

exemplar applications
X \L) =
Aims and Objectives f ( ) CV/B‘/L.IB -1 e_ . xB X 2 O

Signal Processing

Weilbull pdf Weilbull cdf

. 14 ‘ —
Probability Theory — a=0.5

1.2+ — a=0.75 |
Scalar Random Variables —a=1 0.8}
@ Definition 1t — a=13
@ Distribution functions —— a=15

@ Kolmogorov’s Axioms 0.8t | 0.6
@ Density functions

£ ()
F, ()

® Properties: Distributions 0.6

and Densities 0.4r — a=05

® Common Continuous RVs
0.4r 1 — a=0.75

rule 0.2} a=1
@ Expectations 0.2, ] — a=13
@ Properties of expectation — a=15

0 1 1 1
operator 0 1 2 3 4 0 1 2 3 4
® Moments X X

@ Higher-Order Statistics
The Weibull density and distribution functions, for the
case when o = 1, and for various values of the parameter

Estimation Theory /8
[ ]

@ Probability transformation

Multiple Random Variables

MonteCarlo

Stochastic Processes

|
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@ Course overview and
exemplar applications

Aims and Objectives

Common Continuous RVs

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

— End-of-Topic 19: Introduction to common
density functions —

Any Questions?

|
Power Spectral Density

- p. 44/181



@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Suppose a random variable Y (() is a function, g, of a random
variable X ({), which has pdf given by fx (z). What is fy (y)?

X(©) Y(Q)
— » YO=eX©) —*

' v

) ——— fO)
The mapping y = g(z).
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Suppose a random variable Y (() is a function, g, of a random
variable X ({), which has pdf given by fx (z). What is fy (y)?

X(©) Y(Q)
— » YO=eX©) —*

' v

) ——— fO)
The mapping y = g(z).

A
y
y=g(x)

v

The mapping y = g(z).
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Probability transformation rule

A
y=g(x)

@ Course overview and

exemplar applications

y
Aims and Objectives *
Signal Processing ox | 8X2 8)(?3
Probability Theory >
Xy X, X3 X

Scalar Random Variables

® Definition
@ Distribution functions
@ Kolmogorov’s Axioms

® Density functions Theorem (Probability Transformation).  PROOF. First consider the

® Properties: Distributions

and Densities output pdf which, by definition, is given by:

® Common Continuous RVs
@ Probability transformation
rule

S — fy (y) dy=Pr(y <Y () <y+dy)

operator

® Moments I:I
@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

1 |
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  PROOF. First consider the
output pdf which, by definition, is given by:

The set of values x such that y < g(x) < y + dy consists of the

intervals:

fy (y) dy =Pr(y <Y(() <y-+dy)

T, <x <z, +dr,

[]
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  PROOF. The probability that
x lies in this set is

fx (zy,) dx, = Pr(zx, < X(() <z, + dz,)
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)
v
y
*
ox, ox, ox,
> <« > <
X X .
/ 1 X, 3 X

Theorem (Probability Transformation).  PROOF. The probability that

x lies in this set is

fx (xy) dx, = Pr(x, < X({) < x,, + dxy)
From the transformation from z to y, then

dy

day, = —2—
9 ()]

where ¢’ (x) is the derivative with respect to (w. r. t.) x of g(x).
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  PROOF. Finally, since these
are N mutually exclusive sets, then

N
Pr(y <Y () <y+dy) =) Pr(z, <X(() < n+dzy)
n=1

[]
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  PROOF. Finally, since these
are N mutually exclusive sets, then

N
Pr(y <Y () <y+dy) =) Pr(z, <X(() < n+dzy)
n=1

N
~ fy () dy =) fx (zn) day
n=1

]
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  PROOF. Finally, since these
are N mutually exclusive sets, then

N
Pr(y <Y () <y+dy) =) Pr(z, <X(() < n+dzy)
n=1

fr ) dy=>_ fx (zn) %

]
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  PROOF. Finally, since these

are N mutually exclusive sets, then

Tn=g 1(y)
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  Denote the real roots of

y = g(x) by {z,, n € N}, such that:

y=gle1) =+

g(zn)
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

A
Y
y=g(x)

v

Theorem (Probability Transformation).  Denote the real roots of
y = g(x) by {x,, n € N'}, such that:

y=g(x1) =---=g(xN)
Then, if the Y (¢) = g(X (()), the pdf of Y (() is given by:

Q
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Probability transformation rule

Example (Log-normal distribution). Let Y = e* , Where
S e X ~N (O, 1). Find the pdf for the RV Y.

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables
® Definition
@ Distribution functions

@ Kolmogorov’s Axioms
@ Density functions
® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes
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Probability transformation rule

Example (Log-normal distribution).

® Course overview and X ~ N (0, 1). Find the pdf for the RV Y.

exemplar applications

Aims and Objectives

Signal Processing SOLUTION. Since X N N(O, 1), then:

Probability Theory

Scalar Random Variables
® Definition
@ Distribution functions

@ Kolmogorov’s Axioms
@ Density functions
® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Let Y = e*, where
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY.

SOLUTION. Since X ~ AN (0, 1), then:

]. 1132
— &Z__

fx (z) =

® Considering the transformation y = g(x) = €7, there is one
root, given by x = In y.

® Therefore, the derivative of this expression is

@) =G ==y
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY.

SOLUTION. Since X ~ AN (0, 1), then:

1 2

Ix ($> - \/%6_%

® Considering the transformation y = g(x) = €7, there is one
root, given by x = In y.
® Therefore, the derivative of this expression is

__de”*

g(@) =4 =" =y,

® Hence, it follows:

_Sx(@) _ fx(ny) 1 w2
fy (y) = 7' (2) y y\/ﬁ

]
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

After this lecture, try the following example in the notes:

Example (Inverse of a random variable). LetY = % Find the pdf for
the RV Y, given by fy (y), in terms of the pdf for the RV X, given
by fx (x). Further, consider the special case when X has a
Cauchy density with parameter «, such that:

Qv 1
T x? + o2

fx (z) =
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@ Course overview and
exemplar applications

Aims and Objectives

Probability transformation rule

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

® Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

— End-of-Topic 20: Derivation of the
Probability Transformation Rule, and some
examples —

Any Questions?
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@ Course overview and
exemplar applications

Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.
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@ Course overview and
exemplar applications

Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.

Skewness Jx(x) =
- 3rd order statistic

- Measure of asymmetry
- Difference in tails

Mean
- 1st order statistic
- Centre of mass

Kurtosis o Variance

- 4th order statistic - 2nd order statistic

- Measure of s1z - “spread of the pdf”
of tails

>

L X
The four saliant or key features or statistics of the pdf.
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@ Course overview and
exemplar applications

Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

® The expected or mean value of a function of a RV X (() is:

E[X(¢)]

R

x fx (x) dx
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@ Course overview and
exemplar applications

Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

® The expected or mean value of a function of a RV X (() is:

E [X(¢)] = / r fx (@) do

R

® Recall: if X (() is discrete then its corresponding pdf may be
written in terms of its pmf as:

fx (x) =) pro(z — 1)
k

where the Dirac-delta, §(x — xj ), is unity if x = x, and zero
otherwise.
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@ Course overview and
exemplar applications

Aims and Objectives

Expectations

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

® The expected or mean value of a function of a RV X (() is:

E [X(¢)] = / r fx (@) do

R

® Recall: if X (() is discrete then its corresponding pdf may be
written in terms of its pmf as:

fx (x) =) pro(z — 1)
k

where the Dirac-delta, §(x — xj ), is unity if x = x, and zero
otherwise.

