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This slide is intentionally left blank, in order to accommodate the
processing of acronyms in LATEX.
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Obtaining the Latest Handouts
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Source localisation and blind source separation (BSS). An
example of topics using statistical signal processing.
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Obtaining the Latest Handouts

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Humans turn their head in the direction of interest in order
to reduce inteference from other directions; joint detection,
localisation, and enhancement. An application of probability

and estimation theory, and statistical signal processing.
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Obtaining the Latest Handouts

This research tutorial is intended to cover a wide range of
aspects which cover the fundamentals of statistical signal
processing.

This tutorial is being continually updated, and feedback is
welcomed. The hardcopy documents published or online may
differ slightly to the slides presented on the day.

The latest version of this document can be obtained from the
author, Dr James R. Hopgood, by emailing him at:

mailto:james.hopgood@ed.ac.uk

(Update: The notes are no longer online due to the desire to
maintain copyright control on the document.)

Extended thanks to the many MSc students over the past 16
years who have helped improve these documents.

mailto:james.hopgood@ed.ac.uk
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Introduction and Overview
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Signal processing is concerned with the modification or
manipulation of a signal, defined as an
information-bearing representation of a real process, to
the fulfillment of human needs and aspirations.

It is assumed you have a grounding in DSP. This module will
take you to the next level; a tour of the exciting, fascinating, and
active research area of statistical signal processing.
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Module Abstract

Random signals are extensively used in algorithms, and are:

constructively used to model real-world processes;

described using probability and statistics.
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Module Abstract

Their properties are often estimated by assumming:

an infinite or large number of observations or data points;

time-invariant statistics.
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Module Abstract

Their properties are often estimated by assumming:

an infinite or large number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from short
finite-length data signals in noise.
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Module Abstract

Their properties are often estimated by assumming:

an infinite or large number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from short
finite-length data signals in noise.

This module investigates relevant statistical properties, how
they are estimated from real signals, and how they are used.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to have:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to have:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;

2. developed an understanding of the basic concepts and
methodologies in statistical signal processing that provides
the foundation for further study, research, and application
to new problems.
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Description and Learning Outcomes

PETARS Learning Outcomes On completion of this course:

Define, understand and manipulate scalar and
multiple random variables, using the theory of
probability; this should include the basic tools of
probability transformations and characteristic
functions, moments, the central limit theorem (CLT)
and its use in estimation theory and the sum of
random variables.
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Description and Learning Outcomes

PETARS Learning Outcomes On completion of this course:

Define, understand and manipulate scalar and
multiple random variables, using the theory of
probability; this should include the basic tools of
probability transformations and characteristic
functions, moments, the central limit theorem (CLT)
and its use in estimation theory and the sum of
random variables.

Understand the principles of estimation theory, and
estimation techniques such as maximum-likelihood,
least squares, minimum variance unbiased
estimator (MVUE) estimators, and Bayesian
estimation; be able to characterise the estimator
using standard metrics, including the Cramér-Rao
lower-bound (CRLB).



•Course overview and

exemplar applications

Aims and Objectives

•Obtaining the Latest

Handouts
• Introduction and Overview

•Module Abstract

•Description and Learning

Outcomes
•Structure of the Module

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

- p. 8/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Description and Learning Outcomes

PETARS Learning Outcomes On completion of this course:

Explain, describe, and understand the notion of a
random process and statistical time series, and
characterise them in terms of its statistical properties.
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Description and Learning Outcomes

PETARS Learning Outcomes On completion of this course:

Explain, describe, and understand the notion of a
random process and statistical time series, and
characterise them in terms of its statistical properties.

Define, describe, and understand the notion of the
power spectral density of stationary random
processes, and be able to analyse and manipulate
them; analyse in both time and frequency the affect
of transformations and linear systems on random
processes, both in terms of the density functions, and
statistical moments.
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Description and Learning Outcomes

PETARS Learning Outcomes On completion of this course:

Explain the notion of parametric signal models, and
describe common regression-based signal models in
terms of its statistical characteristics, and in terms of
its affect on random signals; apply least squares,
maximum-likelihood, and Bayesian estimators to
model based signal processing problems.
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Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;
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Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;
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Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;



•Course overview and

exemplar applications

Aims and Objectives

•Obtaining the Latest

Handouts
• Introduction and Overview

•Module Abstract

•Description and Learning

Outcomes
•Structure of the Module

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

- p. 9/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;
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Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;
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Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;
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Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;



•Course overview and

exemplar applications

Aims and Objectives

•Obtaining the Latest

Handouts
• Introduction and Overview

•Module Abstract

•Description and Learning

Outcomes
•Structure of the Module

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

- p. 9/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Structure of the Module

The key themes covered are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;

8. an application investigating the estimation of sinusoids in
noise, outperforming the Fourier transform.
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Structure of the Module

– End-of-Topic 1: Course description, learning
outcomes, and prerequisites –

Any Questions?
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Passive and Active Target Localisation

A number of signal processing problems rely on knowledge of
the desired source position:

1. Tracking methods and target intent inference.

2. Estimating mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in
speech enhancement).

4. Camera steering for audio-visual BSS (including Robot
Audition).

5. Speech diarisation.

Passive localisation is particularly challenging.
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Passive Target Localisation Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most passive target localisation (PTL) techniques rely on the
fact that an impinging wavefront reaches one sensor before it
reaches another (spatio-temporal diversity).
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Passive Target Localisation Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most PTL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another
(spatio-temporal diversity).

Many PTL algorithms are designed assuming there is no
multipath or reverberation present, the free-field assumption.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and summed version of the signal data;
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and summed version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

any localisation scheme relying upon an application of the
signal correlation matrix;
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and summed version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

any localisation scheme relying upon an application of the
signal correlation matrix;

3. approaches employing TDOA information:

source locations calculated from a set of TDOA estimates
measured across various combinations of sensors.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

Suppose there is a:

sensor array consisting of N nodes located at positions
mi ∈ R

3, for i ∈ {0, . . . , N − 1},

M talkers (or targets) at positions xk ∈ R
3, for

k ∈ {0, . . . ,M − 1}.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The TDOA between the sensor node at position mi and mj due
to a source at xk can be expressed as:

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

where c is the speed of the impinging wavefront.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

•Passive and Active Target

Localisation
•Passive Target Localisation

Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

• Indirect TDOA-based

Methods
•Hyperbolic Least Squares

Error Function
•TDOA estimation methods

•GCC TDOA estimation

•GCC Processors

•Direct Localisation

Methods
•Steered Response Power

Function
•Conclusions

•Probability, Random

Variables, and Estimation

Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

- p. 15/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Ideal Free-field Model

In an anechoic free-field environment, the signal from source
k, denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise, and αik is the
attenuation.

Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.
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Ideal Free-field Model

In an anechoic free-field environment, the signal from source
k, denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise, and αik is the
attenuation.

Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.

The TDOA between the i-th and j-th sensor is given by:

τijk = τik − τjk = T (mi, mj , xk)
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.

An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Hyperbolic Least Squares Error Function

If a TDOA is estimated between two sensor nodes i and j,
then the error between this and modelled TDOA is

ǫij(xk) = τijk − T (mi, mj , xk)

The total error as a function of target position

J(xk) =
N∑

i=1

N∑

j 6=i=1

ǫij(xk) =
N∑

i=1

N∑

j 6=i=1

(τijk − T (mi, mj , xk))
2

where

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

Unfortunately, since T (mi, mj , xk) is a nonlinear function of
xk, the minimum least-squares estimate (LSE) does not
possess a closed-form solution.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

fail when multipath is high;

focus of current research is on combating the effect of
multipath.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

AED Algorithm Approaches the TDOA estimation approach from a
different point of view from the traditional GCC method.

adopts a multipath rather than free-field model;

computationally more expensive than GCC;

can fail when there are common-zeros in the channel.
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

where the cross-power spectral density (CPSD) is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

where the CPSD is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]

For the free-field model, it can be shown that:

∠Pxixj
(ω) = −jω T (mi, mj , xk)
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GCC Processors

Processor Name Frequency Function

Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1

√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)

Pn1n1 (e
jωTs)Pn2n2 (e

jωTs)

Hannon-Thomson or ML

∣
∣γx1x2

(
ejωTs

)∣
∣
2

|Px1x2 (e
jωTs)|

(

1− |γx1x2 (e
jωTs)|2

)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence

function
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GCC Processors
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Normal cross-correlation and GCC-phase
transform (PHAT) (GCC-PHAT) functions for a frame of

speech.
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Direct Localisation Methods

Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Steered Response Power Function

The steered beamformer (SBF) or SRP function is a measure of
correlation across all pairs of microphone signals for a set of
relative delays that arise from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω

E [S (x̂)] =

N∑

p=1

N∑

q=1

rxi xj
[τ̂pqk]

≡
N∑

p=1

N∑

q=1

rxi xj

[ |xk −mi| − |xk −mj |
c

]
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Steered Response Power Function
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SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at [2.0, 2.5]m. The grid density is set to 40 mm.
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Steered Response Power Function

An example video showing the SBF changing as the source
location moves.

Show video!
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Conclusions

To fully appreciate the algorithms in PTL, we need:

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.

4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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Introduction

To motivate the need for probability theory, consider the simplest
of problems in the presence of uncertainty.

How many water taxis are there in Venice?
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Introduction

To motivate the need for probability theory, consider the simplest
of problems in the presence of uncertainty.

How many water taxis are there in Venice?

Assume taxi numbers sequential from 1 to N . What is best
guess of N given these observations?
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Introduction

To motivate the need for probability theory, consider the simplest
of problems in the presence of uncertainty.

How many water taxis are there in Venice?

Assume taxi numbers sequential from 1 to N . What is best
guess of N given these observations?
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Introduction

To motivate the need for probability theory, consider the simplest
of problems in the presence of uncertainty.

How many water taxis are there in Venice?

How does your answer change when you see more taxis?
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Introduction

To motivate the need for probability theory, consider the simplest
of problems in the presence of uncertainty.

How many water taxis are there in Venice?

How does your answer change when you see more taxis?
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Introduction

What tools are needed to study this problem?

Kernel density estimation for modelling observation data.

The notion of probability and random variables;

The notion of probability density functions (pdfs);
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Introduction

What tools are needed to study this problem?

Kernel density estimation for modelling observation data.

The notion of probability and random variables;

The notion of probability density functions (pdfs);

The notion of independence of observations;
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Introduction

What tools are needed to study this problem?

Kernel density estimation for modelling observation data.

The notion of probability and random variables;

The notion of probability density functions (pdfs);

The notion of independence of observations;

The notion of estimation theory & uncertainty quantification.

These will be studies in turn throughout this course; we will start
off looking at the basics of probability.
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Introduction

Students are exposed to probability at school from a relatively
young age. It is not the intention of this course to go over basic
probability again. Instead, the purpose is to:

enhance a fundamental understanding of probability that
enable us develop more complex concepts;

identify limitations of classical definitions;

reaffirm that intuition with regards to probability is often
wrong; careful and systematic analysis is often needed.

Is the infamous Monty-Hall problem counter-intuitive?
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Introduction

The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

e.g. signal/anomaly detection, parameter estimation, ...

Starting from probability of individual events, can develop a
probabilistic framework for analysing signals.
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The Notion of Probability
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Average dice roll vs number of rolls

Observed averages
Theoretical Mean

Illustrating law-of-large numbers through throwing dice.

Start by observing certain averages approach a constant value
as the number of observations increases; and remains
constant even if evaluated over any specified sub-sequences.
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The Notion of Probability
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Average dice roll vs number of rolls

Observed averages
Theoretical Mean

Illustrating law-of-large numbers through throwing dice.

As the number of rolls in the sequence increases, the average of
the values of all the results approaches the theoretical mean

value of 1
6

∑6
k=1 k = 3.5.
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The Notion of Probability
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Average dice roll vs number of rolls

Observed averages
Theoretical Mean

Illustrating law-of-large numbers through throwing dice.

It follows from the law of large numbers that the empirical
probability of success in a series of Bernoulli trials will converge
to the theoretical probability.
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The Notion of Probability

If an experiment is performed n times, and the event A
occurs nA times, then with a high degree of certainty, the
relative frequency nA/n is close to Pr (A), such that:

Pr (A) ≈ nA

n

provided that n is sufficiently large.

This is the empirical probability, or relative frequency,
and is an estimator of probability.

Note this frequentist interpretation and language is imprecise.
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The Notion of Probability

If an experiment is performed n times, and the event A
occurs nA times, then with a high degree of certainty, the
relative frequency nA/n is close to Pr (A), such that:

Pr (A) ≈ nA

n

provided that n is sufficiently large.

This is the empirical probability, or relative frequency,
and is an estimator of probability.

Note this frequentist interpretation and language is imprecise.

Moreover, another problem with this definition is that it
implies an experiment needs to be performed in order to
define a probability. In the next set of slides, we will move
away from this restriction.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

• Introduction

•The Notion of Probability

•Classical Definition of

Probability

•Difficulties with the

Classical Definition
•Discussion: Bertrand’s

Paradox
•Axiomatic Definition

•Properties of Axiomatic

Probability

•Set Theory

•Countable Spaces and Total

Probability

•The Real Line

•Conditional Probability

•Bayes’s Rule

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes
- p. 27/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The Notion of Probability

– End-of-Topic 11: Introduction to Probability,
The Law-of-Large Numbers, and Empirical

Probability –

Any Questions?
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Classical Definition of Probability

For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determined a priori without actual experimentation. It
is given by the ratio:

Pr (A) =
NA

N

where:

N is the total number of outcomes,

and NA is the total number of outcomes that are favourable to
the event A, provided that all outcomes are equally probable.
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Classical Definition of Probability

For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determined a priori without actual experimentation. It
is given by the ratio:

Pr (A) =
NA

N

where:

N is the total number of outcomes,

and NA is the total number of outcomes that are favourable to
the event A, provided that all outcomes are equally probable.

1. Probability of a specific number rolled on a six-sided die (1/6);

2. Probability of rolling an even number on a six-sided die (3/6).
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.

3. If the number of possible outcomes is infinite, then some other
measure of infinity for determining the classical probability
ratio is needed, such as length, or area. This leads to
difficulties, such as Bertrand’s paradox.
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Discussion: Bertrand’s Paradox

The Bertrand paradox is a problem within the classical
interpretation of probability theory.

Consider a circle C of radius r; what is the probability p that the
length ℓ of a randomly selected cord AB is greater than the

length, r
√
3, of the inscribed equilateral triangle?

r

A

B

Circle C

l

r/2

r

Bertrand’s paradox, problem definition.
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Discussion: Bertrand’s Paradox

In the random midpoints method, a cord is selected by
choosing a point M anywhere in the full circle, and two
end-points A and B on the circumference, such that the
resulting chord AB through these chosen points has M as its
midpoint.

p =
π
(
r
2

)2

πr2
=

1

4

A

B

M

Different selection methods.
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Discussion: Bertrand’s Paradox

In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

p =
2πr
3

2πr
=

1

3

A

B

M

A

BD

E

Different selection methods.
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Discussion: Bertrand’s Paradox

Finally, in the random radius method, a radius of the circle is
chosen at random, and a point on the radius is chosen at
random. The chord AB is constructed as a line perpendicular
to the chosen radius through the chosen point.

p =
r

2r
=

1

2

A

B

M

A

BD

E

A B
R

Different selection methods.

There are three different reasonable solutions. Which is valid?
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Discussion: Bertrand’s Paradox

Example (Multi-choice). Consider a circle of radius r. What is the
probability that the length of a randomly selected cord is greater

than the length, r
√
3, of the inscribed equilateral triangle?

1. 1
4

2. 1
3

3. 1
2

4. Need more information.
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Discussion: Bertrand’s Paradox

Example (Multi-choice). Consider a circle of radius r. What is the
probability that the length of a randomly selected cord is greater

than the length, r
√
3, of the inscribed equilateral triangle?

1. 1
4

2. 1
3

3. 1
2

4. Need more information.

The solution to this paradox is indeed quite complicated, and has
been discussed in a number of research papers! A discussion will
take place in the hybrid classes, but if you are interested in
finding out more, you are encouraged to look into this further.
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Discussion: Bertrand’s Paradox

– End-of-Topic 12: Awareness of the difficulties
with the Classical Definition of Probability –

Any Questions?
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Axiomatic Definition

The Kolmogorov axioms are the foundations of probability
introduced in 1933. An alternative approach is Cox’s theorem.

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0
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Axiomatic Definition

The Kolmogorov axioms are the foundations of probability
introduced in 1933. An alternative approach is Cox’s theorem.

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0

2. Defining the certain event, S, as the event that occurs in
every trial, then:

Pr (S) = 1
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Axiomatic Definition

The Kolmogorov axioms are the foundations of probability
introduced in 1933. An alternative approach is Cox’s theorem.

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0

2. Defining the certain event, S, as the event that occurs in
every trial, then:

Pr (S) = 1

3. If the events A and B are mutually exclusive, then:

Pr (A ∪B) = Pr (A) + Pr (B)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0:

Pr (∅) = 0
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then

Pr
(
A ∪A

)
= Pr (A) + Pr

(
A
)
= Pr (S) = 1, such that:

Pr
(
A
)
= 1− Pr (A)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then

Pr
(
A ∪A

)
= Pr (A) + Pr

(
A
)
= Pr (S) = 1, such that:

Pr
(
A
)
= 1− Pr (A)

Sum Rule The addition law of probability or the sum rule for
any two events A and B is given by:

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B)

Event
A

Event
B

Certain Event
S

Event A Ç��B
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A)+Pr (B)−Pr (A ∪B) ≥ Pr (A)+Pr (B)−1 =
1

12
�

which is the case when the whole sample space is covered by
the two events.
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A)+Pr (B)−Pr (A ∪B) ≥ Pr (A)+Pr (B)−1 =
1

12

which is the case when the whole sample space is covered by
the two events.

The second bound occurs since A ∩B ⊂ B and similarly
A ∩B ⊂ A, where ⊂ denotes subset. Therefore, it can be
deduced Pr (AB) ≤ min{Pr (A) , Pr (B)} = 1/3. �
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Properties of Axiomatic Probability

– End-of-Topic 13: Properties of axiomatic
probability theory, and an interesting

example –

Any Questions?
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Set Theory

Unions & Intersections Unions and intersections are commutative,
associative, distributive:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC
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Set Theory

Unions & Intersections Unions and intersections are commutative,
associative, distributive:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC

Complements The complement A of a set A ⊂ S is the set
consisting of all elements of S that are not in A. Note that:

A ∪A = S and A ∩A ≡ AA = {∅}

Event
A

Certain Event
S Event

A
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Set Theory

Partitions A partition U of a set S is a collection of mutually
exclusive subsets Ai of S whose union equates to S:

∞⋃

i=1

Ai = S, Ai ∩Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An]

Certain Event
S

A16

A17

A7

A2
A3

A1A6

A4

A8

A9
A11

A5A13

A14

A19

A15

A21

A22 A23 A24

A18

A12
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Set Theory

Partitions A partition U of a set S is a collection of mutually
exclusive subsets Ai of S whose union equates to S:

∞⋃

i=1

Ai = S, Ai ∩Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An]

De Morgan’s Law Using Venn diagrams, it it can be shown

A ∪B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B

Event
A

Event
B

Certain Event
S

Event A È�B
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Set Theory

Partitions A partition U of a set S is a collection of mutually
exclusive subsets Ai of S whose union equates to S:

∞⋃

i=1

Ai = S, Ai ∩Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An]

De Morgan’s Law Using Venn diagrams, it it can be shown

A ∪B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B

As an application of this, note that:

A ∪BC = ABC = A
(
B ∪ C

)

=
(
AB

)
∪
(
AC

)
= A ∪B ∪A ∪ C

⇒ A ∪BC = (A ∪B) (A ∪ C)
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Set Theory

De Morgan’s Law Using Venn diagrams, it it can be shown

A ∪B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B

As an application of this, note that:

A ∪BC = ABC = A
(
B ∪ C

)

=
(
AB

)
∪
(
AC

)
= A ∪B ∪A ∪ C

⇒ A ∪BC = (A ∪B) (A ∪ C)

Event
BCertain Event

S

Event A È�BC

Event
A

Event
C
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Set Theory

Example (Proof of the Sum Rule). Prove the addition law of
probability (or sum rule), namely:

Pr (A ∪ B) = Pr (A) + Pr (B)− Pr (A ∩B)

SOLUTION.
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Set Theory

Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write each of A ∪B and B as the union of two
mutually exclusive events.

First, to write A ∪B in this way, use S:

A ∪B = S (A ∪B) =
(
A ∪A

)
(A ∪B) = A ∪

(
AB

)

Since the intersection A ∩
(
AB

)
=
(
AA

)
B = {∅}B = {∅},

then A and AB are mutually exclusive events, as required.

Second, and using a similar approach, note that:

B = S B =
(
A ∪A

)
B = (AB) ∪

(
AB

)
�

Since the intersection (AB) ∩
(
AB

)
= AAB = {∅}B = {∅}

and are therefore mutually exclusive events.
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Set Theory

Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr (A ∪B) = Pr
(
A ∪

(
AB

))
= Pr (A) + Pr

(
AB

)

Pr (B) = Pr
(
(AB) ∪

(
AB

))
= Pr (AB) + Pr

(
AB

)

�
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Set Theory

Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr (A ∪B) = Pr
(
A ∪

(
AB

))
= Pr (A) + Pr

(
AB

)

Pr (B) = Pr
(
(AB) ∪

(
AB

))
= Pr (AB) + Pr

(
AB

)

Eliminating Pr
(
AB

)
by subtracting these equations gives the

desired result:

Pr (A ∪B)− Pr (B) = Pr
(
A ∪

(
AB

))
= Pr (A)− Pr (AB) �
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Set Theory

– End-of-Topic 14: Set theory and its used in
probability theory. –

Any Questions?
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Countable Spaces and Total Probability

Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the
second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

⋊⋉
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Countable Spaces and Total Probability

Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the
second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

⋊⋉

However, a local statistician lends them a horse so that they have
eighteen. The children then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.
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Countable Spaces and Total Probability

Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the
second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

⋊⋉

However, a local statistician lends them a horse so that they have
eighteen. The children then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.

What is wrong with this story?
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Countable Spaces and Total Probability

If the certain event, S, consists of N outcomes, and N is a finite
number, then the probabilities of all events can be expressed in
terms of the probabilities Pr (ζi) = pi of the elementary events
{ζi}.

From the basic axioms, it follows that pi ≥ 0 and that

N∑

i=1

pi = 1
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Countable Spaces and Total Probability

If the certain event, S, consists of N outcomes, and N is a finite
number, then the probabilities of all events can be expressed in
terms of the probabilities Pr (ζi) = pi of the elementary events
{ζi}.

From the basic axioms, it follows that pi ≥ 0 and that

N∑

i=1

pi = 1

This can be used in obtaining the principle of total
probability.

Let A1, A2, A3, . . . be a finite or countably infinite set of
mutually exclusive and collectively exhaustive events, then

∑

i

Pr (Ai ∩B) = Pr (B)
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Countable Spaces and Total Probability

Certain Event
S

A11

A5

A2 A3
A1

A4

A6

A7
A8A9

A10

A13

A14

A15
A12

This can be used in obtaining the principle of total
probability.

Let A1, A2, A3, . . . be a finite or countably infinite set of
mutually exclusive and collectively exhaustive events, then

∑

i

Pr (Ai ∩B) = Pr (B)
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Countable Spaces and Total Probability

After this lecture, try the following example in the notes:

Example (Detection and Classification). An acoustic scene analysis
algorithm is monitoring animal sounds, and makes sound
classifications, either being labelled as bird, fox, or pet sounds.

29% of the detected sounds are false alarms;

3% of labelled bird sounds are false alarm detections;

12% of detected bird sounds are correctly labelled;

5% of labelled fox sounds are false alarm detections;

32% are correct detections of domestic pet sounds.

The following events are defined: correctly classified – C;
mis-classified – M ; bird sound – B; fox sound – F ; pets – D.
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Countable Spaces and Total Probability

After this lecture, try the following example in the notes:

Example (Detection and Classification). An acoustic scene analysis
algorithm is monitoring animal sounds, and makes sound
classifications, either being labelled as bird, fox, or pet sounds.

Draw a Venn diagram of the problem, and determine:

1. What is the probability that a detection is classified as a bird
sound, either correctly or incorrectly?

2. What is the probability that a detection is a false alarm and/or
a labelled bird sound?

3. What is the probability that a sound is correctly classified as a
fox or domestic pet sound?

4. What is the probability of a false alarm for a pet sound?
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x ≤ xi}.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x ≤ xi}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.
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The Real Line

– End-of-Topic 15: Countable Spaces, Total
Probabilities, and Uncountable Spaces on the

Real line –

Any Questions?
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Conditional Probability

If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.
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Conditional Probability

If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.

In this smaller collection of trials, the proportion of times that A
occurs, given that B has occurred, is:

Pr
(
A
∣
∣B
)
≈ nAB

nB
=

nAB/n
nB/n

=
Pr (AB)

Pr (B)

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov
Axioms.
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Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?
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Conditional Probability

Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or
female, and it is assumed that each is equally likely.

C1 C2 Outcome

Gender Gender Relevant? Desired?

B B X X

G B X

B G X

G G

Count 3 1

�

Therefore, using classical probability, since the events are all
equally probable, the answer is p = NA/N = 1/3.
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Bayes’s Rule

Conditional probability leads onto Bayes’s theorem.

Pr (AB) = Pr
(
A
∣
∣B
)
Pr (B) = Pr

(
B
∣
∣A
)
Pr (A)
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Bayes’s Rule

Conditional probability leads onto Bayes’s theorem.

Pr (AB) = Pr
(
A
∣
∣B
)
Pr (B) = Pr

(
B
∣
∣A
)
Pr (A)

giving

Pr
(
B
∣
∣A
)
=

Pr
(
A
∣
∣B
)
Pr (B)

Pr (A)



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

• Introduction

•The Notion of Probability

•Classical Definition of

Probability

•Difficulties with the

Classical Definition
•Discussion: Bertrand’s

Paradox
•Axiomatic Definition

•Properties of Axiomatic

Probability

•Set Theory

•Countable Spaces and Total

Probability

•The Real Line

•Conditional Probability

•Bayes’s Rule

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes
- p. 37/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Bayes’s Rule

Conditional probability leads onto Bayes’s theorem.

Pr (AB) = Pr
(
A
∣
∣B
)
Pr (B) = Pr

(
B
∣
∣A
)
Pr (A)

giving

Pr
(
B
∣
∣A
)
=

Pr
(
A
∣
∣B
)
Pr (B)

Pr (A)

Bayes’s rule will be used throughout this course, and
commonly arises in the analysis of signal and communication
systems, machine learning, and data science.

Bayesian inference is typically a computationally expensive
problem, but can be solved efficiently using graphical models,
sparsity, and numerical Bayesian methods such as Monte
Carlo and Message Passing techniques.
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Bayes’s Rule

Example (Prisoner’s Problem). Three prisoners, A, B and C, are in
separate cells. The governor has selected one of them at random
to be pardoned. The warden knows which one is to be released,
but is not allowed to say. Prisoner A begs the warden to be told
the identity of one of the others who will not be released.

Prisoner A says: If B is to be pardoned, give me C ’s name,
and vice-versa. And if I’m to be pardoned, flip a coin to
decide whether to name B or C.

The warden tells A that B will not be released.
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Bayes’s Rule

Example (Prisoner’s Problem). Three prisoners, A, B and C, are in
separate cells. The governor has selected one of them at random
to be pardoned. The warden knows which one is to be released,
but is not allowed to say. Prisoner A begs the warden to be told
the identity of one of the others who will not be released.

Prisoner A says: If B is to be pardoned, give me C ’s name,
and vice-versa. And if I’m to be pardoned, flip a coin to
decide whether to name B or C.

The warden tells A that B will not be released.

Prisoner A believes that the probability of being released has
gone up from 1/3 to 1/2, as it is now between A and C. Prisoner A
tells C the news, who reasons that A still has a chance of 1/3 to
be the pardoned one, but C ’s chance has gone up to 2/3. What is
the correct answer?
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Bayes’s Rule

Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C ’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. Solve using total probability and Bayes’s theorem.

Let A, B, and C be the events that the corresponding prisoner
will be pardoned.

Note that A, B, and C are independent events, before the
warden has provided any information.

Let b be the event that the warden tells A that B is not to be
released.
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Bayes’s Rule

Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C ’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. Using Bayes’s theorem, it follows that:

Pr
(
A
∣
∣ b
)
=

Pr
(
b
∣
∣A
)
Pr (A)

Pr (b)

�
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Bayes’s Rule

Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C ’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. Using the principal of total probability:

Pr (b) =
∑

i∈{A,B,C}
Pr (b, i)

= Pr (b, A) + Pr (b, B) + Pr (b, C)

= Pr
(
b
∣
∣A
)
Pr (A) + Pr

(
b
∣
∣B
)
Pr (B) + Pr

(
b
∣
∣C
)
Pr (C)

=
1

2
× 1

3
+ 0× 1

3
+ 1× 1

3
=

1

2

�
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Bayes’s Rule

Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C ’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. If A is to be released, the warden can tell A either
B or C through the toss of the coin⇒Pr

(
b
∣
∣A
)
= 1

2 .

If C is to be released, the warden is now constraned to say B
will not be released, so Pr

(
b
∣
∣C
)
= 1. �
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Bayes’s Rule

Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C ’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. If A is to be released, the warden can tell A either
B or C through the toss of the coin⇒Pr

(
b
∣
∣A
)
= 1

2 .

If C is to be released, the warden is now constraned to say B
will not be released, so Pr

(
b
∣
∣C
)
= 1.

Pr
(
A
∣
∣ b
)
=

Pr
(
b
∣
∣A
)
Pr (A)

Pr (b)
=

1
2 × 1

3
1
2

=
1

3

�
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Bayes’s Rule

Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C ’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. If A is to be released, the warden can tell A either
B or C through the toss of the coin⇒Pr

(
b
∣
∣A
)
= 1

2 .

If C is to be released, the warden is now constraned to say B
will not be released, so Pr

(
b
∣
∣C
)
= 1.

Pr
(
A
∣
∣ b
)
=

Pr
(
b
∣
∣A
)
Pr (A)

Pr (b)
=

1
2 × 1

3
1
2

=
1

3

Pr
(
C
∣
∣ b
)
=

Pr
(
b
∣
∣C
)
Pr (C)

Pr (b)
=

1× 1
3

1
2

=
2
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Bayes’s Rule

Example (Prisoner’s Problem). Prisoner A says: If B is to be
pardoned, give me C ’s name, and vice-versa. And if I’m to be
pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

SOLUTION. The tendency of people to provide the answer 1/2
neglects to take into account that the warden may have tossed a
coin before giving an answer. The warden may have answered B
because either:

A is to be released and the wardan tossed a coin;

or C is to be released.

The probabilities of these two events are not equal.
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Bayes’s Rule

After this lecture, try the following example in the notes:
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Normal Rhythm
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QRS
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Atrial Fibrillation

Example (Classification Accuracy). An algorithm using
electrocardiogram (ECG) data is used to test for a certain
irregular heartbeat and is 95% accurate. A person submits to the
test and the results are positve. Suppose the person comes from
a population of 105, where 2000 people suffer the irregularity.
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Bayes’s Rule
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Atrial Fibrillation

Example (Classification Accuracy). An algorithm using
electrocardiogram (ECG) data is used to test for a certain
irregular heartbeat and is 95% accurate. A person submits to the
test and the results are positve. Suppose the person comes from
a population of 105, where 2000 people suffer the irregularity.

What can we conclude about the probability that the person
under test has that particular heartbeat irregularity?
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Bayes’s Rule

– End-of-Topic 16: Conditional Probability, and
a basic but important Introduction to Bayes

Rule –

Any Questions?
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Definition

R

Abstract
sample space, S

X( )z1

X( )z2

X( )z3 R

R

Outcome

z1=“Red”

Outcome

z2=“Green”

Outcome

z3=“Blue”

real number line

Physical
Experiment

Pr( )z1

Pr( )z2

Pr( )z3

x1=1

x2=2

x3=4

Green

Blue

Red

A graphical representation of a random variable for a more
specific example.

Note that for continuous random variables, the outcomes
are events, such as small intervals on the real axis as
described in the previous lecture.
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Definition

A random variable (RV) X(ζ) is a mapping that assigns a real
number X ∈ (−∞, ∞) to every outcome ζ from an abstract
probability space.

1. the interval {X(ζ) ≤ x} is an event in the abstract probability
space for every x ∈ R;

2. Pr (X(ζ) = ∞) = 0 and Pr (X(ζ) = −∞) = 0.

The second condition states that, although X(ζ) is allowed to
take the values x = ±∞, the outcomes form a set with zero
probability.
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Definition

Example (Rolling die). Consider rolling a die, with six outcomes
{ζi, i ∈ {1, . . . , 6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X(ζ) is given by:

X(ζ1) = X(ζ3) = X(ζ5) = 0 and X(ζ2) = X(ζ4) = X(ζ6) = 1
⋊⋉
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Definition

Example (Rolling die). Consider rolling a die, with six outcomes
{ζi, i ∈ {1, . . . , 6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X(ζ) is given by:

X(ζ1) = X(ζ3) = X(ζ5) = 0 and X(ζ2) = X(ζ4) = X(ζ6) = 1
⋊⋉

Example (Letters of the alphabet). Suppose the outcome of an
experiment is a letter A to Z, such that X(A) = 1,
X(B) = 2, ..., X(Z) = 26. Then the event X(ζ) ≤ 5 corresponds
to the letters A, B, C, D, or E.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density - p. 40/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

The probability set function Pr (X(ζ) ≤ x) is a function of
the set {X(ζ) ≤ x}, and therefore of the point x ∈ R.
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

The probability set function Pr (X(ζ) ≤ x) is a function of
the set {X(ζ) ≤ x}, and therefore of the point x ∈ R.

This probability is the cumulative distribution
function (cdf), FX (x) of a RV X(ζ), and is defined by:

FX (x) , Pr (X(ζ) ≤ x)
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

It hence follows that the probability of being within an
interval (xℓ, xr] is given by:

Pr (xℓ < X(ζ) ≤ xr) = Pr (X(ζ) ≤ xr)− Pr (X(ζ) ≤ xℓ)

= FX (xr)− FX (xℓ)
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

It hence follows that the probability of being within an
interval (xℓ, xr] is given by:

Pr (xℓ < X(ζ) ≤ xr) = Pr (X(ζ) ≤ xr)− Pr (X(ζ) ≤ xℓ)

= FX (xr)− FX (xℓ)

For small intervals, it is clearly apparent that gradients are
important.
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Distribution functions

x

FX( )x

x xl+d

Pr(X�< xl+dx)

xl

Pr( )X�< xl

dx

dy

dF x dxX( )/ |x x= l

The gradient of the cdf is important, and leads to the pdf.

This can be seen by setting xr = xl + δx:

Pr (xℓ < X(ζ) ≤ xℓ + δx) = Pr (X(ζ) ≤ xℓ + δx)− Pr (X(ζ) ≤ xℓ)

≈ Pr (X(ζ) ≤ xℓ) +
dFX (x)

dx

∣
∣
∣
∣
x=xℓ

δx− Pr (X(ζ) ≤ xℓ)

≈ dFX (x)

dx

∣
∣
∣
∣
x=xℓ

δx
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Distribution functions

x

FX( )x

x xl+d

Pr(X�< xl+dx)

xl

Pr( )X�< xl

dx

dy

dF x dxX( )/ |x x= l

The gradient of the cdf is important, and leads to the pdf.

This can be seen by setting xr = xl + δx:

Pr (xℓ < X(ζ) ≤ xℓ + δx) = Pr (X(ζ) ≤ xℓ + δx)− Pr (X(ζ) ≤ xℓ)

≈ Pr (X(ζ) ≤ xℓ) +
dFX (x)

dx

∣
∣
∣
∣
x=xℓ

δx− Pr (X(ζ) ≤ xℓ)

≈ dFX (x)

dx

∣
∣
∣
∣
x=xℓ

δx

Shortly, it will be seen that
dFX(x)

dx is indeed the pdf.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density - p. 41/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Kolmogorov’s Axioms

The events {X(ζ) ≤ x1} and {x1 < X(ζ) ≤ x2} are mutually
exclusive events. Therefore, their union equals {X(ζ) ≤ x2}, and
thus:

Pr (X(ζ) ≤ x1) + Pr (x1 < X(ζ) ≤ x2) = Pr (X(ζ) ≤ x2)
∫ x1

−∞
p (v) dv + Pr (x1 < X(ζ) ≤ x2) =

∫ x2

−∞
p (v) dv

⇒ Pr (x1 < X(ζ) ≤ x2) =

∫ x2

x1

p (v) dv

where p (v) is an probability density function (pdf) that will be
described in more detail in the next section.

Moreover, it follows that Pr (−∞ < X(ζ) ≤ ∞) = 1 and the
probability of the impossible event, Pr (X(ζ) ≤ −∞) = 0. Hence,
the cdf satisfies the axiomatic definition of probability.
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Kolmogorov’s Axioms

– End-of-Topic 17: Introduction to Random
Variables and Cummulative Distribution

Functions –

Any Questions?
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Density functions

It was seen in the previous section that gradients of the cdf are
important when determining the probability of being within
small intervals.

The probability density function (pdf) of a RV, X(ζ), is:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X(ζ) ≤ x+∆x)
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Density functions

It was seen in the previous section that gradients of the cdf are
important when determining the probability of being within
small intervals.

The probability density function (pdf) of a RV, X(ζ), is:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X(ζ) ≤ x+∆x)

It directly follows that:

FX(x) =

∫ x

−∞
fX(v) dv
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Density functions

For discrete-valued RV, use the probability mass
function (pmf), pk, the probability that X(ζ) takes on a value

equal to xk: pk , Pr (X(ζ) = xk).
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Density functions

For discrete-valued RV, use the probability mass
function (pmf), pk, the probability that X(ζ) takes on a value

equal to xk: pk , Pr (X(ζ) = xk).

The pmf for a discrete RVs can be written as a pdf through:

fX (x) =
∑

k

pk δ(x− xk)

where δ(x) is the Dirac-delta function, and is given by:

δ(x) = 0 if x 6= 0
∫ ∞

−∞
δ(x) dx = 1
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Density functions

x

F xX( )

1/6
2/6
3/6
4/6
5/6
1

1 2 3 4 5 6

The cdf and pdf for a fair six-sided die.

Example ( die). Describe the cdf and pdf for a fair six-sided die.

SOLUTION. The probability mass function (pmf) is given by

pi = Pr (X(ζ) = xi) =
1
6 , where xi = i, i ∈ {1, . . . , 6}.

Note that Pr (X(ζ) < x1) = 0 whereas Pr (X(ζ) ≤ x1) = 1/6.
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Density functions

x

fX( )x
(1/6)

1 2 3 4 5 6

(1/6)

(Scale not in proportion)

......

The cdf and pdf for a fair six-sided die.

Example ( die). Describe the cdf and pdf for a fair six-sided die.

SOLUTION. The pdf is obtained by differentiating the cdf:

fX (x) =

N∑

i=1

pi δ(x− xi) =
1

6

6∑

i=1

δ(x− i) �
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Density functions

0a x

f xX( )

1-p
p

c b-

b c x

F xX( )

1-p

1

0a b c

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture

of continuous and discrete components.

Moreover, a mixture of continuous and discrete components will
have a pdf composed of delta as well as continous functions:

fX,m (x) =
∑

k

pk δ(x− xk) + fX,c (x)
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Density functions

0a x

f xX( )
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c b-
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0a b c

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture

of continuous and discrete components.

The pdf for the distribution shown above can be written as:

fX (x) = (1− p) δ(x− a) +
p

c− b
(u(x− b)− u(x− c))

where u(x) is the unit step function, such that u(x) = 1 if x ≥ 0
and zero otherwise.
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Density functions

0a x

f xX( )
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A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture

of continuous and discrete components.