® Hence, for a discrete RV, the expected value is given by:

,ux:/Rfo(x) da::/Rx ;pk(ﬂx—a}k) da::;xkpk
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

The expectation operator computes a statistical average by using
the density fx (z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

The expectation operator computes a statistical average by using
the density fx (z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.

® If fx (x) is an even function, then px = 0. Note that since
fx (x) > 0, then fx (z) cannot be an odd function.

® If fx (x) is symmetrical about x = a, such that
fx (a—z) = fx (x+a), then ux = a.
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

The expectation operator computes a statistical average by using
the density fx (z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.

® If fx (x) is an even function, then px = 0. Note that since
fx (x) > 0, then fx (z) cannot be an odd function.

® If fx (x) is symmetrical about x = a, such that
fx (a—z) = fx (x+a), then ux = a.

® The expectation operator is linear:

ElaX()+p8]=aux+p
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

®IfY(()=g{X(()} is a RV obtained by transforming X ({)
through a suitable function, the expectation of Y (() is:

oo

E[Y(0)] £ E [¢{X(0)}] = / @) e () da

— OO
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

®IfY(()=g{X(()} is a RV obtained by transforming X ({)
through a suitable function, the expectation of Y (() is:

oo

E[Y(0)] £ E [¢{X(0)}] = / @) e () da

— OO

® This property means that you don’t need to keep track of
which pdf the expectation is taken with respect to.

® Rather, you simply consider the RV inside the expectation,
and the expectation is w. r. t. the pdf of that RV.
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

®IfY(()=g{X(()} is a RV obtained by transforming X ({)
through a suitable function, the expectation of Y (() is:

oo

E[Y(0)] £ E [¢{X(0)}] = / @) e () da

— OO

® This property means that you don’t need to keep track of
which pdf the expectation is taken with respect to.

® Rather, you simply consider the RV inside the expectation,
and the expectation is w. r. t. the pdf of that RV.

® As an outline proof, consider a monotonic one-to-one
function y = g(x), such that fy (y) = f)fT?(j”)

dx
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

®IfY(()=g{X(()} is a RV obtained by transforming X ({)
through a suitable function, the expectation of Y (() is:

E[Y(¢)] £E [g{X(0)}] = /

oo

g()

— OO

fx () dx

® This property means that you don’t need to keep track of
which pdf the expectation is taken with respect to.

® Rather, you simply consider the RV inside the expectation,
and the expectation is w. r. t. the pdf of that RV.

® As an outline proof, consider a monotonic one-to-one
fx (x)

function y = g(x), such that fy (y) = dy

By Q)= [uty @) dy= [ o)

dx

Ty = / ) e ()l
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Trigonometric Transformation). ~ The continuous random
variable (RV), ©((), is uniformally distributed between —7 and
TT.

1. Calculate the expected value of O(().

2. Now consider the RV, Y (¢) = A cos® ©((), where A is
assumed to be a constant value. What is the expected value of

Y(¢)?
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Trigonometric Transformation). ~ The continuous random
variable (RV), ©((), is uniformally distributed between —7 and
TT.

1. Calculate the expected value of O(().

2. Now consider the RV, Y (¢) = A cos® ©((), where A is
assumed to be a constant value. What is the expected value of

Y(¢)?

SOLUTION. 1. The expected value of ©(() is:

E[@(@]:/w 0o (0)do = [ 05 do

—00 —T 2m
02 |"

=0 L]
47

—TT
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Trigonometric Transformation). ~ The continuous random
variable (RV), ©((), is uniformally distributed between —7 and
TT.

1. Calculate the expected value of O(().

2. Now consider the RV, Y (¢) = A cos® ©((), where A is
assumed to be a constant value. What is the expected value of

Y(¢)?

SOLUTION. 1. Using the invariance of the expectation operator:

E[Y(¢)] =E [Acos®0(¢)] = /7T [Acos® (0)] fo (0) df

A [T A [T
= — cos® () df = — (1 4 cos20) df = gEI

2r J_ A J_ .
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@ Course overview and
exemplar applications

Aims and Objectives

Properties of expectation operator

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

— End-of-Topic 21: Expectations, their
properties, and some examples —

Any Questions?
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@ Course overview and
exemplar applications

Aims and Objectives

Moments

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Recall that mean and variance can be defined as:

E[X(0)] = px = / v fx(z) da

R

var [X(Q)] = 0% = / z? fx () dz — p% = E [X*(()] — E2[X(C)]

R

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X" ({)], m € {1, 2} are known.
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@ Course overview and
exemplar applications

Aims and Objectives

Moments

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Recall that mean and variance can be defined as:

E[X(0)] = px = / v fx(z) da

R

var [X(Q)] = 0% = /Raﬂ fx(z)dz — p% =E [X*(¢)] — E2 [X(¢)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X" ({)], m € {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X ({): the m-th moment of X (() is given by:

o 2 E[X™(¢)] = / 7™ fx(c) do

Note, of course, that in general: E [ X (()] # E™ [ X ({)]-
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Moments

Example (Exponential Random Variable).  Calculate the moments of
® Coteee cheticy aud the exponential random variable with parameter A\. We can use:

exemplar applications

Aims and Objectives o0

u” e " du = n! nef0,1,2 ...}

Signal Processing

0

Probability Theory

Scalar Random Variables
® Definition
@ Distribution functions

@ Kolmogorov’s Axioms
@ Density functions
® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes
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@ Course overview and
exemplar applications

Aims and Objectives

Moments

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Exponential Random Variable).  Calculate the moments of

the exponential random variable with parameter A\. We can use:

/ u" e “du = n! nef0,1,2 ...}
0

SOLUTION. The pdf for an exponential RV is:

0 if z <0,
Ae ™ if x>0,

fx (z) =
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@ Course overview and
exemplar applications

Aims and Objectives

Moments

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Exponential Random Variable).
the exponential random variable with parameter A\. We can use:

Calculate the moments of

/ u" e “du = n! nef0,1,2 ...}
0

SOLUTION. The pdf for an exponential RV is:

fx (z) =

0
Ae—kx

The m-th moment is given by:

E [X™(C)]

/OO ™ fx (x) dx
0

if z <0,
if x >0,

A / ™ e T dy
0
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@ Course overview and
exemplar applications

Aims and Objectives

Moments

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Exponential Random Variable).  Calculate the moments of
the exponential random variable with parameter A\. We can use:

/ u" e “du = n! nef0,1,2 ...}
0

SOLUTION. The pdf for an exponential RV is:

0 if z <0,
Ae ™ if x>0,

fx (z) =

The m-th moment is given by:

E[Xm(g)]:/oooxmfx () da::A/Oooxme_Awdx []

Using the provided formula by setting u = A x such that when
x = {0, oo} then u = {0, oo}, and du = A dz:
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@ Course overview and
exemplar applications

Aims and Objectives

Moments

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Exponential Random Variable).  Calculate the moments of

the exponential random variable with parameter A\. We can use:

/ u" e “du = n! nef0,1,2 ...}

0

SOLUTION. Using the provided formula by setting u = A x such
that when x = {0, oo} then u = {0, oo}, and du = A dz:

m)!