Integrating, it is can be shown that:

FX (∞) =

∫ ∞

−∞
fX (x) dx = (1− p) +

p

c− b
× (c− b) = 1
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0a x

f xX( )

1-p
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c b-
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F xX( )

1-p

1

0a b c

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture

of continuous and discrete components.

Integrating, it is can be shown that:

FX (∞) =

∫ ∞

−∞
fX (x) dx = (1− p) +

p

c− b
× (c− b) = 1

Can you think of examples of a mixture of discrete and
continuous random variables?
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞
fX (x) dx = 1
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞
fX (x) dx = 1

Probability of arbitrary events:

Pr (x1 < X(ζ) ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x) dx
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Properties: Distributions and Densities

– End-of-Topic 18: Introduction to pdf and
their properties –

Any Questions?
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Common Continuous RVs

Uniform distribution

fX (x) =

{
1

b−a if a < x ≤ b,

0 otherwise

Normal distribution

fX (x) =
1

√

2πσ2
X

exp

[

−1

2

(
x− µX

σX

)2
]

, x ∈ R

Cauchy distribution

fX (x) =
β

π

1

(x− µX)2 + β2

The Cauchy random variable is symmetric around the value
x = µX , but its mean and variance do not exist.
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Common Continuous RVs

Gamma distribution

fX (x) =

{

0 if x < 0,
1

Γ(β)α
β xβ−1 e−αx if x ≥ 0,
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Gamma cdf

x
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X
(x

)

β = 2
β = 2.5
β = 3
β = 3.5
β = 4

The Gamma density and distribution functions, for the
case when α = 1 and for various values of β.
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Common Continuous RVs

Weibull distribution

fX (x) =

{

0 x < 0

αβxβ−1 e−αxβ

x ≥ 0

0 1 2 3 4
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The Weibull density and distribution functions, for the
case when α = 1, and for various values of the parameter
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Common Continuous RVs

– End-of-Topic 19: Introduction to common
density functions –

Any Questions?
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X(ζ), which has pdf given by fX (x). What is fY (y)?

Y g X( ) ( ( ))z z=
X( )z Y( )z

f xX( ) f yY( )
?

The mapping y = g(x).
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X(ζ), which has pdf given by fX (x). What is fY (y)?

Y g X( ) ( ( ))z z=
X( )z Y( )z

f xX( ) f yY( )
?

The mapping y = g(x).

The mapping y = g(x).
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. First consider the
output pdf which, by definition, is given by:

fY (y) dy = Pr (y < Y (ζ) ≤ y + dy)
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. First consider the
output pdf which, by definition, is given by:

fY (y) dy = Pr (y < Y (ζ) ≤ y + dy)

The set of values x such that y < g(x) ≤ y + dy consists of the
intervals:

xn < x ≤ xn + dxn

�
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. The probability that
x lies in this set is

fX (xn) dxn = Pr (xn < X(ζ) ≤ xn + dxn)

�
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. The probability that
x lies in this set is

fX (xn) dxn = Pr (xn < X(ζ) ≤ xn + dxn)

From the transformation from x to y, then

dxn =
dy

|g′(xn)|
�

where g′(x) is the derivative with respect to (w. r. t.) x of g(x).
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. Finally, since these
are N mutually exclusive sets, then

Pr (y < Y (ζ) ≤ y + dy) =
N∑

n=1

Pr (xn < X(ζ) ≤ xn + dxn)
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. Finally, since these
are N mutually exclusive sets, then

Pr (y < Y (ζ) ≤ y + dy) =
N∑

n=1

Pr (xn < X(ζ) ≤ xn + dxn)

≈ fY (y) dy ≈
N∑

n=1

fX (xn) dxn

�
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. Finally, since these
are N mutually exclusive sets, then

Pr (y < Y (ζ) ≤ y + dy) =
N∑

n=1

Pr (xn < X(ζ) ≤ xn + dxn)

fY (y) dy =

N∑

n=1

fX (xn)
dy

|g′(xn)|
�
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Probability transformation rule

Theorem (Probability Transformation ). PROOF. Finally, since these
are N mutually exclusive sets, then

fY (y) =
N∑

n=1

fX (xn)
∣
∣
∣
dy
dx

∣
∣
∣
x=xn

∣
∣
∣
∣
∣
∣
∣
xn=g−1(y)

�
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Probability transformation rule

Theorem (Probability Transformation ). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that:

y = g(x1) = · · · = g(xN )

♦
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Probability transformation rule

Theorem (Probability Transformation ). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that:

y = g(x1) = · · · = g(xN )

Then, if the Y (ζ) = g(X(ζ)), the pdf of Y (ζ) is given by:

fY (y) =

N∑

n=1

fX (xn)

|g′(xn)|
♦
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

�
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

Considering the transformation y = g(x) = ex, there is one
root, given by x = ln y.

Therefore, the derivative of this expression is

g′(x) = d ex

dx = ex = y. �
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

Considering the transformation y = g(x) = ex, there is one
root, given by x = ln y.

Therefore, the derivative of this expression is

g′(x) = d ex

dx = ex = y.

Hence, it follows:

fY (y) =
fX (x)

g′(x)
=

fX (ln y)

y
=

1

y
√
2π

e−
(ln y)2

2 �
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Probability transformation rule

After this lecture, try the following example in the notes:

Example (Inverse of a random variable). Let Y = 1
X . Find the pdf for

the RV Y , given by fY (y), in terms of the pdf for the RV X , given
by fX (x). Further, consider the special case when X has a
Cauchy density with parameter α, such that:

fX (x) =
α

π

1

x2 + α2
⋊⋉
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Probability transformation rule

– End-of-Topic 20: Derivation of the
Probability Transformation Rule, and some

examples –

Any Questions?
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Expectations

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.
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Expectations

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.

f xX( )

m

Mean
- 1st order statistic
- Centre of mass

Variance
- 2nd order statistic
- “spread of the pdf”

Skewness
- 3rd order statistic
- Measure of asymmetry
- Difference in tails

Kurtosis
- 4th order statistic
- Measure of size

of tails

x

s
2

The four saliant or key features or statistics of the pdf.
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Expectations

The expected or mean value of a function of a RV X(ζ) is:

E [X(ζ)] =

∫

R

x fX (x) dx



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density - p. 46/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Expectations

The expected or mean value of a function of a RV X(ζ) is:

E [X(ζ)] =

∫

R

x fX (x) dx

Recall: if X(ζ) is discrete then its corresponding pdf may be
written in terms of its pmf as:

fX (x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.
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Expectations

The expected or mean value of a function of a RV X(ζ) is:

E [X(ζ)] =

∫

R

x fX (x) dx

Recall: if X(ζ) is discrete then its corresponding pdf may be
written in terms of its pmf as:

fX (x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.

Hence, for a discrete RV, the expected value is given by:

µx =

∫

R

x fX (x) dx =

∫

R

x
∑

k

pk δ(x− xk) dx =
∑

k

xk pk
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX (x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX (x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX (x) is an even function, then µX = 0. Note that since
fX (x) ≥ 0, then fX (x) cannot be an odd function.

If fX (x) is symmetrical about x = a, such that
fX (a− x) = fX (x+ a), then µX = a.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX (x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX (x) is an even function, then µX = 0. Note that since
fX (x) ≥ 0, then fX (x) cannot be an odd function.

If fX (x) is symmetrical about x = a, such that
fX (a− x) = fX (x+ a), then µX = a.

The expectation operator is linear:

E [αX(ζ) + β] = αµX + β
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Properties of expectation operator

If Y (ζ) = g{X(ζ)} is a RV obtained by transforming X(ζ)
through a suitable function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X(ζ)}] =
∫ ∞

−∞
g(x) fX (x) dx
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Properties of expectation operator

If Y (ζ) = g{X(ζ)} is a RV obtained by transforming X(ζ)
through a suitable function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X(ζ)}] =
∫ ∞

−∞
g(x) fX (x) dx

This property means that you don’t need to keep track of
which pdf the expectation is taken with respect to.

Rather, you simply consider the RV inside the expectation,
and the expectation is w. r. t. the pdf of that RV.
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Properties of expectation operator

If Y (ζ) = g{X(ζ)} is a RV obtained by transforming X(ζ)
through a suitable function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X(ζ)}] =
∫ ∞

−∞
g(x) fX (x) dx

This property means that you don’t need to keep track of
which pdf the expectation is taken with respect to.

Rather, you simply consider the RV inside the expectation,
and the expectation is w. r. t. the pdf of that RV.

As an outline proof, consider a monotonic one-to-one

function y = g(x), such that fY (y) = fX(x)
dy
dx

.
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Properties of expectation operator

If Y (ζ) = g{X(ζ)} is a RV obtained by transforming X(ζ)
through a suitable function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X(ζ)}] =
∫ ∞

−∞
g(x) fX (x) dx

This property means that you don’t need to keep track of
which pdf the expectation is taken with respect to.

Rather, you simply consider the RV inside the expectation,
and the expectation is w. r. t. the pdf of that RV.

As an outline proof, consider a monotonic one-to-one

function y = g(x), such that fY (y) = fX(x)
dy
dx

.

EfY [Y (ζ)] =

∫

yfY (y) dy =

∫

g(x)
fX (x)

dy
dx

dy =

∫

g(x) fX (x) dx
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Properties of expectation operator

Example (Trigonometric Transformation). The continuous random
variable (RV), Θ(ζ), is uniformally distributed between −π and
π.

1. Calculate the expected value of Θ(ζ).

2. Now consider the RV, Y (ζ) = A cos2 Θ(ζ), where A is
assumed to be a constant value. What is the expected value of
Y (ζ)?
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Properties of expectation operator

Example (Trigonometric Transformation). The continuous random
variable (RV), Θ(ζ), is uniformally distributed between −π and
π.

1. Calculate the expected value of Θ(ζ).

2. Now consider the RV, Y (ζ) = A cos2 Θ(ζ), where A is
assumed to be a constant value. What is the expected value of
Y (ζ)?

SOLUTION. 1. The expected value of Θ(ζ) is:

E [Θ(ζ)] =

∫ ∞

−∞
θ fΘ (θ) dθ =

∫ π

−π

θ
1

2π
dθ

=
θ2

4π

∣
∣
∣
∣

π

−π

= 0 �
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Properties of expectation operator

Example (Trigonometric Transformation). The continuous random
variable (RV), Θ(ζ), is uniformally distributed between −π and
π.

1. Calculate the expected value of Θ(ζ).

2. Now consider the RV, Y (ζ) = A cos2 Θ(ζ), where A is
assumed to be a constant value. What is the expected value of
Y (ζ)?

SOLUTION. 1. Using the invariance of the expectation operator:

E [Y (ζ)] = E
[
A cos2 θ(ζ)

]
=

∫ π

−π

[
A cos2 (θ)

]
fΘ (θ) dθ

=
A

2π

∫ π

−π

cos2 (θ) dθ =
A

4π

∫ π

−π

(1 + cos 2θ) dθ =
A

2
�
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Properties of expectation operator

– End-of-Topic 21: Expectations, their
properties, and some examples –

Any Questions?
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Moments

Recall that mean and variance can be defined as:

E [X(ζ)] = µX =

∫

R

x fX(x) dx

var [X(ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X(ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.
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Moments

Recall that mean and variance can be defined as:

E [X(ζ)] = µX =

∫

R

x fX(x) dx

var [X(ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X(ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X(ζ): the m-th moment of X(ζ) is given by:

r
(m)
X , E [Xm(ζ)] =

∫

R

xm fX(x) dx

Note, of course, that in general: E [Xm(ζ)] 6= E
m [X(ζ)].
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Moments

Example (Exponential Random Variable). Calculate the moments of
the exponential random variable with parameter λ. We can use:

∫ ∞

0

un e−u du = n! n ∈ {0, 1, 2, . . . }

⋊⋉
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Moments

Example (Exponential Random Variable). Calculate the moments of
the exponential random variable with parameter λ. We can use:

∫ ∞

0

un e−u du = n! n ∈ {0, 1, 2, . . . }

SOLUTION. The pdf for an exponential RV is:

fX (x) =

{

0 if x < 0,

λe−λx if x ≥ 0,

�
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Moments

Example (Exponential Random Variable). Calculate the moments of
the exponential random variable with parameter λ. We can use:

∫ ∞

0

un e−u du = n! n ∈ {0, 1, 2, . . . }

SOLUTION. The pdf for an exponential RV is:

fX (x) =

{

0 if x < 0,

λe−λx if x ≥ 0,

The m-th moment is given by:

E [Xm(ζ)] =

∫ ∞

0

xm fX (x) dx = λ

∫ ∞

0

xm e−λx dx

�
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Moments

Example (Exponential Random Variable). Calculate the moments of
the exponential random variable with parameter λ. We can use:

∫ ∞

0

un e−u du = n! n ∈ {0, 1, 2, . . . }

SOLUTION. The pdf for an exponential RV is:

fX (x) =

{

0 if x < 0,

λe−λx if x ≥ 0,

The m-th moment is given by:

E [Xm(ζ)] =

∫ ∞

0

xm fX (x) dx = λ

∫ ∞

0

xm e−λx dx �

Using the provided formula by setting u = λx such that when
x = {0, ∞} then u = {0, ∞}, and du = λ dx:
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Moments

Example (Exponential Random Variable). Calculate the moments of
the exponential random variable with parameter λ. We can use:

∫ ∞

0

un e−u du = n! n ∈ {0, 1, 2, . . . }

SOLUTION. Using the provided formula by setting u = λx such
that when x = {0, ∞} then u = {0, ∞}, and du = λ dx:

E [Xm(ζ)] =
1

λm

∫ ∞

0

un e−u du =
m!

λm

�
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Moments

Example (Exponential Random Variable). Calculate the moments of
the exponential random variable with parameter λ. We can use:

∫ ∞

0

un e−u du = n! n ∈ {0, 1, 2, . . . }

SOLUTION. Using the provided formula by setting u = λx such
that when x = {0, ∞} then u = {0, ∞}, and du = λ dx:

E [Xm(ζ)] =
1

λm

∫ ∞

0

un e−u du =
m!

λm
�

In particular, by setting m = 1, the mean is µX = E [X(ζ)] = 1/λ.

Setting m = 2, the second-moment is E
[
X2(ζ)

]
= 2/λ2, and the

variance is σ2
X = var [X(ζ)] = 2/λ2 − (1/λ)2 = 1

λ2 = µ2
X .
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Moments

After this lecture, try the following example in the notes:

Example (Expectations of non-negative RVs). Let X(ζ) be a
non-negative RV with pdf fX (x). Show that

E [Xm(ζ)] =

∫ ∞

0

mxm−1 Pr (X(ζ) > x) dx ⋊⋉

for any m ≥ 1 for which the expectation is finite.
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Higher-Order Statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

κ̃
(3)
X , E

[{
X(ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

Positive SkewNegative Skew

f xX( ) f xX( )

x x



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density - p. 49/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Higher-Order Statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

κ̃
(3)
X , E

[{
X(ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

The skewness is:

κ̃
(3)
X =







< 0 if the density leans or stretches out towards the left

0 if the density is symmetric about µX

> 0 if the density leans or stretches out towards the right
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Higher-Order Statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.
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Higher-Order Statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

κ̃
(4)
X , E

[{
X(ζ)− µX

σX

}4
]

− 3 =
1

σ4
X

γ
(4)
X − 3
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Higher-Order Statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

κ̃
(4)
X , E

[{
X(ζ)− µX

σX

}4
]

− 3 =
1

σ4
X

γ
(4)
X − 3

This measure is relative with respect to a normal distribution,

which has the property γ
(4)
X = 3σ4

X , therefore having zero
kurtosis.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density - p. 49/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Higher-Order Statistics

Example (Exponential distribution). Calculate the skewness of an
exponential random variable with parameter λ.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density - p. 49/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Higher-Order Statistics

Example (Exponential distribution). Calculate the skewness of an
exponential random variable with parameter λ.

SOLUTION. From earlier calculations it was was shown that the

m-th moment was given by r
(m)
X = m!/λm.
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Higher-Order Statistics

Example (Exponential distribution). Calculate the skewness of an
exponential random variable with parameter λ.

SOLUTION. From earlier calculations it was was shown that the

m-th moment was given by r
(m)
X = m!/λm.

It can also be shown, by expanding the expression for skewness:

κ̃
(3)
X =

r
(3)
X − 3r

(1)
X r

(2)
X + 2(r

(1)
X )3

σ3
X

�
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Higher-Order Statistics

Example (Exponential distribution). Calculate the skewness of an
exponential random variable with parameter λ.

SOLUTION. From earlier calculations it was was shown that the

m-th moment was given by r
(m)
X = m!/λm.

It can also be shown, by expanding the expression for skewness:

κ̃
(3)
X =

r
(3)
X − 3r

(1)
X r

(2)
X + 2(r

(1)
X )3

σ3
X

Hence, since it was also shown that σ2
X = 1/λ2, then:

κ̃
(3)
X =

3!
λ3 − 3 1!

λ
2!
λ2 + 2 1

λ3

1
λ3

= 2

�
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Higher-Order Statistics

Example (Exponential distribution). Calculate the skewness of an
exponential random variable with parameter λ.

SOLUTION. From earlier calculations it was was shown that the

m-th moment was given by r
(m)
X = m!/λm.

It can also be shown, by expanding the expression for skewness:

κ̃
(3)
X =

r
(3)
X − 3r

(1)
X r

(2)
X + 2(r

(1)
X )3

σ3
X

Hence, since it was also shown that σ2
X = 1/λ2, then:

κ̃
(3)
X =

3!
λ3 − 3 1!

λ
2!
λ2 + 2 1

λ3

1
λ3

= 2 �

Positive skewness indicates leaning to the right, which it does!
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Higher-Order Statistics

Example (Laplace distribution). Calculate the Kurtosis of the

standard Laplace distribution, fX (x) = 1
2e

−|x|, x ∈ R.
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Higher-Order Statistics

Example (Laplace distribution). Calculate the Kurtosis of the

standard Laplace distribution, fX (x) = 1
2e

−|x|, x ∈ R.

SOLUTION. As the density is symmetric, the skewness is zero!
Moreover, the odd moments are also equal to zero through
symmetry (left as an exercise).
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Higher-Order Statistics

Example (Laplace distribution). Calculate the Kurtosis of the

standard Laplace distribution, fX (x) = 1
2e

−|x|, x ∈ R.

SOLUTION. As the density is symmetric, the skewness is zero!
Moreover, the odd moments are also equal to zero through
symmetry (left as an exercise).

The even moments are given by:

r
(m)
X =

1

2

∫ 0

−∞
xm ex dx+

1

2

∫ ∞

0

xm e−x dx =

∫ ∞

0

xm e−x dx = m!

�
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Higher-Order Statistics

Example (Laplace distribution). Calculate the Kurtosis of the

standard Laplace distribution, fX (x) = 1
2e

−|x|, x ∈ R.

SOLUTION. As the density is symmetric, the skewness is zero!
Moreover, the odd moments are also equal to zero through
symmetry (left as an exercise).

The even moments are given by:

r
(m)
X =

1

2

∫ 0

−∞
xm ex dx+

1

2

∫ ∞

0

xm e−x dx =

∫ ∞

0

xm e−x dx = m!

Hence, using the formula for Kurtosis (noting r
(1)
X = 0):

κ̃
(4)
X = E

[{
X(ζ)− µX

σX

}4
]

−3 =
r
(4)
X

(

r
(2)
X

)2 −3 =
4!

(2!)2
−3 = 3 �
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Higher-Order Statistics

Skewness and kurtosis are used in signal processing in the
following applications:



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-Order Statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density - p. 49/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Higher-Order Statistics

Skewness and kurtosis are used in signal processing in the
following applications:

Signal Separation is only possible if the signals are statistically
distinctive and this requires non-Gaussianity; maximising
kurtosis means that separated signals are ensured to be as
non-Gaussian as possible.
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Higher-Order Statistics

Skewness and kurtosis are used in signal processing in the
following applications:

Signal Separation is only possible if the signals are statistically
distinctive and this requires non-Gaussianity; maximising
kurtosis means that separated signals are ensured to be as
non-Gaussian as possible.

Outlier detection As kurtosis is a measure of heaviness of the tails,
it also provides a metric for the number of outliers. Outliers,
for example positive values, can also lead to asymmetric
densities, measured by skewness.
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Higher-Order Statistics

Skewness and kurtosis are used in signal processing in the
following applications:

Signal Separation is only possible if the signals are statistically
distinctive and this requires non-Gaussianity; maximising
kurtosis means that separated signals are ensured to be as
non-Gaussian as possible.

Outlier detection As kurtosis is a measure of heaviness of the tails,
it also provides a metric for the number of outliers. Outliers,
for example positive values, can also lead to asymmetric
densities, measured by skewness.

Features Skewness and kurtosis can be used in feature-based
classification and machine learning algorithms.
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Higher-Order Statistics

– End-of-Topic 22: Skewness, Kurtosis, and
their Applications –

Any Questions?
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Probability Transformation

Rule
•Polar Transformation

•Generating Gaussian

distributed samples

•Auxiliary Variables

•Statistical Description

•Mean Vectors and

Correlation Matrices
•Properties of Correlation

Matrices
•Further Statistical

Descriptions

•Multivariate Gaussian

Density Function

•Deriving the Multivariate

Gaussian
•Properties of Multivariate

- p. 51/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.

This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.
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Definition of Random Vectors

Abstract
sample space, S

X( )z1

=[ ]x ,y ,z1 1 1

T

Outcome

z1

Outcome

z2

Outcome

z3

Outcome

zk

real vector
space

Pr( )z1

Pr( )z2

Pr( )z3

Pr( )zk

x1

y1

z1

X( )z2

=[ ]x ,y ,z2 2 2

T

x2

y2

z2

X( )z3

=[ ]x ,y ,z3 3 3

T

x3

y3

z3

X( )zk

=[ ]x ,y ,zk k k

T

xk

yk

zk

Physical
Experiment

A graphical representation of a random vector.
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X(ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X(ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X(ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .

Denote a specific value for a random vector as:

x =
[

x1 x2 · · · xN

]T

Then the notation X (ζ) ≤ x is equivalent to the event
{Xn(ζ) ≤ xn, n ∈ N}.
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf,

which is defined by:

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN
FX (x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf,

which is defined by:

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN
FX (x)

Hence, it follows:

FX (x) =

∫ x1

−∞
· · ·
∫ xN

−∞
fX (v) dvN · · · dv1 =

∫ x

−∞

fX (v) dv
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Distribution and Density Functions

– End-of-Topic 23: Introduction to Random
Vectors, its definition, and joint distribution

and density functions –

Any Questions?
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1

Probability of arbitrary events; note that

Pr (x1 < X (ζ) ≤ x2) =

∫ x2

x1

fX (v) dv 6= FX (x2)− FX (x1)
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise
⋊⋉

Calculate the joint-cumulative distribution function, FZ (z).
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

=

∫ 1

0

1

4
+

3

2
y dy =

[
y

4
+

3y2

4

]1

0

=
1

4
+

3

4
= 1

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The pdf is shown here:
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)�

Finally, if x > 1 or y > 1, the upper limit becomes equal to 1.
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. Hence, in summary, it follows:

FZ (z) =







0 x ≤ 0 or y ≤ 0
xy
4 (x+ 3y) 0 < x, y ≤ 1
x
4 (x+ 3) 0 < x ≤ 1, 1 < y
y
4 (1 + 3y) 0 < y ≤ 1, 1 < x

1 1 < x, y < ∞
�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The cdf is plotted here:
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A plot of the cumulative distribution function. �
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Distribution and Density Functions

– End-of-Topic 24: Properties and Examples of
Joint Distributions and Densities –

Any Questions?
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Probability Transformation

Rule
•Polar Transformation

•Generating Gaussian

distributed samples

•Auxiliary Variables

•Statistical Description

•Mean Vectors and

Correlation Matrices
•Properties of Correlation

Matrices
•Further Statistical

Descriptions

•Multivariate Gaussian

Density Function

•Deriving the Multivariate

Gaussian
•Properties of Multivariate

- p. 54/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

k =









k1

k2
...

kM








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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

Now define a M -dimensional random vector, Xk(ζ), that
contains the M random variables which are components of X (ζ)
and indexed by the elements of k. In other-words, if

k =









k1

k2
...

kM









then Xk(ζ) =









Xk1(ζ)

Xk2(ζ)
...

XkM
(ζ)







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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN

Marginal pdfs will become particular useful when dealing with
Bayesian parameter estimation later in the course.
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise
⋊⋉

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. By definition:

fX (x) =

∫

R

fZ (z) dy

fY (y) =

∫

R

fZ (z) dx

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise

which after a simple integration gives:

fX (x) =

{
1
2

(
x+ 3

2

)
0 ≤ x ≤ 1

0 otherwise

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞
fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞
fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

FX (x) =







0 x ≤ 0
x
4 (x+ 3) 0 ≤ x ≤ 1

1 x > 1

�



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Probability Transformation

Rule
•Polar Transformation

•Generating Gaussian

distributed samples

•Auxiliary Variables

•Statistical Description

•Mean Vectors and

Correlation Matrices
•Properties of Correlation

Matrices
•Further Statistical

Descriptions

•Multivariate Gaussian

Density Function

•Deriving the Multivariate

Gaussian
•Properties of Multivariate

- p. 54/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Similarly, it can be shown that:

fY (y) =

{
1
2

(
1
2 + 3y

)
0 ≤ y ≤ 1

0 otherwise

and

FY (y) =







0 y ≤ 0
y
4 (1 + 3y) 0 ≤ y ≤ 1

1 y > 1

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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Marginal PDF, f X(x)
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Marginal CDF, F X(x)

The marginal-pdf, fX (x), and cdf, FX (x), for the RV, X(ζ).

Note that the marginal-pdf is not a slice of the joint-pdf.

It is the integral of the joint-pdf over the other variable along
a line whose position corresponds to the value of interest. �
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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The marginal-pdf, fY (y), and cdf, FY (y), for the RV, Y (ζ).
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Marginal Density Function

– End-of-Topic 25: Marginal Densities and
Distributions and their Applications –

Any Questions?
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)

This then implies that

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2)

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)

This then implies that

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2)

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)

If the regions of support of the pdfs of X(ζ) and Y (ζ) are
bounded, then X(ζ) and Y (ζ) cannot be independent if their
ranges are dependent.
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Independence

Example (Testing independence). Suppose the joint-pdf of two RVs
X(ζ) and Y (ζ) is given by fXY (x, y) = 1 + xy for 0 < x < 1 and
0 < y < 1. Are X(ζ) and Y (ζ) independent?
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Independence

Example (Testing independence). Suppose the joint-pdf of two RVs
X(ζ) and Y (ζ) is given by fXY (x, y) = 1 + xy for 0 < x < 1 and
0 < y < 1. Are X(ζ) and Y (ζ) independent?

SOLUTION. The joint-pdf cannot be written in the form g(x) h(x)
for any functions g and h. Therefore, these RVs are not
independent.
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Independence

Example (Testing independence). Suppose the joint-pdf of two RVs
X(ζ) and Y (ζ) is given by fXY (x, y) = 1 + xy for 0 < x < 1 and
0 < y < 1. Are X(ζ) and Y (ζ) independent?

SOLUTION. The joint-pdf cannot be written in the form g(x) h(x)
for any functions g and h. Therefore, these RVs are not
independent.

Example (Testing independence). Let fXY (x, y) = 6x for
0 < x < y < 1. Plot the region of support and determine if X(ζ)
and Y (ζ) are independent.
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Independence

As an example that will be used many times in estimation
theory, suppose that NRVs, Xn(ζ) for n ∈ {0, . . . , N − 1}, are
independent, and each have pdf given by fXn

(xn).

Then the joint-pdf of X(ζ) = [X0(ζ) , · · · , XN (ζ)]T is:
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Independence

As an example that will be used many times in estimation
theory, suppose that NRVs, Xn(ζ) for n ∈ {0, . . . , N − 1}, are
independent, and each have pdf given by fXn

(xn).

Then the joint-pdf of X(ζ) = [X0(ζ) , · · · , XN (ζ)]T is:

fX (x) =
N−1∏

n=0

fXn
(xn)
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Independence

As an example that will be used many times in estimation
theory, suppose that NRVs, Xn(ζ) for n ∈ {0, . . . , N − 1}, are
independent, and each have pdf given by fXn

(xn).

Then the joint-pdf of X(ζ) = [X0(ζ) , · · · , XN (ζ)]T is:

fX (x) =
N−1∏

n=0

fXn
(xn)

For example, suppose that Xn(ζ) is Gaussian distributed:

fXn
(xn) =

1√
2π

e−
x2
n
2

then:

fX (x) =
N−1∏

n=0

1√
2π

e−
x2
n
2 =

1

(2π)
N
2

e−
1
2

∑N−1
n=0 x2

n
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y(ζ), given the random vector X (ζ).
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y(ζ), given the random vector X (ζ).

The conditional pdf of Y(ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y(ζ), given the random vector X (ζ).

The conditional pdf of Y(ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)

If the random vectors X (ζ) and Y(ζ) are independent, then the
conditional pdf must be identical to the unconditional pdf:
fY|X (y | x) = fY (y). Hence, it follows that:

fXY (x, y) = fX (x) fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)

Since fY (y) can be expressed as:

fY (y) =

∫

R

fXY (x, y) dx =

∫

R

fY|X (y | x) fX (x) dx

then it follows

fX|Y (x | y) = fY|X (y | x) fX (x)
∫

R
fY|X (y | x) fX (x) dx
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Conditionals and Bayes’s

Example (Bayes’s Theorem (Papoulis, Example 6-42)). An unknown
random phase Θ(ζ) is a priori assumed to be uniformally
distributed in the interval [0, 2π). The phase is observed through
a noisy sensor, such that R(ζ) = Θ(ζ) +N(ζ), where N(ζ) is

Gaussian distributed with zero mean and variance σ2
N .

What is the posterior pdf fΘ|R (θ | r)?
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Conditionals and Bayes’s

Example (Bayes’s Theorem (Papoulis, Example 6-42)). An unknown
random phase Θ(ζ) is a priori assumed to be uniformally
distributed in the interval [0, 2π). The phase is observed through
a noisy sensor, such that R(ζ) = Θ(ζ) +N(ζ), where N(ζ) is

Gaussian distributed with zero mean and variance σ2
N .

What is the posterior pdf fΘ|R (θ | r)?

SOLUTION. In practical situations, it is reasonable to assume that
Θ(ζ) and N(ζ) are independent.

Using the probability transformation rule, from N(ζ) to
R(ζ) = θ +N(ζ) where Θ(ζ) = θ is considered fixed, it
follows there is one inverse solution n = r − θ, and the
Jacobian of the transformation is unity. Therefore: �
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Conditionals and Bayes’s

Example (Bayes’s Theorem (Papoulis, Example 6-42)). An unknown
random phase Θ(ζ) is a priori assumed to be uniformally
distributed in the interval [0, 2π). The phase is observed through
a noisy sensor, such that R(ζ) = Θ(ζ) +N(ζ), where N(ζ) is

Gaussian distributed with zero mean and variance σ2
N .

What is the posterior pdf fΘ|R (θ | r)?

SOLUTION. In practical situations, it is reasonable to assume that
Θ(ζ) and N(ζ) are independent.

Using the probability transformation rule, from N(ζ) to
R(ζ) = θ +N(ζ) where Θ(ζ) = θ is considered fixed, it
follows there is one inverse solution n = r − θ, and the
Jacobian of the transformation is unity. Therefore:

fR|Θ (r | θ) = 1

1
fN (r − θ) =

1
√

2πσ2
N

e
− (r−θ)2

2σ2
N

�
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Conditionals and Bayes’s

Example (Bayes’s Theorem (Papoulis, Example 6-42)). SOLUTION.
Using Bayes theorem, it directly follows that:

fΘ|R (θ | r) = fR|Θ (r | θ) fΘ (θ)
∫ 2π

0
fR|Θ

(

r | θ̂
)

fΘ

(

θ̂
)

dθ̂

which, since fΘ (θ) = 1
2π for 0 ≤ θ < 2π:

fΘ|R (θ | r) = e
− (r−θ)2

2σ2
N

∫ 2π

0

e
− (r−θ)2

2σ2
N dθ

0 ≤ θ < 2π �

and zero otherwise, where it is noted that the factors 1
2π and

1√
2πσ2

N

have cancelled each other in the numerator and

denominator.
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Conditionals and Bayes’s

Example (Bayes’s Theorem (Papoulis, Example 6-42)). SOLUTION.
Using Bayes theorem, it directly follows that:

fΘ|R (θ | r) = e
− (r−θ)2

2σ2
N

∫ 2π

0

e
− (r−θ)2

2σ2
N dθ

0 ≤ θ < 2π �

Note the knowledge about the observation, r, is reflected in the
posterior pdf of Θ(ζ), and it shows higher probability density in
the neighbourhood of Θ(ζ) = r.

0 q

fQ( )q

1

2p

2p 0 q

fQ�|�R |( )q r

q�=�r
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Conditionals and Bayes’s

Example (Chapman-Kolmogorov Equation). Consider a state-space
model with an unknown state xn and measurement vector yn.

Assume p (xn | xn−1, y1:n−1) = p (xn | xn−1) and
p (yn | xn, y1:n−1) = p (yn | xn).

Show that:

p (xn | y1:n−1) =

∫

p (xn | xn−1) p (xn−1 | y1:n−1) dxn−1

p (xn | y1:n) =
p (yn | xn) p (xn | y1:n−1)

p (yn | y1:n−1)

⋊⋉
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Conditionals and Bayes’s

Example (Chapman-Kolmogorov Equation). Consider a state-space
model with an unknown state xn and measurement vector yn.

Assume p (xn | xn−1, y1:n−1) = p (xn | xn−1) and
p (yn | xn, y1:n−1) = p (yn | xn).

SOLUTION. The first equation is a direct application of
marginalisation of a joint-pdf:

p (xn | y1:n−1) =

∫

p (xn, xn−1 | y1:n−1) dxn−1

=

∫

p (xn | xn−1, y1:n−1) p (xn−1 | y1:n−1) dxn−1

=

∫

p (xn | xn−1) p (xn−1 | y1:n−1) dxn−1 �

using the Markov property.
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Conditionals and Bayes’s

Example (Chapman-Kolmogorov Equation). Consider a state-space
model with an unknown state xn and measurement vector yn.

Assume p (xn | xn−1, y1:n−1) = p (xn | xn−1) and
p (yn | xn, y1:n−1) = p (yn | xn).

SOLUTION. The second equation is a direct application of Bayes’s
theorem keeping y1:n−1 a conditional in each term:

p (xn | y1:n) = p (xn | yn, y1:n−1)

=
p (yn | xn, y1:n−1) p (xn | y1:n−1)

p (yn | y1:n−1)
�
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Conditionals and Bayes’s

– End-of-Topic 26: Independence,
Conditionals, and Bayes’s Theorem Revisited

–

Any Questions?
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). A lighthouse is off a straight
coastline at position α along the shore and distance β out at sea.

It emits a series of short highly collimated flashes (i.e. a single
ray of light) at random intervals and hence at random
azimuths (i.e. the angle at which the light ray is emitted).

These are intercepted on the coast by detectors that record
that a flash occurred, but not the angle of arrival.

N flashes recorded at {xk}. Where is the lighthouse? ⋊⋉
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). This problem can be phrased
in a number of other ways, such as throwing darts randomly at a
wall and so forth. It is essentially a tomography problem, and is
a classic inverse problem.

It can also be phrased as a geolocation problem, and there are a
number of articles on this topic if you search the web!
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION. Assign a uniform
pdf to the azimuth of the observation which is given by θ. Hence,

fΘ (θ) =

{
1
π −π

2 < θ < π
2

0 otherwise

�
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION. Assign a uniform
pdf to the azimuth of the observation which is given by θ. Hence,

fΘ (θ) =

{
1
π −π

2 < θ < π
2

0 otherwise

Since the photo-detectors are only sensitive to position along
the coast rather than direction, it is necessary to relate θ to x:

β tan θ = x− α

�
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION. Assign a uniform
pdf to the azimuth of the observation which is given by θ. Hence,

fΘ (θ) =

{
1
π −π

2 < θ < π
2

0 otherwise

Since the photo-detectors are only sensitive to position along
the coast rather than direction, it is necessary to relate θ to x:

β tan θ = x− α

Using the probability transformation rule:

fX (x | α) = β

π [β2 + (x− α)2]

�
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION. Assuming
observations are independent, the joint-pdf of all the data is:

fX (x | α) = fX (x1, . . . , xN | α) =
N∏

k=1

fX (xk | α)

=
N∏

k=1

β

π [β2 + (xk − α)2]

�
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION. Assuming
observations are independent, the joint-pdf of all the data is:

fX (x | α) = fX (x1, . . . , xN | α) =
N∏

k=1

fX (xk | α)

=
N∏

k=1

β

π [β2 + (xk − α)2]

The position of the lighthouse is then expressed by:

fA (α | x) = fX (x | α) fA (α)

fX (x)

�
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION. Assign a uniform
for the prior for distance along the shore:

fA (α) =

{
1

αmax−αmin
αmin ≤ α ≤ αmax

0 otherwise

�
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION. Assign a uniform
for the prior for distance along the shore:

fA (α) =

{
1

αmax−αmin
αmin ≤ α ≤ αmax

0 otherwise

Hence:

fA (α | x) = fX (x | α) fA (α)

fX (x)
∝ fX (x | α) fA (α)

∝ 1

αmax − αmin

N∏

k=1

β

π [β2 + (xk − α)2]
, for αmin ≤ α ≤ αmax�

and zero otherwise. Hence, this posterior density can be
maximised to find the best estimate of α.
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Conditionals and Bayes’s

Example (Gull’s lighthouse problem). SOLUTION.

fA (α) =

{
1

αmax−αmin
αmin ≤ α ≤ αmax

0 otherwise
�

β

α

Log-posterior f(α, β | x), max. at (13.32, 40.50)
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Conditionals and Bayes’s

This example highlights two key problems in Signal Processing:

Integration Marginalising out nuisance parameters:

fA (α | x) =
∫

fA (α, β | x) dβ

Optimisation Finding the maximum marginal a posteriori (MMAP)
estimate:

α̂ = argα max fA (α | x)
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Conditionals and Bayes’s

– End-of-Topic 27: Tomography: An Inverse
Problem using Probability Transformations,

Conditional Probability, Independence, Bayes
Theorem, Marginalisation, and Optimisation.

–

Any Questions?
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y(ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N ♦

where g(·) denotes a vector of functions Yn(ζ) = gn(X (ζ)).
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y(ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N

where g(·) denotes a vector of functions Yn(ζ) = gn(X (ζ)).

Assuming M -real vector-roots of the equation y = g(x) by
{xm, m ∈ M},

y = g(x1) = · · · = g(xM )

then the joint-pdf of Y(ζ) in terms of (i. t. o.) the joint-pdf of
X (ζ) is:

fY (y) =
M∑

m=1

fX (xm)

|J(xm)|
♦
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The Jacobian of the
transformation, Jg(x), is given by:

Jg(x) ,
∂(y1, . . . , yN )

∂(x1, . . . , xN )
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂g1(x)
∂x1

∂g2(x)
∂x1

· · · ∂gN (x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

· · · ∂gN (x)
∂x2

...
...

. . .
...

∂g1(x)
∂xN

∂g2(x)
∂xN

· · · ∂gN (x)
∂xN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

♦
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The Jacobian of the
transformation, Jg(x), is given by:

Jg(x) ,
∂(y1, . . . , yN )

∂(x1, . . . , xN )
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂g1(x)
∂x1

∂g2(x)
∂x1

· · · ∂gN (x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

· · · ∂gN (x)
∂x2

...
...

. . .
...

∂g1(x)
∂xN

∂g2(x)
∂xN

· · · ∂gN (x)
∂xN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

From vector calculus, the Jacobian can also be expressed as:

1

Jg(x)
,

∂(x1, . . . , xN )

∂(y1, . . . , yN )
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂x1

∂y1

∂x2

∂y1
· · · ∂xN

∂y1
∂x1

∂y2

∂x2

∂y2
· · · ∂xN

∂y2

...
...