1 ©.@)
EX"(Ol= 37 [ e tdu= g5
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@ Course overview and
exemplar applications

Aims and Objectives

Moments

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables
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Example (Exponential Random Variable).  Calculate the moments of
the exponential random variable with parameter A\. We can use:

/ u" e “du = n! nef0,1,2 ...}

0

SOLUTION. Using the provided formula by setting u = A x such
that when x = {0, oo} then u = {0, oo}, and du = A dz:

m)!

A\

1

E[X™(Q)] = 12 / et du —

[]

In particular, by setting m = 1, the mean is ux = E [ X ({)] = 1/x.

Setting m = 2, the second-moment is E | X?(¢)] = 2/»?, and the
variance is 0% = var [X(¢)] = /a2 — (1/3)? = & = k.
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After this lecture, try the following example in the notes:

Example (Expectations of non-negative Rvs).  Let X (() be a
non-negative RV with pdf fx (z). Show that

E[X™(()] = /Ooomzlzm_l Pr(X(¢) > x) dx

for any m > 1 for which the expectation is finite.
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Two important and commonly used higher-order statistics that

are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a

distribution. It is a normalised third-order central moment:

RY AR {

X(¢) — px

OXx

and is a dimensionless quantity.

|1 e
o3 X

Negative Skew

Positive Skew
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Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

(3 X(¢) — pux : I
/ﬁlg()éE { - :g%{)

and is a dimensionless quantity.

® The skewness is:

(< 0 if the density leans or stretches out towards the left
/’%g?) =<0 if the density is symmetric about u x
| > 0 if the density leans or stretches out towards the right
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Higher-Order Statistics

Kurtosis measures relative flatness or peakedness of a distribution
® S ore view e about its mean value.
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Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

® It is defined based on a normalised fourth-central moment:

K

4) &
S

i

X(C¢) — pux

OXx

}4 P

1
ok X

3
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Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

® It is defined based on a normalised fourth-central moment:

. X(¢) —pux " 1
/fg?)éE { (f)TX } —3:0_4’Y§?)—3
X

This measure is relative with respect to a normal distribution,

which has the property fygf) = 30%, therefore having zero

kurtosis.

|
Power Spectral Density

- p. 49/181



Higher-Order Statistics

Example (Exponential distribution).  Calculate the skewness of an
® Coteee cheticy aud exponential random variable with parameter .
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Example (Exponential distribution).

Calculate the skewness of an

exponential random variable with parameter .

SOLUTION. From earlier calculations it was was shown that the

m-th moment was given by r

(m)
X

= m!/xm,
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Example (Exponential distribution).  Calculate the skewness of an
exponential random variable with parameter .

SOLUTION. From earlier calculations it was was shown that the
m-th moment was given by Tg(m) = ml/xm,

It can also be shown, by expanding the expression for skewness:

_(3) _ P — 3rPrd + 2(riy)3
Rx™ = o5
X
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@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Exponential distribution).  Calculate the skewness of an
exponential random variable with parameter .

SOLUTION. From earlier calculations it was was shown that the
m-th moment was given by r( ™) = m!/xm,

It can also be shown, by expanding the expression for skewness:

3 1 2 1
@) _ Ty = 3rry) 4+ 20rk)?
X 3

Ox
Hence, since it was also shown that o35 = 1/x2, then:

£ = 3~ 352 T 2%
1 =2
A3

]
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Example (Exponential distribution).  Calculate the skewness of an
exponential random variable with parameter .

SOLUTION. From earlier calculations it was was shown that the
m-th moment was given by r( ™) = m!/xm,

It can also be shown, by expanding the expression for skewness:

3 1 2 1
@) _ Ty = 3rry) 4+ 20rk)?
X 0.3
X

Hence, since it was also shown that o35 = 1/x2, then:

3! 1! 2! 1

~(3) 3~ 33 t25%
1
3

=N

Positive skewness indicates leaning to the right, which it does!
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Example (Laplace distribution).  Calculate the Kurtosis of the
standard Laplace distribution, fx (z) = se~1*|, x € R.
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@ Course overview and
exemplar applications

Aims and Objectives
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@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics
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Example (Laplace distribution).  Calculate the Kurtosis of the
standard Laplace distribution, fx (z) = se~1*|, x € R.

SOLUTION. As the density is symmetric, the skewness is zero!
Moreover, the odd moments are also equal to zero through
symmetry (left as an exercise).
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Example (Laplace distribution).  Calculate the Kurtosis of the
standard Laplace distribution, fx (z) = se~1*|, x € R.

SOLUTION. As the density is symmetric, the skewness is zero!
Moreover, the odd moments are also equal to zero through
symmetry (left as an exercise).

The even moments are given by:

m _ 1 [° L[ h
rg(-):—/ ZEmeCliE—F—/ :L’me_xd:v:/ " e *dr =m!
2 0 0

[]

|
Power Spectral Density

- p. 49/181



@ Course overview and
exemplar applications

Aims and Objectives

Higher-Order Statistics

Signal Processing

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

@ Kolmogorov’s Axioms

@ Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Example (Laplace distribution).  Calculate the Kurtosis of the
standard Laplace distribution, fx (z) = se~1*|, x € R.

SOLUTION. As the density is symmetric, the skewness is zero!
Moreover, the odd moments are also equal to zero through
symmetry (left as an exercise).

The even moments are given by:

m _ 1 [° L[ h
rg(-):—/ ZEmeCliE—F—/ :L’me_xd:v:/ " e *dr =m!
2 0 0

Hence, using the formula for Kurtosis (noting rgg) = 0):

X(¢) — 4 (4) Al
/%g?):E{ (C) MX} _3:%_3: '2_3:35
oX (+?) (21)

|
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Higher-Order Statistics

Skewness and kurtosis are used in signal processing in the
® Coteee cheticy aud following applications:
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Skewness and kurtosis are used in signal processing in the
following applications:

Signal Separation is only possible if the signals are statistically
distinctive and this requires non-Gaussianity; maximising
kurtosis means that separated signals are ensured to be as
non-Gaussian as possible.
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Skewness and kurtosis are used in signal processing in the
following applications:

Signal Separation is only possible if the signals are statistically
distinctive and this requires non-Gaussianity; maximising
kurtosis means that separated signals are ensured to be as
non-Gaussian as possible.

Outlier detection As kurtosis is a measure of heaviness of the tails,
it also provides a metric for the number of outliers. Outliers,
for example positive values, can also lead to asymmetric
densities, measured by skewness.
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Skewness and kurtosis are used in signal processing in the
following applications:

Signal Separation is only possible if the signals are statistically
distinctive and this requires non-Gaussianity; maximising
kurtosis means that separated signals are ensured to be as
non-Gaussian as possible.

Outlier detection As kurtosis is a measure of heaviness of the tails,
it also provides a metric for the number of outliers. Outliers,
for example positive values, can also lead to asymmetric
densities, measured by skewness.

Features Skewness and kurtosis can be used in feature-based
classification and machine learning algorithms.
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— End-of-Topic 22: Skewness, Kurtosis, and
their Applications —

Any Questions?

[=] % [m]
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® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation
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® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Deriving the Multivariate
Gaussian
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ion.

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Note that each element of a random vector is not necessarily

generated independently from a separate experiment.

$» Random vectors also lead to the notion of the relationship
between the random elements.

® This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.

® Deriving the Multivariate

Gaussian
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X3(¢)
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ion.

A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N ={1,..., N}, is denoted by
the column-vector:

X(0)= [X1(0) Q) - Xn(©)]

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space RY .