. . .
...

∂x1

∂yN

∂x2

∂yN
· · · ∂xN

∂yN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

♦
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Probability Transformation Rule

The Jacobian determinant represents how an elemental region in
one domain changes volume when mapped to another domain.

dy

dx

y

x

dAxy» x yd d

dv

du

v

u

dAuv u v» d d

( ) = ( )u,v x,yg
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Probability Transformation Rule

The Jacobian determinant represents how an elemental region in
one domain changes volume when mapped to another domain.

dy

dx

y

x

dAxy» x yd d

dv

du

v

u

dAuv u v» d d

( ) = ( )u,v x,yg

This elemental area is mapped into the (u, v) domain through
the relationships u = g1(x, y) and v = g2(x, y).

The Jacobian indicates the ratio of these two areas:

δAuv ≈ Jxy→uv δAxy Jxy→uv ≈ δu δv

δx δy
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Probability Transformation Rule

dy

dx

y

x

dAxy» x yd d

dv

du

v

u

dAuv u v» d d

( ) = ( )u,v x,yg

This elemental area is mapped into the (u, v) domain through
the relationships u = g1(x, y) and v = g2(x, y).

The Jacobian indicates the ratio of these two areas:

δAuv ≈ Jxy→uv δAxy Jxy→uv ≈ δu δv

δx δy

In the limit, it can be shown that the Jacobian determinant is:

Juv→xy =

∣
∣
∣
∣
∣

∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

∣
∣
∣
∣
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Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X(ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X(ζ)



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Probability Transformation

Rule
•Polar Transformation

•Generating Gaussian

distributed samples

•Auxiliary Variables

•Statistical Description

•Mean Vectors and

Correlation Matrices
•Properties of Correlation

Matrices
•Further Statistical

Descriptions

•Multivariate Gaussian

Density Function

•Deriving the Multivariate

Gaussian
•Properties of Multivariate

- p. 58/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X(ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X(ζ)

The Jacobian is given by:

Jg(c) =

∣
∣
∣
∣
∣

cos θ −r sin θ

sin θ r cos θ

∣
∣
∣
∣
∣

−1

=
1

r

Thus, it follows that:

fR,Θ (r, θ) = rfXY (r cos θ, r sin θ)
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Polar Transformation

– End-of-Topic 28: Probability Transformation
rule for Random Vectors –

Any Questions?
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Generating Gaussian distributed samples

It is often important to generate samples from a Gaussian
density, primarily for simulation studies.

In practice, it is difficult for a computer to generate random
numbers from an arbitrary density.

However, it is possible to generate uniform random variates
fairly easily.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Probability Transformation

Rule
•Polar Transformation

•Generating Gaussian

distributed samples

•Auxiliary Variables

•Statistical Description

•Mean Vectors and

Correlation Matrices
•Properties of Correlation

Matrices
•Further Statistical

Descriptions

•Multivariate Gaussian

Density Function

•Deriving the Multivariate

Gaussian
•Properties of Multivariate

- p. 59/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Generating Gaussian distributed samples

Consider the transformation between two uniform random
variables

fXk
(xk) = I0,1 (xk) , k = 1, 2

where IA (x) = 1 if x ∈ A, and zero otherwise.
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Generating Gaussian distributed samples

Consider the transformation between two uniform random
variables

fXk
(xk) = I0,1 (xk) , k = 1, 2

where IA (x) = 1 if x ∈ A, and zero otherwise.

Now let two random variables y1, y2 be given by:

y1 =
√

−2 lnx1 cos 2πx2

y2 =
√

−2 lnx1 sin 2πx2
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Generating Gaussian distributed samples

Now let two random variables y1, y2 be given by:

y1 =
√

−2 lnx1 cos 2πx2

y2 =
√

−2 lnx1 sin 2πx2
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Generating Gaussian distributed samples

It follows, by rearranging these equations, that:

x1 = exp

[

−1

2
(y21 + y22)

]

x2 =
1

2π
arctan

y2
y1
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Generating Gaussian distributed samples

It follows, by rearranging these equations, that:

x1 = exp

[

−1

2
(y21 + y22)

]

x2 =
1

2π
arctan

y2
y1

The Jacobian determinant can be calculated as:

J(x1, x2) =

∣
∣
∣
∣
∣

∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

−1
x1

√−2 lnx1
cos 2πx2 −2π

√
−2 lnx1 sin 2πx2

−1
x1

√−2 ln x1
sin 2πx2 2π

√
−2 lnx1 cos 2πx2

∣
∣
∣
∣
∣

=
2π

x1
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Generating Gaussian distributed samples

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y2
1/2

] [
1√
2π

e−y2
2/2

]

since the domain [0, 1]2 is mapped to the range (−∞,∞)2,
thus covering the range of real numbers.

This is the product of the pdfs of y1 and y2, and therefore each
yk is independent and identically distributed (i. i. d.)
according to the normal distribution
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Generating Gaussian distributed samples

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y2
1/2

] [
1√
2π

e−y2
2/2

]

since the domain [0, 1]2 is mapped to the range (−∞,∞)2,
thus covering the range of real numbers.

This is the product of the pdfs of y1 and y2, and therefore each
yk is i. i. d. according to the normal distribution
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Generating Gaussian distributed samples

The resulting histogram from the generation of these
Gaussian samples.
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Generating Gaussian distributed samples

– End-of-Topic 29: Generating Gaussian
Samples –

Any Questions?
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Auxiliary Variables

So far transforming from NRVs to NRVs considered.

However, what about the case of transforming from NRVs to
MRVs, where M < N ; for example, Z(ζ) = g(X(ζ) , Y (ζ))?
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Auxiliary Variables

So far transforming from NRVs to NRVs considered.

However, what about the case of transforming from NRVs to
MRVs, where M < N ; for example, Z(ζ) = g(X(ζ) , Y (ζ))?

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of
two RVs can be determined by choosing an auxiliary variable,
W (ζ). Examples might be W (ζ) = X(ζ) or W (ζ) = Y (ζ).
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Auxiliary Variables

So far transforming from NRVs to NRVs considered.

However, what about the case of transforming from NRVs to
MRVs, where M < N ; for example, Z(ζ) = g(X(ζ) , Y (ζ))?

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of
two RVs can be determined by choosing an auxiliary variable,
W (ζ). Examples might be W (ζ) = X(ζ) or W (ζ) = Y (ζ).

The density of Z(ζ) is found by the probability transformation,

fWZ (w, z) dw =
M∑

m=1

fXY (xm, ym)

|J(xm, ym)|
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Auxiliary Variables

So far transforming from NRVs to NRVs considered.

However, what about the case of transforming from NRVs to
MRVs, where M < N ; for example, Z(ζ) = g(X(ζ) , Y (ζ))?

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of
two RVs can be determined by choosing an auxiliary variable,
W (ζ). Examples might be W (ζ) = X(ζ) or W (ζ) = Y (ζ).

The density of Z(ζ) is found by the probability transformation,

fWZ (w, z) dw =
M∑

m=1

fXY (xm, ym)

|J(xm, ym)|

followed by marginalisation:

fZ (z) =

∫

R

fWZ (w, z) dw =
M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw
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Auxiliary Variables

Example (Sum of two RVs). If X(ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX(ζ) + bY (ζ) .
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Auxiliary Variables

Example (Sum of two RVs). If X(ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX(ζ) + bY (ζ) .

SOLUTION. Use as the auxiliary variable the function
W (ζ) = Y (ζ). The system z = ax+ by, w = y has a single

solution at x = z−bw
a , y = w.
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Auxiliary Variables

Example (Sum of two RVs). If X(ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX(ζ) + bY (ζ) .

SOLUTION. Use as the auxiliary variable the function
W (ζ) = Y (ζ). The system z = ax+ by, w = y has a single

solution at x = z−bw
a , y = w.

Hence, the Jacobian is given by:

J(x, y) =

∣
∣
∣
∣
∣

∂w
∂x

∂z
∂x

∂w
∂y

∂z
∂y

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

0 a

1 b

∣
∣
∣
∣
∣
= −a

�
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Auxiliary Variables

Example (Sum of two RVs). If X(ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX(ζ) + bY (ζ) .

SOLUTION. Use as the auxiliary variable the function
W (ζ) = Y (ζ). The system z = ax+ by, w = y has a single

solution at x = z−bw
a , y = w.

Hence, the Jacobian is given by:

J(x, y) =

∣
∣
∣
∣
∣

∂w
∂x

∂z
∂x

∂w
∂y

∂z
∂y

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

0 a

1 b

∣
∣
∣
∣
∣
= −a

Thus:

fZ (z) =
1

|a|

∫

R

fXY

(
z − bw

a
, w

)

dw �
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Auxiliary Variables

Note that you might be concerned about the choice of the
auxiliary variable, and what happens if you chose something
different to that used here.
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Auxiliary Variables

Note that you might be concerned about the choice of the
auxiliary variable, and what happens if you chose something
different to that used here.

The answer is that, as long as the auxliary variable is a
function of at least one of the RVs, then it doesn’t really
matter, as the marginalisation stage will usually yield the
same answer.

Nevertheless, it usally pays to chose the auxiliary variable
carefully to minimise any difficulties in evaluating the
marginal-pdf.
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Auxiliary Variables

Note that you might be concerned about the choice of the
auxiliary variable, and what happens if you chose something
different to that used here.

The answer is that, as long as the auxliary variable is a
function of at least one of the RVs, then it doesn’t really
matter, as the marginalisation stage will usually yield the
same answer.

Nevertheless, it usally pays to chose the auxiliary variable
carefully to minimise any difficulties in evaluating the
marginal-pdf.

As an example, consider using W (ζ) = X(ζ)− Y (ζ) in the
previous example).
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Auxiliary Variables

Example ( [Papoulis:1991, Page 149, Problem 6-8]). The RVs X(ζ) and
Y (ζ) are independent with Rayleigh densities:

fX (x) =
x

α2
exp

{

− x2

2α2

}

IR+ (x)

fY (y) =
y

β2
exp

{

− y2

2β2

}

IR+ (y)

1. Show that if Z(ζ) = X(ζ)/Y(ζ), then:

fZ (z) =
2α2

β2

z
(

z2 + α2

β2

)2 IR
+ (z)

2. Using this result, show that for any k > 0,

Pr (X(ζ) ≤ k Y (ζ)) =
k2

k2 + α2

β2

⋊⋉
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Auxiliary Variables

– End-of-Topic 30: Using auxiliary variables
and their applications –

Any Questions?
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

Second-order moments of individual RVs do not adequately
capture key characteristics of the joint-pdf.

x1

x2

m1

m2 s1

s2

x1

x2

m1

m2 s1

s2

Mean and second-moments of individual RVs does not
capture all of the information about the joint-pdf.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

Consequently, it is important to understand that multiple RVs
leads to the notion of measuring their dependence. This
concept is useful in abstract, but also for stochastic processes.
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN






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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN







Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment :

Line

y x�=�

x

y

y0

0 x x0+dx0

dx

Line

y x�=�

x

y

y0

0

y y0+d

x0

dy

1

1

1

1

Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.

SOLUTION. The calculation involves finding the marginals
and then the expected value.
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment :

Line

y x�=�

x

y

y0

0 x x0+dx0

dx

Line

y x�=�

x

y

y0

0

y y0+d

x0

dy

1

1

1

1

Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.

SOLUTION. Using the region-of-support:

fX (x) =

∫ 1

y=x

fXY (x, y) dy =

∫ 1

x

2 dy = 2(1− x)
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment :

Line

y x�=�

x

y

y0

0 x x0+dx0

dx

Line

y x�=�

x

y

y0

0

y y0+d

x0

dy

1

1

1

1

Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.

SOLUTION. Using the region-of-support:

fY (y) =

∫ y

x=0

fXY (x, y) dx =

∫ y

0

2 dx = 2y

�
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment :

Line

y x�=�

x

y

y0

0 x x0+dx0

dx

Line

y x�=�

x

y

y0

0

y y0+d

x0

dy

1

1

1

1

Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.

SOLUTION. Taking expectations then gives:

µX =

∫ 1

0

x fX (x) dx =

∫ 1

0

2x(1− x) dx

�
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment :

Line

y x�=�

x

y

y0

0 x x0+dx0

dx

Line

y x�=�

x

y

y0

0

y y0+d

x0

dy

1

1

1

1

Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.

SOLUTION. Taking expectations then gives:

µX = 2

[
x2

2
− x3

3

]1

0

=
1

3

�
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment :

Line

y x�=�

x

y
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0 x x0+dx0

dx

Line

y x�=�

x

y
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1

Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.

SOLUTION. Taking expectations then gives:

µY =

∫ 1

0

y fY (y) dy = 2

∫ 1

0

y2 dy = 2

[
y3

3

]1

0

=
2

3
�
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Mean Vectors and Correlation Matrices

Mean vector The mean vector is the first-moment :

Line

y x�=�

x

y

y0

0 x x0+dx0

dx

Line

y x�=�

x

y

y0

0

y y0+d

x0

dy

1

1

1

1

Example (Mean Vector). Let fXY (x, y) = 2 for 0 < x < y < 1
and zero otherwise. Find the mean-vector.

SOLUTION.
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Mean Vectors and Correlation Matrices

Correlation Matrix The second-order moments of the random
vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

RX , E
[
X (ζ)XH(ζ)

]
=







rX1X1 · · · rX1XN

...
. . .

...

rXNX1 · · · rXNXN





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Mean Vectors and Correlation Matrices

Correlation Matrix The second-order moments of the random
vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

RX , E
[
X (ζ)XH(ζ)

]
=







rX1X1 · · · rX1XN

...
. . .

...

rXNX1 · · · rXNXN







The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).
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Mean Vectors and Correlation Matrices

Correlation Matrix The second-order moments of the random
vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

RX , E
[
X (ζ)XH(ζ)

]
=







rX1X1 · · · rX1XN

...
. . .

...

rXNX1 · · · rXNXN







The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation, or statistical similarity, between

RVs Xi(ζ) and Xj(ζ).
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Mean Vectors and Correlation Matrices

Correlation Matrix The second-order moments of the random
vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

RX , E
[
X (ζ)XH(ζ)

]
=







rX1X1 · · · rX1XN

...
. . .

...

rXNX1 · · · rXNXN







The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation between RVs Xi(ζ) and Xj(ζ).

If Xi(ζ) and Xj(ζ) are orthogonal, their correlation is zero:

rXiXj
= E

[
Xi(ζ)X

∗
j (ζ)

]
= 0, i 6= j
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Mean Vectors and Correlation Matrices

Correlation Matrix Example (Correlation Matrix). Find the correlation
matrix for random variables with joint-pdf given by
fXY (x, y) = 2 for 0 < x < y < 1 and zero otherwise.
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Mean Vectors and Correlation Matrices

Correlation Matrix Example (Correlation Matrix). Find the correlation
matrix for random variables with joint-pdf given by
fXY (x, y) = 2 for 0 < x < y < 1 and zero otherwise.

SOLUTION. The second-moments can utilise the marginals
such that:

E
[
X2(ζ)

]
=

∫ 1

0

x2 fX (x) dx =

∫ 1

0

2x2(1− x) dx

= 2

[
x3

3
− x4

4

]1

0

=
1

6

E
[
Y 2(ζ)

]
=

∫ 1

0

y2fY (y) dy = 2

∫ 1

0

y3 dy = 2

[
y4

4

]1

0

=
1

2

�
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Mean Vectors and Correlation Matrices

Correlation Matrix Example (Correlation Matrix). Find the correlation
matrix for random variables with joint-pdf given by
fXY (x, y) = 2 for 0 < x < y < 1 and zero otherwise.

SOLUTION. The correlation terms are given by:

E [X(ζ)Y (ζ)] =

∫ 1

0

∫ y

0

xy fXY (xy) dx dy

2

∫ 1

0

y

∫ y

0

x dx dy = 2

∫ y

0

y

[
x2

2

]y

0

dy

=

∫ 1

0

y3 dy =

[
y4

4

]1

0

=
1

4

�
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Mean Vectors and Correlation Matrices

Correlation Matrix Example (Correlation Matrix). Find the correlation
matrix for random variables with joint-pdf given by
fXY (x, y) = 2 for 0 < x < y < 1 and zero otherwise.

SOLUTION. The correlation terms are given by:

E [X(ζ)Y (ζ)] =

∫ 1

0

∫ y

0

xy fXY (xy) dx dy

2

∫ 1

0

y

∫ y

0

x dx dy = 2

∫ y

0

y

[
x2

2

]y

0

dy

=

∫ 1

0

y3 dy =

[
y4

4

]1

0

=
1

4
�

This correlation matrix can be evaluated by the MATLAB
expression:
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Mean Vectors and Correlation Matrices

Correlation Matrix Example (Correlation Matrix). Find the correlation
matrix for random variables with joint-pdf given by
fXY (x, y) = 2 for 0 < x < y < 1 and zero otherwise.

SOLUTION. Hence, putting all of these calculations together
gives the correlation matrix:

RXY =

[

rXX rXY

rY X rY Y

]

=

[
1
6

1
4

1
4

1
2

]

�
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Mean Vectors and Correlation Matrices

– End-of-Topic 31: Key Statistical definitions –

Any Questions?
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Properties of Correlation Matrices

It should be noticed that the correlation matrix is positive
semidefinite; that is, the correlation matrices satisfies:

aH RXa ≥ 0

for any complex vector a.
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Properties of Correlation Matrices

It should be noticed that the correlation matrix is positive
semidefinite; that is, the correlation matrices satisfies:

aH RXa ≥ 0

for any complex vector a.

This follows since:

aH RXa = aH E
[
xxH

]
a = E

[∣
∣xHa

∣
∣
2
]
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Properties of Correlation Matrices

Theorem (Positive semi-definiteness). PROOF. Consider:

Y (ζ) =
N∑

n=1

an Xn(ζ) = aT X(ζ) �

where X(ζ) =
[

X1(ζ) · · · XN (ζ)
]

and a =
[

a1 · · · aN

]

is

an arbitrary vector of coefficients.
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Properties of Correlation Matrices

Theorem (Positive semi-definiteness). PROOF. Consider:

Y (ζ) =
N∑

n=1

an Xn(ζ) = aT X(ζ)

where X(ζ) =
[

X1(ζ) · · · XN (ζ)
]

and a =
[

a1 · · · aN

]

is

an arbitrary vector of coefficients.

The variance of Y (ζ) must, by definition, be positive, as must its
second moment. Considering the second moment, then:

r
(2)
Y = E

[
Y 2(ζ)

]
= E




 aT X(ζ)X(ζ)

T
a

︸ ︷︷ ︸

(1×N)(N×1)(1×N)(N×1)






= aTE
[

X(ζ)X(ζ)
T
]

a = aT RX a ≥ 0 �
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Properties of Correlation Matrices

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

0 1

2 3

]

⋊⋉
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Properties of Correlation Matrices

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

0 1

2 3

]

SOLUTION. This is not a valid correlation matrix as it is not
symmetric, which is a requirement of a valid correlation matrix.

In otherwords, RT
X 6= RX .
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Properties of Correlation Matrices

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

1 2

2 1

]

⋊⋉
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Properties of Correlation Matrices

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

1 2

2 1

]

SOLUTION. Writing out the product I = aTRXa gives:

I =
[

α β
]
[

1 2

2 1

][

α

β

]

=
[

α β
]
[

α+ 2β

2α+ β

]

= α (α+ 2β) + β (2α+ β)

= α2 + 4αβ + β2

︸ ︷︷ ︸

look to complete the square
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Properties of Correlation Matrices

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

1 2

2 1

]

SOLUTION. Writing out the product I = aTRXa gives:

I = = α2 + 2αβ + β2

︸ ︷︷ ︸

complete the square

+2αβ

= (α+ β)
2

︸ ︷︷ ︸

always positive

+2αβ �

Noting the term 2αβ is not always positive, then selecting
α = −β, it follows that I = −2α2 < 0. Hence, RX is not
correlation matrix.
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Properties of Correlation Matrices

– End-of-Topic 32: Positive Semi-Definiteness
for Correlation Matrices –

Any Questions?
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Further Statistical Descriptions

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN






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Further Statistical Descriptions

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN







The diagonal terms

γXiXi
, σ2

Xi
= E

[

|Xi(ζ)− µXi
|2
]

, i ∈ {1, . . . , N}

are the variances of each of the RVs, Xi(ζ).
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Further Statistical Descriptions

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN







The off-diagonal terms

γXiXj
, E

[

(Xi(ζ)− µXi
)
(
Xj(ζ)− µXj

)∗]

= rXiXj
− µXi

µ∗
Xj

= γ∗
XjXi

, i 6= j

measure the covariance Xi(ζ) and Xj(ζ).
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Further Statistical Descriptions

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN







It can easily be shown that the covariance matrix, ΓX, must
also be positive-semi definite, and is also a Hermitian matrix.

aH ΓXa ≥ 0
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Further Statistical Descriptions

Moreover, as for scalar RVs, the covariance, γXiXj
, can be

expressed in terms of the standard deviations of Xi(ζ) and
Xj(ζ):

ρXiXj
,

γXiXj

σXi
σXj

= ρ∗XjXi
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Further Statistical Descriptions

Moreover, as for scalar RVs, the covariance, γXiXj
, can be

expressed in terms of the standard deviations of Xi(ζ) and
Xj(ζ):

ρXiXj
,

γXiXj

σXi
σXj

= ρ∗XjXi

Again, the correlation coefficient measures the degree of
statistical similarity between two random variables.

Note that:

If
∣
∣ρXiXj

∣
∣ = 1, i 6= j, then the RVs are said to be perfectly

correlated.

However, if ρXiXj
= 0, which occurs when the covariance

γXiXj
= 0, then the RVs are said to be uncorrelated.
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Further Statistical Descriptions

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X
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Further Statistical Descriptions

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0
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Further Statistical Descriptions

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0

Note, however, that uncorrelatedness does not imply
independence, unless the RVs are jointly-Gaussian.
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Further Statistical Descriptions

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]

=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]






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Further Statistical Descriptions

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]

=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y(ζ)− µY}H
]

= RXY − µXµH
Y
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Further Statistical Descriptions

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]

=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y(ζ)− µY}H
]

= RXY − µXµH
Y

Uncorrelated if ΓXY = 0 ⇒ RXY = µXµH
Y .

Orthogonal if RXY = 0.
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Further Statistical Descriptions

Example (Sum of Random Vectors). Consider the sum of two
zero-mean random vectors that are uncorrelated. What are the
correlation and covariance matrices of the sum?
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Further Statistical Descriptions

Example (Sum of Random Vectors). Consider the sum of two
zero-mean random vectors that are uncorrelated. What are the
correlation and covariance matrices of the sum?

SOLUTION. Let Z(ζ) = X(ζ) +Y(ζ). Then:

RZ = E
[
Z(ζ) ZH(ζ)

]
= E

[

(X(ζ) +Y(ζ)) (X(ζ) +Y(ζ))H
]

= E
[
X(ζ)XH(ζ)

]
+ E

[
X(ζ)YH(ζ)

]

+ E
[
Y(ζ)XH(ζ)

]
+ E

[
Y(ζ)YH(ζ)

]

= RX +RXY +RYX +RYY

�
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Further Statistical Descriptions

Example (Sum of Random Vectors). Consider the sum of two
zero-mean random vectors that are uncorrelated. What are the
correlation and covariance matrices of the sum?

SOLUTION. Let Z(ζ) = X(ζ) +Y(ζ). Then:

RZ = E
[
Z(ζ) ZH(ζ)

]
= E

[

(X(ζ) +Y(ζ)) (X(ζ) +Y(ζ))H
]

= E
[
X(ζ)XH(ζ)

]
+ E

[
X(ζ)YH(ζ)

]

+ E
[
Y(ζ)XH(ζ)

]
+ E

[
Y(ζ)YH(ζ)

]

= RX +RXY +RYX +RYY

Since the random vectors are uncorrelated, then
RXY = RYX = 0, and therefore RZ = RX +RY.

Moreover, the covariance matrix is equal to the correlation
matrix as the random vectors are zero-mean. �
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Further Statistical Descriptions

– End-of-Topic 33: Further Statistical
Descriptions –

Any Questions?
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal density.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)

T
Γ−1
X (x− µX)

]
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal density.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)

T
Γ−1
X (x− µX)

]

where N is the dimension of X (ζ), and X (ζ) has mean µX and
covariance ΓX. It is often denoted as:

fX (x) = N
(
x
∣
∣µX, ΓX

)
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal density.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)

T
Γ−1
X (x− µX)

]

where N is the dimension of X (ζ), and X (ζ) has mean µX and
covariance ΓX. It is often denoted as:

fX (x) = N
(
x
∣
∣µX, ΓX

)

The notation when a random vector is sampled from a normal:

X (ζ) ∼ N (µX, ΓX)
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Deriving the Multivariate Gaussian

The pdf for the multivariate Gaussian is often quoted, but where
does it come from?

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)T Γ−1

X (x− µX)

]
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Deriving the Multivariate Gaussian

The pdf for the multivariate Gaussian is often quoted, but where
does it come from?

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)T Γ−1

X (x− µX)

]

Suppose that NRVs, Xn(ζ) for n ∈ {0, . . . , N − 1}, are
independent zero-mean unit variance Gaussian densities, and
each have pdf given by fXn

(xn).

Then the joint-pdf of X(ζ) = [X0(ζ) , · · · , XN−1(ζ)]
T

is:

fX (x) =
N−1∏

n=0

fXn
(xn)
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Deriving the Multivariate Gaussian

Since Xn(ζ) is Gaussian distributed:

fXn
(xn) = N

(
xn

∣
∣ 0, 1

)
=

1√
2π

e−
x2
n
2

and hence it follows that:

fX (x) =
N−1∏

n=0

1√
2π

e−
x2
n
2 =

1

(2π)
N
2

e−
1
2

∑N−1
n=0 x2

n
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Deriving the Multivariate Gaussian

Since Xn(ζ) is Gaussian distributed:

fXn
(xn) = N

(
xn

∣
∣ 0, 1

)
=

1√
2π

e−
x2
n
2

and hence it follows that:

fX (x) =
N−1∏

n=0

1√
2π

e−
x2
n
2 =

1

(2π)
N
2

e−
1
2
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n=0 x2

n

Defining the vector x = [x0, · · · , xN−1]
T

, then it follows that

xT x =
[

x1 · · · xN

]







x1

...

xN






=

N−1∑

n=0

x2
n

fX (x) =
1

(2π)
N
2

e−
1
2x

T x
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Deriving the Multivariate Gaussian

fX (x) =
1

(2π)
N
2

e−
1
2x

T x

This is an isotropic Gaussian, which is circularly symmetric.

A graphical representation of an isotropic Gaussian random
vector.
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Deriving the Multivariate Gaussian

A non-isotropic Gaussian can be obtained by a linear shift, scale,
and rotation using the linear transformations. Hence, set:

y = Ax+ µ
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Deriving the Multivariate Gaussian

A non-isotropic Gaussian can be obtained by a linear shift, scale,
and rotation using the linear transformations. Hence, set:

y = Ax+ µ

Apply the probability transformation rule, noting one solution

x = A−1 (y − µ) and Jacobian Jx→y = detA

fY (y) =
fX
(
A−1 (y − µ)

)

|detA|
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Deriving the Multivariate Gaussian

A non-isotropic Gaussian can be obtained by a linear shift, scale,
and rotation using the linear transformations. Hence, set:

y = Ax+ µ

fY (y) =
1

|detA|
1

(2π)
N
2

exp

[

−1

2

(
A−1 (y − µ)

)T (
A−1 (y − µ)

)
]

=
1

(2π)
N
2

∣
∣
∣A

TA

∣
∣
∣

1
2

exp

[

−1

2
(y − µ)T A−TA−1 (y − µ)

]

where it has been noted that
∣
∣
∣AAT

∣
∣
∣

1
2

= detA.
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Deriving the Multivariate Gaussian

A non-isotropic Gaussian can be obtained by a linear shift, scale,
and rotation using the linear transformations. Hence, set:

y = Ax+ µ

Finally, writing ΓY = AAT and µY = µ, then:

fY (y) =
1

(2π)
N
2 |ΓY| 12

exp

[

−1

2
(y − µY)

T
Γ−1
Y (y − µY)

]

= N
(
y
∣
∣µY, ΓY

)
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Deriving the Multivariate Gaussian

Using the definition of the correlation coefficient, for a bivariate
Gaussian, the covariance matrix can be written as:

ΓY =

[

σ2
Y1

ρY1Y2σY1σY2

ρY1Y2σY1σY2 σ2
Y2

]

The pdf can then be plotted as ρY1Y2 changes.
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Properties of Multivariate Gaussians

The normal distribution is a useful model of a random vector
because of its many important properties.
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Properties of Multivariate Gaussians

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.
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Properties of Multivariate Gaussians

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.
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Properties of Multivariate Gaussians

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.

4. If X (ζ) and Y(ζ) are jointly-Gaussian, then so are their
marginal-distributions, and their conditional-distributions.
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Properties of Multivariate Gaussians

– End-of-Topic 34: Multivariate Gaussian
Distribution –

Any Questions?
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Central limit theorem

To motivate the central limit theorem, consider the following
example.

Example. Suppose {Xk(ζ)}4k=1 are four i. i. d. random variables
uniformally distributed over [−0.5, 0, 5]. Compute and plot the

pdfs of YM (ζ) ,
∑M

k=1 Xk(ζ) for M = {2, 3, 4}.

-0.5 0.5

1
fX( )x

x ⋊⋉
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Central limit theorem

Example. Suppose {Xk(ζ)}4k=1 are four i. i. d. random variables
uniformally distributed over [−0.5, 0, 5]. Compute and plot the

pdfs of YM (ζ) ,
∑M

k=1 Xk(ζ) for M = {2, 3, 4}.

-0.5 0.5

1
fX( )x

x

SOLUTION. Using the convolution result for the sum of
independent random variables, it follows:

fY2 (y) = fX1 (y) ∗ fX2 (y) = fX (y) ∗ fX (y)

fY3 (y) = fY2 (y) ∗ fX3 (y) = fY2 (y) ∗ fX (y)

fY4 (y) = fY3 (y) ∗ fX4 (y) = fY3 (y) ∗ fX (y)

�
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Central limit theorem

Example. Suppose {Xk(ζ)}4k=1 are four i. i. d. random variables
uniformally distributed over [−0.5, 0, 5]. Compute and plot the

pdfs of YM (ζ) ,
∑M

k=1 Xk(ζ) for M = {2, 3, 4}.

SOLUTION. The convolution calculations:

-1 1

1
fY2( )y

y

fY2 (y) =







1 + y −1 ≤ y < 0

1− y 0 ≤ y < 1

0 otherwise

�
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Central limit theorem

Example. Suppose {Xk(ζ)}4k=1 are four i. i. d. random variables
uniformally distributed over [−0.5, 0, 5]. Compute and plot the

pdfs of YM (ζ) ,
∑M

k=1 Xk(ζ) for M = {2, 3, 4}.

SOLUTION. The convolution calculations:

-1.5 1.5

fY3( )y

-0.5 0.5

0.5

0.75

y

fY3 (y) =







1
2

(
y + 3

2

)2 − 3
2 ≤ y < − 1

2
3
4 − y2 − 1

2 ≤ y < 1
2

1
2

(
y − 3

2

)2 1
2 ≤ y < 3

2

0 otherwise

�
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Central limit theorem

Example. SOLUTION. The convolution calculations:

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum of four uniform random variables

y

f Y
(y

)

f
Y
(y)

Gaussian

The pdf of fY4 (y), and also the pdf of N
(
y
∣
∣ 0, 1

3

)
.

fY4 (y) =







1
6 (y + 2)3 −2 ≤ y < −1

− 1
2y

3 − y2 + 2
3 −1 ≤ y < 0

1
2y

3 − y2 + 2
3 0 ≤ y < 1

− 1
6 (y − 2)

3
1 ≤ y < 2

0 otherwise

�
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Central limit theorem

Consider the random variable Y (ζ) given by:

YM (ζ) =
M∑

k=1

Xk(ζ)

What is the distribution of YM (ζ) as M → ∞?
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Central limit theorem

Consider the random variable Y (ζ) given by:

YM (ζ) =
M∑

k=1

Xk(ζ)

What is the distribution of YM (ζ) as M → ∞?

Informally, the CLT is well known, and the answer is a Gaussian.
Assume that the XM (ζ)’s are i. i. d., and the mean and variance

of Xm(ζ) are finite and given by µX and σ2
X . Then:

the mean of YM (ζ) is

E [YM ] = E

[
M∑

m=1

Xm(ζ)

]

=
M∑

m=1

E [Xm(ζ)]
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Central limit theorem

Consider the random variable Y (ζ) given by:

YM (ζ) =
M∑

k=1

Xk(ζ)

What is the distribution of YM (ζ) as M → ∞?

Informally, the CLT is well known, and the answer is a Gaussian.
Assume that the XM (ζ)’s are i. i. d., and the mean and variance

of Xm(ζ) are finite and given by µX and σ2
X . Then:

the mean of YM (ζ) is

E [YM ] = E

[
M∑

m=1

Xm(ζ)

]

=
M∑

m=1

E [Xm(ζ)]

µY = MµX What is µY as M → ∞?
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Central limit theorem

Consider the random variable Y (ζ) given by:

YM (ζ) =
M∑

k=1

Xk(ζ)

What is the distribution of YM (ζ) as M → ∞?

Informally, the CLT is well known, and the answer is a Gaussian.
Assume that the XM (ζ)’s are i. i. d., and the mean and variance

of Xm(ζ) are finite and given by µX and σ2
X . Then:

the variance of YM (ζ) is

var [YM ] = var

[
M∑

m=1

Xm(ζ)

]

=
M∑

m=1

var [Xm(ζ)]

σ2
Y = Mσ2

X Similarly, what is σ2
Y as M → ∞?
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Central limit theorem

Theorem (Central limit theorem). Let {Xk(ζ)}Mk=1 be a collection of
RVs that are independent and identically distributed for all
k = {1, . . . ,M}. Define the normalised random variable:

ŶM (ζ) =
YM (ζ)− µYM

σYM

where YM (ζ) =

M∑

k=1

Xk(ζ)

Then the distribution of ŶM (ζ) approaches

lim
M→∞

fŶM
(y) = N

(
y
∣
∣ 0, 1

)

♦
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Central limit theorem

Theorem (Central limit theorem). PROOF. Since the Xk(ζ)’s are

i. i. d., then µYM
= MµX and σ2

YM
= Mσ2

X . Let

Zk(ζ) =
Xk(ζ)− µX

σX

such that µZk
= µZ = 0, σ2

Zk
= σ2

Z = 1 and:

ŶM (ζ) =
1√
M

M∑

k=1

Zk(ζ)
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Central limit theorem

Theorem (Central limit theorem). PROOF. Since the Xk(ζ)’s are

i. i. d., then µYM
= MµX and σ2

YM
= Mσ2

X . Let

Zk(ζ) =
Xk(ζ)− µX

σX

such that µZk
= µZ = 0, σ2

Zk
= σ2

Z = 1 and:

ŶM (ζ) =
1√
M

M∑

k=1

Zk(ζ)

Noting that if V (ζ) = aU(ζ) for some real-scalar a then

ΦV (ξ) = E

[

ejξ aU(ζ)
]

= ΦU (aξ)

�
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Central limit theorem

Theorem (Central limit theorem). PROOF. The normalised random
variable can be written as:

ŶM (ζ) =
1√
M

M∑

k=1

Zk(ζ)

Hence, the characteristic function for ŶM (ζ) is given by:

ΦŶM
(ξ) =

M∏

k=1

ΦZk

(
ξ√
M

)
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Central limit theorem

Theorem (Central limit theorem). PROOF. The normalised random
variable can be written as:

ŶM (ζ) =
1√
M

M∑

k=1

Zk(ζ)

Hence, the characteristic function for ŶM (ζ) is given by:

ΦŶM
(ξ) =

M∏

k=1

ΦZk

(
ξ√
M

)

Since the Xk(ζ)’s and therefore the Zk(ζ)’s are i. i. d., then

ΦZk
(ξ) = ΦZ(ξ), or:

ΦŶM
(ξ) = ΦM

Z

(
ξ√
M

)
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Central limit theorem

Theorem (Central limit theorem). PROOF. Since the Xk(ζ)’s and
therefore the Zk(ζ)’s are i. i. d., then ΦZk

(ξ) = ΦZ(ξ), or:

ΦŶM
(ξ) = ΦM

Z

(
ξ√
M

)

From the previous chapter on scalar random variables,

ΦZ(ξ) = E

[

ejξ Z(ζ)
]

=

∞∑

n=0

(jξ)n

n!
E [Zn(ζ)]
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Central limit theorem

Theorem (Central limit theorem). PROOF. From the previous chapter

ΦZ(ξ) = E

[

ejξ Z(ζ)
]

=

∞∑

n=0

(jξ)n

n!
E [Zn(ζ)]

Therefore, the characteristic function for ŶM (ζ) becomes:

ΦŶM
(ξ) =

{ ∞∑

n=0

1

n!

(
jξ√
M

)n

E [Zn(ζ)]

}M

=

{

1 +
jξµZ√
M

− ξ2σ2
Z

2M
+O

({
ξ√
M

}3
)}M
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Central limit theorem

Theorem (Central limit theorem). PROOF. Therefore, the

characteristic function for ŶM (ζ) becomes:

ΦŶM
(ξ) =

{ ∞∑

n=0

1

n!

(
jξ√
M

)n

E [Zn(ζ)]

}M

=

{

1 +
jξµZ√
M

− ξ2σ2
Z

2M
+O

({
ξ√
M

}3
)}M

Using the moments µZ = 0 and σ2
Z = 1,

ΦŶM
(ξ) =

{

1− ξ2

2M
+O

({
ξ√
M

}3
)}M

→ e−
1
2 ξ

2

as M → ∞
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Central limit theorem

Theorem (Central limit theorem). PROOF. Using the moments µZ = 0
and σ2

Z = 1,

ΦŶM
(ξ) =

{

1− ξ2

2M
+O

({
ξ√
M

}3
)}M

→ e−
1
2 ξ

2

as M → ∞

where the following limit is used:

lim
n→∞

(

1 +
x

n

)n

= ex
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Central limit theorem

Theorem (Central limit theorem). PROOF. Using the moments µZ = 0
and σ2

Z = 1,

ΦŶM
(ξ) =

{

1− ξ2

2M
+O

({
ξ√
M

}3
)}M

→ e−
1
2 ξ

2

as M → ∞

where the following limit is used:

lim
n→∞

(

1 +
x

n

)n

= ex �

This last term is the characteristic function of the N
(
y
∣
∣ 0, 1

)

distribution.
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Central limit theorem

– End-of-Topic 35: Central Limit Theorem –

Any Questions?
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.

This handout will consider the problem of Parameter
Estimation. This refers to the estimation of a parameter that
is fixed, but is unknown.
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A (Confusing) Note on Notation

Note that, unfortunately, from this point onwards, a slightly
different notation for random quantities is used.
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A (Confusing) Note on Notation

Note that, unfortunately, from this point onwards, a slightly
different notation for random quantities is used.

So far, particular observations of a random variable are
written as lower-case letters, e.g. xnor x[n].
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A (Confusing) Note on Notation

Note that, unfortunately, from this point onwards, a slightly
different notation for random quantities is used.

So far, particular observations of a random variable are
written as lower-case letters, e.g. xnor x[n].

Unfortunately, for convenience, lower-case letters are also
used in some literature to refer to the random variable itself
with the consequence that, in different contexts, x[n] can refer
to a particular observation, or a random value (x[n] = X(ζ)).
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A (Confusing) Note on Notation

Note that, unfortunately, from this point onwards, a slightly
different notation for random quantities is used.

So far, particular observations of a random variable are
written as lower-case letters, e.g. xnor x[n].

Unfortunately, for convenience, lower-case letters are also
used in some literature to refer to the random variable itself
with the consequence that, in different contexts, x[n] can refer
to a particular observation, or a random value (x[n] = X(ζ)).

The reason is due to the notation used to describe random
processes, where the representation of a random process in
the frequency domain is discussed, and upper-case letters are
reserved to denote spectral representations.
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A (Confusing) Note on Notation

Note that, unfortunately, from this point onwards, a slightly
different notation for random quantities is used.

So far, particular observations of a random variable are
written as lower-case letters, e.g. xnor x[n].

Unfortunately, for convenience, lower-case letters are also
used in some literature to refer to the random variable itself
with the consequence that, in different contexts, x[n] can refer
to a particular observation, or a random value (x[n] = X(ζ)).

The reason is due to the notation used to describe random
processes, where the representation of a random process in
the frequency domain is discussed, and upper-case letters are
reserved to denote spectral representations.

Moreover, lower-case letters for time-series helps with the
clarity (where x[n] is short-hand for x[n, ζ]).
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Examples of parameter estimation

Frequency Estimation Consider estimating the spectral content of a
harmonic process, x[n], consisting of a single-tone, given by

x[n] = A0 cos(ω0n+ φ0) + w[n]

where A0, φ0, and ω0 are unknown constants, and where w[n]
is an additive white Gaussian noise (AWGN) process with
zero-mean and variance σ2. It is desired to estimate A0, φ0,
and ω0 from a realisation of the random process, giving rise
to observations x[n].
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Examples of parameter estimation

Frequency Estimation Consider estimating the spectral content of a
harmonic process, x[n], consisting of a single-tone, given by

x[n] = A0 cos(ω0n+ φ0) + w[n]

where A0, φ0, and ω0 are unknown constants, and where w[n]
is an AWGN process with zero-mean and variance σ2. It is
desired to estimate A0, φ0, and ω0 from a realisation of the
random process, giving rise to observations x[n].

Sampling Distribution Parameters It is known that a set of

observations, {x[n]}N−1
0 , are drawn from a sampling

distribution with unknown parameters θ, such that:

x[n] ∼ fX (x | θ)

For example, if it is known that x[n] ∼ U[a, b], then it might be

of interest to estimate the parameters a and b.
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Examples of parameter estimation

Estimate of Moments It might be of interest to estimate the

moments of a set of observations, {x[n]}N−1
0 , for example

µX = E [x[n]] and σ2
X = var [x[n]].
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Examples of parameter estimation

Estimate of Moments It might be of interest to estimate the

moments of a set of observations, {x[n]}N−1
0 , for example

µX = E [x[n]] and σ2
X = var [x[n]].

Constant value in noise An example which covers the various cases
above is estimating a “direct current” (DC) constant in noise:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}
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Examples of parameter estimation

Estimate of Moments It might be of interest to estimate the

moments of a set of observations, {x[n]}N−1
0 , for example

µX = E [x[n]] and σ2
X = var [x[n]].

Constant value in noise An example which covers the various cases
above is estimating a DC constant in noise:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

This list isn’t exhaustiive, but gives an example of the type of
parameter estimation problems that need to be addressed.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the
value taken by the estimator, using a particular set of
observations, is called a point-estimate.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the
value taken by the estimator, using a particular set of
observations, is called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to
the true value of the parameter, θ, as possible.
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Properties of Estimators

Since θ̂ is a function of a number of realisations of a random
experiment, it is itself a RV, and thus has a mean and variance.
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Properties of Estimators

Since θ̂ is a function of a number of realisations of a random
experiment, it is itself a RV, and thus has a mean and variance.

As an example of an estimator, consider estimating the mean
µX of a random variate, X(ζ), from N observations

X = {x[n]}N−1
0 . The most natural estimator is a simple

arithmetic average of these observations, the sample mean:

µ̂X = θ̂[X ] =
1

N

N−1∑

n=0

x[n]
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Properties of Estimators

Since θ̂ is a function of a number of realisations of a random
experiment, it is itself a RV, and thus has a mean and variance.

As an example of an estimator, consider estimating the mean
µX of a random variate, X(ζ), from N observations

X = {x[n]}N−1
0 . The most natural estimator is a simple

arithmetic average of these observations, the sample mean:

µ̂X = θ̂[X ] =
1

N

N−1∑

n=0

x[n]

To demonstrate that these estimates are RVs, consider
repeating the procedure for calculating the sample mean
from a large number of difference sets of realisations.

Then a large number of estimates of µX , denoted by the set
{µ̂X}, is obtained, and these can be used to generate a
histogram showing the distribution of the estimates.
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Properties of Estimators

Example (Numerical Example). Suppose that N = 1000 observations
are generated from a Gaussian density with mean µ = 5 and
variance σ2 = 1. Use MATLAB and a Monte Carlo experiment to
find the distribution of the sample mean.

SOLUTION. One realisation would generate N = 1000 data points

generated from x[n] ∼ N
(
µ = 5, σ2 = 1

)
using:

mu = 5; sigma = 1; N = 1000;
x = mu + sigma * randn(N, 1);
muEst = sum(x)/N
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Properties of Estimators

Example (Numerical Example). Suppose that N = 1000 observations
are generated from a Gaussian density with mean µ = 5 and
variance σ2 = 1. Use MATLAB and a Monte Carlo experiment to
find the distribution of the sample mean.

SOLUTION. This can be repeated K = 100000 times to
produce a Monte Carlo estimate. This can be achieved with
the following code: �

N = 1000; K = 100000;
mu = 5; sigma = 1;
muEst = zeros(1, K);
for k = 1 : K
x = mu + sigma * randn(N, 1);
muEst(k) = sum(x) / N;
end
mean(muEst)
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Properties of Estimators

Example (Numerical Example). Use MATLAB and a Monte Carlo
experiment to find the distribution of the sample mean.

SOLUTION. The results of this Monte Carlo experiment are:

�
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Properties of Estimators

– End-of-Topic 36: Introduction to Estimation
Theory and the Definition of an Estimator –

Any Questions?
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What makes a good estimator?

m

f( )m

m E[ ]m

B[ ]�=�E[ ]-m m m

Here, the pdf of the estimated value, µ̄, is biased away from
the true value, µ. However, the spread of the estimated value

around the true value is small.
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What makes a good estimator?

m

var[ ]�=�E[( -E[ ]) ]m m m
2

f( )m

m

Here, the pdf of the estimated value, µ̄, is centered on the
true value, µ. However, the spread of the estimated value

around the true value is very large.
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What makes a good estimator?

m

f( )m

m

It is important to note that higher-order statistics can also
play a part in quantifying the performance of an estimator,

although that won’t be considered further here.
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

If θ is large, then a small deviation would give what would
appear to be a large bias. Therefore, the normalised bias is
therefore often used instead:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

If θ is large, then a small deviation would give what would
appear to be a large bias. Therefore, the normalised bias is
therefore often used instead:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0

Example (Biasness of sample mean estimator). Is the sample mean,

µ̂x = 1
N

∑N−1
n=0 x[n] biased?

SOLUTION. No, since

E [µ̂x] = E

[
1
N

∑N−1
n=0 x[n]

]

= 1
N

∑N−1
n=0 E [x[n]] = NµX

N = µX .
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described in the next topic.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described in the next topic.

The normalised standard deviation is defined by:

ǫr ,
σθ̂

θ
, θ 6= 0



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

• Introduction

•A (Confusing) Note on

Notation
•Examples of parameter

estimation
•Properties of Estimators

•What makes a good

estimator?
•Bias of estimator

•Variance of estimator

•Mean square error

•Consistency of an Estimator

•Cramer-Rao Lower Bound

•Maximum Likelihood

Estimation
•Properties of the MLE

•DC Level in white Gaussian

noise
•MLE for Transformed

Parameter
•Least Squares

•The Least Squares

Approach

- p. 76/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.
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Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.

SOLUTION. Noting {x[n]}N−1
n=0 are i. i. d. with variance σ2

x, then
there are two approaches to calculating the variance.
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Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.

SOLUTION. Noting {x[n]}N−1
n=0 are i. i. d. with variance σ2

x, then
there are two approaches to calculating the variance.

The first is to use the result that:

var

[
N−1∑

n=0

cn Xn(ζ)

]

=

N−1∑

n=0

c2n var [Xn(ζ)]
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Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.

SOLUTION. Noting {x[n]}N−1
n=0 are i. i. d. with variance σ2

x, then
there are two approaches to calculating the variance.

The first is to use the result that:

var

[
N−1∑

n=0

cn Xn(ζ)

]

=

N−1∑

n=0

c2n var [Xn(ζ)]

Therefore,

var [µ̂x] = var

[

1

N

N−1∑

n=0

x[n]

]

=
1

N2

N−1∑

n=0

var [x[n]] =
σ2
x

N
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Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.

SOLUTION. The second approach uses the result that
E [x[n]x[m]] = σ2

x δ(n−m) + µ2
x. �
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Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.

SOLUTION. The second approach uses the result that
E [x[n]x[m]] = σ2

x δ(n−m) + µ2
x.

The sample mean estimator is unbiased, and therefore writing
θ = µx, then E [µ̂x] = µx. Therefore:

var [µ̂x] = E





∣
∣
∣
∣
∣

{

1

N

N−1∑

n=0

x[n]

}

− µx

∣
∣
∣
∣
∣

2



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Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.

SOLUTION. The second approach uses the result that
E [x[n]x[m]] = σ2

x δ(n−m) + µ2
x.

The sample mean estimator is unbiased, and therefore writing
θ = µx, then E [µ̂x] = µx. Therefore:

var [µ̂x] = E





∣
∣
∣
∣
∣

{

1

N

N−1∑

n=0

x[n]

}

− µx

∣
∣
∣
∣
∣

2




= E

[

1

N2

N−1∑

n=0

N−1∑

m=0

x[n]x[m]− 2
µx

N

N−1∑

n=0

x[n] + µ2
x

]
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Variance of estimator

Example (Variance of Sample Mean). Calculate the variance of the
sample mean, assuming the observations are independent.

SOLUTION. The second approach uses the result that
E [x[n]x[m]] = σ2

x δ(n−m) + µ2
x.

The sample mean estimator is unbiased, and therefore writing
θ = µx, then E [µ̂x] = µx. Therefore:

var [µ̂x] = E





∣
∣
∣
∣
∣

{

1

N

N−1∑

n=0

x[n]

}

− µx

∣
∣
∣
∣
∣

2




= E

[

1

N2

N−1∑

n=0

N−1∑

m=0

x[n]x[m]− 2
µx

N

N−1∑

n=0

x[n] + µ2
x

]

=
1

N2

{
N
[
σ2
x +Nµ2

x

]
− 2N2µ2

x +N2µ2
x

}
=

σ2
x

N
�
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Variance of estimator

– End-of-Topic 37: What makes a good
estimator? Introduction to bias and variance

–

Any Questions?
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Minimising estimator variance can increase bias. A compromise
criterion is the MSE of the estimator, which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2
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Minimising estimator variance can increase bias. A compromise
criterion is the MSE of the estimator, which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is
known as the minimum mean-square error:

θ̂MSE = argθ̂ min MSE(θ̂)
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Minimising estimator variance can increase bias. A compromise
criterion is the MSE of the estimator, which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is
known as the minimum mean-square error:

θ̂MSE = argθ̂ min MSE(θ̂)

This measures the average mean squared deviation of the
estimator from its true value.

Unfortunately, adoption of this natural criterion leads to
unrealisable estimators; ones which cannot be written solely
as a function of the data.
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Consider the
observations

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is white

Gaussian noise (WGN) with variance σ2. A reasonable estimator
for the average value of x[n], A, is:

Âa = a
1

N

N−1∑

n=0

x[n]

If a = 1, then this is just the sample mean.

Find the optimal (modified) estimatorÂa by finding the value
ofa that minimises the MSE. ⋊⋉
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Consider

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

A reasonable estimator for A, is:

Âa = a
1

N

N−1∑

n=0

x[n]

Find the optimal Âa by finding a that minimises the MSE.

SOLUTION. Due to the linearity properties of the expectation
operator, then it can be seen, as in the previous example, that:

E

[

Âa

]

= E

[

a
1

N

N−1∑

n=0

x[n]

]

= aA

�
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Therefore, this is a biased estimate with bias

B
(

Âa

)

= A(a− 1). As in the previous example, then:

var
[

Âa

]

= var

[

a
1

N

N−1∑

n=0

x[n]

]

=
a2

N2

N−1∑

n=0

var [x[n]] =
a2σ2

N

�
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Therefore, this is a biased estimate with bias

B
(

Âa

)

= A(a− 1). As in the previous example, then:

var
[

Âa

]

= var

[

a
1

N

N−1∑

n=0

x[n]

]

=
a2

N2

N−1∑

n=0

var [x[n]] =
a2σ2

N

Hence, the MSE is given by:

MSE(Âa) = var
[

Âa

]

+ |B(Âa)|2 =
a2σ2

N
+ (a− 1)2A2

�
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Hence, the MSE is given by:

MSE(Âa) = var
[

Âa

]

+ |B(Âa)|2 =
a2σ2

N
+ (a− 1)2A2

In order to find the minimum mean-square error (MMSE), then

differentiate this and set to zero:

dMSE(Âa)

da
=

2aσ2

N
+ 2(a− 1)A2
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Hence, the MSE is given by:

MSE(Âa) = var
[

Âa

]

+ |B(Âa)|2 =
a2σ2

N
+ (a− 1)2A2

In order to find the minimum mean-square error (MMSE), then

differentiate this and set to zero:

dMSE(Âa)

da
=

2aσ2

N
+ 2(a− 1)A2

which is equal to zero when

aopt =
A2

A2 + σ2

N

�
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. In order to find the minimum mean-square
error (MMSE), then differentiate this and set to zero:

aopt =
A2

A2 + σ2

N

Thus, the optimal value of a depends upon the unknown
parameter A.

The estimator is therefore not realisable, and this is since the
bias term is a function of A.

Any criterion which depends on the bias of the estimator will,
generally, lead to an unrealisable estimator. On occasion
realisable MMSE estimators can be found. �
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Despite the unrealisable estimator, the result can still
be informative. First, note that:

aopt =
1

1 + 1
N

(
σ2

A2

) =
1

1 + 1
N SNR

where the signal-to-noise ratio (SNR) is: SNR = A2

σ2 .

It is apparent that when N and the SNR are low, some value
less than a = 1 may be appropriate. �
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Despite the unrealisable estimator, the result can still
be informative. First, note that:

aopt =
1

1 + 1
N

(
σ2

A2

) =
1

1 + 1
N SNR

where the SNR is: SNR = A2

σ2 .

The minimum MSE can be calculated as:

MSE (aopt) =
σ2

N

(

1

1 + 1
NSNR

)
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Despite the unrealisable estimator, the result can still
be informative.
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Example ( [Kay:1993, Example 2.1, Pages 16 and 19]). Find the

optimal Âa by finding a that minimises the MSE.

SOLUTION. Moreover, by plotting the bias, variance, and MSE,
we can see how the bias-variance trade-off occurs.
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– End-of-Topic 38: Mean Square Error and
MSE Estimators –

Any Questions?
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

• Introduction

•A (Confusing) Note on

Notation
•Examples of parameter

estimation
•Properties of Estimators

•What makes a good

estimator?
•Bias of estimator

•Variance of estimator

•Mean square error

•Consistency of an Estimator

•Cramer-Rao Lower Bound

•Maximum Likelihood

Estimation
•Properties of the MLE

•DC Level in white Gaussian

noise
•MLE for Transformed

Parameter
•Least Squares

•The Least Squares

Approach

- p. 78/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around
θ, and as N → ∞, it will become an impulse at θ.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around
θ, and as N → ∞, it will become an impulse at θ.

This is a very important and desirable property, and such an
estimator is called a consistent estimator.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around
θ, and as N → ∞, it will become an impulse at θ.

This is a very important and desirable property, and such an
estimator is called a consistent estimator.

Definition (Efficiency of an estimator). An estimate is said to be
efficient w. r. t. another estimate if it has a lower variance. Thus,

if θ̂N is an estimator that depends on N observations and is both

unbiased and efficient with respect to θ̂N−1 for all N , then θ̂N is
a consistent estimate.
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– End-of-Topic 39: Consistency of Estimator –

Any Questions?
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Cramer-Rao Lower Bound

In the previous Topic, the performance of a given estimator
has been considered; what is the bias, and what is the
variance?

The MSE criterion gives a possible design method for finding
the structural form of an optimal estimator, but isn’t always
realisable.
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Cramer-Rao Lower Bound

In the previous Topic, the performance of a given estimator
has been considered; what is the bias, and what is the
variance?

The MSE criterion gives a possible design method for finding
the structural form of an optimal estimator, but isn’t always
realisable.

This leads to the general question of whether there is a
particular methodology for designing an estimator for a given
probabilistic problem.
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Cramer-Rao Lower Bound

In the previous Topic, the performance of a given estimator
has been considered; what is the bias, and what is the
variance?

The MSE criterion gives a possible design method for finding
the structural form of an optimal estimator, but isn’t always
realisable.

This leads to the general question of whether there is a
particular methodology for designing an estimator for a given
probabilistic problem.

If the MSE can be minimised when the bias is zero, then
clearly the variance is also minimised. Such estimators are
called MVUEs.
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Cramer-Rao Lower Bound

In the previous Topic, the performance of a given estimator
has been considered; what is the bias, and what is the
variance?

The MSE criterion gives a possible design method for finding
the structural form of an optimal estimator, but isn’t always
realisable.

This leads to the general question of whether there is a
particular methodology for designing an estimator for a given
probabilistic problem.

If the MSE can be minimised when the bias is zero, then
clearly the variance is also minimised. Such estimators are
called MVUEs.

MVUE possess the important property that they attain a
minimum bound on the variance of the estimator, called the
Cramér-Rao lower-bound (CRLB).
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Cramer-Rao Lower Bound

Theorem (CRLB - real scalar parameter). If

X(ζ) = [x[0] , · · · , x[N − 1]]
T

and fX (x | θ) is the joint density
of X(ζ) which depends on the fixed but unknown parameter θ,

the variance of θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - real scalar parameter). If

X(ζ) = [x[0] , · · · , x[N − 1]]
T

and fX (x | θ) is the joint density
of X(ζ) which depends on the fixed but unknown parameter θ,

the variance of θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - real scalar parameter). If

X(ζ) = [x[0] , · · · , x[N − 1]]
T

and fX (x | θ) is the joint density
of X(ζ) which depends on the fixed but unknown parameter θ,

the variance of θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

] ♦

The function ln fX (x | θ) is called the log-likelihood of θ.
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Cramer-Rao Lower Bound

Theorem (CRLB - real scalar parameter). If

X(ζ) = [x[0] , · · · , x[N − 1]]
T

and fX (x | θ) is the joint density
of X(ζ) which depends on the fixed but unknown parameter θ,

the variance of θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

Furthermore, an unbiased estimator may be found that attains
the bound for all θ if, and only if, (iff)

∂ ln fX (x | θ)
∂θ

= I(θ)
(

θ̂ − θ
)

♦
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1} ⋊⋉

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. Since the transformation between w[n] and x[n] is
linear, with a multiplication factor of 1, the likelihood functionis:

fX (x | A) =
N−1∏

n=0

1√
2πσ2

exp

[

− 1

2σ2
(x[n]− A)2

]

=
1

(2πσ2)
N
2

exp

[

− 1

2σ2

N−1∑

n=0

(x[n]− A)
2

]

�
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. Taking the first derivative of the log-likelihood:

∂ ln fX (x | A)
∂A

=
∂

∂A

[

−N

2
ln
(
2πσ2

)
− 1

2σ2

N−1∑

n=0

(x[n]−A)
2

]

�
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. Taking the first derivative of the log-likelihood:

∂ ln fX (x | A)
∂A

=
∂

∂A

[

−N

2
ln
(
2πσ2

)
− 1

2σ2

N−1∑

n=0

(x[n]−A)
2

]

=
1

σ2

N−1∑

n=0

(x[n]− A) =
N

σ2

({

1

N

N−1∑

n=0

x[n]

}

−A

)

�
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. Taking the first derivative of the log-likelihood:

∂ ln fX (x | A)
∂A

=
∂

∂A

[

−N

2
ln
(
2πσ2

)
− 1

2σ2

N−1∑

n=0

(x[n]−A)
2

]

=
1

σ2

N−1∑

n=0

(x[n]− A) =
N

σ2

({

1

N

N−1∑

n=0

x[n]

}

−A

)

=
N

σ2
(µ̂X −A)

�
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. Differentiating again, then:

∂2 ln fX (x | A)
∂A2

= −N

σ2
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. Differentiating again, then:

∂2 ln fX (x | A)
∂A2

= −N

σ2

and noting that this is constant, then the CRLB is:

var
[

Â
]

≥ σ2

N

�
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. It is noted the first derivative of the log-likelihood is
in the form:

∂ ln fX (x | θ)
∂θ

= I(θ)
(

θ̂ − θ
)

=
N

σ2

({

1

N

N−1∑

n=0

x[n]

}

−A

)

�
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Cramer-Rao Lower Bound

Example ( [Kay:1993, Example 3.3, Page 31]). Consider again:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1}

where A is the parameter to be estimated, and w[n] is WGN.

Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. It is noted the first derivative of the log-likelihood is
in the form:

∂ ln fX (x | θ)
∂θ

= I(θ)
(

θ̂ − θ
)

=
N

σ2

({

1

N

N−1∑

n=0

x[n]

}

− A

)

�

then it is clear that the sample mean attains the bound, such that

Â = µX , and must therefore be the MVUE. Hence, the minimum

variance will also be given by var
[

Â
]

= σ2

N .
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Cramer-Rao Lower Bound

– End-of-Topic 40: Introduction to the CRLB
and how to identify MVUE that satisfy the

bound –

Any Questions?
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as
the likelihood function.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

• Introduction

•A (Confusing) Note on

Notation
•Examples of parameter

estimation
•Properties of Estimators

•What makes a good

estimator?
•Bias of estimator

•Variance of estimator

•Mean square error

•Consistency of an Estimator

•Cramer-Rao Lower Bound

•Maximum Likelihood

Estimation
•Properties of the MLE

•DC Level in white Gaussian

noise
•MLE for Transformed

Parameter
•Least Squares

•The Least Squares

Approach

- p. 80/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as
the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter

θ, denoted by θ̂ml, is defined as that value of θ that
maximises fX ( x̂ | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as
the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter

θ, denoted by θ̂ml, is defined as that value of θ that
maximises fX ( x̂ | θ).

The MLE for θ is defined by:

θ̂ml(x) = argθ max fX (x | θ)

Note that since θ̂ml(x) depends on the random observation
vector x, and so is itself a RV.
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Maximum Likelihood Estimation

Assuming a differentiable likelihood function, and that θ ∈ R
P ,

the MLE is found from







∂fX(x | θ)
∂θ1
...

∂fX(x | θ)
∂θP






=







0
...

0







or, more simply,

∇θfX (x | θ) , ∂fX (x | θ)
∂θ

= 0P×1

where 0P×1 denotes the P × 1 vector of zero elements. If
multiple solutions to this exist, then the one that maximises the
likelihood function is the MLE.
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary

3. MLE is asymptotically distributed according to a Gaussian:

θ̂ml ∼ N
(
θ, J−1(θ)

)
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)
⋊⋉

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of A.
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of A.

SOLUTION. Since this is a memoryless system, and w[n] are
i. i. d., then so is x[n], and therefore:

ln fX (x | A) = −N

2
ln(2πσ2

w)−
∑

n∈N (x[n]−A)2

2σ2
w

�
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of A.

SOLUTION. Since this is a memoryless system, and w[n] are
i. i. d., then so is x[n], and therefore:

ln fX (x | A) = −N

2
ln(2πσ2

w)−
∑

n∈N (x[n]−A)2

2σ2
w

Differentiating this expression w. r. t. A

∂ ln fX (x | A)
∂A

=

∑

n∈N (x[n]−A)

σ2
w

�
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of A.

SOLUTION. Since this is a memoryless system, and w[n] are
i. i. d., then so is x[n], and therefore:

ln fX (x | A) = −N

2
ln(2πσ2

w)−
∑

n∈N (x[n]−A)2

2σ2
w

Differentiating this expression w. r. t. A and setting to zero:

Âml =
1

N

∑

n∈N
x[n]

�
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of A.

SOLUTION. Differentiating this expression w. r. t. A and setting to
zero:

Âml =
1

N

∑

n∈N
x[n]

This is the sample mean, and it has already been seen that
this is an efficient estimator. Hence, the MLE is efficient.

This result is true in general; if an efficient estimator exists,
the maximum likelihood procedure will produce it. �
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of A.

SOLUTION. To complete the solution, check this does, in fact,
correspond to a maximum rather than a minimum or other
stationary point.
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of A.

SOLUTION. To complete the solution, check this does, in fact,
correspond to a maximum rather than a minimum or other
stationary point.

This can be verified by differentiating for a second time:

∂2 ln fX (x | A)
∂A2

=

∑

n∈N (−1)

σ2
w

=
−N

σ2
w

< 0

which is always negative and therefore corresponds to a
minimum. �
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml) ♦

where θ̂ml is the MLE of θ.
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml)

where θ̂ml is the MLE of θ.

The MLE of θ, θ̂ml, is obtained by maximising fX (x | θ). ♦
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml)

where θ̂ml is the MLE of θ.

The MLE of θ, θ̂ml, is obtained by maximising fX (x | θ).
If the function g is not an invertible function, then α̂

maximises the modified likelihood function p̄T (x | α) defined
as:

p̄T (x | α) = max
θ:α=g(θ)

fX (x | θ) ♦
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MLE for Transformed Parameter

– End-of-Topic 41: Introduction to MLE –

Any Questions?
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

For some techniques, this means that the pdf of the data must
be known somehow.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems: the principle of least squares.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

For some techniques, this means that the pdf of the data must
be known somehow.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems: the principle of least squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

For some techniques, this means that the pdf of the data must
be known somehow.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems: the principle of least squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.

As will be seen, it turns out that the LSE can be calculated
when just the first and second moments are known, and
through the solution of linear equations.
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The Least Squares Approach

In the least-squares (LS) approach, it is sought to minimise the
squared difference between the given, or observed, data x[n] and
the assumed, or hidden, signal or noiseless data.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

x[ ]n

n

A

1 2 3 40 5 6 7 N-1....

w n[ ] ~ (0, )N s
2

Additive WGN

In the MLE method, the observed data x[n] ≡ x[n, ζ] is
considered to be a random variable consisting of a known
signal model, denoted s[n; θ], where θ is a set of unknown
model parameters, plus a noise term, w[n, ζ], with a given pdf.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

x[ ]n

n

A

1 2 3 40 5 6 7 N-1....

e n[ ] = modelling
error

In contrast to the MLE method, the least squares method
considers x[n] to be the sum of a known signal model, s[n; θ],
plus an error term e[n].

This error term really consists of two components: the
modelling error, and an observation error.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the signal is generated by some model
which, in turn, depends on some unknown parameter θ.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the signal is generated by some model
which, in turn, depends on some unknown parameter θ.

Now, one approach to finding the estimator is to minimise the
sum of the absolute errors:

θ̂L1 = argθ min J1(θ) where J1(θ) =
N−1∑

n=0

|x[n]− s[n, θ]|

However, in practice, while this is a good optimisation
problem to solve, this is a difficult calculation in many cases.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the signal is generated by some model
which, in turn, depends on some unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to data
x[n], and this closeness is measured by the LS error criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the signal is generated by some model
which, in turn, depends on some unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to data
x[n], and this closeness is measured by the LS error criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2

The LSE is given by:

θ̂LSE = argθ min J(θ)
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DC Level

Example (Sample mean revisited). It is assumed that an observed
signal, x[n], is a perturbed version of an unknown signal, s[n],
which is modelled as s[n] = A, for n ∈ N = {0, . . . , N − 1}.
Calculate the LSE of the unknown signal A.
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DC Level

Example (Sample mean revisited). It is assumed that an observed
signal, x[n], is a perturbed version of an unknown signal, s[n],
which is modelled as s[n] = A, for n ∈ N = {0, . . . , N − 1}.
Calculate the LSE of the unknown signal A.

SOLUTION. According to the LS approach, then:

ÂLSE = argA min J(A) where J(A) =
N−1∑

n=0

(x[n]−A)2

Differentiating w. r. t. A and setting the result to zero produces

ÂLSE =
1

N

N−1∑

n=0

x[n] �

which is the sample mean estimator.
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DC Level

Example (Sample mean revisited). It is assumed that an observed
signal, x[n], is a perturbed version of an unknown signal, s[n],
which is modelled as s[n] = A, for n ∈ N = {0, . . . , N − 1}.
Calculate the LSE of the unknown signal A.

SOLUTION. According to the LS approach, then:

ÂLSE = argA min J(A) where J(A) =
N−1∑

n=0

(x[n]−A)2

Differentiating w. r. t. A and setting the result to zero produces

ÂLSE =
1

N

N−1∑

n=0

x[n] �

Differentiating for a second time shows this indeed minimises
the squared error.
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Nonlinear Least Squares

Example (Sinusoidal Frequency Estimation). Again, it is assumed that
an observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as

s[n] = cos 2πf0n ⋊⋉

in which the frequency f0 is to be estimated.
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Nonlinear Least Squares

Example (Sinusoidal Frequency Estimation). Again, it is assumed that
an observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as

s[n] = cos 2πf0n

in which the frequency f0 is to be estimated.

The LSE can be found by minimising:

J(f0) =

N−1∑

n=0

(x[n]− cos 2πf0n)
2

⋊⋉
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Nonlinear Least Squares

Example (Sinusoidal Frequency Estimation). Again, it is assumed that
an observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as

s[n] = cos 2πf0n

in which the frequency f0 is to be estimated.

The LSE can be found by minimising:

J(f0) =

N−1∑

n=0

(x[n]− cos 2πf0n)
2

The LS error function is highly nonlinear in the parameter f0.

The minimisation cannot be done in closed form. ⋊⋉
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Nonlinear Least Squares

Example (Sinusoidal Frequency Estimation). Again, it is assumed that
an observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as

s[n] = cos 2πf0n

in which the frequency f0 is to be estimated.

The LSE can be found by minimising:

J(f0) =

N−1∑

n=0

(x[n]− cos 2πf0n)
2

The LS error function is highly nonlinear in the parameter f0.

The minimisation cannot be done in closed form.

A signal model that is linear in the unknown parameter is said
to generate a linear least squares problem. ⋊⋉
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Nonlinear Least Squares

Example (Sinusoidal Frequency Estimation). Again, it is assumed that
an observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as

s[n] = cos 2πf0n

in which the frequency f0 is to be estimated.

The LSE can be found by minimising:

J(f0) =

N−1∑

n=0

(x[n]− cos 2πf0n)
2

The LS error function is highly nonlinear in the parameter f0.

The minimisation cannot be done in closed form.

Nonlinear least squares problems are solved via grid
searches or iterative minimisation methods. ⋊⋉
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Nonlinear Least Squares

– End-of-Topic 42: Introduction to Least
Squares Estimation –

Any Questions?
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Linear Least Squares

Assume that an observed signal, {x[n]}N−1
0 , is a perturbed

version of an unknown signal, {s[n]}N−1
0 , where each of these

processes can be written by the random vectors:

s =
[

s[0] · · · s[N − 1]
]T

and x =
[

x[0] · · · x[N − 1]
]T
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Linear Least Squares

Assume that an observed signal, {x[n]}N−1
0 , is a perturbed

version of an unknown signal, {s[n]}N−1
0 , where each of these

processes can be written by the random vectors:

s =
[

s[0] · · · s[N − 1]
]T

and x =
[

x[0] · · · x[N − 1]
]T

It is assumed the signal, s[n], can be written as a linear

combination of P known functions, {hk[n]}Pk=1, with weighting

parameters {θk}Pk=1; thus:

s[n] =
P∑

k=1

θk hk[n]
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Linear Least Squares

It is assumed the signal, s[n], can be written as a linear

combination of P known functions, {hk[n]}Pk=1, with weighting

parameters {θk}Pk=1; thus:

s[n] =
P∑

k=1

θk hk[n]

Writing this in matrix-vector notation, it follows that:









s[0]

s[1]
...

s[N − 1]









︸ ︷︷ ︸

s

=









h1[0] h2[0] · · · hP [0]

h1[1] h2[1] · · · hP [1]
...

...
. . .

...

h1[N − 1] h2[N − 1] · · · hP [N − 1]









︸ ︷︷ ︸

H









θ1

θ2
...

θP









︸ ︷︷ ︸

θ
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Linear Least Squares

Writing this in matrix-vector notation, it follows that:









s[0]

s[1]
...

s[N − 1]









︸ ︷︷ ︸

s

=









h1[0] h2[0] · · · hP [0]

h1[1] h2[1] · · · hP [1]
...

...
. . .

...

h1[N − 1] h2[N − 1] · · · hP [N − 1]









︸ ︷︷ ︸

H









θ1

θ2
...

θP









︸ ︷︷ ︸

θ

Thus, s is linear in the unknown parameter θ = [θ1, · · · , θP ] :

s = H θ
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Linear Least Squares

Writing this in matrix-vector notation, it follows that:









s[0]

s[1]
...

s[N − 1]









︸ ︷︷ ︸

s

=









h1[0] h2[0] · · · hP [0]

h1[1] h2[1] · · · hP [1]
...

...
. . .

...

h1[N − 1] h2[N − 1] · · · hP [N − 1]









︸ ︷︷ ︸

H









θ1

θ2
...

θP









︸ ︷︷ ︸

θ

Thus, s is linear in the unknown parameter θ = [θ1, · · · , θP ] :

s = H θ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)
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Linear Least Squares

Thus, s is linear in the unknown parameter θ = [θ1, · · · , θP ] :

s = H θ

The LSE is found by minimising:

J(θ) =

N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)
T
(x−Hθ)

This can be written as:

J(θ) = xTx− 2xTHθ + θTHTHθ
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Linear Least Squares

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)
T
(x−Hθ)

This can be written as:

J(θ) = xTx− 2xTHθ + θTHTHθ

and using the two identities that:

∂bT a

∂a
= b and

∂aTBa

∂a
=
(

B+BT
)

a
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Linear Least Squares

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)
T
(x−Hθ)

This can be written as:

J(θ) = xTx− 2xTHθ + θTHTHθ

and using the two identities that:

∂bT a

∂a
= b and

∂aTBa

∂a
=
(

B+BT
)

a

then observing in this case B = HTH = BT it follows that

∂J(θ)

∂θ
= −2HTx+ 2HTHθ
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Linear Least Squares

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx
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Linear Least Squares

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx

The equations HTHθ = HTx, to be solved for θ̂, are termed
the normal equation.
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Linear Least Squares

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx

The equations HTHθ = HTx are the normal equation.

Requiring H to be full rank guarantees invertibility of HTH.
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Linear Least Squares

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx

The equations HTHθ = HTx are the normal equation.

The minimum LS error is found from:

Jmin = J(θ̂) =
(

x−Hθ̂
)T (

x−Hθ̂
)

=

(

x−H
(

HTH
)−1

HTx

)T (

x−H
(

HTH
)−1

HTx

)

Jmin = xT

(

IN −H
(

HTH
)−1

HT

)(

IN −H
(

HTH
)−1

HT

)

x
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Linear Least Squares

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx

The equations HTHθ = HTx are the normal equation.

The minimum LS error is found from:

Jmin = xT

(

IN −H
(

HTH
)−1

HT

)(

IN −H
(

HTH
)−1

HT

)

x

A = IN −H
(

HTH
)−1

HT is idempotent so A2 = A. Hence:

Jmin = xT

(

IN −H
(

HTH
)−1

HT

)

x
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Linear Least Squares

Example (Fourier Series Estimation). An application of the general
linear model is in spectral estimation. Suppose that a signal, s[n],
is modelled as the sum of sinusoids:

s[n] =
P∑

p=1

ap sin (p ω0 n) + bp cos (pω0n) ⋊⋉

where {ap, bp}Pp=1 are the unknown amplitudes to be estimated,

and the fundamental, ω0, and model order P , are assumed to be
known.

The signal, s[n], is observed in noise. Write down the least
squares solution.
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Linear Least Squares

Example (Fourier Series Estimation). Suppose that :

s[n] =
P∑

p=1

ap sin (p ω0 n) + bp cos (pω0n)

where {ap, bp}Pp=1 are the unknown amplitudes to be estimated.

SOLUTION. Writing the relationship between the observation,
signal model, and modelling error:

x[n] = s[n] + e[n] =
P∑

p=1

(ap sinωp n+ bp cosωpn) + e[n]

�
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Linear Least Squares

Example (Fourier Series Estimation). Suppose that :

s[n] =
P∑

p=1

ap sin (p ω0 n) + bp cos (pω0n)

where {ap, bp}Pp=1 are the unknown amplitudes to be estimated.

SOLUTION. This model can be written in a linear in the
parameters (LITP) form by defining, where ℓ , N − 1:

H =











0 1 0 1 · · · 0 1

sinω0 cosω0 sin 2ω0 cos 2ω0 · · · sinPω0 cosPω0

sin 2ω0 cos 2ω0 sin 4ω0 cos 4ω0 · · · sin 2Pω0 cos 2Pω0

...
...

...
...

. . .
...

...

sin ℓω0 cos ℓω0 sin 2ℓω0 cos 2ℓω0 · · · sinPℓω0 cosPℓω0











�
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Linear Least Squares

Example (Fourier Series Estimation). Suppose that :

s[n] =
P∑

p=1

ap sin (p ω0 n) + bp cos (pω0n)

where {ap, bp}Pp=1 are the unknown amplitudes to be estimated.

SOLUTION. Hence, with the parameter vector defined as:

θ =
[

a1 b1 a2 b2 · · · aP bP

]T

the signal model is s = Hθ, and the linear LSE estimator is:

θ̂ =
(

HTH
)−1

HTx �

where θ̂ is of dimension 2P , and therefore H is N × 2P .
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Linear Least Squares

Example (Fourier Series Estimation). Suppose that :

s[n] =
P∑

p=1

ap sin (p ω0 n) + bp cos (pω0n)

where {ap, bp}Pp=1 are the unknown amplitudes to be estimated.

SOLUTION. Hence, with the parameter vector defined as:

θ =
[

a1 b1 a2 b2 · · · aP bP

]T

the signal model is s = Hθ, and the linear LSE estimator is:

θ̂ =
(

HTH
)−1

HTx �

Using the orthognality of the Fourier basis, this can simplify .
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In this figure, the true underlying signal model is shown
(the sawtooth), the observed signal (with sensor noise), and

the estimated Fourier signal model.
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Linear Least Squares

– End-of-Topic 43: Introduction to Linear Least
Squares Estimation –

Any Questions?
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Bayesian Parameter Estimation

Using the method of maximum likelihood (or least squares) to
infer the values of a parameter has significant limitations:

1. First, the likelihood function does not use information
other than the data itself to infer the values of the
parameters.

No prior knowledge, stated before the data is observed, is
utilised regarding the possible or probable values that the
parameters might take.

In many applications, a physical understanding of the
problem at hand, or of the circumstances surrounding how
an experiment is conducted, can suggest that some values
of the parameters are impossible, and that some are more
likely to occur than others.
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Bayesian Parameter Estimation

Using the method of maximum likelihood (or least squares) to
infer the values of a parameter has significant limitations:

1. The likelihood function on its own does not limit the number
of parameters in a model used to fit the data. The number of
parameters is chosen in advance, by the Signal Processing
Engineer, but the likelihood function does not indicate
whether the number of parameters chosen is more than
necessary to model the data, or less than needed.
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Bayesian Parameter Estimation

– End-of-Topic 44: Introduction to Advanced
Bayesian Parameter Estimation –

Any Questions?
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation: involves finding the solution to

θ̂ = argmax
θ∈Θ

h(θ)

where h(·) is a scalar function of a multi-dimensional vector
of parameters, θ.

Typically, h(·) might represent some cost function, and it
is implicitly assumed that the optimisation cannot be
calculated explicitly.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.