® Deriving the Multivariate
Gaussian
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ion.

A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N ={1,..., N}, is denoted by

the column-vector:

X(Q) = [X1(¢) X(¢)

XN(O}T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space RY .

Denote a specific value for a random vector as:

Then the notation X (¢) < x is equivalent to the event

X = [371 i)

T
ZEN]

® Deriving the Multivariate

Gaussian
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Fx (x) £ Pr({Xn(¢) < zn, n € N}) =Pr(X({) < x)

® Deriving the Multivariate
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Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The joint cdf completely characterises a random vector, and is

defined by:

Fx (x) £ Pr({Xn(¢) < zn, n € N}) =Pr(X({) < x)

A random vector can also be characterised by its joint pdf,

which is defined by:

fx (%)

Pr ({zn, < X0({) < zp + Ay, n € N}

lim
Ax—0

o 0

B (9%1 6:1:2

0

(3’:231\7

Axy - Az

FX (X)

® Deriving the Multivariate

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The joint cdf completely characterises a random vector, and is

defined by:

Fx (x) £ Pr({Xn(¢) < zn, n € N}) =Pr(X({) < x)

A random vector can also be characterised by its joint pdf,

which is defined by:

fx (%)

Pr ({zn, < X0({) < zp + Ay, n € N}

lim
Ax—0

o 0

B (9%1 6:1:2

Hence, it follows:

Fe)= [ [ fx () doy-doy= | fx(v)dv
| /.

0

(3’:231\7

Axy - Az

FX (X)

® Deriving the Multivariate

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

— End-of-Topic 23: Introduction to Random
Vectors, its definition, and joint distribution
and density functions —

Any Questions?

@ Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

® Properties of joint-cdf:

lim FX (X)

X— — 00

0,

lim FX (X)

X— 00

Fx (x) is a monotonically increasing function of x:

Fx (a) < Fx (b)

if a<b

1

® Deriving the Multivariate
Gaussian
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Distribution and Density Functions

® Properties of joint-cdf:

@ Course overview and
exemplar applications

Ams and Objectives 0< Fx (x) <1, lim Fx(x)=0, lim Fx(x)=1
X—— 00 X— 00

Signal Processing

Probability Theory

Fx (x) is a monotonically increasing function of x:

Scalar Random Variables

Multiple Random Variables F X (a) S F X (b) lf a S b

@ Abstract
® Definition of Random
Vectors

@ Distribution and Density ’ Properties Of jOint'pde :

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s

o
@ Probability Transformation fX (X) Z O 9 / fX (X) dX — ].
— OO

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

@ Deriving the Multivariate - p. 53/181
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

® Properties of joint-cdf:

0<Fx(x)<1l, lim Fx(x)=0, lim Fx(x)=1

X—— 00 X— 00
Fx (x) is a monotonically increasing function of x:

Fx(a>§Fx(b) if agb

® Properties of joint-pdfs:

fx (x) >0, /_oofx(x)dx:l

® Probability of arbitrary events; note that

Pr(x; < X ({) < x3) = /X2 fx (v)dv # Fx (x3) — Fx (x1)

® Deriving the Multivariate

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(() which has two elements and therefore two
random variables given by X (¢) and Y (() is given by:

Hz+3y) 0<{r, y}<1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fz (z).

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(() which has two elements and therefore two
random variables given by X (¢) and Y (() is given by:

fz (z) =

0 otherwise

Hz+3y) 0<{r, y}<1

Calculate the joint-cumulative distribution function, Fz (z).

SOLUTION. First note that the pdf integrates to unity since:

/:fz(z) dz:/ol/olé(aﬂri%y)dwdy:/ol

1

2

|

1
=0F

2

‘ + Bmy]

1

0

dy

[]

® Deriving the Multivariate

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z)

0

otherwise

s(@+3y) 0<{z,y} <1

Calculate the joint-cumulative distribution function, Fz (z).

SOLUTION. First note that the pdf integrates to unity since:

® Deriving the Multivariate
Gaussian

B Dt rmne L AM11le v re 1t b

- p. 53/181



@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]).

%(ZE + 3y)

fz (z) = 0

Calculate the joint-cumulative distribution function, Fz (z).

SOLUTION. The pdf is shown here:

PDF

0<{xz, y} <1
otherwise

Non-zero
region

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]).

Hz+3y) 0<{z y}<1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fz (z).

SOLUTION. For x < 0Oory <0, fz(z) =0, and thus Fz (z) =0.

® Deriving the Multivariate
Gaussian
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- p. 53/181



Distribution and Density Functions

@ Course overview and
exemplar applications

Aims and Objectives

Signal Processing

Probabilty Theory Calculate the joint-cumulative distribution function, Fz (z).

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

fz (z)

Example ( [Therrien:1992, Example 2.1, Page 20]).

s(@+3y) 0<{z,y} <1

0 otherwise

Functions If0<x<1and0 < y <1, the cdf is given by:

@ Marginal Density Function
® Independence

® Conditionals and Bayes’s
@ Probability Transformation

® Generating Gaussian

i~ ) L St
@ Polar Transformation FZ (Z) — / fZ (Z) dZ = A A 5 (ZE + By) CZZE dy

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

SOLUTION. For x < 0Oory <0, fz(z) =0, and thus Fz (z) =0.

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices
@ Further Statistical

Descriptions
@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z)

0

s(@+3y) 0<{z,y} <1

otherwise

Calculate the joint-cumulative distribution function, Fz (z).

SOLUTION. Forx < 0ory <0, fz(z) =0, and thus Fz (z)

If0<x<1land 0 < y <1, the cdf is given by:

FZ (Z)

—_

5
1
T2

(x + 3y) dz dy

(:

2

Y +

3xy?

2

=0.

® Deriving the Multivariate

Gaussian
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

oo by [3E ) 0 (m <t

Aims and Objectives O Othe rWise

Signal Processing

Probabilty Theory Calculate the joint-cumulative distribution function, Fz (z).

Scalar Random Variables

Multiple Random Variables SOLUTION. For X S O or y S O, fZ (Z) — O, and thus FZ (Z) p— O .

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions If0<x<1and0 < y <1, the cdf is given by:

@ Marginal Density Function
® Independence
® Conditionals and Bayes’s

@ Probability Transformation Z Yy T 1
) E(L:ll:r Transformation FZ (Z) p— / fZ (Z) dz p— / / — (IE —|— 3@) dfi' dg
® Generating Gaussian — oo O O 2

1 2

distributed samples
@ Auxiliary Variables

@ Statistical Description Y g5 ]. 35 Z BCU z X
@ Mean Vectors and p— / — (— —|— 33’;@\) dg — (_y _|_ y > — _y (-CU _|_ i@)
0

Correlation Matrices 2 2 2 2 2 4

@ Properties of Correlation

Matrices
@ Further Statistical

Descriptions

o Mulivarite Gausian Finally, if x > 1 or y > 1, the upper limit becomes equal to 1. |

|
@ Deriving the Multivariate - p. 53/181

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z) =

Calculate the joint-cumulative distribution function, Fz (z).

Hz+3y) 0<{z,y} <1
0

otherwise

SOLUTION. Hence, in summary, it follows:

g O

Y

4

N NSNS

(
(

(x + 3y)
z + 3)
1+ 3y)

r<0 or

O<z,y<l1
O<z<1,1
O<y<1,1

y <0

<Y
<X

Il <z, y<oo

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example ( [Therrien:1992, Example 2.1, Page 20]).

1
_ s@+3y) 0<{z,y} <1
fz(2) 0 otherwise

Calculate the joint-cumulative distribution function, Fz (z).

SOLUTION. The cdf is plotted here:

\
‘x\\\\\\\}}‘
X \\\\&&\\\} |
s S

® Deriving the Multivariate

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Distribution and Density Functions

Signal Processing

Probability Theory

Scalar Random Variables
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@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

® Independence
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@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

— End-of-Topic 24: Properties and Examples of
Joint Distributions and Densities —

Any Questions?

@ Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the /N-dimensional random vector X ((),

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The joint pdf characterises the random vector; the so-called

marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the /N-dimensional random vector X ((),

Now define a M-dimensional random vector, Xy ((), that

contains the M random variables which are components of X ()

and indexed by the elements of k. In other-words, if

then Xy(¢) =

® Deriving the Multivariate

Gaussian
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Marginal Density Function

The marginal pdf is then given by:

@ Course overview and
exemplar applications

00 00
Aims and Objectives ka (Xk) = T / fX (X) ClX_k
— 00 — 00

Signal Processing A\

N — M integrals

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

1lon,

@ Deriving the Multivariate - p. 54/181
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The marginal pdf is then given by:

5% (Xk) —

\ .

" e

N — M integrals

A special case is the marginal pdf describing the individual RV

X;

N — 1 integrals

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The marginal pdf is then given by:

Pl = [ [ g e

N — M integrals

A special case is the marginal pdf describing the individual RV

XjZ

Marginal pdfs will become particular useful when dealing with
Bayesian parameter estimation later in the course.

fXj (xj)

\

/ fX (X) d:l?l "'d.fl?j_ldil?j_|_1 dZIZN

~N

N — 1 integrals

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Marginalisation). The joint-pdf of a random vector Z(()
which has two elements and therefore two random variables
given by X (¢) and Y () is given by:

Hz+3y) 0<{z y}<1
0 otherwise

fz (z) =

Calculate the marginal-pdfs, fx (x) and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).

® Deriving the Multivariate
Gaussian
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(()
phsietituiosionl which has two elements and therefore two random variables
given by X (¢) and Y () is given by:

Aims and Objectives

Signal Processing

1
s(x+3y) 0<4z,yr <1
Probability Theory fZ ( Z) — 2 ( ) { }

0 otherwise

Scalar Random Variables

Muliple Random Variables Calculate the marginal-pdfs, fx (x) and fy (y), and their

@ Abstract

® Definiion of Random corresponding marginal-cdfs, F'x (x) and Fy (y).

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence e e, e .
® Conditionals and Bayes’s S O LUTI O N . By deﬁnltlon .
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

S, fx(z)= [ fz(z)dy

@ Statistical Description R
@ Mean Vectors and
Correlation Matrices

° i;:g,::ses of Correlation fY ( y) — fZ ( Z) d T

@ Further Statistical R
Descriptions
@ Multivariate Gaussian |_|
: on | I— I
® Deriving the Multivariate - p. 54/181

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Marginalisation).

fz (z)

Calculate the marginal-pdfs, fx () and fy (y), and their

s(@+3y) 0<{z,y} <1

0

otherwise

corresponding marginal-cdfs, F'x (x) and Fy (y).

SOLUTION. Taking fx (x), then:

fx ()

fo

r+3y)dy 0<z<1
otherwise

® Deriving the Multivariate

Gaussian
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Marginal Density Function

Example (Marginalisation).

oo by [3E ) 0 (m <t

Aims and Objectives O Othe rWise

Signal Processing

Probabilty Theory Calculate the marginal-pdfs, fx () and fy (y), and their

corresponding marginal-cdfs, F'x (x) and Fy (y).

Scalar Random Variables

Multiple Random Variables

@ Abstract

® Definition of Random S O LUTI O N o Taking fX (.CU) P then:

Vectors
® Distribution and Density

Functions
@ Marginal Density Function
@ Independence fO —|_ 3y dy O S ZE S ].
@ Conditionals and Bayes’s fX («CE ) — .
@ Probability Transformation Othe | VV lse

Rule
® Polar Transformation

® Generating Gaussian

distrbuted samples which after a simple integration gives:

@ Auxiliary Variables
@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices fX (ZE) =

@ Further Statistical

Le+3) 0<a<
0 otherwise

Descriptions
@ Multivariate Gaussian

ion.

=[]

@ Deriving the Multivariate 54/181
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Marginalisation).

fz (z) 0

Hz+3y) 0<{z y}<1
otherwise

Calculate the marginal-pdfs, fx () and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).

SOLUTION. The cdf, F'x (), is thus given by:

FX(IIJ)Z/_;fx(u) du = 4

(03

)
)

x <0
du 0<zx<1
du x >1

® Deriving the Multivariate
Gaussian

B Dirrinmrdrmne L M1 lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Marginalisation).

fz (z) =

Hz+3y) 0<{z y}<1
otherwise

0

Calculate the marginal-pdfs, fx () and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).

SOLUTION. The cdf, F'x (), is thus given by:

. 0
Fy()= [ fx(w)du=13
N 1

2

FX (ZE)

® Deriving the Multivariate

Gaussian
B Dirrinmrdrmne L M1 lecre 1t b
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Marginal Density Function

Example (Marginalisation).

oo by [3E ) 0 (m <t

Aims and Objectives O Othe rWise

Signal Processing

Probabilty Theory Calculate the marginal-pdfs, fx () and fy (y), and their

corresponding marginal-cdfs, F'x (x) and Fy (y).

Scalar Random Variables

Multiple Random Variables

@ Abstract

® Definition of Random SOLUTION. Similarly, it can be shown that:

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence f (y) o % ( % + By) O S y S ].
® Conditionals and Bayes’s —
@ Probability Transforr}r/lation Y O Othe I'WiS e

Rule
® Polar Transformation

® Generating Gaussian

distributed samples and

@ Auxiliary Variables
@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical F Y (y ) p— <

Descriptions
@ Multivariate Gaussian

(1+3y) 0<y<1
y > 1 |

— e O

ion.

|
@ Deriving the Multivariate - p. 54/181

Gaussian I_l
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices
@ Further Statistical

Descriptions
@ Multivariate Gaussian

® Deriving the Multivariate
Gaussian

B Dirrinmrdrmne L M1 lecre 1t b

Example (Marginalisation).

fz (z) =

0 otherwise

s(@+3y) 0<{z,y} <1

SOLUTION. The marginal-pdfs and cdfs are shown below.

Marginal PDF, f | (x)

Marginal CDF, F , ()

1
PDF 1ol ) 09+
08F
ir 0.7
08 - 061
= =
=3 = 05¢
o6t *
04+
0.4 - 031
02+
02
01F
o ‘ ‘ ‘ ‘ | ol ‘ ‘ ‘ ‘ ‘ ‘
-0.2 0 02 04 06 08 1 12 -0.2 0 02 04 06 08 1 12

The marginal-pdf, fx (), and cdf, Fx (x), for the RV, X (().

® Note that the marginal-pdf is not a slice of the joint-pdf.

® [t is the integral of the joint-pdf over the other variable along

- p. 54/181



@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Marginalisation).

Hz+3y) 0<{z y}<1
0 otherwise

fz (z) =

SOLUTION. The marginal-pdfs and cdfs are shown below.