For example, the Gaussian-error function:

Φ(t) =

∫ t

−∞

1√
2π

e−
θ2

2 dθ

Again, the integral may be multi-dimensional, and in general
θ is a vector.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation and Integration Some problems involve both
integration and optimisation: a fundamental problem is the
maximisation of a marginal distribution:

θ̂ = argmax
θ∈Θ

∫

Ω

f(θ, ω) dω
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Deterministic Numerical Methods
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Function h(x) = (cos 50x + sin 20x)2

Plot of the function h(x) = (cos 50x+ sin 20x)
2
, 0 ≤ x ≤ 1.

There are various deterministic solutions to the optimisation and
integration problems.
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Deterministic Numerical Methods

Optimisation: 1. Golden-section search and Brent’s Method in one
dimension;

2. Nelder and Mead Downhill Simplex method in
multi-dimensions;

3. Gradient and Variable-Metric methods in
multi-dimensions, typically an extension of
Newton-Raphson methods.
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Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.
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Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced
abscissas at which the function is evaluated.

These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.
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Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced
abscissas at which the function is evaluated.

These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls
downhill in a straightforward fashion that makes almost no
special assumptions about your function.

This can be extremely slow, but it can be robust.
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Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls
downhill in a straightforward fashion that makes almost no
special assumptions about your function.

This can be extremely slow, but it can be robust.

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent
variables θ, a sequence θn is produced such that:
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Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls
downhill in a straightforward fashion that makes almost no
special assumptions about your function.

This can be extremely slow, but it can be robust.

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent
variables θ, a sequence θn is produced such that:

θn+1 = θn −
(
∇∇Th (θn)

)−1 ∇h (θn)

Numerous variants of Newton-Raphson-type techniques exist,
and include the steepest descent method, or the
Levenberg-Marquardt method.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

Markov chain Carlo

- p. 94/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Deterministic Integration

Assuming θ is a scalar and b > a, the integral

I =

∫ b

a

f(θ) dθ,

can be solved with the trapezoidal rule:

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

Markov chain Carlo

- p. 94/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Deterministic Integration

Assuming θ is a scalar and b > a, the integral

I =

∫ b

a

f(θ) dθ,

can be solved with the trapezoidal rule:

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].

Another formula is Simpson’s rule:

Î =
δ

3

{

f(a) + 4
N∑

k=1

f(θ2k−1) + 2
N∑

k=1

h(θ2k) + f(b)

}

in the case of equally spaced samples with δ = θk+1 − θk.
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Monte Carlo Numerical Methods

Monte Carlo methods are stochastic techniques, in which random
numbers are generated and use to examine some problem.

Estimating the value of π through Monte Carlo integration.
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.
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Monte Carlo Integration

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1
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Monte Carlo Integration

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1

This may be written as an expectation:

I = Eπ

[
f(θ)

π(θ)

]
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Monte Carlo Integration

This expectation can be estimated using the idea of the sample
expectation, and leads to the idea behind Monte Carlo
integration:

1. Sample N random variates from a density function π(θ),

θ(k) ∼ π(θ), k ∈ N = {0, . . . , N − 1}

2. Calculate the sample average of the expectation using

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))
≈ Eπ

[
f(θ)

π(θ)

]
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Stochastic Optimisation

There are two distinct approaches to the Monte Carlo
optimisation of the objective function h(θ):

θ̂ = argmax
θ∈Θ

h(θ)

The first method is broadly known as an exploratory approach,
while the second approach is based on a probabilistic
approximation of the objective function.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.

Stochastic Approximation The Monte Carlo EM algorithm
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Generating Random Variables

This section discusses a variety of techniques for generating
random variables from a different distributions.
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

Markov chain Carlo

- p. 99/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m

This is known as the linear congruential generator.

However, suitable values of a, b and m can be chosen such that
the random variates pass all statistical tests of randomness.
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Transformation Methods

It is possible to sample from a number of extremely important
probability distributions by applying various probability
transformation methods.

Theorem (Probability transformation rule). PROOF. The proof is given
in the handout on scalar random variables.
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Inverse Transform Method

A simple derivation of the inverse transform method

X(ζ) and Y (ζ) are RVs related by the function Y (ζ) = Π(X(ζ)).

Π(ζ) is monotonically increasing so that there is only one

solution to the equation y = Π(x), x = Π−1(y).
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Inverse Transform Method

A simple derivation of the inverse transform method

fX (x) =
dΠ(x)

dx
fY (y)

Now, suppose Y (ζ) ∼ U[0, 1] is a uniform random variable. If

Π(x) is the cdf corresponding to a desired pdf π (x), then

fX (x) = π(x), where x = Π−1(y)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).

Therefore, if U(ζ) ∼ U[0, 1], then the RV from the

transformation X(ζ) = − logU(ζ) has the exponential
distribution (since U(ζ) and 1− U(ζ) are both uniform). ⋊⋉
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Acceptance-Rejection Sampling

For most distributions, it is often difficult or even impossible to
directly simulate using either the inverse transform or probability
transformations.
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Acceptance-Rejection Sampling

On average, you would expect to have too many variates that
take on the value X by a factor of

u(X) =
Pp

Pπ
=

p (X)

π (X)
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ Pa = π(X)
Mp(x) ;

3. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

A problem with many sampling methods, which can make the
density π (x) difficult to simulate, is that the function may
require substantial computing time at each evaluation.

It is possible to reduce the algorithmic complexity by looking for
another computationally simple function, q (x) which bounds
π (x) from below.
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Envelope and Squeeze Methods

If X satisfies q (X) ≤ π (X), then it should be accepted when

U ≤ q(X)
Mp(x) , since this also satisfies U ≤ π(X)

Mp(x) .
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.

By construction of a lower envelope on π (x), the number of
function evaluations is potentially decreased by a factor of

Pπ̄ =
1

M

∫

q (x) dx

which is the probability that π (x) is not evaluated.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.

Approximate by empirical average:

Î =
1

N

N−1∑

k=0

IΘ

(

θ(k)
)

, where θ(k) ∼ f(θ)

where IA (a) is the indicator function, and is equal to one if
a ∈ A and zero otherwise.
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,

leads to an estimator based on the sample expectation;

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

Markov chain Carlo

- p. 105/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Other Methods

Include:

representing pdfs as mixture of distributions;

algorithms for log-concave densities, such as the adaptive
rejection sampling scheme;

generalisations of accept-reject;

method of composition (similar to Gibbs sampling);

ad-hoc methods, typically based on probability
transformations and order statistics (for example, generating
Beta distributions with integer parameters).
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Markov chain Monte Carlo Methods

A Markov chain is the first generalisation of an independent
process, where each state of a Markov chain depends on the
previous state only.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

Markov chain Carlo

- p. 107/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an extremely flexible
method for producing a random sequence of samples from a
given density.

1. Generate a random sample from a proposal distribution:

Y ∼ g
(
y | X(k)

)
.

2. Set the new random variate to be:

X(k+1) =

{

Y with probability ρ(X(k), Y )

X(k) with probability 1− ρ(X(k), Y )

where the acceptance ratio function ρ(x, y) is given by:

ρ(x, y) = min

{

π (y)

g (y | x)

(
π (x)

g (x | y)

)−1

, 1

}

≡ min

{
π (y)

π (x)

g (x | y)
g (y | x) , 1

}
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The Metropolis-Hastings algorithm
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.

Using the probability chain rule,

π
(
{θm}Mm=1

)
= π

(
θℓ | {θm}Mm=1,m6=ℓ

)
π
(
{θm}Mm=1,m6=ℓ

)

The Gibbs sampler works by drawing random variates from the

marginal densities π
(

θℓ | {θm}Mm=1,m6=ℓ

)

in a cyclic iterative

pattern.
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Gibbs Sampling

First iteration:

θ
(1)
1 ∼ π

(

θ1 | θ(0)2 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)

θ
(1)
2 ∼ π

(

θ2 | θ(1)1 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)

θ
(1)
3 ∼ π

(

θ3 | θ(1)1 , θ
(1)
2 , θ

(0)
4 , . . . , θ

(0)
M

)

...
...

θ
(1)
M ∼ π

(

θM | θ(1)1 , θ
(1)
2 , θ

(1)
4 , . . . , θ

(1)
M−1

)
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Gibbs Sampling

Second iteration:

θ
(2)
1 ∼ π

(

θ1 | θ(1)2 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)

θ
(2)
2 ∼ π

(

θ2 | θ(2)1 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)

θ
(2)
3 ∼ π

(

θ3 | θ(2)1 , θ
(2)
2 , θ

(1)
4 , . . . , θ

(1)
M

)

...
...

θ
(2)
M ∼ π

(

θM | θ(2)1 , θ
(2)
2 , θ

(2)
4 , . . . , θ

(2)
M−1

)



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

Markov chain Carlo

- p. 108/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Gibbs Sampling

k + 1-th iteration:

θ
(k+1)
1 ∼ π

(

θ1 | θ(k)2 , θ
(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)

θ
(k+1)
2 ∼ π

(

θ2 | θ(k+1)
1 , θ

(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)

θ
(k+1)
3 ∼ π

(

θ3 | θ(k+1)
1 , θ

(k+1)
2 , θ

(k)
4 , . . . , θ

(k)
M

)

...
...

θ
(k+1)
M ∼ π

(

θM | θ(k)1 , θ
(k)
2 , θ

(k)
4 , . . . , θ

(k)
M−1

)

At the end of the j-th iteration, the samples θ
(j)
0 , θ

(j)
1 , . . . , θ

(j)
M

are considered to be drawn from the joint-density
π (θ0, θ1, . . . , θM ).
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.

Also known as a time series in the statistics literature.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.

Also known as a time series in the statistics literature.
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Interpretation of Sequences

A graphical representation of a random process.
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Interpretation of Sequences

Example. Consider a continuous-time random process, x(t, ζ),
defined by a finite sized ensemble consisting of:

x(t, 1) = −3u(t) x(t, 2) = cos (5π t) u(t)

x(t, 3) = 10 t u(t) x(t, 4) = 2 sin (6π t+ 0.2) ⋊⋉

1. Draw the ensemble.

2. For t = 0.2, determine the sample space.
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Interpretation of Sequences

Example. Consider a continuous-time random process, x(t, ζ),
defined by a finite sized ensemble consisting of:

x(t, 1) = −3u(t) x(t, 2) = cos (5π t) u(t)

x(t, 3) = 10 t u(t) x(t, 4) = 2 sin (6π t+ 0.2)

SOLUTION. 1. To plot the ensemble, draw all the realisations.

0
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0
0 t

x t( , )�z2

-1

1

0
0 t

x t( , )�z3
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0
0 t
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2

2/5 1/3

-3

Ensemble of waveforms.
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Interpretation of Sequences

Example. Consider a continuous-time random process, x(t, ζ),
defined by a finite sized ensemble consisting of:

x(t, 1) = −3u(t) x(t, 2) = cos (5π t) u(t)

x(t, 3) = 10 t u(t) x(t, 4) = 2 sin (6π t+ 0.2)

SOLUTION. 1. To plot the ensemble, draw all the realisations.
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2. The sample space is thus {−3,−1, 2,−1.4736}.
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Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.
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Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable

n Fixed Number Random variable

n Variable Sample sequence Stochastic process



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 112/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable

n Fixed Number Random variable

n Variable Sample sequence Stochastic process

Use simplified notation x[n] ≡ x[n, ζ] to denote both a stochastic
process, and a single realisation. Use the terms random process
and stochastic process interchangeably throughout this course.
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Interpretation of Sequences

Building on these intepretations of sequences, this course will:

The statistical properties of random signals, the statistical
dependence of samples at different points in time.
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Interpretation of Sequences

Building on these intepretations of sequences, this course will:

The statistical properties of random signals, the statistical
dependence of samples at different points in time.

Interpreting stochastic signals in the frequency domain, the
notion of a random spectrum, and the concept of the power
spectral density.
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Interpretation of Sequences

Building on these intepretations of sequences, this course will:

What happens to a stochastic process and signals as it passes
through systems?
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Interpretation of Sequences

Building on these intepretations of sequences, this course will:

What happens to a stochastic process and signals as it passes
through systems?

The notion of signal modelling for signal analysis and
prediction.

Pww(e )
jw

s
2

w

-p +p w

w

P kww( )

-p +pW
h

it
e 

h
ar

m
o

n
ic

p
ro

ce
ss

W
h

it
e

n
o

is
e

Input
excitation

w( ) ( , )n w n= z

0

0

H(e )
jw

-p +p w0

LTI System

H z D z A z A z( ) or ( )/ ( ) or 1/ ( )

Desired
signal

x( ) ( , )n x n= z

-p +p w0

Pxx(e )
jw

-p +p w0

P kxx( )



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 112/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Interpretation of Sequences

– End-of-Topic 45: Introduction to the
definition of stochastic processes –

Any Questions?
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Description using pdfs

For fixed n = n0, x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables
{x[nj ] , j ∈ {1, . . . k}} is characterised by the cdf and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk
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Description using pdfs

For fixed n = n0, x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables
{x[nj ] , j ∈ {1, . . . k}} is characterised by the cdf and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk

In exactly the same way as with random variables and random
vectors, it is:

difficult to estimate these probability functions without
considerable additional information or assumptions;

possible to frequently characterise stochastic processes
usefully with much less information.
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Second-order Statistical Description

Mean and Variance Sequence At time n, the ensemble mean and
variance are given by:

µx[n] = E [x[n]]

σ2
x[n] = E

[
|x[n]− µx[n] |2

]
= E

[
|x[n] |2

]
− |µx[n] |2

Both µx[n] and σ2
x[n] are deterministic sequences.
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Second-order Statistical Description

Mean and Variance Sequence At time n, the ensemble mean and
variance are given by:

µx[n] = E [x[n]]

σ2
x[n] = E

[
|x[n]− µx[n] |2

]
= E

[
|x[n] |2

]
− |µx[n] |2

Both µx[n] and σ2
x[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic rxx[n1, n2]
provides a measure of the dependence between values of the
process at two different times; it can provide information
about the time variation of the process:

rxx[n1, n2] = E [x[n1] x
∗[n2]]

Note this definition is not consistent across all text book,
or indeed University courses!
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Second-order Statistical Description

Autocorrelation sequence provides a measure of the dependence
between values of the process at two different times:

rxx[n1, n2] = E [x[n1] x
∗[n2]]

n

n

n

n

Abstract
sample space, S

x n[ ], z1

x n[ ], z2

x n[ ], z3

x n[ ], zk

r.v.

[ ]x n1, z

Ensemble of
realisations

r.v.

[ ]x n2, z

Statistics across
time samples
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Second-order Statistical Description

Autocovariance sequence The autocovariance sequence provides a
measure of how similar the deviation from the mean of a
process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]
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Second-order Statistical Description

Autocovariance sequence The autocovariance sequence provides a
measure of how similar the deviation from the mean of a
process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]

To show how these deterministic sequences of a stochastic
process can be calculated, several examples are considered in
detail below.
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process
x[n] is defined by:

x[n] =
M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are
pairwise independent random variables uniformly distributed in
the interval [0, 2π].

1. Determine the mean of x[n].

2. Show the autocorrelation sequence is given by

rxx[ℓ] =
1

2

M∑

k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞ ⋊⋉

where ℓ , n1 − n2, and rxx[ℓ] , rxx[n1, n1 + ℓ] for any n1.
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. The
expected value of the process is straightforwardly given by:

E [x[n]] = E

[
M∑

k=1

Ak cos(ωkn+ φk)

]

=

M∑

k=1

Ak E [cos(ωkn+ φk)]

Since a co-sinusoid is zero-mean, then:

E [cos(ωkn+ φk)] =

∫

cos(ωkn+ φk) fΦk
(φk) dφk

=

∫ 2π

0

cos(ωkn+ φk)×
1

2π
× dφk = 0

Hence, it follows:

E [x[n]] = 0, ∀n �
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. The
autocorrelation rxx[n1, n2] = E [x[n1] x

∗[n2]] follows similarly:

rxx[n1, n2] = E





M∑

k=1

Ak cos(ωkn1 + φk)
M∑

j=1

A∗
j cos(ωjn2 + φj)





=
M∑

k=1

M∑

j=1

Ak A
∗
j E [cos(ωkn1 + φk) cos(ωjn2 + φj)]
︸ ︷︷ ︸

r(φk,φj)

�
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. The
autocorrelation rxx[n1, n2] = E [x[n1] x

∗[n2]] follows similarly:

rxx[n1, n2] = E





M∑

k=1

Ak cos(ωkn1 + φk)
M∑

j=1

A∗
j cos(ωjn2 + φj)





=
M∑

k=1

M∑

j=1

Ak A
∗
j E [cos(ωkn1 + φk) cos(ωjn2 + φj)]
︸ ︷︷ ︸

r(φk,φj)

After some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2 cosωk(n1 − n2) k = j

0 otherwise

�
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. After
some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2 cosωk(n1 − n2) k = j

0 otherwise

Substituting this expression into

rxx[n1, n2] =

M∑

k=1

M∑

j=1

Ak A
∗
j E [cos(ωkn1 + φk) cos(ωjn2 + φj)]

�
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. After
some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2 cosωk(n1 − n2) k = j

0 otherwise

Substituting this expression into

rxx[n1, n2] =

M∑

k=1

M∑

j=1

Ak A
∗
j E [cos(ωkn1 + φk) cos(ωjn2 + φj)]

thus leads to the desired result, where ℓ = n1 − n2:

rxx[ℓ] =
1

2

M∑

k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞ �
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Example of Calculating Autocorrelations

Example (Functions of Random Process). A random variable y[n] is
defined to be:

y[n] = x[n] + x[n+m]

where m is some integer, and x[n] is a stochastic process whose
autocorrelation sequence (ACS) is given by:

rxx[n1, n2] = e−(n1−n2)
2

⋊⋉

Derive an expression for the ACS of the stochastic process y[n],
denoted ryy[n1, n2].
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Example of Calculating Autocorrelations

Example (Functions of Random Process). A random variable y[n] is

y[n] = x[n] + x[n+m]

where x[n] is a stochastic process whose ACS is given by:

rxx[n1, n2] = e−(n1−n2)
2

Derive an expression for ryy[n1, n2].

SOLUTION. In this example, it is simplest to form the product:

y[n1] y
∗[n2] = [x[n1] + x[n1 +m]] [x∗[n2] + x∗[n2 +m]]

= x[n1]x
∗[n2] + x[n1]x

∗[n2 +m]

+ x[n1 +m]x∗[n2] + x[n1 +m]x∗[n2]

�
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Example of Calculating Autocorrelations

Example (Functions of Random Process). A random variable y[n] is

y[n] = x[n] + x[n+m]

where x[n] is a stochastic process whose ACS is given by:

rxx[n1, n2] = e−(n1−n2)
2

Derive an expression for ryy[n1, n2].

SOLUTION. Then, taking expectations, it follows:

ryy[n1, n2] = rxx[n1, n2] + rxx[n1, n2 +m]

+ rxx[n1 +m, n2] + rxx[n1 +m, n2 +m]

�
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Example of Calculating Autocorrelations

Example (Functions of Random Process). A random variable y[n] is

y[n] = x[n] + x[n+m]

where x[n] is a stochastic process whose ACS is given by:

rxx[n1, n2] = e−(n1−n2)
2

Derive an expression for ryy[n1, n2].

SOLUTION. Then, taking expectations, it follows:

ryy[n1, n2] = rxx[n1, n2] + rxx[n1, n2 +m]

+ rxx[n1 +m, n2] + rxx[n1 +m, n2 +m] �

Using the result rxx[n1, n2] = e−(n1−n2)
2

:
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Example of Calculating Autocorrelations

Example (Functions of Random Process). A random variable y[n] is

y[n] = x[n] + x[n+m]

where x[n] is a stochastic process whose ACS is given by:

rxx[n1, n2] = e−(n1−n2)
2

Derive an expression for ryy[n1, n2].

SOLUTION. Using the result rxx[n1, n2] = e−(n1−n2)
2

:

ryy[r1, r2] = 2 e−(n1−n2)
2

+ e−(n1−n2+m)2 + e−(n1−n2−m)2 �
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Example of Calculating Autocorrelations

– End-of-Topic 46: Statistical Description of a
Stochastic Process –

Any Questions?
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Types of Stochastic Processes

Predictable Processes The unpredictability of a random process is,
in general, the combined result of the following two
characteristics:

1. The selection of a single realisation is based on the
outcome of a random experiment;

2. No functional description is available for all realisations of
the ensemble.
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Types of Stochastic Processes

Predictable Processes The unpredictability of a random process is,
in general, the combined result of the following two
characteristics:

1. The selection of a single realisation is based on the
outcome of a random experiment;

2. No functional description is available for all realisations of
the ensemble.

In some special cases, however, a functional relationship is
available. This means that after the occurrence of all samples
of a particular realisation up to a particular point, n, all
future values can be predicted exactly from the past ones.
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Types of Stochastic Processes

Predictable Processes The unpredictability of a random process is,
in general, the combined result of the following two
characteristics:

1. The selection of a single realisation is based on the
outcome of a random experiment;

2. No functional description is available for all realisations of
the ensemble.

In some special cases, however, a functional relationship is
available. This means that after the occurrence of all samples
of a particular realisation up to a particular point, n, all
future values can be predicted exactly from the past ones.

If this is the case for a random process, then it is called
predictable, otherwise it is said to be unpredictable or a
regular process.
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Types of Stochastic Processes

Predictable Processes As an example of a predictable process,
consider the signal:

x[n, ζ] = A sin (ω n+ φ)

where A is a known amplitude, ω is a known normalised
angular frequency, and φ is a random phase, where
φ ∼ fΦ (φ) is its pdf.
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Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of
independent random variables.
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Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of
independent random variables.

An i. i. d. process is one where all the random variables
{x[nk, ζ] , nk ∈ Z} have the same pdf, and x[n] will be called
an i. i. d. random process.
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Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of
independent random variables.

An i. i. d. process is one where all the random variables
{x[nk, ζ] , nk ∈ Z} have the same pdf, and x[n] will be called
an i. i. d. random process.

An uncorrelated processes is a sequence of uncorrelated random
variables:

γxx[n1, n2] = σ2
x[n1] δ[n1 − n2]
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Types of Stochastic Processes

An orthogonal process is a sequence of orthogonal random
variables, and is given by:

rxx[n1, n2] = E
[
|x[n1] |2

]
δ[n1 − n2]

If a process is zero-mean, then it is both orthogonal and
uncorrelated since γxx[n1, n2] = rxx[n1, n2].
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Types of Stochastic Processes

An orthogonal process is a sequence of orthogonal random
variables, and is given by:

rxx[n1, n2] = E
[
|x[n1] |2

]
δ[n1 − n2]

If a process is zero-mean, then it is both orthogonal and
uncorrelated since γxx[n1, n2] = rxx[n1, n2].

A stationary process is a random process where its statistical
properties do not vary with time. Processes whose statistical
properties do change with time are referred to as
nonstationary.
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Types of Stochastic Processes

– End-of-Topic 47: Types of Random Signals –

Any Questions?
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Stationary Processes

A random process x[n] has been called stationary if its statistics
determined for x[n] are equal to those for x[n+ k], for every k.
There are various formal definitions of stationarity, along with
quasi-stationary processes, which are discussed below.

Order-N and strict-sense stationarity

Wide-sense stationarity

Autocorrelation properties for WSS processes

Wide-sense periodicity and cyclo-stationarity

Local- or quasi-stationary processes

After this, some examples of various stationary processes will be
given.
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Order-N and strict-sense stationarity
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x n[ ]4, z

[ + ]= kx n2 , z2nd-order stationary if

f x   x n   n f x   x n k  n k( | , ) ( | + , + )1 2 1 2 3 4 1 2, ,=

[ ]x n1, z

[ ] [ + ]x n x n3 1, ,z z= k

k
k

Definition (Stationary of order- N ). A stochastic process x[n] is called
stationary of order-N if for any value of k then:

fX (x1, . . . , xN | n1, . . . , nN ) = fX (x1, . . . , xN | n1 + k, . . . , nN + k)
♦
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Order-N and strict-sense stationarity

n
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Definition (Strict-sense stationary). If x[n] is stationary for all orders

N ∈ Z
+, it is said to be strict-sense stationary (SSS).
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Order-N and strict-sense stationarity

n
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[ + ]= kx n2 , z2nd-order stationary if

f x   x n   n f x   x n k  n k( | , ) ( | + , + )1 2 1 2 3 4 1 2, ,=

[ ]x n1, z

[ ] [ + ]x n x n3 1, ,z z= k

k
k

Definition (Strict-sense stationary). If x[n] is stationary for all orders

N ∈ Z
+, it is said to be SSS.

However, SSS is more restrictive than necessary in practical
applications, and is a rarely required property.
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Wide-sense stationarity

A more relaxed form of stationarity, which is sufficient for
practical problems, occurs when a random process is stationary
order-2; such a process is wide-sense stationary (WSS).
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Wide-sense stationarity

Definition (Wide-sense stationarity). A random signal x[n] is called
wide-sense stationary if:

the mean and variance is constant and independent of n:

E [x[n]] = µx

var [x[n]] = σ2
x

the autocorrelation depends only on the time difference
ℓ = n1 − n2, called the lag:

rxx[n1, n2] = r∗xx[n2, n1] = E [x[n1] x
∗[n2]]

= rxx[ℓ] = rxx[n1 − n2] = E [x[n1] x
∗[n1 − ℓ]]

= E [x[n2 + ℓ] x∗[n2]]

♦
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Wide-sense stationarity

The definition of the lag is not consistent across textbooks, or
indeed courses on this MSc!

Elsewhere, the following definition is used:

rxx[n1, n2] , E

[

x[n1] x
∗
[

n1 + ℓ̂
]]

rxx

[

ℓ̂
]

, E

[

x
[

n− ℓ̂
]

x∗[n]
]
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Wide-sense stationarity

The definition of the lag is not consistent across textbooks, or
indeed courses on this MSc!

Elsewhere, the following definition is used:

rxx[n1, n2] , E

[

x[n1] x
∗
[

n1 + ℓ̂
]]

rxx

[

ℓ̂
]

, E

[

x
[

n− ℓ̂
]

x∗[n]
]

Although a minor change in sign, this does have implications
when considering results that are functions of random
processes, such as a signal passing through a linear system, or
frequency-domain analysis.
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Wide-sense stationarity

The definition of the lag is not consistent across textbooks, or
indeed courses on this MSc!

Elsewhere, the following definition is used:

rxx[n1, n2] , E

[

x[n1] x
∗
[

n1 + ℓ̂
]]

rxx

[

ℓ̂
]

, E

[

x
[

n− ℓ̂
]

x∗[n]
]

Although a minor change in sign, this does have implications
when considering results that are functions of random
processes, such as a signal passing through a linear system, or
frequency-domain analysis.

It is simply something to become used to, and to understand
the equations and use the appropriate subsequent results
carefully.
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Wide-sense stationarity

The autocovariance sequence is given by:

γxx[ℓ] = rxx[ℓ]− |µx|2
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Wide-sense stationarity

The autocovariance sequence is given by:

γxx[ℓ] = rxx[ℓ]− |µx|2

Since 2nd-order moments are defined in terms of 2nd-order
pdf, then strict-sense stationary are always WSS, but not
necessarily vice-versa, except if the signal is Gaussian.
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Wide-sense stationarity

The autocovariance sequence is given by:

γxx[ℓ] = rxx[ℓ]− |µx|2

Since 2nd-order moments are defined in terms of 2nd-order
pdf, then strict-sense stationary are always WSS, but not
necessarily vice-versa, except if the signal is Gaussian.

In practice, however, it is very rare to encounter a signal that
is stationary in the wide-sense, but not stationary in the strict
sense.
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Wide-sense stationarity

Example (Sum of sinusoids). A discrete-time random process, g[n],
is defined as

g[n] = A sin (ω0n) +B cos (ω0n) ⋊⋉

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency, and n is the
time-index.

Determine the mean and autocovariance function of g[n].

Determine whether or not g[n] is a WSS process. Explain your
answer.
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine the mean and autocovariance function of g[n].

Determine whether or not g[n] is a WSS process.

SOLUTION. Noting that the expectation operator is linear:

µg[n] = E [g[n]] = E [A sinω0n] + E [B cosω0n]

sinω0n and cosω0n are deterministic & E [A] = E [B] = 0:

µg[n] = E [A] sinω0n+ E [B] cosω0n = 0

�
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. The autocovariance function is given by:

γgg[n1, n2] = E [(g[n1]− µg[n1]) (g[n2]− µg[n2])]

�
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. The autocovariance function is given by:

γgg[n1, n2] = E [(g[n1]− µg[n1]) (g[n2]− µg[n2])] �

Hence, since µg[ni] = 0, it follows:
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. The autocovariance function is given by:

γgg[n1, n2] = E [(A sinω0n1 +B cosω0n1) (A sinω0n2 +B cosω0n2)]

= E
[
A2
]
sinω0n1 sinω0n2 + E [AB] sinω0n1 cosω0n2

+ E [BA] cosω0n1 sinω0n2 + E
[
B2
]
cosω0n1 cosω0n2

�



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 119/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. The autocovariance function is given by:

γgg[n1, n2] = E [(A sinω0n1 +B cosω0n1) (A sinω0n2 +B cosω0n2)]

= E
[
A2
]
sinω0n1 sinω0n2 + E [AB] sinω0n1 cosω0n2

+ E [BA] cosω0n1 sinω0n2 + E
[
B2
]
cosω0n1 cosω0n2�

A&B are independent, E [AB] = E [BA] = E [A]E [B] = 0.
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. Noting var [A] = var [B] = σ2 and

var [A] = E
[
A2
]
− E

2 [A] �

means that E
[
A2
]
= E

[
B2
]
= σ2.
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. Noting var [A] = var [B] = σ2 and

var [A] = E
[
A2
]
− E

2 [A]

means that E
[
A2
]
= E

[
B2
]
= σ2. Thus,

γgg[n1, n2] = σ2 (sinω0n1 sinω0n2 + cosω0n1 cosω0n2)

�
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. Thus,

γgg[n1, n2] = σ2 (sinω0n1 sinω0n2 + cosω0n1 cosω0n2)

Using the supplied trigonometric identity, it follows that:

γgg [n1, n2] = σ2 cosω0 (n1 − n2) �
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Wide-sense stationarity

Example (Sum of sinusoids). A process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having
zero mean and variance σ2, ω0 is a fixed frequency.

Determine whether or not g[n] is a WSS process.

SOLUTION. To be WSS, the mean and variance must be
constant, and the ACS a function of n1 − n2. The ACS is:

rgg[n1, n2] = γgg[n1, n2] + µg[n1]µg[n2]

= σ2 cosω0 (n1 − n2) �

Thus, mean is constant, and the ACS is a function of the time
difference n1 − n2 only. Therefore it is WSS.
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Wide-sense stationarity

– End-of-Topic 48: Overview of types of
stationary processes, and examples of WSS

processes –

Any Questions?
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WSS Properties

The average power of a WSS process x[n] satisfies:

rxx[0] = σ2
x + |µx|2 ≥ 0

rxx[0] ≥ |rxx[ℓ] |, for all ℓ
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WSS Properties

The average power of a WSS process x[n] satisfies:

rxx[0] = σ2
x + |µx|2 ≥ 0

rxx[0] ≥ |rxx[ℓ] |, for all ℓ

The expression for power can be broken down as follows:

Average DC Power: |µx|2

Average AC Power: σ2
x

Total average power: rxx[0] ≥ 0

Total average power = Average DC power+Average AC power



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 120/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

WSS Properties

The average power of a WSS process x[n] satisfies:

rxx[0] = σ2
x + |µx|2 ≥ 0

rxx[0] ≥ |rxx[ℓ] |, for all ℓ

The expression for power can be broken down as follows:

Average DC Power: |µx|2

Average AC Power: σ2
x

Total average power: rxx[0] ≥ 0

Total average power = Average DC power+Average AC power

Moreover, it follows that γxx[0] ≥ |γxx[ℓ] |.
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WSS Properties

The ACS rxx[ℓ] satisfies two more properties:

a conjugate symmetric function of the lag ℓ:

r∗xx[−ℓ] = rxx[ℓ]

a nonnegative-definite or positive semi-definite function,
such that for any sequence α[n]:

M∑

n=1

M∑

m=1

α∗[n] rxx[n−m] α[m] ≥ 0
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WSS Properties

The ACS rxx[ℓ] satisfies two more properties:

a conjugate symmetric function of the lag ℓ:

r∗xx[−ℓ] = rxx[ℓ]

a nonnegative-definite or positive semi-definite function,
such that for any sequence α[n]:

M∑

n=1

M∑

m=1

α∗[n] rxx[n−m] α[m] ≥ 0

Note that, more generally, even a correlation function for a
nonstationary random process is positive semi-definite:

M∑

n=1

M∑

m=1

α∗[n] rxx[n,m]α[m] ≥ 0 for any sequence α[n]
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WSS Properties

Example (Cosinusoid). The function r[ℓ] = cosω0ℓ is claimed to be
a valid ACS. Test the properties of this function to determine if
this is claim is true or not.
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WSS Properties

Example (Cosinusoid). The function r[ℓ] = cosω0ℓ is claimed to be
a valid ACS. Test the properties of this function to determine if
this is claim is true or not.

SOLUTION. The function r[ℓ] = cosω0ℓ satisfies:

the symmetric property, r[ℓ] = r[−ℓ];

the equality r[0] ≥ |r[ℓ] | for all ℓ;

and r[0] ≥ 0 �

.
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WSS Properties

Example (Cosinusoid). The function r[ℓ] = cosω0ℓ is claimed to be
a valid ACS. Test the properties of this function to determine if
this is claim is true or not.

SOLUTION. The final property of positive semi-definiteness is a
little more tedious to verify. Let:

I =
M∑

n=1

M∑

m=1

α∗[n] rxx[n−m] α[m]

=

M∑

n=1

M∑

m=1

α[n]α[m] cosω0 (n−m)

�



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 120/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

WSS Properties

Example (Cosinusoid). The function r[ℓ] = cosω0ℓ is claimed to be
a valid ACS. Test the properties of this function to determine if
this is claim is true or not.

SOLUTION. The final property of positive semi-definiteness is a
little more tedious to verify. Let:

I =
M∑

n=1

M∑

m=1

α∗[n] rxx[n−m] α[m]

=

M∑

n=1

M∑

m=1

α[n]α[m] cosω0 (n−m) �

Using the trigonometric identity:
cosω0 (n−m) = cosω0n cosω0m+ sinω0n sinω0m, then
consider the resulting first term and using the fact r[ℓ] is real:
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WSS Properties

Example (Cosinusoid). The function r[ℓ] = cosω0ℓ is claimed to be
a valid ACS. Test the properties of this function to determine if
this is claim is true or not.

SOLUTION. Using the trigonometric identity:
cosω0 (n−m) = cosω0n cosω0m+ sinω0n sinω0m, then
consider the resulting first term and using the fact r[ℓ] is real:

I1 =
M∑

n=1

M∑

m=1

α[n]α[m] cosω0n cosω0m

=

(
M∑

n=1

α[n] cosω0n

)(
M∑

m=1

α[m] cosω0m

)

=

(
M∑

n=1

α[n] cosω0n

)2

≥ 0

�
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WSS Properties

Example (Cosinusoid). The function r[ℓ] = cosω0ℓ is claimed to be
a valid ACS. Test the properties of this function to determine if
this is claim is true or not.

SOLUTION. Using the trigonometric identity: :

I1 =

M∑

n=1

M∑

m=1

α[n]α[m] cosω0n cosω0m

=

(
M∑

n=1

α[n] cosω0n

)(
M∑

m=1

α[m] cosω0m

)

=

(
M∑

n=1

α[n] cosω0n

)2

≥ 0 �

A similar argument can be made for the second term, ⇒ I ≥ 0.
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WSS Properties

The Fourier transform of an autocorrelation sequence (ACS)
or autocorrelation function (ACF) is an extremely important
concept, called the power spectral density (PSD) which will be
discussed in the next handout.
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WSS Properties

The Fourier transform of an autocorrelation sequence (ACS)
or autocorrelation function (ACF) is an extremely important
concept, called the PSD which will be discussed in the next
handout.

It will be proved that the PSD should always be positive.
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WSS Properties

The Fourier transform of an autocorrelation sequence (ACS)
or autocorrelation function (ACF) is an extremely important
concept, called the PSD which will be discussed in the next
handout.

It will be proved that the PSD should always be positive.

It is easy to prove that an ACS or ACF has a positive Fourier
transform if, and only if, it is positive semi-definite.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 120/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

WSS Properties

The Fourier transform of an autocorrelation sequence (ACS)
or autocorrelation function (ACF) is an extremely important
concept, called the PSD which will be discussed in the next
handout.

It will be proved that the PSD should always be positive.

It is easy to prove that an ACS or ACF has a positive Fourier
transform if, and only if, it is positive semi-definite.

Example. Consider the following functions. For each function,
state whether it is a valid autocorrelation function or
autocorrelation sequence or not. Explain carefully the reasoning
for your answers, but no detailed calculations are required.
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WSS Properties

t0

rxx( )t

t0

rxx( )= sinc(t - t)

p 2p

k0

rxx[ ]k a=
| |k

t0

rxx( )t

T-T t0

rxx( )t

1

t0

rxx( )t

Candidate autocorrelation functions.

Example. SOLUTION. For each function, test the four properties.
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WSS Properties

t0

rxx( )t

t0

rxx( )= sinc(t - t)

p 2p

k0

rxx[ ]k a=
| |k

t0

rxx( )t

T-T t0

rxx( )t

1

t0

rxx( )t

Candidate autocorrelation functions.

Example. SOLUTION. Thus: 1)-2) and 4)-5), No; 3) and 6) Yes!
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WSS Properties

– End-of-Topic 49: Properties of the ACS for
WSS –

Any Questions?
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Wide-sense cyclo-stationarity

A signal whose statistical properties vary cyclically with time is
called a cyclostationary process.
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Wide-sense cyclo-stationarity

A signal whose statistical properties vary cyclically with time is
called a cyclostationary process.

A cyclostationary process can be viewed as several interleaved
stationary processes.
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Wide-sense cyclo-stationarity

A signal whose statistical properties vary cyclically with time is
called a cyclostationary process.

A cyclostationary process can be viewed as several interleaved
stationary processes.

For example, the maximum daily temperature in Edinburgh
can be modeled as a cyclostationary process: the maximum
temperature on July 21 is statistically different from the
temperature on December 18; however, the temperature on
December 18 of different years has (arguably) identical
statistics.
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Wide-sense cyclo-stationarity

A signal whose statistical properties vary cyclically with time is
called a cyclostationary process.

A cyclostationary process can be viewed as several interleaved
stationary processes.

For example, the maximum daily temperature in Edinburgh
can be modeled as a cyclostationary process: the maximum
temperature on July 21 is statistically different from the
temperature on December 18; however, the temperature on
December 18 of different years has (arguably) identical
statistics.

Two classes of nonstationary process which, in part, have
properties resembling stationary signals are:
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Wide-sense cyclo-stationarity

Two classes of nonstationary process which, in part, have
properties resembling stationary signals are:

1. A wide-sense periodic (WSP) process is classified as signals whose
mean is periodic, and whose ACS is periodic in both
dimensions:

µx[n] = µx[n+N ]

rxx[n1, n2] = rxx[n1 +N,n2] = rxx[n1, n2 +N ]

= rxx[n1 +N,n2 +N ]

for all n, n1 and n2. These are quite tight constraints.
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Wide-sense cyclo-stationarity

Two classes of nonstationary process which, in part, have
properties resembling stationary signals are:

1. A WSP process is classified as signals whose mean is periodic,
and whose ACS is periodic in both dimensions:

Nm1

m2

m N1+ n1

N

m N2+

n2

The periodicity of the ACS for a WSP signal.
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Wide-sense cyclo-stationarity

2. A wide-sense cyclo-stationary process has similar but less
restrictive properties than a WSP process, in that the mean is
periodic, but the ACS is now just invariant to a shift by N in
both of its arguments:

µx[n] = µx[n+N ]

rxx[n1, n2] = rxx[n1 +N,n2 +N ]

for all n, n1 and n2. This type of nonstationary process has
more practical applications.
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Wide-sense cyclo-stationarity

2. A wide-sense cyclo-stationary process has similar but less
restrictive properties than a WSP process, in that the mean is
periodic, but the ACS is now just invariant to a shift by N in
both of its arguments:

Nm1

m2

m N1+ n1

N

m N2+

n2

The periodicity of the ACS for a wide-sense
cyclo-stationary process.
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Wide-sense cyclo-stationarity

An example pulse and typical transmit signal.

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ] ⋊⋉

for some period T , where cm is a stationary sequence with ACS

rcc[n1, n2] = E
[
cn1 c

∗
n2

]
= rcc[n1 − n2], and h[n] is a given

deterministic sequence, usually an impulse response.
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Wide-sense cyclo-stationarity

An example pulse and typical transmit signal.

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ] ⋊⋉

Show that x[n] satisfies the properties of a wide-sense
cyclo-stationary process.
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Wide-sense cyclo-stationarity

x n[ ]

n0 T 2T 3T

c1

c2

c4

c3

cm

n0 1 2 3

c1

c2

c4

c3

Zero-pad
samplesT

Linear
Time-Invariant
Communication

Channel

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =
∞∑

m=−∞
cm h[n−mT ]

SOLUTION. x[n] represents the signal for several different
types of linear modulation used in digital communications.

{cm} represents the digital information that is transmitted

over the communication channel, and 1
T represents the rate of

transmission of the information symbols. �
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Wide-sense cyclo-stationarity

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ]

SOLUTION. To see this is wide-sense cyclo-stationary:

µx[n] = E [x[n]] =
∞∑

m=−∞
E [cm] h[n−mT ] = µc

∞∑

m=−∞
h[n−mT ]

�

where µc[n] = µc since it is a stationary process.
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Wide-sense cyclo-stationarity

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ]

SOLUTION. To see this is wide-sense cyclo-stationary:

µx[n] = E [x[n]] =
∞∑

m=−∞
E [cm] h[n−mT ] = µc

∞∑

m=−∞
h[n−mT ]

where µc[n] = µc since it is a stationary process. Thus, observe:

µx[n+ kT ] = µc

∞∑

m=−∞
h[n+ kT − Tm] = µc

∞∑

r=−∞
h[n− Tr] = µx[n]

�
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Wide-sense cyclo-stationarity

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ]

SOLUTION. Next consider the autocorrelation function given by:

rxx[n1, n2] = E [x[n1] x
∗[n2]]

=

∞∑

m=−∞

∞∑

ℓ=−∞
h[n1 − Tm] h[n2 − Tℓ] rcc[m− ℓ]

�

where rcc[m, ℓ] = E [cm c∗ℓ ] = rcc[m− ℓ] since it is a stationary

process.
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Wide-sense cyclo-stationarity

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ]

SOLUTION. Next consider the autocorrelation function given by:

rxx[n1, n2] = E [x[n1] x
∗[n2]]

=

∞∑

m=−∞

∞∑

ℓ=−∞
h[n1 − Tm] h[n2 − Tℓ] rcc[m− ℓ]

�

where rcc[m, ℓ] = E [cm c∗ℓ ] = rcc[m− ℓ] since it is a stationary

process. Similar to the approach above, then set n1 → n1 + pT
and n2 → n2 + qT .
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Wide-sense cyclo-stationarity

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ]

SOLUTION. Therefore, it follows:

rxx[n1 + pT, n2 + qT ]

=

∞∑

m=−∞

∞∑

ℓ=−∞
h[n1 − T (m− p)] h[n2 − T (l − q)] rcc[m− ℓ]

�
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Wide-sense cyclo-stationarity

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ]

SOLUTION. Again, by setting r = m− p and s = ℓ− q:

rxx[n1 + pT, n2 + qT ]

=

∞∑

r=−∞

∞∑

s=−∞
h[n1 − Tr] h[n2 − Ts] rcc[r − s+ p− q]

�
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Wide-sense cyclo-stationarity

Example (Pulse-Amplitude Modulation). An important example of a
cyclo-stationary process is the random signal:

x[n] =

∞∑

m=−∞
cm h[n−mT ]

SOLUTION. Again, by setting r = m− p and s = ℓ− q:

rxx[n1 + pT, n2 + qT ]

=

∞∑

r=−∞

∞∑

s=−∞
h[n1 − Tr] h[n2 − Ts] rcc[r − s+ p− q]

In the case that p = q, then it finally follows that:

rxx[n1 + pT, n2 + pT ] = rxx[n1, n2] �

By definition, x[n] is therefore a cyclo-stationary process.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 122/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

The speech synthesis model (repeated from Introduction
handout).



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 122/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

Such processes possess statistical properties that change
slowly over short periods of time.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

Such processes possess statistical properties that change
slowly over short periods of time.

They are globally nonstationary, but are approximately locally
stationary, and are modelled as if the statistics actually are
stationary over a short segment of time.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

Such processes possess statistical properties that change
slowly over short periods of time.

They are globally nonstationary, but are approximately locally
stationary, and are modelled as if the statistics actually are
stationary over a short segment of time.

Quasi-stationary models are, in fact, just a special case of
nonstationary processes, but are distinguished since their
characterisation closely resemble stationary processes.
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Quasi-stationarity

– End-of-Topic 50: Wide-sense periodic and
cyclostationary signals, and other forms of

nonstationary signals –

Any Questions?
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Estimating statistical properties

A stochastic process consists of the ensemble, x[n, ζ], and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.
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Estimating statistical properties

A stochastic process consists of the ensemble, x[n, ζ], and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x[n, ζk] , k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.
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Estimating statistical properties

A stochastic process consists of the ensemble, x[n, ζ], and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x[n, ζk] , k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:
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Estimating statistical properties

A stochastic process consists of the ensemble, x[n, ζ], and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x[n, ζk] , k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

ergodic processes;



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 123/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Estimating statistical properties

A stochastic process consists of the ensemble, x[n, ζ], and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x[n, ζk] , k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

ergodic processes;

nonstationary processes where additional structure about
the autocorrelation function is known (beyond the scope of
this course).
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

〈g(x[n])〉 , lim
N→∞

1

2N + 1

N∑

n=−N

g(x[n])

For every ensemble average, a corresponding time-average
can be defined; the above corresponds to: E [g(x[n])].
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

〈g(x[n])〉 , lim
N→∞

1

2N + 1

N∑

n=−N

g(x[n])

For every ensemble average, a corresponding time-average
can be defined; the above corresponds to: E [g(x[n])].

Time-averages are random variables since they implicitly
depend on the particular realisation, given by ζ. Averages of
deterministic signals are fixed numbers or sequences, even
though they are given by the same expression.
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Ensemble and Time-Averages

Ergodicity requires a single realisation of the random process
to display the behaviour of the entire ensemble of realisations.
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Ergodicity

A stochastic process, x[n], is ergodic if its ensemble
averages can be estimated from a single realisation of a
process using time averages.

The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical
expected values and sample-means:

〈x[n]〉 = E [x[n]]

Covariance-Ergodic Processes (or ergodic in correlation) have the
property that:

〈x[n] x∗[n− l]〉 = E [x[n] x∗[n− l]]
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Ergodicity

It should be intuitiveness obvious that ergodic processes must
be stationary and, moreover, that a process which is ergodic
both in the mean and correlation is WSS.

WSS processes are not necessarily ergodic.

Ergodic is often used to mean both ergodic in the mean and
correlation.

In practice, only finite records of data are available, and
therefore an estimate of the time-average will be given by

〈g(x[n])〉 = 1

N

∑

n∈N
g(x[n])

where N is the number of data-points available. The
performance of this estimator will be discussed elsewhere in
this course.
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More Details on Mean-Ergodicity

The time-average over 2N + 1 samples, {x[n]}N−N is:

µx|N = 〈x[n]〉 = 1

2N + 1

N∑

n=−N

x[n]
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More Details on Mean-Ergodicity

The time-average over 2N + 1 samples, {x[n]}N−N is:

µx|N = 〈x[n]〉 = 1

2N + 1

N∑

n=−N

x[n]

µX |N is a random variable with mean:

E [µx|N ] =
1

2N + 1

N∑

n=−N

E [x[n]] = µx

This is an unbiased estimate.
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More Details on Mean-Ergodicity

The time-average over 2N + 1 samples, {x[n]}N−N is:

µx|N = 〈x[n]〉 = 1

2N + 1

N∑

n=−N

x[n]

µX |N is a random variable with mean:

E [µx|N ] =
1

2N + 1

N∑

n=−N

E [x[n]] = µx

This is an unbiased estimate.

Since µx|N is a random variable, then it must have a variance:

var [µx|N ] = var

[

1

2N + 1

N∑

n=−N

x[n]

]
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More Details on Mean-Ergodicity

The time-average over 2N + 1 samples, {x[n]}N−N is:

µx|N = 〈x[n]〉 = 1

2N + 1

N∑

n=−N

x[n]

Theorem (Variance of estimator). If x[n] has ACS γxx[ℓ], then:

var [µx|N ] =
1

2N + 1

2N∑

ℓ=−2N

(

1− |ℓ|
2N + 1

)

γxx[ℓ] ♦
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More Details on Mean-Ergodicity

The time-average over 2N + 1 samples, {x[n]}N−N is:

µx|N = 〈x[n]〉 = 1

2N + 1

N∑

n=−N

x[n]

Theorem (Variance of estimator). If x[n] has ACS γxx[ℓ], then:

var [µx|N ] =
1

2N + 1

2N∑

ℓ=−2N

(

1− |ℓ|
2N + 1

)

γxx[ℓ] ♦

If limN→∞ var [µx|N ] = 0, then µx|N → µx in the
mean-square sense.

It is said that the time average µx|N computed from a single

realisation of x[n] is close to µx with probability close to 1.

If this is true, then the process x[n] is mean-ergodic.
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More Details on Mean-Ergodicity

The time-average over 2N + 1 samples, {x[n]}N−N is:

µx|N = 〈x[n]〉 = 1

2N + 1

N∑

n=−N

x[n]

The result presented above leads to the following conclusion:

Theorem (Mean-ergodic processes). A discrete-random process x[n]
with autocovariance γxx[ℓ] is mean-ergodic iff:

lim
N→∞

1

2N + 1

2N∑

ℓ=−2N

(

1− |ℓ|
2N + 1

)

γxx[ℓ] = 0

PROOF. See discussion above.
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
1

2N + 1

2N∑

ℓ=−2N

(

1− |ℓ|
2N + 1

)

γxx[ℓ]

=
q

2N + 1

2N∑

ℓ=−2N

(

1− |ℓ|
2N + 1

)

e−c|ℓ|

�
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
1

2N + 1

2N∑

ℓ=−2N

(

1− |ℓ|
2N + 1

)

γxx[ℓ]

=
q

2N + 1

2N∑

ℓ=−2N

(

1− |ℓ|
2N + 1

)

e−c|ℓ|

which can be rearranged to give as:

var [µx|N ] =
q

2N + 1

{

2
2N∑

ℓ=0

(

1− ℓ

2N + 1

)

e−c ℓ − 1

}

�
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
q

2N + 1

{

2
2N∑

ℓ=0

(

1− ℓ

2N + 1

)

e−c ℓ − 1

}

Now, noting the general result:

N−1∑

n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+

br(1− rN−1)

(1− r)2

�
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
q

2N + 1

{

2
2N∑

ℓ=0

(

1− ℓ

2N + 1

)

e−c ℓ − 1

}

Now, noting the general result:

N−1∑

n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+

br(1− rN−1)

(1− r)2
�

then by setting a = 1, b = − 1
2N+1 and r = e−c, with n = ℓ and

N → 2N + 1:
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
q

2N + 1

{

2
2N∑

ℓ=0

(

1− ℓ

2N + 1

)

e−c ℓ − 1

}

the variance can be written as (where M = 2N + 1):

var [µx|N ] = 2q

[ 1
M − 1

M2 e
−Mc

1− e−c
+

1
M2 e

−c − 1
M2 e

−Mc

(1− e−c)2
− 1

2M

]

�
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
q

2N + 1

{

2
2N∑

ℓ=0

(

1− ℓ

2N + 1

)

e−c ℓ − 1

}

the variance can be written as (where M = 2N + 1):

var [µx|N ] = 2q

[ 1
M − 1

M2 e
−Mc

1− e−c
+

1
M2 e

−c − 1
M2 e

−Mc

(1− e−c)2
− 1

2M

]

Now, by setting N → ∞, which is equivalent to M → ∞, and:

lim
n→∞

ns xn → 0 if |x| < 1 for any real value of s

�
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More Details on Mean-Ergodicity

Example ( [Papoulis:1991, Example 13.3, Page 429]). A stationary

stochastic process x[n] has an ACS given by γxx[ℓ] = q e−c |ℓ| for
some constants q and c. Is x[n] ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
q

2N + 1

{

2
2N∑

ℓ=0

(

1− ℓ

2N + 1

)

e−c ℓ − 1

}

the variance can be written as (where M = 2N + 1):

var [µx|N ] = 2q

[ 1
M − 1

M2 e
−Mc

1− e−c
+

1
M2 e

−c − 1
M2 e

−Mc

(1− e−c)2
− 1

2M

]

it can be seen that since M = 2N + 1:

lim
N→∞

var [µx|N ] = 0 �
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More Details on Mean-Ergodicity

– End-of-Topic 51: Ergodicity and time-average
estimates of statistics of WSS processes –

Any Questions?
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Joint Signal Statistics

Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

rxy[n1, n2] = E [x[n1] y
∗[n2]]

γxy[n1, n2] = rxy[n1, n2]− µx[n1] µ
∗
y[n2]
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Joint Signal Statistics

Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

rxy[n1, n2] = E [x[n1] y
∗[n2]]

γxy[n1, n2] = rxy[n1, n2]− µx[n1] µ
∗
y[n2]

Normalised cross-correlation (or cross-covariance) The
cross-covariance provides a measure of similarity of the
deviation from the respective means of two processes. It
makes sense to consider this deviation relative to their
standard deviations; thus, normalised cross-correlations:

ρxy[n1, n2] =
γxy[n1, n2]

σx[n1] σy[n2]
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Types of Joint Stochastic Processes

Statistically independence of two stochastic processes occurs when,
for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy[nx, ny] = 0

rxy[nx, ny] = µx[nx] µy[ny]
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Types of Joint Stochastic Processes

Statistically independence of two stochastic processes occurs when,
for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy[nx, ny] = 0

rxy[nx, ny] = µx[nx] µy[ny]

Joint stochastic processes that are statistically independent are
uncorrelated, but not necessarily vice-versa, except for Gaussian
processes.
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Types of Joint Stochastic Processes

Orthogonal joint processes have, for every n1 and n2 6= n1:

rxy[n1, n2] = 0

Joint WSS is a similar to WSS for a single stochastic process, and
is useful since it facilitates a spectral description, as discussed
later in this course:

rxy[ℓ] = rxy[n1 − n2] = r∗yx[−ℓ] = E [x[n] y∗[n− l]]

γxy[ℓ] = γxy[n1 − n2] = γ∗
yx[−ℓ] = rxy[ℓ]− µx µ

∗
y

Joint-Ergodicity applies to two ergodic processes, x[n] and y[n],
whose ensemble cross-correlation can be estimated from a
time-average:

〈x[n] y∗[n− l]〉 = E [x[n] y∗[n− l]]



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 129/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Correlation Matrices

Let an M -dimensional random vector X[n, ζ] ≡ X[n] be derived
from the random process x[n] as follows:

X[n] ,
[

x[n] x[n− 1] · · · x[n−M + 1]
]T
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Correlation Matrices

Let an M -dimensional random vector X[n, ζ] ≡ X[n] be derived
from the random process x[n] as follows:

X[n] ,
[

x[n] x[n− 1] · · · x[n−M + 1]
]T

Then its mean is given by an M -vector

µX[n] ,
[

µx[n] µx[n− 1] · · · µx[n−M + 1]
]T
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Correlation Matrices

Let an M -dimensional random vector X[n, ζ] ≡ X[n] be derived
from the random process x[n] as follows:

X[n] ,
[

x[n] x[n− 1] · · · x[n−M + 1]
]T

Then its mean is given by an M -vector

µX[n] ,
[

µx[n] µx[n− 1] · · · µx[n−M + 1]
]T

and the M ×M correlation matrix is given by:

RX[n] ,







rxx[n, n] · · · rxx[n, n−M + 1]
...

. . .
...

rxx[n−M + 1, n] · · · rxx[n−M + 1, n−M + 1]






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Correlation Matrices

For WSS processes, the correlation matrix has:

1. RX[n] is a constant matrix RX;

2. rxx[n− i, n− j] = rxx[j − i] = rxx[ℓ] , ℓ = j − i;

3. conjugate symmetry gives rxx[ℓ] = r∗xx[−ℓ].
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Correlation Matrices

For WSS processes, the correlation matrix has:

1. RX[n] is a constant matrix RX;

2. rxx[n− i, n− j] = rxx[j − i] = rxx[ℓ] , ℓ = j − i;

3. conjugate symmetry gives rxx[ℓ] = r∗xx[−ℓ].

Hence, the matrix Rxx is given by:

RX ,











rxx[0] rxx[1] rxx[2] · · · rxx[M − 1]

r∗xx[1] rxx[0] rxx[1] · · · rxx[M − 2]

r∗xx[2] r∗xx[1] rxx[0] · · · rxx[M − 3]
...

...
...

. . .
...

r∗xx[M − 1] r∗xx[M − 2] r∗xx[M − 3] · · · rxx[0]










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Correlation Matrices

For WSS processes, the correlation matrix has:

1. RX[n] is a constant matrix RX;

2. rxx[n− i, n− j] = rxx[j − i] = rxx[ℓ] , ℓ = j − i;

3. conjugate symmetry gives rxx[ℓ] = r∗xx[−ℓ].

Hence, the matrix Rxx is given by:

RX ,











rxx[0] rxx[1] rxx[2] · · · rxx[M − 1]

r∗xx[1] rxx[0] rxx[1] · · · rxx[M − 2]

r∗xx[2] r∗xx[1] rxx[0] · · · rxx[M − 3]
...

...
...

. . .
...

r∗xx[M − 1] r∗xx[M − 2] r∗xx[M − 3] · · · rxx[0]











It can be seen that RX is Hermitian and Toeplitz.
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Correlation Matrices

Example (Correlation matrices). The correlation function for a
certain random process x[n] has the exponential form:

rxx[ℓ] = 4 (−0.5)|ℓ|

⋊⋉



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•WSS Properties

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

- p. 129/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Correlation Matrices

Example (Correlation matrices). The correlation function for a
certain random process x[n] has the exponential form:

rxx[ℓ] = 4 (−0.5)|ℓ|

Hence, the correlation matrix for N = 3 is given by:

RX =






rxx[0] rxx[1] rxx[2]

r∗xx[1] rxx[0] rxx[1]

r∗xx[2] r∗xx[1] r∗xx[0]






=






4(−0.5)0 4(−0.5)1 4(−0.5)2

4(−0.5)1 4(−0.5)0 4(−0.5)1

4(−0.5)2 4(−0.5)1 4(−0.5)0




 =






4 −2 1

−2 4 −2

1 −2 4




 ⋊⋉

which is clearly Toeplitz.
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Correlation Matrices

– End-of-Topic 52: Joint Statistics and
Correlation Matrices –

Any Questions?
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.

The simplest kind of dependence arises when the probability
of any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.

The simplest kind of dependence arises when the probability
of any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.

This simple process is a surprisingly good model for a number
of practical signal processing, communications and control
problems.
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Markov Processes

As an example of a Markov process, consider the process
generated by the difference equation

x[n] = −a x[n− 1] + w[n]

where a is a known constant;

and w[n] is a sequence of zero-mean i. i. d. Gaussian random

variables with variance σ2
W density:

fW (w[n]) =
1

√

2πσ2
W

exp

{

−w2[n]

2σ2
W

}
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Markov Processes

As an example of a Markov process, consider the process
generated by the difference equation

x[n] = −a x[n− 1] + w[n]

where a is a known constant;

and w[n] is a sequence of zero-mean i. i. d. Gaussian random

variables with variance σ2
W density:

fW (w[n]) =
1

√

2πσ2
W

exp

{

−w2[n]

2σ2
W

}

The conditional density of x[n] given x[n− 1] is also Gaussian,

fX (x[n] | x[n− 1]) =
1

√

2πσ2
W

exp

{

− (x[n] + ax[n− 1])2

2σ2
W

}
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Markov Processes

Definition (Markov Process). A random process is a P th-order
Markov process if the distribution of x[n], given the infinite past,
depends only on the previous P samples
{x[n− 1] , . . . , x[n− P ]}; that is, if:

fX (x[n] | x[n− 1] , x[n− 2] , . . . ) = fX (x[n] | x[n− 1] , . . . , x[n− P ])
♦
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Markov Processes

Definition (Markov Process). A random process is a P th-order
Markov process if the distribution of x[n], given the infinite past,
depends only on the previous P samples
{x[n− 1] , . . . , x[n− P ]}; that is, if:

fX (x[n] | x[n− 1] , x[n− 2] , . . . ) = fX (x[n] | x[n− 1] , . . . , x[n− P ])
♦

Example (First-order Markov). A first-order Markov process is
where, given the infinite past, the current sample of a random
process x[n] depends only on the previous sample x[n− 1]:

fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0]) = fX (x[n] | x[n− 1])

⋊⋉
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Markov Processes

Example (First-order Markov). A first-order Markov process is
where, given the infinite past, the current sample of a random
process x[n] depends only on the previous sample x[n− 1]:

fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0]) = fX (x[n] | x[n− 1])

Using the probability chain rule, and defining
x = {x[n] , x[n− 1] , . . . , x[0]}, the general joint-pdfof all
samples is:

fX (x) = fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0])

× fX (x[n− 1] | x[n− 2] , x[n− 3] , . . . , x[0]) · · · fX (x[0])

⋊⋉
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Markov Processes

Example (First-order Markov). A first-order Markov process is
where, given the infinite past, the current sample of a random
process x[n] depends only on the previous sample x[n− 1]:

fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0]) = fX (x[n] | x[n− 1])

Using the probability chain rule, the general joint-pdf:

fX (x) = fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0])

× fX (x[n− 1] | x[n− 2] , x[n− 3] , . . . , x[0]) · · · fX (x[0])

This can be written as:

fX (x) = fX (x[0])

n∏

k=1

fX (x[k] | x[k − 1] , . . . , x[0])

⋊⋉
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Markov Processes

Example (First-order Markov). A first-order Markov process is
where, given the infinite past, the current sample of a random
process x[n] depends only on the previous sample x[n− 1]:

fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0]) = fX (x[n] | x[n− 1])

This can be written as:

fX (x) = fX (x[0])
n∏

k=1

fX (x[k] | x[k − 1] , . . . , x[0])

Hence, using the first-order Markov property, this simplifies to:

fX (x) = fX (x[0])

n∏

k=1

fX (x[k] | x[k − 1])

⋊⋉
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Markov Processes

Example (First-order Markov). A first-order Markov process is
where, given the infinite past, the current sample of a random
process x[n] depends only on the previous sample x[n− 1]:

fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0]) = fX (x[n] | x[n− 1])

Hence, using the first-order Markov property, this simplifies to:

fX (x) = fX (x[0])
n∏

k=1

fX (x[k] | x[k − 1])

This allows us to substitute, for example, the Gaussian:

fX (x) = fX (x[0])
n∏

k=1

1
√

2πσ2
W

exp

{

− (x[n] + ax[n− 1])2

2σ2
W

}

⋊⋉
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Markov Processes

Finally, it is noted that if x[n] takes on a countable (discrete) set
of values, a Markov random process is called a Markov chain.
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Markov Processes

– End-of-Topic 53: Brief Introduction to
Markov Processes –

Any Questions?
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACS.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACS.

Since the ACS for a stationary process is a function of a
single-discrete time process, then the question arises as to
what the discrete-time Fourier transform (DTFT) corresponds
to.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

• Introduction

•Motivating the power

spectral density

• Informal Motivation

•Formal Statistical

Derivation
•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

- p. 132/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACS.

Since the ACS for a stationary process is a function of a
single-discrete time process, then the question arises as to
what the DTFT corresponds to.

It turns out to be known as the power spectral density (PSD)
of a stationary random process, and the PSD is an extremely
powerful and conceptually appealing tool in statistical signal
processing.
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Introduction
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform
of the autocorrelation function.
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform
of the autocorrelation function.

Stochastic decomposition The second interpretation represents a
stochastic process as a superposition of exponentials, where
the coefficients are themselves random variables. Hence, x[n]
can be represented as:

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω, n ∈ R

where X(ejω) is a random variable for a given value of ω.
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Motivating the power spectral density

It is important to appreciate that most realisations of
stationary random signals, x[n, ζ], do not have finite energy,
as they usually don’t decay away as n → ±∞.
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Motivating the power spectral density

It is important to appreciate that most realisations of
stationary random signals, x[n, ζ], do not have finite energy,
as they usually don’t decay away as n → ±∞.

This is because the statistics as n → ±∞ are the same as the
statistics at any other time.
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Motivating the power spectral density

It is important to appreciate that most realisations of
stationary random signals, x[n, ζ], do not have finite energy,
as they usually don’t decay away as n → ±∞.

This is because the statistics as n → ±∞ are the same as the
statistics at any other time.

Therefore, technically, these realisations do not possess a
corresponding DTFT, and hence it is not possible simply to
take the DTFT of the random signal without further
addressing these technicalities.
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Motivating the power spectral density

It is important to appreciate that most realisations of
stationary random signals, x[n, ζ], do not have finite energy,
as they usually don’t decay away as n → ±∞.

This is because the statistics as n → ±∞ are the same as the
statistics at any other time.

Therefore, technically, these realisations do not possess a
corresponding DTFT, and hence it is not possible simply to
take the DTFT of the random signal without further
addressing these technicalities.

Moreover, noting that a random signal is actually an ensemble
of realisations, each realisation occuring with a different
probability, it raises the question of what does it mean to take
the DTFT of a random process directly?



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

• Introduction

•Motivating the power

spectral density

• Informal Motivation

•Formal Statistical

Derivation
•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

- p. 134/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Informal Motivation

Assume for the moment that the DTFT of a realisation from a
stationary random process does in fact exist, by ignoring any
issues with convergence of the sequence.
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Informal Motivation

Assume for the moment that the DTFT of a realisation from a
stationary random process does in fact exist, by ignoring any
issues with convergence of the sequence.

If a particular realisation is denoted by x[n, ζ], then suppose
the corresponding DTFT is denoted by:

Xζ

(
ejωT

)
=

∞∑

n=−∞
x[n, ζ] e−jωn

where |ω| < π is the normalised frequency.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

• Introduction

•Motivating the power

spectral density

• Informal Motivation

•Formal Statistical

Derivation
•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

- p. 134/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Informal Motivation

Assume for the moment that the DTFT of a realisation from a
stationary random process does in fact exist, by ignoring any
issues with convergence of the sequence.

If a particular realisation is denoted by x[n, ζ], then suppose
the corresponding DTFT is denoted by:

Xζ

(
ejωT

)
=

∞∑

n=−∞
x[n, ζ] e−jωn

where |ω| < π is the normalised frequency.

The collection of different DTFTs forms an ensemble of
frequency-domain realisations.
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Informal Motivation

Assume for the moment that the DTFT of a realisation from a
stationary random process does in fact exist, by ignoring any
issues with convergence of the sequence.

If a particular realisation is denoted by x[n, ζ], then suppose
the corresponding DTFT is denoted by:

Xζ

(
ejωT

)
=

∞∑

n=−∞
x[n, ζ] e−jωn

where |ω| < π is the normalised frequency.

The collection of different DTFTs forms an ensemble of
frequency-domain realisations.

As this spectrum is continuous, the second-order ACF is a
seemingly important statistic to consider, representing the
correlation between two frequencies at ω1 and ω2, say.
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:

RXX(ω1, ω2) = E

[ ∞∑

n=−∞
x[n, ζ] e−jω1n

∞∑

m=−∞
x∗[m, ζ] ejω2m

]
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:

RXX(ω1, ω2) = E

[ ∞∑

n=−∞
x[n, ζ] e−jω1n

∞∑

m=−∞
x∗[m, ζ] ejω2m

]

=
∞∑

n=−∞

∞∑

m=−∞
E [x[n, ζ] x∗[m, ζ]] e−j(ω1n−ω2m)
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:

RXX(ω1, ω2) = E

[ ∞∑

n=−∞
x[n, ζ] e−jω1n

∞∑

m=−∞
x∗[m, ζ] ejω2m

]

=
∞∑

n=−∞

∞∑

m=−∞
E [x[n, ζ] x∗[m, ζ]] e−j(ω1n−ω2m)

=
∞∑

n=−∞

∞∑

m=−∞
rxx[n,m] e−j(ω1n−ω2m)
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:

RXX(ω1, ω2) = E

[ ∞∑

n=−∞
x[n, ζ] e−jω1n

∞∑

m=−∞
x∗[m, ζ] ejω2m

]

=
∞∑

n=−∞

∞∑

m=−∞
E [x[n, ζ] x∗[m, ζ]] e−j(ω1n−ω2m)

=
∞∑

n=−∞

∞∑

m=−∞
rxx[n,m] e−j(ω1n−ω2m)

It can be seen that it is indicative of some kind of Fourier
transform of the corresponding time-domain correlation.
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:

RXX(ω1, ω2) = E

[ ∞∑

n=−∞
x[n, ζ] e−jω1n

∞∑

m=−∞
x∗[m, ζ] ejω2m

]

=

∞∑

n=−∞

∞∑

m=−∞
rxx[n,m] e−j(ω1n−ω2m)

Indeed, as x[n, ζ] is stationary, then let rxx[n,m] = rxx[n−m].
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:

RXX(ω1, ω2) = E

[ ∞∑

n=−∞
x[n, ζ] e−jω1n

∞∑

m=−∞
x∗[m, ζ] ejω2m

]

=

∞∑

n=−∞

∞∑

m=−∞
rxx[n,m] e−j(ω1n−ω2m)

Indeed, as x[n, ζ] is stationary, then let rxx[n,m] = rxx[n−m].

Consider finding the second-moment or power at a given
frequency, so setting ω = ω1 = ω2, and ℓ = n−m.
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Substituting the DTFT expression, and reorganising:

RXX(ω1, ω2) = E

[ ∞∑

n=−∞
x[n, ζ] e−jω1n

∞∑

m=−∞
x∗[m, ζ] ejω2m

]

Then, it follows that:

RXX(ω) =
∞∑

n=−∞

∞∑

ℓ=−∞
rxx[ℓ] e

−jωℓ =
∞∑

n=−∞
F (rxx[ℓ])
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Informal Motivation

Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]

Then, it follows that:

RXX(ω) =
∞∑

n=−∞

∞∑

ℓ=−∞
rxx[ℓ] e

−jωℓ =
∞∑

n=−∞
F (rxx[ℓ])

The additional summation results from the fact the
realisations of the process do not have finite-energy, and the
mathematical treatment somewhat informal.

However, it clearly indicates that the power at each frequency
can be found from the Fourier transform of the ACS, and is
therefore the PSD.
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Formal Statistical Derivation

Consider the random variable, X
(
ejωT

)
, resulting from the

DTFT of a random signal, x[n]:

X
(
ejωT

)
=

∞∑

n=−∞
x[n] e−jωn
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Formal Statistical Derivation

Consider the random variable, X
(
ejωT

)
:

X
(
ejωT

)
=

∞∑

n=−∞
x[n] e−jωn

Consider the total power in X
(
ejωT

)
:

PXX

(
ejωT

)
= E

[∣
∣X
(
ejωT

)∣
∣
2
]
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Formal Statistical Derivation

Consider the random variable, X
(
ejωT

)
:

X
(
ejωT

)
=

∞∑

n=−∞
x[n] e−jωn

Consider the total power in X
(
ejωT

)
:

PXX

(
ejωT

)
= E

[∣
∣X
(
ejωT

)∣
∣
2
]

Since this expression will diverge, so consider:

PXX

(
ejωT

)
= lim

N→∞
1

2N + 1
E

[∣
∣XN

(
ejω
)∣
∣
2
]
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Formal Statistical Derivation

Consider the random variable, X
(
ejωT

)
:

X
(
ejωT

)
=

∞∑

n=−∞
x[n] e−jωn

Consider the total power in X
(
ejωT

)
:

PXX

(
ejωT

)
= E

[∣
∣X
(
ejωT

)∣
∣
2
]

Since this expression will diverge, so consider:

PXX

(
ejωT

)
= lim

N→∞
1

2N + 1
E

[∣
∣XN

(
ejω
)∣
∣
2
]

where XN

(
ejω
)

is a windowed version of x[n]:

XN

(
ejωT

)
,

N∑

n=−N

x[n] e−jωn
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Formal Statistical Derivation

Since this expression will diverge, so consider:

PXX

(
ejωT

)
= lim

N→∞
1

2N + 1
E

[∣
∣XN

(
ejω
)∣
∣
2
]

Then, substituting and rearranging gives:

PXX

(
ejωT

)
= lim

N→∞
1

2N + 1
E

[
N∑

n=−N

x[n] e−jωn
N∑

m=−N

x∗[m] ejωm

]

= lim
N→∞

1

2N + 1

N∑

n=−N

N∑

m=−N

E [x[n]x∗[m]] e−jω(n−m)
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Formal Statistical Derivation

Since this expression will diverge, so consider:

PXX

(
ejωT

)
= lim

N→∞
1

2N + 1
E

[∣
∣XN

(
ejω
)∣
∣
2
]

Then, substituting and rearranging gives:

PXX

(
ejωT

)
= lim

N→∞
1

2N + 1
E

[
N∑

n=−N

x[n] e−jωn
N∑

m=−N

x∗[m] ejωm

]

It can be shown this expression simplifies to DTFT of the ACS.

PXX

(
ejω
)
=

∞∑

ℓ=−∞
rxx[ℓ] e

−jωℓ
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Formal Statistical Derivation

Since this expression will diverge, so consider:

PXX

(
ejωT

)
= lim

N→∞
1

2N + 1
E

[∣
∣XN

(
ejω
)∣
∣
2
]

It can be shown this expression simplifies to DTFT of the ACS.

PXX

(
ejω
)
=

∞∑

ℓ=−∞
rxx[ℓ] e

−jωℓ

Hence, PXX

(
ejωT

)
can be viewed as the average power, or

energy, of the Fourier transform of a random process at
frequency ω.

Clearly, this gives an indication of whether, on average, there
are dominant frequencies present in the realisations of x[n].
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Formal Statistical Derivation

– End-of-Topic 54: Introduction to the concept
of the PSD –

Any Questions?
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The power spectral density

The discrete-time Fourier transform of the autocorrelation
sequence of a stationary stochastic process x[n, ζ] is known as the

power spectral density (PSD), is denoted by Pxx(e
jω), and is

given by:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

where ω is frequency in radians per sample.
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The power spectral density

The discrete-time Fourier transform of the autocorrelation
sequence of a stationary stochastic process x[n, ζ] is known as the

power spectral density (PSD), is denoted by Pxx(e
jω), and is

given by:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

where ω is frequency in radians per sample.

The autocorrelation sequence, rxx[ℓ], can be recovered from the
PSD by using the inverse-DTFT:

rxx[ℓ] =
1

2π

∫ π

−π

Pxx(e
jω) ejωℓ dω, ℓ ∈ Z
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx

(
ejωT

)
≥ 0
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx

(
ejωT

)
≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx

(
ejωT

)
≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); periodic with period 2π.

If x[n] is real-valued, then:
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx

(
ejωT

)
≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); periodic with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx

(
ejωT

)
≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); periodic with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;

Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx

(
ejωT

)
≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); periodic with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;

Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.

The area under Pxx(e
jω) is nonnegative and is equal to the

average power of x[n]. Hence:

1

2π

∫ π

−π

Pxx(e
jω) dω = rxx[0] = E

[
|x[n] |2

]
≥ 0
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Properties of the power spectral density

Example ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the
PSD of a zero-mean WSS process x[n] with autocorrelation

sequence rxx[ℓ] = a|ℓ|, −1 < a < 1.
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Properties of the power spectral density

Example ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the
PSD of a zero-mean WSS process x[n] with autocorrelation

sequence rxx[ℓ] = a|ℓ|, −1 < a < 1.

SOLUTION. Using the definition of the PSD directly, then:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

�
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Properties of the power spectral density

Example ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the
PSD of a zero-mean WSS process x[n] with autocorrelation

sequence rxx[ℓ] = a|ℓ|, −1 < a < 1.

SOLUTION. Using the definition of the PSD directly, then:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

=
∑

ℓ∈Z

a|ℓ| e−jωℓ

�
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Properties of the power spectral density

Example ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the
PSD of a zero-mean WSS process x[n] with autocorrelation

sequence rxx[ℓ] = a|ℓ|, −1 < a < 1.

SOLUTION. Using the definition of the PSD directly, then:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

=
∑

ℓ∈Z

a|ℓ| e−jωℓ

=
∞∑

ℓ=0

(
a e−jω

)ℓ
+

∞∑

ℓ=0

(
a ejω

)ℓ − 1

�



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

• Introduction

•Motivating the power

spectral density

• Informal Motivation

•Formal Statistical

Derivation
•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

- p. 137/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Properties of the power spectral density

Example ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the
PSD of a zero-mean WSS process x[n] with autocorrelation

sequence rxx[ℓ] = a|ℓ|, −1 < a < 1.

SOLUTION. Hence, by using the expressions for geometric series,
the PSD can be written as:

Pxx(e
jω) =

1

1− a e−jω
+

1

1− a ejω
− 1

=
1− a2

1− 2a cosω + a2
�

which is a real-valued, even, and nonnegative function of ω.
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General form of the PSD

A process, x[n], and therefore rxx[ℓ], can always be decomposed

into a zero-mean aperiodic component, r
(a)
xx [ℓ], and a

non-zero-mean periodic component, r
(p)
xx [ℓ]:

rxx[ℓ] = r(a)xx [ℓ] + r(p)xx [ℓ]
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General form of the PSD

A process, x[n], and therefore rxx[ℓ], can always be decomposed

into a zero-mean aperiodic component, r
(a)
xx [ℓ], and a

non-zero-mean periodic component, r
(p)
xx [ℓ]:

rxx[ℓ] = r(a)xx [ℓ] + r(p)xx [ℓ]

Theorem (PSD of a non-zero-mean process with periodic compo nent).
The most general definition of the PSD for a non-zero-mean
stochastic process with a periodic component is

Pxx(e
jω) = P (a)

xx (ejω) +
2π

K

∑

k∈K
P (p)
xx (k) δ (ω − ωk) ♦

P
(a)
xx (ejω) is the DTFT of r

(a)
xx [ℓ], while P

(p)
xx (k) are the discrete

Fourier transform (DFT) coefficients for r
(p)
xx [ℓ] .
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

⋊⋉
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. x[n] is a zero-mean stationary process, and ACS:

rxx[ℓ] =
1

2

M∑

k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞

�
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. x[n] is a zero-mean stationary process, and ACS:

rxx[ℓ] =
1

2

M∑

k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞

Hence, the ACS can be written as:

rxx[ℓ] =

M∑

k=−M

|Ak|2
4

ejωkℓ, −∞ < ℓ < ∞ �

where: A0 = 0, Ak = A−k, and ω−k = −ωk.
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. Hence, the ACS can be written as:

rxx[ℓ] =
M∑

k=−M

|Ak|2
4

ejωkℓ, −∞ < ℓ < ∞

Hence, it directly follows

Pxx(e
jω) = 2π

M∑

k=−M

|Ak|2
4

δ(ω−ωk) =
π

2

M∑

k=−M

|Ak|2δ(ω−ωk) �
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General form of the PSD

– End-of-Topic 55: Definition and examples of
the PSD for WSS processes –

Any Questions?
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The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x[n] and y[n], provides a description of their
statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy[ℓ] , E [x[n] y∗[n− ℓ]]:

Pxy

(
ejωT

)
= F{rxy[ℓ]} =

∑

ℓ∈Z

rxy[ℓ] e
−jωℓ



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

• Introduction

•Motivating the power

spectral density

• Informal Motivation

•Formal Statistical

Derivation
•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

- p. 139/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x[n] and y[n], provides a description of their
statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy[ℓ] , E [x[n] y∗[n− ℓ]]:

Pxy

(
ejωT

)
= F{rxy[ℓ]} =

∑

ℓ∈Z

rxy[ℓ] e
−jωℓ

The cross-correlation rxy[ℓ] can be recovered by using the

inverse-DTFT:

rxy[ℓ] =
1

2π

∫ π

−π

Pxy

(
ejωT

)
ejωℓ dω, ℓ ∈ R
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The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x[n] and y[n], provides a description of their
statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy[ℓ] , E [x[n] y∗[n− ℓ]]:

Pxy

(
ejωT

)
= F{rxy[ℓ]} =

∑

ℓ∈Z

rxy[ℓ] e
−jωℓ

The cross-correlation rxy[ℓ] can be recovered by using the

inverse-DTFT:

rxy[ℓ] =
1

2π

∫ π

−π

Pxy

(
ejωT

)
ejωℓ dω, ℓ ∈ R

The cross-spectrum Pxy

(
ejωT

)
is, in general, a complex function

of ω.
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The cross-power spectral density

Some properties of the CPSD and related definitions include:

1. Pxy

(
ejωT

)
is periodic in ω with period 2π.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

• Introduction

•Motivating the power

spectral density

• Informal Motivation

•Formal Statistical

Derivation
•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

- p. 139/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The cross-power spectral density

Some properties of the CPSD and related definitions include:

1. Pxy

(
ejωT

)
is periodic in ω with period 2π.