Marginal PDF, f Y(y) Marginal CDF, F Y(y)

T 1 T T
Ler 0.9
Ler 08
14r A
1.2 06 F
S 1t S !
3 = 05
08 [ 04 .
0.6 - 0.3}
04r 0.2+
02 [ 01 .
0 L 1 1 Il 1 L 0 L 1 1 1 Il Il
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1.2

y

The marginal-pdf, fy (v), and cdf, Fy (y), for the RV, Y (({).

® Deriving the Multivariate
Gaussian

B Dirrinmrdrmne L M1 lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Marginal Density Function

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

— End-of-Topic 25: Marginal Densities and
Distributions and their Applications —

Any Questions?

=)

@ Deriving the Multivariate
Gaussian

B Dirrinmrdrmne L M1 lecre 1t b

- p. 54/181



@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Two random variables, X;(¢) and X5(() are independent if the
events { X1 (¢) < z1} and {X3(() < x5} are jointly independent;
that is, the events do not influence one another, and

Pr(X1(¢) < z1, X2(¢) < z2) = Pr(X1(¢) < 1) Pr(X2(¢) < z2)

® Deriving the Multivariate

Gaussian
B Dirminrtrmne L MAM11lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Two random variables, X;(¢) and X5(() are independent if the
events { X1 (¢) < z1} and {X3(() < x5} are jointly independent;

that is, the events do not influence one another, and

Pr(X1(¢) < z1, X2(¢) < z2) = Pr(X1(¢) < 1) Pr(X2(¢) < z2)

This then implies that

Fx, x, (1, x2) = Fx, (z1) Fx, (22)

fxi,x, (T1, 22) = fx, (z1) fx, (22)

® Deriving the Multivariate

Gaussian
B Dirminrtrmne L MAM11lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Two random variables, X;(¢) and X5(() are independent if the
events { X1 (¢) < z1} and {X3(() < x5} are jointly independent;

that is, the events do not influence one another, and

Pr(X1(¢) < z1, X2(¢) < z2) = Pr(X1(¢) < 1) Pr(X2(¢) < z2)

This then implies that

Fx, x, (1, x2) = Fx, (z1) Fx, (22)

fxi,x, (T1, 22) = fx, (z1) fx, (22)

® If the regions of support of the pdfs of X ({) and Y () are

bounded, then X ({) and Y ({) cannot be independent if their

ranges are dependent.

® Deriving the Multivariate

Gaussian
B Dirminrtrmne L MAM11lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Testing independence). Suppose the joint-pdf of two RVs
X(¢)and Y (() is given by fxy (x, y) =1+ 2y for 0 < z < 1 and

0 <y < 1. Are X(¢) and Y (¢) independent?

® Deriving the Multivariate
Gaussian

B Dirminrtrmne L MAM11lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Testing independence). Suppose the joint-pdf of two RVs
X(¢)and Y (() is given by fxy (x, y) =1+ 2y for 0 < z < 1 and

0 <y < 1. Are X(¢) and Y (¢) independent?

SOLUTION. The joint-pdf cannot be written in the form g(x) h(x)

for any functions g and h. Therefore, these RVs are not
independent.

® Deriving the Multivariate
Gaussian

B Dirminrtrmne L MAM11lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Testing independence).

Suppose the joint-pdf of two RVs
X(¢)and Y (() is given by fxy (x, y) =1+ 2y for 0 < z < 1 and
0 <y < 1. Are X(¢) and Y (¢) independent?

SOLUTION. The joint-pdf cannot be written in the form g(x) h(x)

for any functions g and h. Therefore, these RVs are not

independent.

Example (Testing independence).

Let fxy (x, y) = 6z for

0 < x <y < 1. Plot the region of support and determine if X (()

and Y (¢) are independent.

® Deriving the Multivariate

Gaussian
B Dirminrtrmne L MAM11lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

® As an example that will be used many times in estimation

theory, suppose that NRVs, X,,(¢) forn € {0, ..., N — 1}, are
independent, and each have pdf given by fx_(z,).

® Then the joint-pdf of X({) = [Xo(¢), -+, Xn({)]

T .
1S.

® Deriving the Multivariate
Gaussian

B Dirminrtrmne L MAM11lecre 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

® As an example that will be used many times in estimation

theory, suppose that NRVs, X,,(¢) forn € {0, ..., N — 1}, are
independent, and each have pdf given by fx_(z,).

® Then the joint-pdf of X({) = [Xo(¢), -+, Xn({)]

fx (69 = ] fx. (@)

T .
1S.

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Independence

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

® Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

® As an example that will be used many times in estimation

theory, suppose that NRVs, X,,(¢) forn € {0, ..., N — 1}, are
independent, and each have pdf given by fx_(z,).

® Then the joint-pdf of X(¢) = [Xo((), - -

For example, suppose that X, (() is Gaussian distributed:

then:

fx (69 = ] fx. (@)

fx, (xn) =

N—-1

fx(x)= 1]

n=0

1
2T

Y

o

ar?
2

1

ar
2

V2r

1

(27) 2

e 2

XN (O] is:

1 N—1 2
n=0 xn

® Deriving the Multivariate

Gaussian
B Dirminrtrmne L MAM11lecre 1t b

- p. 55/181



@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random

vector Y ((), given the random vector X (().

® Deriving the Multivariate
Gaussian

B Dt rmne L MAM11le v re 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y ((), given the random vector X (().

The conditional pdf of Y ({) given X (() is defined as:

Jy|x (ylx)= fx;;(é;).’}’)

® Deriving the Multivariate
Gaussian
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
phsietituiosionl of conditional probabilities; what is the probability of a random
vector Y ((), given the random vector X (().

Aims and Objectives

Signal Processing

The conditional pdf of Y ({) given X (() is defined as:

Probability Theory

Scalar Random Variables o fXY (X, y)
Multiple Random Variables leX (y | X) B fX (X)

@ Abstract
® Definition of Random

o Distbron and Density If the random vectors X (¢) and Y (¢) are independent, then the

o Marginal Densiy Function conditional pdf must be identical to the unconditional pdf:

o fyx (Y] %) = fy (¥)- Hence, it follows that:

Rule
® Polar Transformation

® Generating Gaussian f ( ) e f ( ) f ( )
distributed samples XY X’ y X X Y y

® Auxiliary Variables

@ Statistical Description

® Mean Vectors and

Correlation Matrices

@ Properties of Correlation
Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion. I

|
@ Deriving the Multivariate - p. 56/181

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

1lon,

Since

fxy (x,y) = fyx (¥] %) fx (%) = fx)y (x| ¥) fy (¥) = fyx (v, x)

it follows

fX|Y (x]y) =

Frix (v x) fx (%)

fr (y)

® Deriving the Multivariate
Gaussian

B Dt rmne L MAM11le v re 1t b
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Conditionals and Bayes’s

Since

fxy (x,¥) = fix (v %) fx (%) = fxpy (x| y) fr (y) = frx (v, %)

Signal Processing

it follows

Probability Theory

Scalar Random Variables

Multiple Random Variables

ey (x| y) = frix (v x) fx (x)
| fr (¥)

Vectors
® Distribution and Density

Functions

o Marginal Density Function Since fy (y) can be expressed as:

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

fy(y) = / fxy (%, y)dx = / fyix (¥ x) fx (x) dx
R R

® Genera ting Gaussian

distributed samples

® Auxiliary Variables
@ Statistical Description then it follows

@ Mean Vectors and

Correlation Matrices
@ Properties of Correlation

iy (x| 3) = 1Y (y %) fx (%)
e s XY AT = X (v ] %) fx (x) dx |

P

. |
@ Deriving the Multivariate - p. 56/181

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Bayes’s Theorem (Papoulis, Example 6-42)).  An unknown
random phase ©(() is a priori assumed to be uniformally
distributed in the interval [0, 27). The phase is observed through
a noisy sensor, such that R(¢) = ©(¢) + N(¢), where N(() is

Gaussian distributed with zero mean and variance o%;.