2. Since rxy[ℓ] = r∗yx[−ℓ], then it follows:

Pxy

(
ejωT

)
= P ∗

yx

(
ejωT

)

3. If the process x[n] is real, then rxy[ℓ] is real, and:

Pxy(e
jω) = P ∗

xy(e
−jω)
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The cross-power spectral density

Some properties of the CPSD and related definitions include:

1. Pxy

(
ejωT

)
is periodic in ω with period 2π.

2. Since rxy[ℓ] = r∗yx[−ℓ], then it follows:

Pxy

(
ejωT

)
= P ∗

yx

(
ejωT

)

3. If the process x[n] is real, then rxy[ℓ] is real, and:

Pxy(e
jω) = P ∗

xy(e
−jω)

4. The coherence function, is given by:

Γxy(e
jω) ,

Pxy(e
jω)

√

Pxx(ejω)
√

Pyy(ejω)
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.

Hence, rxx[ℓ]
z
⇋ Pxx(z) and rxy[ℓ]

z
⇋ Pxy(z), where:

Pxx (z) =
∑

ℓ∈Z

rxx[ℓ] z
−ℓ

Pxy (z) =
∑

ℓ∈Z

rxy[ℓ] z
−ℓ
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.

Hence, rxx[ℓ]
z
⇋ Pxx(z) and rxy[ℓ]

z
⇋ Pxy(z), where:

Pxx (z) =
∑

ℓ∈Z

rxx[ℓ] z
−ℓ

Pxy (z) =
∑

ℓ∈Z

rxy[ℓ] z
−ℓ

If the unit circle, defined by z = ejω is within the region of
convergence of these summations, then:

Pxx(e
jω) = Pxx(z)|z=ejω

Pxy(e
jω) = Pxy(z)|z=ejω
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Complex Spectral Density Functions

Example (Interleaved Example). Find the complex spectral-density
of the sequence:

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

⋊⋉
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Writing the z-transform:

P (z) =

∞∑

ℓ=−∞
r[ℓ] z−ℓ
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Writing the z-transform:

P (z) =

∞∑

ℓ=−∞
r[ℓ] z−ℓ

=
∞∑

ℓo=−∞
r[2ℓo + 1] z−(2ℓo+1)

︸ ︷︷ ︸

Odd terms

+
∞∑

ℓe=−∞
r[2ℓe] z

−2ℓe

︸ ︷︷ ︸

Even terms
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Writing the z-transform:

P (z) =

∞∑

ℓ=−∞
r[ℓ] z−ℓ

=
∞∑

ℓo=−∞
r[2ℓo + 1] z−(2ℓo+1)

︸ ︷︷ ︸

Odd terms

+
∞∑

ℓe=−∞
r[2ℓe] z

−2ℓe

︸ ︷︷ ︸

Even terms

=
∞∑

ℓe=−∞
a| 2ℓe2 | z−2ℓe =

∞∑

ℓe=−∞
a|ℓe| z−2ℓe

�



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

• Introduction

•Motivating the power

spectral density

• Informal Motivation

•Formal Statistical

Derivation
•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

- p. 140/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Splitting this into two further summations, as
previous done with an earlier example:

P (z) =

0∑

ℓe=−∞
a−ℓe z−2ℓe +

∞∑

ℓe=0

aℓe z−2ℓe − 1
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Splitting this into two further summations, as
previous done with an earlier example:

P (z) =

0∑

ℓe=−∞
a−ℓe z−2ℓe +

∞∑

ℓe=0

aℓe z−2ℓe − 1

=
∞∑

ℓe=0

(
a z2

)ℓe
+

∞∑

ℓe=0

( a

z2

)ℓe
− 1
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Splitting this into two further summations, as
previous done with an earlier example:

P (z) =

0∑

ℓe=−∞
a−ℓe z−2ℓe +

∞∑

ℓe=0

aℓe z−2ℓe − 1

=
∞∑

ℓe=0

(
a z2

)ℓe
+

∞∑

ℓe=0

( a

z2

)ℓe
− 1 �

Finally, applying the geometric progression formula
∑∞

ℓ=0 r
ℓ = 1

1−r gives the desired result:
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Finally, applying the geometric progression formula
∑∞

ℓ=0 r
ℓ = 1

1−r gives the desired result:

P (z) =
1

1− a z2
+

1

1− a z−2
− 1

�
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Finally, applying the geometric progression formula
∑∞

ℓ=0 r
ℓ = 1

1−r gives the desired result:

P (z) =
1

1− a z2
+

1

1− a z−2
− 1

=
1

1− a z2
+

a z−2

1− a z−2
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Complex Spectral Density Functions

Example (Interleaved Example). Find complex spectral-density of :

r[n] =

{

a|n2 | n ∈ {0, even}
0 for n odd

SOLUTION. Finally, applying the geometric progression formula
∑∞

ℓ=0 r
ℓ = 1

1−r gives the desired result:

P (z) =
1

1− a z2
+

1

1− a z−2
− 1

=
1

1− a z2
+

a z−2

1− a z−2

Note that this could have, equivalently, been written as:

P (z) =
az2

1− a z2
+

1

1− a z−2
�
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Complex Spectral Density Functions

The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

rxx[ℓ] =
1

2πj

∮

C

Pxx(z) z
ℓ−1 dz

rxy[ℓ] =
1

2πj

∮

C

Pxy(z) z
ℓ−1 dz

where the contour of integration C is to be taken

counterclockwise and in the region of convergence.
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Complex Spectral Density Functions

The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

rxx[ℓ] =
1

2πj

∮

C

Pxx(z) z
ℓ−1 dz

rxy[ℓ] =
1

2πj

∮

C

Pxy(z) z
ℓ−1 dz

In practice, these integrals are usually never performed, and
tables, instead, are used.
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Complex Spectral Density Functions

The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

rxx[ℓ] =
1

2πj

∮

C

Pxx(z) z
ℓ−1 dz

rxy[ℓ] =
1

2πj

∮

C

Pxy(z) z
ℓ−1 dz

Some properties of the complex spectral densities include:

1. Conjugate-symmetry:

Pxx(z) = P ∗
xx(1/z

∗) and Pxy(z) = P ∗
yx(1/z

∗)

2. For the case when x(n) is real, then:

Pxx(z) = Pxx(z
−1)
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Systems with Stochastic Inputs

Signal processing involves the transformation of signals to
enhance certain characteristics; for example, to suppress
noise, or to extract meaningful information.

A graphical representation of a random process at the
output of a system in relation to a random process at the

input of the system.
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Systems with Stochastic Inputs

A graphical representation of a random process at the
output of a system in relation to a random process at the

input of the system.

What does it mean to apply a stochastic signal to the input of
a system?
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Systems with Stochastic Inputs

A graphical representation of a random process at the
output of a system in relation to a random process at the

input of the system.

What does it mean to apply a stochastic signal to the input of
a system?

This question is an interesting one since a stochastic process is
not just a single sequence but an ensemble of sequences.
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Systems with Stochastic Inputs

In principle, the statistics of the output of any system can be
expressed in terms of the statistics of the input.
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Systems with Stochastic Inputs

In principle, the statistics of the output of any system can be
expressed in terms of the statistics of the input.

However, in general this is a complicated problem except in
special cases of particular types of signals or systems.
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Systems with Stochastic Inputs

In principle, the statistics of the output of any system can be
expressed in terms of the statistics of the input.

However, in general this is a complicated problem except in
special cases of particular types of signals or systems.

A special case is that of known-deterministic linear systems,
and this is considered next.
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Systems with Stochastic Inputs

In principle, the statistics of the output of any system can be
expressed in terms of the statistics of the input.

However, in general this is a complicated problem except in
special cases of particular types of signals or systems.

A special case is that of known-deterministic linear systems,
and this is considered next.

In particular, if the input is a stationary stochastic process, and
the system is linear time-invariant (LTI), then the statistics are
even simpler.
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Systems with Stochastic Inputs

In principle, the statistics of the output of any system can be
expressed in terms of the statistics of the input.

However, in general this is a complicated problem except in
special cases of particular types of signals or systems.

A special case is that of known-deterministic linear systems,
and this is considered next.

In particular, if the input is a stationary stochastic process, and
the system is linear time-invariant (LTI), then the statistics are
even simpler.

Moreover, it leads to a slightly simpler and intuitive
explanation for the response of the system to the input.
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Systems with Stochastic Inputs

In principle, the statistics of the output of any system can be
expressed in terms of the statistics of the input.

However, in general this is a complicated problem except in
special cases of particular types of signals or systems.

A special case is that of known-deterministic linear systems,
and this is considered next.

In particular, if the input is a stationary stochastic process, and
the system is linear time-invariant (LTI), then the statistics are
even simpler.

Moreover, it leads to a slightly simpler and intuitive
explanation for the response of the system to the input.

There are other systems that can be analysed, but due to time
constraints, they are not considered in this course.
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Systems with Stochastic Inputs

In principle, the statistics of the output of any system can be
expressed in terms of the statistics of the input.

However, in general this is a complicated problem except in
special cases of particular types of signals or systems.

A special case is that of known-deterministic linear systems,
and this is considered next.

In particular, if the input is a stationary stochastic process, and
the system is linear time-invariant (LTI), then the statistics are
even simpler.

Moreover, it leads to a slightly simpler and intuitive
explanation for the response of the system to the input.

There are other systems that can be analysed, but due to time
constraints, they are not considered in this course.

The case of random signals going through random systems is
of great interest, but beyond the scope of this course.
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Calculating Input-Output Statistics

Methods for solving the input-output statistics for a random
signal passing through a deterministic linear system.
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Calculating Input-Output Statistics

Example (Typical Question). A real-valued discrete-time random
process x[n] consists of independent and identically
distributed (i. i. d.) random variables each with uniform density
on the interval [0, 6].
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Calculating Input-Output Statistics

Example (Typical Question). A real-valued discrete-time random
process x[n] consists of independent and identically
distributed (i. i. d.) random variables each with uniform density
on the interval [0, 6].

The process x[n] is applied to a linear time-invariant (LTI) system
with impulse response:

h[n] =

{(
2
3

)n
, n ≥ 0

0, n < 0

⋊⋉
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Calculating Input-Output Statistics

Example (Typical Question). A real-valued discrete-time random
process x[n] consists of independent and identically
distributed (i. i. d.) random variables each with uniform density
on the interval [0, 6].

The process x[n] is applied to a linear time-invariant (LTI) system
with impulse response:

h[n] =

{(
2
3

)n
, n ≥ 0

0, n < 0
⋊⋉

The output of this linear system is denoted as y[n].
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Calculating Input-Output Statistics

Example (Typical Question). A real-valued discrete-time random
process x[n] consists of independent and identically
distributed (i. i. d.) random variables each with uniform density
on the interval [0, 6].

The process x[n] is applied to a linear time-invariant (LTI) system
with impulse response:

h[n] =

{(
2
3

)n
, n ≥ 0

0, n < 0
⋊⋉

The output of this linear system is denoted as y[n].

1. Calculate the output autocorrelation function ryy[ℓ].
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Calculating Input-Output Statistics

Example (Typical Question). A real-valued discrete-time random
process x[n] consists of independent and identically
distributed (i. i. d.) random variables each with uniform density
on the interval [0, 6].

The process x[n] is applied to a linear time-invariant (LTI) system
with impulse response:

h[n] =

{(
2
3

)n
, n ≥ 0

0, n < 0
⋊⋉

The output of this linear system is denoted as y[n].

1. Calculate the output autocorrelation function ryy[ℓ].

2. Suppose the i. i. d. process x[n] now has a Weibull distribution
with unit mean and variance of 3. Explain how your previous
result might change, justifying your answer.
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Calculating Input-Output Statistics

– End-of-Topic 56: Summary of methods for
calculating input-output statistics –

Any Questions?
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a
deterministic signal, there is a well-defined input signal
producing a well-defined output signal corresponding to a single
realisation of the output stochastic process:

y[n, ζ] =
∞∑

k=−∞
h[k] x[n− k, ζ]
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a
deterministic signal, there is a well-defined input signal
producing a well-defined output signal corresponding to a single
realisation of the output stochastic process:

y[n, ζ] =
∞∑

k=−∞
h[k] x[n− k, ζ]

A complete description of y[n, ζ] requires the computation of
an infinite number of convolutions, corresponding to each ζ.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 144/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a
deterministic signal, there is a well-defined input signal
producing a well-defined output signal corresponding to a single
realisation of the output stochastic process:

y[n, ζ] =
∞∑

k=−∞
h[k] x[n− k, ζ]

Thus, better to consider the statistical properties of y[n, ζ] in
terms of the statistical properties of the input and the system.
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LTI Systems with Stationary Inputs

To investigate the statistical input-output properties of a linear
system, note the following fundamental theorem:

Theorem (Expectation in Linear Systems). For any linear system,

E [L[x[n]]] = L[E [x[n]]]

♦
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LTI Systems with Stationary Inputs

To investigate the statistical input-output properties of a linear
system, note the following fundamental theorem:

Theorem (Expectation in Linear Systems). For any linear system,

E [L[x[n]]] = L[E [x[n]]]

In other words, for example, the mean µy[n] of the output y[n]
equals the response of the system to the mean µx[n] of the input:

µy[n] = L[µx[n]]

♦
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LTI Systems with Stationary Inputs

To investigate the statistical input-output properties of a linear
system, note the following fundamental theorem:

Theorem (Expectation in Linear Systems). For any linear system,

E [L[x[n]]] = L[E [x[n]]]

In other words, for example, the mean µy[n] of the output y[n]
equals the response of the system to the mean µx[n] of the input:

µy[n] = L[µx[n]]

However, the definition extends to other statistics as well. ♦
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LTI Systems with Stationary Inputs

To investigate the statistical input-output properties of a linear
system, note the following fundamental theorem:

Theorem (Expectation in Linear Systems). For any linear system,

E [L[x[n]]] = L[E [x[n]]]

In other words, for example, the mean µy[n] of the output y[n]
equals the response of the system to the mean µx[n] of the input:

µy[n] = L[µx[n]]

However, the definition extends to other statistics as well. ♦

Note, however, that while very useful, it is often more
practical to derive most equations from first principals.
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Input-output Statistics of a LTI System

If a stationary stochastic process x[n] with mean value µx and
correlation rxx[ℓ] is applied to the input of a LTI system with

impulse response h[n] and transfer function H
(
ejω
)
, then the:

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

A linear time-invariant (LTI) system.
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Input-output Statistics of a LTI System

If a stationary stochastic process x[n] with mean value µx and
correlation rxx[ℓ] is applied to the input of a LTI system with

impulse response h[n] and transfer function H
(
ejω
)
, then the:

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

A linear time-invariant (LTI) system.

Output mean value is given by:

µy = µx

∞∑

k=−∞
h[k] = µx H(ej0)
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output mean value is given by:

µy = µx

∞∑

k=−∞
h[k] = µx H(ej0)

This uses the linearity of the expectation operator:

µy[n] = E

[ ∞∑

k=−∞
h[k]x[n− k]

]

=
∞∑

k=−∞
h[k]E [x[n− k]]

and since x[n] is stationary, then E [x[n− k]] = µx.
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output mean value is given by:

µy = µx

∞∑

k=−∞
h[k] = µx H(ej0)

This uses the linearity of the expectation operator:

µy[n] = E

[ ∞∑

k=−∞
h[k]x[n− k]

]

=
∞∑

k=−∞
h[k]E [x[n− k]]

and since x[n] is stationary, then E [x[n− k]] = µx. Since µx

and H(ej0) are constant, µy is also constant.
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞
h∗[−k] rxx[ℓ− k]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞
h∗[−k] rxx[ℓ− k]

Similarly, ryx[ℓ] = h[ℓ] ∗ rxx[ℓ], and is easy to prove:
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞
h∗[−k] rxx[ℓ− k]

Similarly, ryx[ℓ] = h[ℓ] ∗ rxx[ℓ], and is easy to prove:

ryx[ℓ] = E [y[n] x∗[n− ℓ]]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞
h∗[−k] rxx[ℓ− k]

Similarly, ryx[ℓ] = h[ℓ] ∗ rxx[ℓ], and is easy to prove:

ryx[ℓ] = E [y[n] x∗[n− ℓ]]

= E

[ ∞∑

k=−∞
h[k] x[n− k] x∗[n− ℓ]

]
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LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞
h∗[−k] rxx[ℓ− k]

Similarly, ryx[ℓ] = h[ℓ] ∗ rxx[ℓ], and is easy to prove:

ryx[ℓ] = E [y[n] x∗[n− ℓ]]

=
∞∑

k=−∞
h[k]E [x[n− k] x∗[n− ℓ]]
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LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞
h∗[−k] rxx[ℓ− k]

Similarly, ryx[ℓ] = h[ℓ] ∗ rxx[ℓ], and is easy to prove:

ryx[ℓ] = E [y[n] x∗[n− ℓ]]

=
∞∑

k=−∞
h[k] rxx[ℓ− k] = h[ℓ] ∗ rxx[ℓ]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output autocorrelation is obtained by post-multiplying the
system-output by y∗[n− ℓ] and taking expectations:

ryy[ℓ] = E [y[n] y∗[n− ℓ]]

= E

[ ∞∑

k=−∞
h[k] x[n− k] y∗[n− ℓ]

]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output autocorrelation is obtained by post-multiplying the
system-output by y∗[n− ℓ] and taking expectations:

ryy[ℓ] = E [y[n] y∗[n− ℓ]]

= E

[ ∞∑

k=−∞
h[k] x[n− k] y∗[n− ℓ]

]

and applying the linearity of the expectation operator:

ryy[ℓ] =
∞∑

k=−∞
h[k] E [x[n− k] y∗[n− ℓ]] = h[ℓ] ∗ rxy[ℓ]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output autocorrelation is obtained by post-multiplying the
system-output by y∗[n− ℓ] and taking expectations:

ryy[ℓ] =
∞∑

k=−∞
h[k] E [x[n− k] y∗[n− ℓ]] = h[ℓ] ∗ rxy[ℓ]

Substituting the expression for rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] gives:
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output autocorrelation is obtained by post-multiplying the
system-output by y∗[n− ℓ] and taking expectations:

ryy[ℓ] =
∞∑

k=−∞
h[k] E [x[n− k] y∗[n− ℓ]] = h[ℓ] ∗ rxy[ℓ]

Substituting the expression for rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] gives:

ryy[ℓ] = h[ℓ] ∗ h∗[−ℓ] ∗ rxx[ℓ] = rhh[ℓ] ∗ rxx[ℓ]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output autocorrelation is obtained by post-multiplying the
system-output by y∗[n− ℓ] and taking expectations:

ryy[ℓ] = h[ℓ] ∗ h∗[−ℓ] ∗ rxx[ℓ] = rhh[ℓ] ∗ rxx[ℓ]

where rhh[ℓ] is the autocorrelation of the impulse response:

rhh[ℓ] , h[ℓ] ∗ h∗[−ℓ] =
∞∑

n=−∞
h[n] h∗[n− ℓ]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output autocorrelation is given by the expression:

ryy[ℓ] = h[ℓ] ∗ h∗[−ℓ] ∗ rxx[ℓ] = rhh[ℓ] ∗ rxx[ℓ]

where rhh[ℓ] is the autocorrelation of the impulse response:

rhh[ℓ] , h[ℓ] ∗ h∗[−ℓ] =
∞∑

n=−∞
h[n] h∗[n− ℓ]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output-power of the process y[n] is given by ryy[0] = E
[
|y[n] |2

]
,

and therefore since ryy[ℓ] = rhh[ℓ] ∗ rxx[ℓ],
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output-power of the process y[n] is given by ryy[0] = E
[
|y[n] |2

]
,

and therefore since ryy[ℓ] = rhh[ℓ] ∗ rxx[ℓ],

Pyy = rhh[ℓ] ∗ rxx[ℓ]|ℓ=0 =
∞∑

k=−∞
rhh[k] rxx[−k]
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output-power of the process y[n] is given by ryy[0] = E
[
|y[n] |2

]
,

and therefore since ryy[ℓ] = rhh[ℓ] ∗ rxx[ℓ],

Pyy = rhh[ℓ] ∗ rxx[ℓ]|ℓ=0 =
∞∑

k=−∞
rhh[k] rxx[−k]

Noting power, Pyy, is real, then taking complex-conjugates
using r∗xx[−ℓ] = rxx[ℓ]:

Pyy =
∞∑

k=−∞
r∗hh[k] rxx[k] =

∞∑

n=−∞
h∗[n]

∞∑

k=−∞
rxx[n+ k] h[k]



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 145/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output pdf It, in general, it is very difficult to calculate the pdf of
the output of a LTI system, except in special cases, namely
Gaussian processes.
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output pdf It is difficult to calculate the pdf of the output of a LTI
system, except in special cases, namely Gaussian processes.

Finally, note that the covariance sequences is just the
correlation sequences with the mean removed.

As a result, the covariance functions satisfy a set of equations
analogous to those derived above.
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Input-output Statistics of a LTI System

LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Output pdf It is difficult to calculate the pdf of the output of a LTI
system, except in special cases, namely Gaussian processes.

Finally, note that the covariance sequences is just the
correlation sequences with the mean removed.

As a result, the covariance functions satisfy these equations:

γyx[ℓ] = h[ℓ] ∗ γxx[ℓ]
γxy[ℓ] = h∗[−ℓ] ∗ γxx[ℓ]
γyy[ℓ] = h[ℓ] ∗ γxy[ℓ]

= h[ℓ] ∗ h∗[−ℓ] ∗ γxx[ℓ]
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

Calculate the mean, autocorrelation and autocovariance
sequences of the output, y[n], as well as the cross-correlation
and cross-covariance functions between the input and the
output. ⋊⋉
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

Calculate the mean, autocorrelation and autocovariance
sequences of the output, y[n], as well as the cross-correlation
and cross-covariance functions between the input and the
output.

SOLUTION. Output mean value First, calculate the mean.

µy = µx

∞∑

k=−∞
h[k] = µx

∞∑

k=0

ρk =
µx

1− ρ
�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Input-output cross-covariance Since the input and the
output both have nonzero mean, then it is easiest to first
calculate the auto- and cross-covariance functions, and then
use these to find the auto- and cross-correlation functions.
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Input-output cross-covariance Thus, the output-input
cross-covariance is given by:

γyx[ℓ] = h[ℓ] ∗ γxx[ℓ] =
(
ρℓu[ℓ]

)
∗
(
σ2
xδ[ℓ]

)
= σ2

xρ
ℓu[ℓ]

�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Input-output cross-covariance Thus, the output-input
cross-covariance is given by:

γyx[ℓ] = h[ℓ] ∗ γxx[ℓ] =
(
ρℓu[ℓ]

)
∗
(
σ2
xδ[ℓ]

)
= σ2

xρ
ℓu[ℓ]

The input-output cross-covariance is

γxy[ℓ] = γ∗
yx[−ℓ] = σ2

x(ρ
∗)−ℓu[−ℓ] �
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocovariance Next:

γyy[ℓ] = h[ℓ] ∗ γxy[ℓ] =
∞∑

k=−∞
h[k] γxy[ℓ− k]

�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocovariance Next:

γyy[ℓ] = h[ℓ] ∗ γxy[ℓ] =
∞∑

k=−∞
h[k] γxy[ℓ− k] �

The input-output cross-covariance sequence, γxy[ℓ], is plotted,
along with γxy[ℓ− k] as a function of k.
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocovariance Next:

γyy[ℓ] = h[ℓ] ∗ γxy[ℓ] =
∞∑

k=−∞
h[k] γxy[ℓ− k]

Hence, if ℓ > 0 it follows

γyy[ℓ] =
∞∑

k=ℓ

ρk σ2
x(ρ

∗)−(ℓ−k)

�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocovariance Hence, if ℓ > 0 it follows

γyy[ℓ] =
∞∑

k=ℓ

ρk σ2
x(ρ

∗)−(ℓ−k)

Substituting m = k − ℓ, so k = {ℓ, ∞} ⇒ m = {0, ∞}:

γyy[ℓ] = σ2
x

∞∑

m=0

ρℓ ρm (ρ∗)m
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocovariance Substituting m = k − ℓ, so
k = {ℓ, ∞} ⇒ m = {0, ∞}:

γyy[ℓ] = σ2
x

∞∑

m=0

ρℓ ρm (ρ∗)m

= σ2
xρ

ℓ
∞∑

m=0

(
|ρ|2
)m

=
σ2
xρ

ℓ

1− |ρ|2 , ℓ > 0

�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocovariance If ℓ ≤ 0, then the summation is
slightly different:

γyy[ℓ] =
∞∑

k=0

ρk σ2
x(ρ

∗)−(ℓ−k)

= σ2
x(ρ

∗)−ℓ
∞∑

k=0

(
|ρ|2
)k

=
σ2
x(ρ

∗)−ℓ

1− |ρ|2 , ℓ ≤ 0 �
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Input-output cross-correlation This can now be
calculated using the relationship:

rxy[ℓ] = γxy[ℓ] + µx µ
∗
y

�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Input-output cross-correlation This can now be
calculated using the relationship:

rxy[ℓ] = γxy[ℓ] + µx µ
∗
y

= σ2
x(ρ

∗)−ℓu[−ℓ] + µx
µ∗
x

1− ρ∗

�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Input-output cross-correlation This can now be
calculated using the relationship:

rxy[ℓ] = γxy[ℓ] + µx µ
∗
y

= σ2
x(ρ

∗)−ℓu[−ℓ] + µx
µ∗
x

1− ρ∗

= σ2
x(ρ

∗)−ℓu[−ℓ] +
|µx|2
1− ρ∗

�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocorrelation In a similar manner, the
autocorrelation of the output is given by:

ryy[ℓ] = γyy[ℓ] + |µy|2 =







σ2
xρ

ℓ

1−|ρ|2 +
∣
∣
∣

µx

1−ρ

∣
∣
∣

2

ℓ > 0

σ2
x(ρ

∗)−ℓ

1−|ρ|2 +
∣
∣
∣

µx

1−ρ

∣
∣
∣

2

ℓ ≤ 0
�
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocorrelation In a similar manner:

ryy[ℓ] = γyy[ℓ] + |µy|2 =







σ2
xρ

ℓ

1−|ρ|2 +
∣
∣
∣

µx

1−ρ

∣
∣
∣

2

ℓ > 0

σ2
x(ρ

∗)−ℓ

1−|ρ|2 +
∣
∣
∣

µx

1−ρ

∣
∣
∣

2

ℓ ≤ 0

Note that these results show that a process with the
exponential correlation function can always be generated by
applying white noise to a stable first-order system. �
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Input-output Statistics of a LTI System

Example (Simple example). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]

SOLUTION. Output autocorrelation In a similar manner:

ryy[ℓ] = γyy[ℓ] + |µy|2 =







σ2
xρ

ℓ

1−|ρ|2 +
∣
∣
∣

µx

1−ρ

∣
∣
∣

2

ℓ > 0

σ2
x(ρ

∗)−ℓ

1−|ρ|2 +
∣
∣
∣

µx

1−ρ

∣
∣
∣

2

ℓ ≤ 0

More generally, it will be seen that wide-sense stationary of
arbitrary autocorrelation sequence can be obtained by driving
a LTI system by WGN. �
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Input-output Statistics of a LTI System

– End-of-Topic 57: Calculating input-output
statistics in the time-domain with the system

impulse response –

Any Questions?
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Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?
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System identification

Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?

There are three key methods from our deterministic signal
analysis for system identification:



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 146/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

System identification

Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?

There are three key methods from our deterministic signal
analysis for system identification:

Impulse A simple input, but difficult to generate. The output is
y[n] = h[n], the system impulse response.
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System identification

Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?

There are three key methods from our deterministic signal
analysis for system identification:

Impulse A simple input, but difficult to generate. The output is
y[n] = h[n], the system impulse response.

Step input A simple to generate signal, with the output
y[n] =

∑n
k=0 h[k] being the step response. The impulse

response is obtained by taking the difference at the output.
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System identification

Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?

There are three key methods from our deterministic signal
analysis for system identification:

Impulse A simple input, but difficult to generate. The output is
y[n] = h[n], the system impulse response.

Step input A simple to generate signal, with the output
y[n] =

∑n
k=0 h[k] being the step response. The impulse

response is obtained by taking the difference at the output.

This is problematic, as the difference signal can lead to
errors when there is a small amount of noise in the signals.
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Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?

There are three key methods from our deterministic signal
analysis for system identification:

Harmonic input A simple to generate signal, x[n] = cosω0n,
leading to the output:

y[n] =
∣
∣H
(
ejω0

)∣
∣ cos

(
ω0n+ argH

(
ejω0

))
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System identification

Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?

There are three key methods from our deterministic signal
analysis for system identification:

Harmonic input A simple to generate signal, x[n] = cosω0n,
leading to the output:

y[n] =
∣
∣H
(
ejω0

)∣
∣ cos

(
ω0n+ argH

(
ejω0

))

By sweeping across frequencies, the magnitude and phase

response of H
(
ejω
)

can be calculated.
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System identification

Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

What signals might be used for System Identification?

There are three key methods from our deterministic signal
analysis for system identification:

Harmonic input A simple to generate signal, x[n] = cosω0n,
leading to the output:

y[n] =
∣
∣H
(
ejω0

)∣
∣ cos

(
ω0n+ argH

(
ejω0

))

By sweeping across frequencies, the magnitude and phase

response of H
(
ejω
)

can be calculated.

The inverse-DTFT can then be used to reconstruct the
impulse response, h[n].
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System identification

Unknown LTI
system, h[ ]n

White noise input

x n x n[ ] [ ]�=� z,

r l lxx[ ] [ ]=�d

y n y n[ ] [ ]�=� z,
Cross-

correlate

x n x n[ ] [ ]�=� z,

r l h lyx[ ] [ ]=

System identification by cross-correlation.

The input-output cross-correlation of a LTI system is the basis for
a classical method of identification of an unknown linear system.
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System identification

Unknown LTI
system, h[ ]n

White noise input

x n x n[ ] [ ]�=� z,

r l lxx[ ] [ ]=�d

y n y n[ ] [ ]�=� z,
Cross-

correlate

x n x n[ ] [ ]�=� z,

r l h lyx[ ] [ ]=

System identification by cross-correlation.

The input-output cross-correlation of a LTI system is the basis for
a classical method of identification of an unknown linear system.

The system is excited with a WGN input with ACS:

rxx[ℓ] = δ[ℓ]
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System identification

Unknown LTI
system, h[ ]n

White noise input

x n x n[ ] [ ]�=� z,

r l lxx[ ] [ ]=�d

y n y n[ ] [ ]�=� z,
Cross-

correlate

x n x n[ ] [ ]�=� z,

r l h lyx[ ] [ ]=

The input-output cross-correlation of a LTI system is the basis for
a classical method of identification of an unknown linear system.

The system is excited with a WGN input with ACS:

rxx[ℓ] = δ[ℓ]

Since the output-input cross-correlation can be written as:

ryx[ℓ] = h[ℓ] ∗ rxx[ℓ]



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 146/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

System identification

Unknown LTI
system, h[ ]n

White noise input

x n x n[ ] [ ]�=� z,

r l lxx[ ] [ ]=�d

y n y n[ ] [ ]�=� z,
Cross-

correlate

x n x n[ ] [ ]�=� z,

r l h lyx[ ] [ ]=

The input-output cross-correlation of a LTI system is the basis for
a classical method of identification of an unknown linear system.

The system is excited with a WGN input with ACS:

rxx[ℓ] = δ[ℓ]

Since the output-input cross-correlation can be written as:

ryx[ℓ] = h[ℓ] ∗ rxx[ℓ]

then, with rxx[ℓ] = δ[ℓ], it follows:

ryx[ℓ] = h[ℓ] ∗ δ[ℓ] = h[ℓ]
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System identification

As the input or excitation process is WGN, then the output is
WSS, and in many cases will be ergodic.
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System identification

As the input or excitation process is WGN, then the output is
WSS, and in many cases will be ergodic.

Hence, the cross-correlation (and therefore system impulse
response) can be estimated from a single realisation using the
sample cross-correlation function:

r̂yx[ℓ] =
1

N

N−1−|l|
∑

n=0

y[n+ |ℓ|] x[n] , |ℓ| < N

r̂′yx[ℓ] =
1

N − |l|

N−1−|ℓ|
∑

n=0

y[n+ |ℓ|] x[n] , |ℓ| < N

It is simple to generate an example in MATLAB.
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System identification

Example (Low-pass filter). A system is described by

y[n] = 2
3y[n− 1] + x[n], although this is not known to the

observer initially. By driving the system with WGN, calculate the
impulse response of the system through numerical simulation.
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System identification

Example (Low-pass filter). A system is described by

y[n] = 2
3y[n− 1] + x[n], although this is not known to the

observer initially. By driving the system with WGN, calculate the
impulse response of the system through numerical simulation.
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The theoretical impulse response h[n] =
(
2
3

)n
u[n] and the

time-averaged estimate of the cross-correlation R̂yx[ℓ].



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 146/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

System identification

– End-of-Topic 58: Application of
Cross-Correlation to System Identification –

Any Questions?
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LTV Systems with Nonstationary Inputs

General LTV system with nonstationary input

The input and output are related by the generalised convolution:

y(n) =

∞∑

k=−∞
h(n, k)x(k)

where h(n, k) is the response at time-index n to an impulse
occurring at the system input at time-index k.
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LTV Systems with Nonstationary Inputs

General LTV system with nonstationary input

The input and output are related by the generalised convolution:

y(n) =

∞∑

k=−∞
h(n, k)x(k)

where h(n, k) is the response at time-index n to an impulse
occurring at the system input at time-index k.

The mean, autocorrelation and autocovariance sequences of
the output, y(n), as well as the cross-correlation and
cross-covariance functions between the input and the output,
can be calculated in a similar way as for LTI systems with
stationary inputs.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 148/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Linear Transformations on Cross-correlation

Cross-correlation with respect to a third random process.

A random process x[n] is transformed by a linear
time-varying (LTV) system to produce another signal y[n].

The process x[n] is related to a third process z[n], and
rxz[n1, n2] is known. It is desirable to find ryz[n1, n2].
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Linear Transformations on Cross-correlation

Cross-correlation with respect to a third random process.

A random process x[n] is transformed by a LTV system to
produce another signal y[n].

The process x[n] is related to a third process z[n], and
rxz[n1, n2] is known. It is desirable to find ryz[n1, n2].

The response of the LTV system to x[n] is:

y[n] =
∑

k∈Z

h[n, k] x[k]
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Linear Transformations on Cross-correlation

Cross-correlation with respect to a third random process.

A random process x[n] is transformed by a LTV system to
produce another signal y[n].

The response of the LTV system to x[n] is:

y[n] =
∑

k∈Z

h[n, k] x[k]

Hence, multiplying both sides by z∗[m] and taking expectations:

ryz[n,m] =
∑

k∈Z

h[n, k] rxz[k,m] = h[n, k] ∗ rxz[k,m]
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Linear Transformations on Cross-correlation

The response of the LTV system to x[n] is:

y[n] =
∑

k∈Z

h[n, k] x[k]

Hence, multiplying both sides by z∗[m] and taking expectations:

ryz[n,m] =
∑

k∈Z

h[n, k] rxz[k,m] = h[n, k] ∗ rxz[k,m]

If the system is LTI, then this simplifies to:

ryz[ℓ] =
∑

k∈Z

h[k] rxz[ℓ− k] = h[ℓ] ∗ rxz[ℓ]
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Linear Transformations on Cross-correlation

– End-of-Topic 59: Analysis of LTV systems and
other special cases –

Any Questions?
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Analysis with Difference Equations
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Delay

S

Feed
Forward

Taps

Feedback
Taps

Difference-equation description of a LTI system.

A mathematically elegant analysis of stochastic systems comes
when a LTI system can be represented by difference equations.
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Analysis with Difference Equations

z
-1

z
-1

z
-1

z
-1

b1 b2 bQ

+
+

+

w[ ]n
w[ ]n-1 w[ ]n-2 w Q[ ]n-

z
-1

aP

z
-1

z
-1

z
-1

a2 a1

-

-
-

x[ ]n

x[ ]n-1x[ ]n-2x P[ ]n-

+

b0

Delay Delay Delay Delay

Delay Delay Delay Delay

a1

Delay

S

Feed
Forward

Taps

Feedback
Taps

Difference-equation description of a LTI system.

A mathematically elegant analysis of stochastic systems comes
when a LTI system can be represented by difference equations.

The difference equation offers an alternative representation of
the results that can sometimes be quite useful and important.
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Analysis with Difference Equations

A mathematically elegant analysis of stochastic systems comes
when a LTI system can be represented by difference equations.

The difference equation offers an alternative representation of
the results that can sometimes be quite useful and important.

It is possible to use a combination of methods, such as
taking the transfer function of a difference to find the
impulse response, and then use convolution.

The purpose of the difference equation approach is to do
the calculations in a single approach.
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Analysis with Difference Equations

A mathematically elegant analysis of stochastic systems comes
when a LTI system can be represented by difference equations.

The difference equation offers an alternative representation of
the results that can sometimes be quite useful and important.

Consider a LTI system that can be represented by:

y[n] = −
P∑

p=1

ap y[n− p] +

Q
∑

q=0

bq x[n− q]
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Analysis with Difference Equations

A mathematically elegant analysis of stochastic systems comes
when a LTI system can be represented by difference equations.

The difference equation offers an alternative representation of
the results that can sometimes be quite useful and important.

Consider a LTI system that can be represented by:

y[n] = −
P∑

p=1

ap y[n− p] +

Q
∑

q=0

bq x[n− q]

Assuming that both x[n] and y[n] are stationary processes,
then taking expectations of both sides gives:

µy =

∑Q
q=0 bq

1 +
∑P

p=1 ap
µx
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Analysis with Difference Equations

Assuming stationarity, then multiplying the system equation
throughout by y∗[n− ℓ] and taking expectations gives:

P∑

p=0

ap ryy[ℓ− p] =

Q
∑

q=0

bq rxy[ℓ− q]

where a0 , 1.
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Analysis with Difference Equations

Assuming stationarity, then multiplying the system equation
throughout by y∗[n− ℓ] and taking expectations gives:

P∑

p=0

ap ryy[ℓ− p] =

Q
∑

q=0

bq rxy[ℓ− q]

Similarly, instead multiply though by x∗[n− ℓ] to give:

P∑

p=0

ap ryx[ℓ− p] =

Q
∑

q=0

bq rxx[ℓ− q]

These equations may be used to solve for ryy[ℓ] and rxy[ℓ].
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Analysis with Difference Equations

Assuming stationarity, then multiplying the system equation
throughout by y∗[n− ℓ] and taking expectations gives:

P∑

p=0

ap ryy[ℓ− p] =

Q
∑

q=0

bq rxy[ℓ− q]

Similarly, instead multiply though by x∗[n− ℓ] to give:

P∑

p=0

ap ryx[ℓ− p] =

Q
∑

q=0

bq rxx[ℓ− q]

These equations may be used to solve for ryy[ℓ] and rxy[ℓ].

Note the statistics auto- and cross-correlation statistics satisfy
the original difference equations.
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Analysis with Difference Equations

Assuming stationarity, then multiplying the system equation
throughout by y∗[n− ℓ] and taking expectations gives:

P∑

p=0

ap ryy[ℓ− p] =

Q
∑

q=0

bq rxy[ℓ− q]

Similarly, instead multiply though by x∗[n− ℓ] to give:

P∑

p=0

ap ryx[ℓ− p] =

Q
∑

q=0

bq rxx[ℓ− q]

These equations may be used to solve for ryy[ℓ] and rxy[ℓ].

Note the statistics auto- and cross-correlation statistics satisfy
the original difference equations.

Similar expressions can be obtained for the covariance
sequences.
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z ⋊⋉

where w[n] ∼ N
(
µw, σ

2
w

)
is an i. i. d. WGN process.

Demonstrate that x[n] is stationary, and calculate µx.

Determine the autocovariance and autocorrelation sequences,
γxx[ℓ] and rxx[ℓ].
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

where w[n] ∼ N
(
µw, σ

2
w

)
is an i. i. d. WGN process.

Demonstrate that x[n] is stationary, and calculate µx.

Determine the autocovariance and autocorrelation sequences,
γxx[ℓ] and rxx[ℓ].

SOLUTION. The output of a LTI system with a stationary
input is always stationary. �
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

where w[n] ∼ N
(
µw, σ

2
w

)
is an i. i. d. WGN process.

Demonstrate that x[n] is stationary, and calculate µx.

Determine the autocovariance and autocorrelation sequences,
γxx[ℓ] and rxx[ℓ].

SOLUTION. The output of a LTI system with a stationary
input is always stationary.

It follows directly from the results above that:

µx =
µw

1− α
�
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Using the results for the input-output covariance:

γxx[ℓ]− αγxx[ℓ− 1] = γwx[ℓ]

γxw[ℓ]− α γxw[ℓ− 1] = γww[ℓ]

�
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Using the results for the input-output covariance:

γxx[ℓ]− αγxx[ℓ− 1] = γwx[ℓ]

γxw[ℓ]− α γxw[ℓ− 1] = γww[ℓ]

x[n] cannot depend on future w[n] ⇒ γxw[ℓ] = 0, ℓ < 0.
�
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Using the results for the input-output covariance:

γxx[ℓ]− αγxx[ℓ− 1] = γwx[ℓ]

γxw[ℓ]− α γxw[ℓ− 1] = γww[ℓ]

x[n] cannot depend on future w[n] ⇒ γxw[ℓ] = 0, ℓ < 0.

This is shown by evaluating rxw[ℓ] = E [x[n] w∗[n− ℓ]],
and noting that x[n] and w[n] are independent. �
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Using the results for the input-output covariance:

γxx[ℓ]− αγxx[ℓ− 1] = γwx[ℓ]

γxw[ℓ]− α γxw[ℓ− 1] = γww[ℓ]

x[n] cannot depend on future w[n] ⇒ γxw[ℓ] = 0, ℓ < 0.

If ℓ < 0, then w[n− ℓ] is a sample with time-index greater
than that of x[n], or in otherwords a future value. �
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Since γww[ℓ] = σ2
w δ[ℓ], the second of the

difference equations above becomes:

γxw[ℓ] =







α γxw[ℓ− 1] ℓ > 0

σ2
w ℓ = 0

0 ℓ < 0

�
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Since γww[ℓ] = σ2
w δ[ℓ], the second of the

difference equations above becomes:

γxw[ℓ] =







α γxw[ℓ− 1] ℓ > 0

σ2
w ℓ = 0

0 ℓ < 0

�

Solving for ℓ ≥ 0 gives by repeated substitution,

γxw[ℓ] = αℓ σ2
w, and zero for ℓ < 0.
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Since γwx[ℓ] = γ∗
xw[−ℓ], then the difference

equation for the autocovariance function of x[n] simplifies to:

γxx[ℓ]− αγxx[ℓ− 1] =

{

0 ℓ > 0

α−ℓ σ2
w ℓ ≤ 0

�



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 149/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Since γwx[ℓ] = γ∗
xw[−ℓ], then :

γxx[ℓ]− αγxx[ℓ− 1] =

{

0 ℓ > 0

α−ℓ σ2
w ℓ ≤ 0

Note the solution for ℓ > 0 is the solution of the
homogeneous equation. �
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Since γwx[ℓ] = γ∗
xw[−ℓ], then :

γxx[ℓ]− αγxx[ℓ− 1] =

{

0 ℓ > 0

α−ℓ σ2
w ℓ ≤ 0

Hence, since γxx[ℓ] = γxx[−ℓ] for a real process, then this
equation is solved by assuming the solution:

γxx[ℓ] = aα|ℓ| + b

�
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Assuming the solution:

γxx[ℓ] = aα|ℓ| + b

a and b can be found by substituting the proposed solution
for ℓ ≤ 0 into the difference equation:

aα−ℓ + b− α
(

aα−(ℓ−1) + b
)

= α−ℓ σ2
w

α−ℓ
(
1− α2

)
a+ (1− α) b = α−ℓ σ2

w

�
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Assuming the solution:

γxx[ℓ] = aα|ℓ| + b

from which it directly follows that b = 0 and

a = σ2
x =

σ2
w

1−α2 , corresponding to the case when ℓ = 0. �
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Hence, in conclusion

γxx[ℓ] =
σ2
w

1− α2
α|ℓ|

�
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Analysis with Difference Equations

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z

Determine γxx[ℓ] and rxx[ℓ].

SOLUTION. Hence, in conclusion

γxx[ℓ] =
σ2
w

1− α2
α|ℓ|

Using the relationship that rxx[ℓ] = γxx[ℓ] + µ2
x, it follows that

the output auto-correlation is given by:

rxx[ℓ] =
σ2
w

1− α2
α|ℓ| +

µ2
w

(1− α)2
�
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Analysis with Difference Equations

– End-of-Topic 60: Analysis of input-output
statistics using difference equation approach

–

Any Questions?
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Frequency-Domain Analysis of LTI systems

Now consider how a LTI transformation affects the power spectra
and complex spectra of a stationary random process.

LTI system with WSS input.
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Frequency-Domain Analysis of LTI systems

Now consider how a LTI transformation affects the power spectra
and complex spectra of a stationary random process.

LTI system with WSS input.

Taking the DTFT of the time-domain relationships for the
input-output statistics in terms of the system impulse response
leads to the following spectral densities:
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Frequency-Domain Analysis of LTI systems

Now consider how a LTI transformation affects the power spectra
and complex spectra of a stationary random process.

LTI system with WSS input.

Taking the DTFT of the time-domain relationships for the
input-output statistics in terms of the system impulse response
leads to the following spectral densities:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] ⇒ Pxy(e
jω) = H∗(ejω)Pxx(e

jω)

ryx[ℓ] = h[ℓ] ∗ rxx[ℓ] ⇒ Pyx(e
jω) = H(ejω)Pxx(e

jω)

ryy[ℓ] = h∗[−ℓ] ∗ h[ℓ] ∗ rxx[ℓ] ⇒ Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω)
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Frequency-Domain Analysis of LTI systems

Taking the DTFT of the time-domain relationships :

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] ⇒ Pxy(e
jω) = H∗(ejω)Pxx(e

jω)

ryx[ℓ] = h[ℓ] ∗ rxx[ℓ] ⇒ Pyx(e
jω) = H(ejω)Pxx(e

jω)

ryy[ℓ] = h∗[−ℓ] ∗ h[ℓ] ∗ rxx[ℓ] ⇒ Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω)

If the input and output autocorrelations or autospectral
densities are known, the magnitude response of a system
|H(ejω)| can be determined, but not the phase response.
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Frequency-Domain Analysis of LTI systems

Taking the DTFT of the time-domain relationships :

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] ⇒ Pxy(e
jω) = H∗(ejω)Pxx(e

jω)

ryx[ℓ] = h[ℓ] ∗ rxx[ℓ] ⇒ Pyx(e
jω) = H(ejω)Pxx(e

jω)

ryy[ℓ] = h∗[−ℓ] ∗ h[ℓ] ∗ rxx[ℓ] ⇒ Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω)

If the input and output autocorrelations or autospectral
densities are known, the magnitude response of a system
|H(ejω)| can be determined, but not the phase response.

Only cross-spectral information can help determine phase.
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Frequency-Domain Analysis of LTI systems

A set of similar relations can be derived for the complex
spectral density function.
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Frequency-Domain Analysis of LTI systems

Specifically, if: h[ℓ]
z
⇋ H (z), then:

h∗[−ℓ]
z
⇋ H∗ (1/z∗)
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Frequency-Domain Analysis of LTI systems

Specifically, if: h[ℓ]
z
⇋ H (z), then:

h∗[−ℓ]
z
⇋ H∗ (1/z∗)

Therefore, the input output relationships:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ]
ryx[ℓ] = h[ℓ] ∗ rxx[ℓ]
ryy[ℓ] = h[ℓ] ∗ rxy[ℓ]

= h[ℓ] ∗ h∗[−ℓ] ∗ rxx[ℓ]
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Frequency-Domain Analysis of LTI systems

Specifically, if: h[ℓ]
z
⇋ H (z), then:

h∗[−ℓ]
z
⇋ H∗ (1/z∗)

Transform to the spectral relationships:

Pxy(z) = H∗ (1/z∗) Pxx(z)

Pyx(z) = H(z)Pxx(z)

Pyy(z) = H(z)Pxy(z)

Pyy(z) = H(z)H∗ (1/z∗) Pxx(z)
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Frequency-Domain Analysis of LTI systems

Pxy(z) = H∗ (1/z∗) Pxx(z)

Pyx(z) = H(z)Pxx(z)

Pyy(z) = H(z)Pxy(z)

Pyy(z) = H(z)H∗ (1/z∗) Pxx(z)

Note that Pyy(z) satisfies the required property for a complex
spectral density function, namely that Pyy(z) = P ∗

yy (1/z
∗).
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Frequency-Domain Analysis of LTI systems

Pxy(z) = H∗ (1/z∗) Pxx(z)

Pyx(z) = H(z)Pxx(z)

Pyy(z) = H(z)Pxy(z)

Pyy(z) = H(z)H∗ (1/z∗) Pxx(z)

Note that Pyy(z) satisfies the required property for a complex
spectral density function, namely that Pyy(z) = P ∗

yy (1/z
∗).

Also, note the following result for real filters that make the
above equations simplify accordingly.
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Frequency-Domain Analysis of LTI systems

Pxy(z) = H∗ (1/z∗) Pxx(z)

Pyx(z) = H(z)Pxx(z)

Pyy(z) = H(z)Pxy(z)

Pyy(z) = H(z)H∗ (1/z∗) Pxx(z)

Note that Pyy(z) satisfies the required property for a complex
spectral density function, namely that Pyy(z) = P ∗

yy (1/z
∗).

Also, note the following result for real filters that make the
above equations simplify accordingly.

Theorem (Transfer function for a real filter). For a real filter:

h[−ℓ]
z
⇋ H∗

(
1

z∗

)

= H(z−1) ♦
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. The impulse response h[n] = ρnu[n] has system
transfer function:

H (z) =
1

1− ρ z−1
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Since γxx[ℓ] = σ2
xδ[ℓ], then:

rxx[ℓ] = γxx[ℓ] + µ2
x = σ2

xδ[ℓ] + |µx|2
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Since γxx[ℓ] = σ2
xδ[ℓ], then:

rxx[ℓ] = γxx[ℓ] + µ2
x = σ2

xδ[ℓ] + |µx|2

Taking z-transforms gives:

Pxx (z) = σ2
x + 2π|µx|2δ(z − ej0)

= σ2
x + 2π|µx|2δ(z − 1)
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Hence, the complex cross-spectral density is:

Pxy(z) = H∗ (1/z∗) Pxx(z)
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Hence, the complex cross-spectral density is:

Pxy(z) = H∗ (1/z∗) Pxx(z)

=

(

1

1− ρ
[

1
z∗

]−1

)∗
[
σ2
x + 2π|µx|2δ(z − 1)

]
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Hence, the complex cross-spectral density is:

Pxy(z) = H∗ (1/z∗) Pxx(z)

=

(

1

1− ρ
[

1
z∗

]−1

)∗
[
σ2
x + 2π|µx|2δ(z − 1)

]

=
σ2
x

1− ρ∗z
+

2π|µx|2
1− ρ∗z

δ(z − 1)
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Moreover, the complex spectral density is given by:

Pyy (z) = H (z) Pxy (z)
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Moreover, the complex spectral density is given by:

Pyy (z) = H (z) Pxy (z)

=

(
1

1− ρz−1

)(
1

1− ρ∗z

)
[
σ2
x + 2π|µx|2δ(z − 1)

]
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Moreover, the complex spectral density is given by:

Pyy (z) = H (z) Pxy (z)

=

(
1

1− ρz−1

)(
1

1− ρ∗z

)
[
σ2
x + 2π|µx|2δ(z − 1)

]

=
σ2
x

1− |ρ|2
1− |ρ|2

(1− ρz−1) (1− ρ∗z)
+

2π|µx|2
|1− ρ|2

δ(z − 1)
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. The CPSD and PSD are found by setting z = ejω:

Pxy(e
jω) =

σ2
x

1− ρ∗ejω
+

2π|µx|2
1− ρ∗ejω

δ(ejω − 1)
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. The CPSD and PSD are found by setting z = ejω:

Pxy(e
jω) =

σ2
x

1− ρ∗ejω
+

2π|µx|2
1− ρ∗ejω

δ(ejω − 1)

Moreover, the PSD is given by:

Pyy(e
jω) =

σ2
x

1− |ρ|2
1− |ρ|2

1 + |ρ|2 − 2|ρ| cos(ω − arg ρ)
+
2π|µx|2
|1− ρ|2

δ(ejω−1)
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Taking inverse z-transforms gives the output ACS:

ryy[ℓ] =
σ2
x

1− |ρ|2 ρ|ℓ| +
|µx|2

|1− ρ|2

�
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Frequency-Domain Analysis of LTI systems

Example (Simple Example: ). The LTI system is driven by a process
with mean µx and covariance sequence γxx[ℓ] = σ2

x δ[ℓ].
Calculate the PSD, CPSD and the complex spectral densities.

SOLUTION. Taking inverse z-transforms gives the output ACS:

ryy[ℓ] =
σ2
x

1− |ρ|2 ρ|ℓ| +
|µx|2

|1− ρ|2
�

This matches the solutions found using: the impulse response
approach, or the difference equation approach.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•Calculating Input-Output

Statistics
•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Linear Transformations on

Cross-correlation

- p. 150/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is applied to
the input of a system with output s[n] which is characterised by:

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

⋊⋉
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is applied to
the input of a system with output s[n] which is characterised by:

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Show that the cross-power spectral density is given by:

Psy(z) =
σ2
x

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}

⋊⋉
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is applied to
the input of a system with output s[n] which is characterised by:

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Show that the cross-power spectral density is given by:

Psy(z) =
σ2
x

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}

⋊⋉

Hence, find the cross-covariance sequence, γsy[ℓ], between the
output, s[n], and the input y[n].
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is applied to
the input of a system with output s[n] which is characterised by:

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Show that the cross-power spectral density is given by:

Psy(z) =
σ2
x

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}

Hence, find the cross-covariance sequence, γsy[ℓ], between the
output, s[n], and the input y[n].

The following bilateral z-transform might be useful:

ℓ aℓ u[ℓ]
z
⇋

a z−1

(1− a z−1)
2 , |a| < 1 ⋊⋉

where u[ℓ] = 1 if ℓ ≥ 0 and zero otherwise.
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Show that the cross-power spectral density is given by:

Psy(z) =
σ2
x

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}

Hence, find γsy[ℓ].

SOLUTION. The cross-complex spectral density at the output:

Psy (z) = G (z) Pyy (z) �

where G (z) is the transfer function of the system.
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Show that the cross-power spectral density is given by:

Psy(z) =
σ2
x

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}

Hence, find γsy[ℓ].

SOLUTION. By taking z-transforms:

G (z) =
1 + z−1

1− ρz−1

�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Show that the cross-power spectral density is given by:

Psy(z) =
σ2
x

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}

Hence, find γsy[ℓ].

SOLUTION. Using the expression for Pyy (z):

Psy(z) = G(z)Pyy(z) =
1 + z−1

1− ρz−1

σ2
x

(1− ρ z−1) (1− ρ z)
�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. The term in the curly brackets can be simplified:

1 + z−1

(1− ρ z−1) (1− ρ z)
=

z + 1

(z − ρ) (1− ρ z)
=

A

z − ρ
+

B

1− ρ z

�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. The term in the curly brackets can be simplified:

1 + z−1

(1− ρ z−1) (1− ρ z)
=

z + 1

(z − ρ) (1− ρ z)
=

A

z − ρ
+

B

1− ρ z

Using the cover-up rule to find:

A: × by z − ρ & set z − ρ = 0; =
z + 1

(1− ρ z)
= A+(z − ρ)

B

1− ρ z
︸ ︷︷ ︸

=0

�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. The term in the curly brackets can be simplified:

1 + z−1

(1− ρ z−1) (1− ρ z)
=

z + 1

(z − ρ) (1− ρ z)
=

A

z − ρ
+

B

1− ρ z

Using the cover-up rule to find:

B: × by 1− ρ z & set 1− ρ z = 0; =
z + 1

(z − ρ)
= (1− ρ z)

A

z − ρ
︸ ︷︷ ︸

=0

+B

�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. The term in the curly brackets can be simplified:

1 + z−1

(1− ρ z−1) (1− ρ z)
=

z + 1

(z − ρ) (1− ρ z)
=

A

z − ρ
+

B

1− ρ z

Using the cover-up rule to find:

A =
z + 1

1− ρ z

∣
∣
∣
∣
z=ρ

=
1 + ρ

1− ρ2
=

1

1− ρ

B =
z + 1

z − ρ

∣
∣
∣
∣
z= 1

ρ

=
1 + ρ

1− ρ2
=

1

1− ρ
= A
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. Hence, the cross-complex spectral density is:

Psy (z) =
σ2
w

1− ρz−1

1

1− ρ

{
1

z − ρ
+

1

1− ρ z

}

�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. Hence, the cross-complex spectral density is:

Psy (z) =
σ2
w

1− ρz−1

1

1− ρ

{
1

z − ρ
+

1

1− ρ z

}

=
σ2
w

1− ρ

{

1

ρ

ρz−1

(1− ρ z−1)2
+

1

1− ρ2
1− ρ2

(1− ρ z) (1− ρ z−1)

}

�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. Hence, the cross-complex spectral density is:

Psy (z) =
σ2
w

1− ρz−1

1

1− ρ

{
1

z − ρ
+

1

1− ρ z

}

=
σ2
w

1− ρ

{

1

ρ

ρz−1

(1− ρ z−1)2
+

1

1− ρ2
1− ρ2

(1− ρ z) (1− ρ z−1)

}

�

Hence, taking inverse-z-transforms gives the cross-covariance:
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. Hence, taking inverse-z-transforms gives the
cross-covariance:

γsy[ℓ] =
σ2
w

1− ρ

{
ℓ

ρ
ρℓ u[ℓ] +

1

1− ρ2
ρ|ℓ|
}

�
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Frequency-Domain Analysis of LTI systems

Example (Partial Fractions Example). The signal y[n] is :

s[n] = ρ s[n− 1] + y[n] + y[n− 1]

Hence, find γsy[ℓ].

SOLUTION. Hence, taking inverse-z-transforms gives the
cross-covariance:

γsy[ℓ] =
σ2
w

1− ρ

{
ℓ

ρ
ρℓ u[ℓ] +

1

1− ρ2
ρ|ℓ|
}

To find the cross-correlation requires the addition of the
mean components as before.

To find the output auto-correlation requires substantially
more work, and this is left as an exercise to the reader! �
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Frequency-Domain Analysis of LTI systems

– End-of-Topic 61: Frequency-domain analysis
of input-output statistics –

Any Questions?
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Introduction

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛
☞ ✌ ✄ ✍ ✁

✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Source localisation and BSS.
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Introduction

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Humans turn their head in the direction of interest in order
to reduce interference from other directions; joint detection,

localisation, and enhancement.
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Introduction

This research tutorial is intended to cover a wide range of
aspects which link acoustic source localisation (ASL) and
blind source separation (BSS).

This tutorial is being continually updated, and feedback is
welcomed. The documents published on the USB stick may
differ to the slides presented on the day.

The latest version of this document can be found online and
downloaded at:

http://mod-udrc.org/events/2016-summer-school

Thanks to Xionghu Zhong and Ashley Hughes for borrowing
some of their diagrams from their dissertations.

http://mod-udrc.org/events/2016-summer-school
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Structure of the Tutorial

Recommended Texts

Conceptual link between ASL and BSS.

Geometry of source localisation.

Spherical and hyperboloidal localisation.

Estimating TDOAs.

Steered beamformer response function.

Multiple target localisation using BSS.

Conclusions.
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Recommended Texts

Recommended book chapters and the references therein.

Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and
Source Localization,” in Springer Handbook of Speech
Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp.
1043–1063, , Springer, 2008.
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Recommended Texts

Recommended book chapters and the references therein.

Chapter 8: DiBiase J. H., H. F. Silverman, and
M. S. Brandstein, “Robust Localization in Reverberant
Rooms,” in Microphone Arrays by M. Brandstein and D. Ward,
pp. 157–180, , Springer Berlin Heidelberg, 2001.
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Recommended Texts

Recommended book chapters and the references therein.

Chapter 10 of Wolfel M. and J. McDonough, Distant Speech
Recognition, Wiley, 2009.

IDENTIFIERS – Hardback, ISBN13: 978-0-470-51704-8
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Recommended Texts

Some recent PhD thesis on the topic include:

Zhong X., “Bayesian framework for multiple acoustic source
tracking,” Ph.D. thesis, University of Edinburgh, 2010.

Pertila P., “Acoustic Source Localization in a Room Environment
and at Moderate Distances,” Ph.D. thesis, Tampere University
of Technology, 2009.

Fallon M., “Acoustic Source Tracking using Sequential Monte
Carlo,” Ph.D. thesis, University of Cambridge, 2008.
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Why Source Localisation?

A number of blind source separation (BSS) techniques rely on
knowledge of the desired source position:

1. Look-direction in beamforming techniques.

2. Camera steering for audio-visual BSS (including Robot
Audition).

3. Parametric modelling of the mixing matrix.

Equally, a number of multi-target acoustic source
localisation (ASL) techniques rely on BSS.
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ASL Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.
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ASL Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

Most ASL algorithms are designed assuming there is no
reverberation present, the free-field assumption.
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ASL Methodology

An uniform linear array (ULA) of microphones.

Typically, this acoustic sensor is a microphone; will primarily
consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.
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ASL Methodology

An ULA of microphones.

Typically, this acoustic sensor is a microphone; will primarily
consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.

Other measurement types include:

range difference measurements;

interaural level difference;

joint TDOA and vision techniques.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

- p. 157/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

ASL Methodology

Another sensor modality might include acoustic vector
sensors (AVSs) which measure both air pressure and air
velocity. Useful for applications such as sniper localisation.

An acoustic vector sensor.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

any localisation scheme relying upon an application of the
signal correlation matrix.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

any localisation scheme relying upon an application of the
signal correlation matrix.

3. approaches employing TDOA information.

source locations calculated from a set of TDOA estimates
measured across various combinations of microphones.
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Source Localization Strategies

Spectral-estimation approaches See Stephan Weiss’s talk :-)

TDOA-based estimators Computationally cheap, but suffers in the
presence of noise and reverberation.

SBF approaches Computationally intensive, superior performance
to TDOA-based methods. However, possible to dramatically
reduce computational load.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

Suppose there is a:

sensor array consisting of N microphones located at positions
mi ∈ R

3, for i ∈ {0, . . . , N − 1},

M talkers (or targets) at positions xk ∈ R
3, for

k ∈ {0, . . . ,M − 1}.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The TDOA between the microphones at position mi and mj due
to a source at xk can be expressed as:

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

where c is the speed of sound, which is approximately 344 m/s.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The distance from the target at xk to the sensor located at mi

will be defined by Dik, and is called the range.

Tij (xk) =
1

c
(Dik −Djk)
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Ideal Free-field Model

In an anechoic free-field acoustic environment, the signal
from source k, denoted by sk(t), propagates to the i-th sensor
at time t according to the expression:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.
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Ideal Free-field Model

In an anechoic free-field acoustic environment, the signal
from source k, denoted by sk(t), propagates to the i-th sensor
at time t according to the expression:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.

The TDOA between the i-th and j-th microphone is given by:

τijk = τik − τjk = T (mi, mj , xk)
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, vij =
mi+mj

2 .

(xk − vij)
T
Vij (xk − vij) = 1
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, vij =
mi+mj

2 .

(xk − vij)
T
Vij (xk − vij) = 1

For source with a large source-range to
microphone-separation ratio, the hyperboloid may be
well-approximated by a cone with a constant direction angle
relative to the axis of symmetry.

φij = cos−1

(
c T (mi, mj , xk)

|mi −mj |

)
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TDOA and Hyperboloids

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

Hyperboloid of two sheets

x2

a2
+

y2

b2
+

z2

c2
= −1
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TDOA and Hyperboloids

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

Hyperboloid, for a microphone separation of d = 0.1, and a

time-delay of τij =
d
4c .
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.

An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Spherical Least Squares Error Function

Suppose the first microphone is located at the origin of the

coordinate system, such that m0 =
[

0 0 0
]T

.

The range from target k to sensor i can be expressed as :

Dik = D0k +Dik −D0k

= Rs + c Ti0 (xk)

where Rsk = |xk| is the range to the first microphone which is
at the origin.
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Spherical Least Squares Error Function

In practice, the observations are the TDOAs and, given Rsk,
these ranges can be considered the measurement ranges.

Of course, knowing Rsk is half the solution, but it is just one
unknown at this stage.

D1

D2

D c1 2 12-D �=� t

Range and TDOA relationship.
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Ri = |mi| is the distance of the i-th microphone to the origin.
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

- p. 163/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)

=
1

2

{(

Rs + c T̂i0

)2

−
(
R2

s − 2mT
i xk +R2

i

)
}
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)

=
1

2

{(

Rs + c T̂i0

)2

−
(
R2

s − 2mT
i xk +R2

i

)
}

= mT
i xk + cRs T̂i0 +

1

2

(

c2T̂ 2
i0 −R2

i

)
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Spherical Least Squares Error Function

Concatenating the error functions for each microphone gives
the expression:

ǫik = Axk − (bk −Rskdk)
︸ ︷︷ ︸

vk

≡
[

A dk

]

︸ ︷︷ ︸

Sk

[

xk

Rsk

]

︸ ︷︷ ︸

θk

−bk

where

A =







mT
0

...

mT
N−1






, d = c







T̂00

...

T̂(N−1)0






, bk =

1

2







c2T̂ 2
00 −R2

0

...

c2T̂ 2
(N−1)0 −R2

N−1






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Spherical Least Squares Error Function

The LSE can then be obtained by using J = ǫTi ǫi :

J(xk) = (Axk − (bk − Rsk dk))
T (Axk − (bk −Rsk dk))

J (xk, θk) = (Skθk − bk)
T
(Skθk − bk)
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Spherical Least Squares Error Function

The LSE can then be obtained by using J = ǫTi ǫi :

J(xk) = (Axk − (bk − Rsk dk))
T (Axk − (bk −Rsk dk))

J (xk, θk) = (Skθk − bk)
T
(Skθk − bk)

Note that as Rsk = |xk|, these parameters aren’t independent.
Therefore, the problem can either be formulated as:

a nonlinear least-squares problem in xk;

a linear minimisation subject to quadratic constraints:

θ̂k = argmin
θk

(Skθk − bk)
T (Skθk − bk)

subject to the constraint

θk ∆θk = 0 where ∆ = diag [1, 1, 1, −1]
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Two-step Spherical LSE Approaches

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in xk assuming the range to the target,
Rsk, is known;

2. and then solving for Rsk given an estimate of xk i. t. o. Rsk.
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Two-step Spherical LSE Approaches

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in xk assuming the range to the target,
Rsk, is known;

2. and then solving for Rsk given an estimate of xk i. t. o. Rsk.

Assuming an estimate of Rsk this can be solved as

x̂k = A† vk = A†
(

bk − R̂skdk

)

where A† =
[

ATA
]−1

AT

Note that A† is the pseudo-inverse of A.
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0

The unique, real, positive root is taken as the spherical
intersection (SX) estimator of the source range. Hence, the
estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.
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Spherical Interpolation Estimator

The spherical interpolation (SI) estimator again uses the
spherical least squares error (LSE) function, but this time the
range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting the LSE gives:

ǫik = A
[

ATA
]−1

AT
(

bk − R̂skdk

)

− (bk −Rsk dk)
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting the LSE gives:

ǫik = A
[

ATA
]−1

AT
(

bk − R̂skdk

)

− (bk −Rsk dk)

Defining the projection matrix as PA = IN −A
[

ATA
]−1

AT ,

ǫik = Rsk PAdk −PAbk
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Defining the projection matrix as PA = IN −A
[

ATA
]−1

AT ,

ǫik = Rsk PAdk −PAbk

Minimising the LSE using the normal equations gives:

Rsk =
dT
kPAbk

dT
k PAdk
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting back into the LSE for the target position gives the
final estimator:

x̂k = A†
(

IN − dk
dT
kPA

dT
k PAdk

)

bk

This approach is said to perform better, but is computationally
slightly more complex than the SX estimator.
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Other Approaches

There are several other approaches to minimising the spherical
LSE function .

In particular, the linear-correction LSE solves the constrained
minimization problem using Lagrange multipliers in a two
stage process.

For further information, see: Huang Y., J. Benesty, and
J. Chen, “Time Delay Estimation and Source Localization,” in
Springer Handbook of Speech Processing by J. Benesty,
M. M. Sondhi, and Y. Huang, pp. 1043–1063, , Springer, 2008.
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Hyperbolic Least Squares Error Function

If a TDOA is estimated between two microphones i and j,
then the error between this and modelled TDOA is:

ǫij(xk) = τijk − T (mi, mj , xk)

The total error as a function of target position

J(xk) =
N∑

i=1

N∑

j 6=i=1

(τijk − T (mi, mj , xk))
2

Unfortunately, since T (mi, mj , xk) is a nonlinear function of
xk, the minimum LSE does not possess a closed-form solution.
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Linear Intersection Method

The linear intersection (LI) algorithm works by utilising a sensor
quadruple with a common midpoint, which allows a bearing line
to be deduced from the intersection of two cones.

mj1 mj2

mj4

mj3

yj

xj

zj

aj

bj

gj

I’j

Quadruple sensor arrangement and local Cartesian
coordinate system.
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Linear Intersection Method

Given the bearing lines, it is possible to calculate the points sij
and sji on two bearing lines which give the closest
intersection. This is basic gemoentry.

The trick is to note that given these points sij and sji, the
theoretical TDOA, T (m1i, m2i, sij), can be compared with
the observed TDOA.

mi

x (m)mj

Ii

Ij

sij

sji

dij

Calculating the points of closest intersection.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

fail when room reverberation is high;

focus of current research is on combating the effect of
room reverberation.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

AED Algorithm Approaches the TDOA estimation approach from a
different point of view from the traditional GCC method.

adopts a reverberant rather than free-field model;

computationally more expensive than GCC;

can fail when there are common-zeros in the room impulse
response (RIR).
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

=

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

where the CPSD is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
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CPSD for Free-Field Model

For the free-field model , it follows that for i 6= j:

Pxixj
(ω) = E [Xj (ω)Xj (ω)]

= E
[(
αik Sk (ω) e

−jω τik +Bik (ω)
) (

αjk Sk (ω) e
−jω τkk +Bjk (ω)

)]

= αikαjke
−jω T (mi,mj ,xk)E

[

|Sk (ω)|2
]

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0.
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CPSD for Free-Field Model

For the free-field model , it follows that for i 6= j:

Pxixj
(ω) = E [Xj (ω)Xj (ω)]

= E
[(
αik Sk (ω) e

−jω τik +Bik (ω)
) (

αjk Sk (ω) e
−jω τkk +Bjk (ω)

)]

= αikαjke
−jω T (mi,mj ,xk)E

[

|Sk (ω)|2
]

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0.

In particular, note that it follows:

∠Pxixj
(ω) = −jω T (mi, mj , xk)

In otherwords, all the TDOA information is conveyed in the
phrase rather than the amplitude of the CPSD. This therefore
suggests that the weighting function can be chosen to remove
the amplitude information.



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

- p. 173/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

GCC Processors

Processor Name Frequency Function

Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1

√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)

Pn1n1 (e
jωTs)Pn2n2 (e

jωTs)

Hannon-Thomson or ML

∣
∣γx1x2

(
ejωTs

)∣
∣
2

|Px1x2 (e
jωTs)|

(

1− |γx1x2 (e
jωTs)|2

)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence

function
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GCC Processors

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)| |Px1x2

(
ejωTs

)
|ej∠Px1x2(e

jωTs) ejℓωT dω

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(e
jωTs)) dω

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))

= δ(ℓ Ts − T (mi, mj , xk))



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

- p. 173/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

GCC Processors

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)| |Px1x2

(
ejωTs

)
|ej∠Px1x2(e

jωTs) ejℓωT dω

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(e
jωTs)) dω

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))

= δ(ℓ Ts − T (mi, mj , xk))

In the absence of reverberation, the GCC-PHAT algorithm
gives an impulse at a lag given by the TDOA divided by the
sampling period.
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GCC Processors
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Normal cross-correlation and GCC-PHAT functions for a
frame of speech.
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GCC Processors
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The effect of reverberation and noise on the GCC-PHAT can
lead to poor TDOA estimates.
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Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
identification problem, which then seeks to identify the channel
coefficients corresponding to the direct path elements.
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Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
identification problem, which then seeks to identify the channel
coefficients corresponding to the direct path elements.

Suppose that the acoustic impulse response (AIR) between
source k and i is given by hik[n] such that

xik[n] =

∞∑

m=−∞
hik[n−m] sk[m] + bik[n]

then the TDOA between microphones i and j is:

τijk =

{

argmax
ℓ

|hik[ℓ]|
}

−
{

argmax
ℓ

|hjk[ℓ]|
}

This assumes a minimum-phase system, but can easily be
made robust to a non-minimum-phase system.
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Adaptive Eigenvalue Decomposition
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A typical room acoustic impulse response.

Reverberation plays a major role in ASL and BSS.

Consider reverberation as the sum total of all sound
reflections arriving at a certain point in a room after room has
been excited by impulse.
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Adaptive Eigenvalue Decomposition

Early and late reflections in an AIR.

Trivia: Perceive early reflections to reinforce direct sound, and
can help with speech intelligibility. It can be easier to hold a
conversation in a closed room than outdoors
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Adaptive Eigenvalue Decomposition

Room transfer functions are often nonminimum-phase since
there is more energy in the reverberant component of the RIR
than in the component corresponding to direct path.

Sound
Source

Reflected Paths

Direct Path

Received
Sound

θk

Demonstrating nonminimum-phase properties

Therefore AED will need to consider multiple peaks in the
estimated AIR.
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Direct Localisation Methods

Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω

Taking expectations, Φpq

(
ejωTs

)
= Wp

(
ejωTs

)
W ∗

q

(
ejωTs

)

E [S (x̂)] =
N∑

p=1

N∑

q=1

∫

Ω

Φpq

(
ejωTs

)
Pxpxq

(
ejωTs

)
ejωτ̂pqk dω

=
N∑

p=1

N∑

q=1

rxi xj
[τ̂pqk] ≡

N∑

p=1

N∑

q=1

rxi xj

[ |xk −mi| − |xk −mj |
c

]
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Steered Response Power Function
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SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at [2.0, 2.5]m. The grid density is set to 40 mm.
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Steered Response Power Function

An example video showing the SBF changing as the source
location moves.

Show video!
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Conceptual Intepretation

t0

rx1x2(t)

True TDOA

Incorrect TDOA

t0

t0

rx1x3(t)

rx2x3(t)

GCC-PHAT for different microphone pairs.

T (mi, mj , x̂k) =
|x̂k −mi| − |x̂k −mj |

c
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DUET Algorithm

The degenerate unmixing estimation technique (DUET)
algorithm is an approach to BSS that ties in neatly to ASL. Under
certain assumptions and circumstances, it is possible to separate
more than two sources using only two microphones.
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DUET Algorithm

The DUET algorithm is an approach to BSS that ties in neatly to
ASL. Under certain assumptions and circumstances, it is possible
to separate more than two sources using only two microphones.

DUET is based on the assumption that for a set of signals
xk[t], their time-frequency representations (TFRs) are
predominately non-overlapping. This condition is referred to
as W-disjoint orthogonality (WDO):

Sp (ω, t) Sq (ω, t) = 0 ∀p 6= q, ∀t, ω
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DUET Algorithm
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W-disjoint orthogonality of two speech signals. Original
speech signal (a) s1[t] and (b) s2[t]; corresponding STFTs (c)
|S1 (ω, t)| and (d) |S2 (ω, t)|; (e) product |S1 (ω, t)S2 (ω, t)|.
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DUET Algorithm

Consider taking a particular time-frequency (TF)-bin, (ω, t),
where source p is known to be active. The two received signals in
that TF-bin can be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)



•Course overview and

exemplar applications

Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

•TDOA and Hyperboloids

- p. 178/181

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

DUET Algorithm

Consider taking a particular TF-bin, (ω, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

Taking the ratio and ignoring the noise terms gives:

Hikp (ω, t) ,
Xip (ω, t)

Xjp (ω, t)
=

αip

αjp
e−jωτijp
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DUET Algorithm

Consider taking a particular TF-bin, (ω, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

Taking the ratio and ignoring the noise terms gives:

Hikp (ω, t) ,
Xip (ω, t)

Xjp (ω, t)
=

αip

αjp
e−jωτijp

Hence,

τijp = − 1

ω
argHikp (ω, t) , and

αip

αjp
= |Hikp (ω, t)|
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DUET Algorithm
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Illustration of the underlying idea in DUET.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the
mixtures.

6. Return each demixed TFR to the time domain.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

DUET for multiple sources.
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Effect of Reverberation and Noise
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The TFR is very clear in the anechoic environment but
smeared around by the reverberation and noise.
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Estimating multiple targets

received
signal

STFT

feature

extraction
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GCC
TDOA
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Flow diagram of the DUET-GCC approach. Basically, the
speech mixtures are separated by using the DUET in the TF

domain, and the PHAT-GCC is then employed for the
spectrogram of each source to estimate the TDOAs.
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GCC function from DUET approach and traditional PHAT
weighting. Two sources are located at (1.4, 1.2)m and
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Further Topics

Reduction in complexity of calculating SRP. This includes
stochastic region contraction (SRC) and hierarchical searches.

Multiple-target tracking (see Daniel Clark’s Notes)

Simultaneous (self-)localisation and tracking; estimating
sensor and target positions from a moving source.
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Acoustic source tracking and localisation.
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Further Topics

Joint ASL and BSS.

Explicit signal and channel modelling! (None of the material
so forth cares whether the signal is speech or music!)

Application areas such as gunshot localisation; other sensor
modalities; diarisation.
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