What is the posterior pdf for (0| r)?

® Deriving the Multivariate
Gaussian

B Dt rmne L MAM11le v re 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Bayes’s Theorem (Papoulis, Example 6-42)).  An unknown
random phase ©(() is a priori assumed to be uniformally

distributed in the interval [0, 27). The phase is observed through

a noisy sensor, such that R(¢) = ©(¢) + N(¢), where N(() is
Gaussian distributed with zero mean and variance o%;.

What is the posterior pdf for (0| r)?

SOLUTION. In practical situations, it is reasonable to assume that

©(¢) and N (() are independent.

® Using the probability transformation rule, from N(¢) to
R(¢) = 0 + N(¢) where ©((¢) = 6 is considered fixed, it
follows there is one inverse solution n = r — 6, and the
Jacobian of the transformation is unity. Therefore:

® Deriving the Multivariate

Gaussian
B Dt rmne L MAM11le v re 1t b
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Bayes’s Theorem (Papoulis, Example 6-42)).  An unknown
random phase ©(() is a priori assumed to be uniformally
distributed in the interval [0, 27). The phase is observed through
a noisy sensor, such that R(¢) = ©(¢) + N(¢), where N(() is

Gaussian distributed with zero mean and variance o%;.

What is the posterior pdf for (0| r)?

SOLUTION. In practical situations, it is reasonable to assume that
©(¢) and N (() are independent.

® Using the probability transformation rule, from N(¢) to
R(¢) = 0 + N(¢) where ©((¢) = 6 is considered fixed, it
follows there is one inverse solution n = r — 6, and the
Jacobian of the transformation is unity. Therefore:

1 1 e
frie(r|0)=1fn(r—0)=—=—e

\/ 2%0]2\[

® Deriving the Multivariate

Gaussian
B Dt rmne L MAM11le v re 1t b

-[p. 6181



@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Bayes’s Theorem (Papoulis, Example 6-42)). SOLUTION.
Using Bayes theorem, it directly follows that:

fR|® (r]0) fo (0)
IS frie ("“| é) fe (9) df

which, since fo () = 5= for 0 < 6 < 27

f@|R(9| r) =

_ (r—6)2

2
e 20N

27 (r—6)2
_r=2)”
/ e 2N df
0

and zero otherwise, where it is noted that the factors % and

1 have cancelled each other in the numerator and

2
QWJN

denominator.

foir (0| r) = 0<6<2r

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Bayes’s Theorem (Papoulis, Example 6-42)). SOLUTION.
Using Bayes theorem, it directly follows that:

(r—6)2
T 2
20’N

€

27 (r—9)2
_{r=9)”
/ e 2°N df
0

Note the knowledge about the observation, r, is reflected in the
posterior pdf of ©((), and it shows higher probability density in
the neighbourhood of O(() = r.

0<6 <27 []

f@|R(9\ r) =

WAC) WWARCIE

27

® Deriving the Multivariate
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Chapman-Kolmogorov Equation).
model with an unknown state x,, and measurement vector y,,.

Show that:

P(Xn| ¥y1:n) =

Consider a state-space

Assume p (X, | Xp—1, Yin—1) =P (X, | xp—1) and
p(yn| Xny Y1:n—1) Zp(yn ‘ Xn).

P(Xn| Yin—1) = /p(Xn\ Xp—1)P (Xn—1| Y1:n—1) dXpn—1

p(Yn ‘ Xn)p(Xn| Y1:n—1)
p(Yn‘ Y1:n—1)

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Chapman-Kolmogorov Equation). Consider a state-space
model with an unknown state x,, and measurement vector y,,.

Assume p (X, | Xp—1, Yin—1) =P (X, | xp—1) and
p(yn| Xny Y1:n—1) Zp(yn ‘ Xn).

SOLUTION. The first equation is a direct application of
marginalisation of a joint-pdf:

p(Xn| Y1:n—1) — /p(Xna Xn—1 | Y1:n—1) an—l

— /p(an Xn—1; Y1:n—1) p(Xn—1 | Y1:n—1) dx,_1

= /p(Xn| Xn—1) P(Xn—1| Y1:n—1) dXn_1

11Qing the Markov property
- r r o

]

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

p(Xn | Y1:n)

Example (Chapman-Kolmogorov Equation).
model with an unknown state x,, and measurement vector y,,.

Consider a state-space

Assume p (X, | Xp—1, Yin—1) =P (X, | xp—1) and
p(yn| Xny Y1:n—1) Zp(yn ‘ Xn).

p(Xn ‘ Yn, Y1:n—1)

_ p(Yn| Xns Y1:n—1)p(Xn| Y1:n—1)

p(yn | yl:n—l)

SOLUTION. The second equation is a direct application of Bayes’s
theorem keeping y;.,,_1 a conditional in each term:

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

— End-of-Topic 26: Independence, O =0
Conditionals, and Bayes’s Theorem Revisited

_ Ok

Any Questions?
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Lighthouse

Sea > X

Shore « X,

Example (Gull's lighthouse problem). A lighthouse is off a straight
coastline at position « along the shore and distance (5 out at sea.

® [t emits a series of short highly collimated flashes (i.e. a single
ray of light) at random intervals and hence at random
azimuths (i.e. the angle at which the light ray is emitted).

® These are intercepted on the coast by detectors that record
that a flash occurred, but not the angle of arrival.

® N flashes recorded at {x }. Where is the lighthouse? X |

® Deriving the Multivariate

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Lighthouse

Sea

1 > X
Shore « X,

Example (Gull's lighthouse problem).  This problem can be phrased

in a number of other ways, such as throwing darts randomly at a
wall and so forth. It is essentially a tomography problem, and is

a classic inverse problem.

It can also be phrased as a geolocation problem, and there are a

number of articles on this topic if you search the web!

® Deriving the Multivariate

Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Gull's lighthouse problem).
pdf to the azimuth of the observation which is given by 6. Hence,

fo (0)

1
T

0

SOLUTION. Assign a uniform

T T
—5 <0< 3
otherwise

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Gull's lighthouse problem).  SOLUTION. Assign a uniform

pdf to the azimuth of the observation which is given by 6. Hence,

1 s s
= 5 <0< 3

fo(0)=14"

0 otherwise

® Since the photo-detectors are only sensitive to position along
the coast rather than direction, it is necessary to relate 6 to x:

ftanfl = — «

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Gull's lighthouse problem).  SOLUTION. Assign a uniform
pdf to the azimuth of the observation which is given by 6. Hence,

fo (0) =

1 s s
= 5 <0< 3

T

0 otherwise

® Since the photo-detectors are only sensitive to position along
the coast rather than direction, it is necessary to relate 6 to x:

ftanfl = — «

® Using the probability transformation rule:

fx (z] @)

_ B
8%+ (z — @)?]

[]

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Gull’s lighthouse problem).  SOLUTION. Assuming

observations are independent, the joint-pdf of all the data is:

fx (x| @)

N
fX(xla"'7IN|&):HfX(wk‘a)
k=1

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Gull’'s lighthouse problem).
observations are independent, the joint-pdf of all the data is:

fx (x| o) = fx (21, ..

SOLUTION. Assuming

L IN | a)=

||::]2

T p
_gﬂ[52+(xk—a)2]

The position of the lighthouse is then expressed by:

fx (x

fa(al

X) =

| @) fa()

fx (%)

x (71 | @)

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Gull's lighthouse problem).
for the prior for distance along the shore:

fa ()

1

Omax —A®min

0

SOLUTION. Assign a uniform

Omin S « S Omax

otherwise

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Example (Gull's lighthouse problem).  SOLUTION. Assign a uniform
for the prior for distance along the shore:

1

o) = Omax — &min
fa(a) 0 otherwise

Omin S « S Omax

Hence:

fx (x| a) fa(a)
fx (%)

1 B

— (min k—1 ™ [52 -+ (:Ek o a)Q] 7

fa(lalx)= a) fa(a)

o fx (x|

X fOf Omin S C[E Omax

amax

and zero otherwise. Hence, this posterior density can be
maximised to find the best estimate of .

® Deriving the Multivariate

Gaussian
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® Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
@ Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices
@ Further Statistical

Descriptions
@ Multivariate Gaussian

1lon,

Example (Gull's lighthouse problem).  SOLUTION.

1

o) = Omax —&min
fa(a) 0 otherwise

Omin S (@ S Omax

Log-posterior f(a, B | x), max. at (13.32, 40.50)

Log posterior as function of o and 3 50 ‘
40
30

20

100

Exhaustive Evaluation of Log-posterior.

\

100

-3200

-3250

-3300

-3350

-3400
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

This example highlights two key problems in Signal Processing:

Integration Marginalising out nuisance parameters:

fA<a|x>=/fA<a,mx> 4

Optimisation Finding the maximum marginal a posteriori (MMAP)

estimate:

& = arg, max fa (| x)

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications

Aims and Objectives

Conditionals and Bayes’s

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
® Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

— End-of-Topic 27: Tomography: An Inverse
Problem using Probability Transformations,
Conditional Probability, Independence, Bayes
Theorem, Marginalisation, and Optimisation.

Any Questions?

@ Deriving the Multivariate
Gaussian
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Probability Transformation Rule

Theorem (Probability Transformation Rule).  The set of random
e e variables X (¢) = {X,({), n € N'} are transformed to a new set
of RVs, Y (¢) = {Y,(¢), n € N'}, using the transformations:

Aims and Objectives

b Yo(O) = gn(X(C)), neN %

Probability Theory

Scalr Random Varible where g(-) denotes a vector of functions Y, (¢) = ¢, (X (¢))-

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian
distributed samples

@ Auxiliary Variables

@ Statistical Description

® Mean Vectors and
Correlation Matrices

@ Properties of Correlation
Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion. I

|
@ Deriving the Multivariate - p. 57/181
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Probability Transformation Rule

Theorem (Probability Transformation Rule).  The set of random
e e variables X (¢) = {X,({), n € N'} are transformed to a new set
of RVs, Y (¢) = {Y,(¢), n € N'}, using the transformations:

Aims and Objectives

Signal Processing Yn (C ) = gn (X (C ) ) , N E N

Probability Theory

Scalr Random Varible where g(-) denotes a vector of functions Y, (¢) = ¢, (X (¢))-

Multiple Random Variables

@ Abstract

o Desinition of Random Assuming M -real vector-roots of the equation y = g(x) by

Vectors

@ Distribution and Density {Xm 9 m E M } 9

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s — (X ) — e e e — ( X )
@ Probability Transformation y g 1 g M

Rule
® Polar Transformation

® Generating Gaussian then the joint-pdf of Y (¢) in terms of (i. t. 0.) the joint-pdf of

distributed samples .
@ Auxiliary Variables X (C ) IS :
@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

M
=Y ]|L:)]( (Xm)

Descriptions
@ Multivariate Gaussian m—= 1

@ Deriving the Multivariate —€>57/ 181
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@ Course overview and
exemplar applications

Aims and Objectives

Probability Transformation Rule

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
® Conditionals and Bayes’s
@ Probability Transformation

Rule
® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Theorem (Probability Transformation Rule).
transformation, Jg(x), is given by:

0

(Y1, YN)

Jg(x) =

o(z1,...,TN)

0g1(x)

The Jacobian of the

g2 (x)

81’1
9g1(x)

85[21
9g2(x)

8262

0g1(x)

8:132

0g2(x)

oxr N

oxr N

dgn (x)
ox
ogn 6X)

8%2

891\] (X)

oxr N

® Deriving the Multivariate
Gaussian
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@ Course overview and
exemplar applications
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Signal Processing
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Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence
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@ Probability Transformation
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® Polar Transformation

® Generating Gaussian

distributed samples
@ Auxiliary Variables

@ Statistical Description
® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices

@ Further Statistical
Descriptions

@ Multivariate Gaussian

ion.

Theorem (Probability Transformation Rule).

transformation, Jg(x), is given by:

s O, yy)
A1, an)

Jg(x)

From vector calculus, the Jacobian can also be expressed as:

dg1(x) 9g2(x)
8%1 8x1

dg1(x) 09g2(x)
8%2 8$2

dg1(x) 9g2(x)
oxr N ox N

Oz;  Ozp
dy1 dy1
Oz,  Oxg
| Oy2 Oy2
axl 8$2
dyn  Oyn

The Jacobian of the

dgn (x)
ox
ogn 6X)

8%2

8gN(x)

ox N

8xN
Oy1
ox N
0y2

8xN
OynN

® Deriving the Multivariate
Gaussian
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The Jacobian determinant represents how an elemental region in

one domain changes volume when mapped to another domain.

A

® Deriving the Multivariate
Gaussian

B Dirrinrtrmne L MM11lecre 1t b

- p. 57/181



@ Course overview and
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distributed samples
@ Auxiliary Variables
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® Mean Vectors and

Correlation Matrices
@ Properties of Correlation

Matrices
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Descriptions

@ Multivariate Gaussian

ion.

The Jacobian determinant represents how an elemental region in
one domain changes volume when mapped to another domain.

~._ 04, ~ dudv

N 4

® This elemental area is mapped into the (u,v) domain through
the relationships u = g1 (z,y) and v = ga(x, y).

® The Jacobian indicates the ratio of these two areas:

Ou 0V
6A’U/U ~ X uv 6ACU X uv ~
Jay— Y Jay— 0T 0y

® Deriving the Multivariate
Gaussian

B Dirrinrtrmne L MM11lecre 1t b

|
- p. 57/181



@ Course overview and
exemplar applications
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@ Abstract
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® Distribution and Density

Functions
@ Marginal Density Function
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Rule
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@ Auxiliary Variables

@ Statistical Description
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Matrices
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Descriptions

@ Multivariate Gaussian

ion.

B 8xdy = 5y abu by

=V
N 4

® This elemental area is mapped into the (u,v) domain through
the relationships u = g1 (z,y) and v = ga(x, y).

® The Jacobian indicates the ratio of these two areas:
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In the limit, it can be shown that the Jacobian determinant is:
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® Deriving the Multivariate
Gaussian
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