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1
Introduction, Aims and Objectives

Everything that needs to be said has already
been said. But since no one was listening,
everything must be said again.

André Gide

If you can’t explain it simply, you don’t
understand it well enough.

Albert Einsten

This handout also provides an introduction to signals and systems, and an overview of statistical
signal processing applications. This is relevant to provide context and motivation for studying this
branch of signal and information processing.

1.1 Obtaining the Latest Version of these Handouts

New slide
• This research tutorial is intended to cover a wide range of aspects which cover the fundamentals

of statistical signal processing. It is written at a level which assumes knowledge of
undergraduate mathematics and signal processing nomenclature, but otherwise should be
accessible to most technical graduates. The course is based on MSc level materials.

4
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Figure 1.1: Source localisation and blind source separation (BSS). An example of topics using
statistical signal processing.
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Figure 1.2: Humans turn their head in the direction of interest in order to reduce inteference from
other directions; joint detection, localisation, and enhancement. An application of probability and
estimation theory, and statistical signal processing.
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6 Aims and Objectives

KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The hardcopy documents
published or online may differ slightly to the slides presented on the day. In particular, there
are likely to be a few typos in the document, so if there is something that isn’t clear, please feel
free to email me so I can correct it (or make it clearer).

• The latest version of this document can be obtained from the author, Dr James R. Hopgood, by
emailing him at:

mailto:james.hopgood@ed.ac.uk

(Update: The notes are no longer online due to the desire to maintain copyright control on the
document.)

• Extended thanks to the many MSc students over the past 16 years who have helped proof-read
and improve these documents.

1.2 Welcome

The Probability, Estimation Theory, And Random Signals module introduces the fundamental
statistical tools that are required to analyse and describe advanced signal processing algorithms within
this MSc programme.

It provides a unified mathematical framework which is the basis for describing random events and
signals, and how to describe key characteristics of random processes.

http://media.ed.ac.uk/media/1_6wt1ez10

Video Summary: This video introduces the Course Lecturer, Dr James Hopgood, and
tells you a little about himself in a professional capacity and his research interests. This
video also discusses the Institute of Digital Communications, where Dr Hopgood is a
member. For more about Dr Hopgood’s research interests, please see https://www.
research.ed.ac.uk/portal/jhopgoo1.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

mailto:james.hopgood@ed.ac.uk
http://media.ed.ac.uk/media/1_6wt1ez10
https://www.research.ed.ac.uk/portal/jhopgoo1
https://www.research.ed.ac.uk/portal/jhopgoo1


1.3. Introduction and Overview 7

http://media.ed.ac.uk/media/1_1y8dtumu

Video Summary: This video shows you how to navigate the LEARN virtual learning
environment. It shows how to navigate course content and the course guide.
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8 Aims and Objectives

1.3 Introduction and Overview

New slideTopic Summary 1 Course aims and objectives, overview, key themes

Topic Objectives:

• Awareness of the aims and objectives of the course.

• Highlight the learning outcomes of the course.

• List the mathematical prerequisites for the course.

• Lists the main themes of the course.

Topic Activities:

Type Details Duration Progress
Watch video 12 : 12 minute video 3× video length
Read Handout Read page 8 to page ?? 8 mins/page

http://media.ed.ac.uk/media/1_q42rrjjf

Video Summary: This video gives a very brief introduction to signal processing,
describes the course aims and objectives from a high-level, the learning outcomes, and
prerequisites needed to study the course. The video also discusses the key themes studied
in this course.

Signal processing is concerned with the modification or manipulation of a signal, defined
as an information-bearing representation of a real process, to the fulfillment of human
needs and aspirations.

Gone is the era where information in the form of electrical signals are processed through analogue
devices. For the foreseeable future, processing of digital, sampled, or discrete-time signals is the
definitive approach to analysing data and extracting information.

In this course, it is assumed that the reader already has a grounding in digital signal processing (DSP).
This module will take you to the next level; a tour of the exciting, fascinating, and active research area
of statistical signal processing.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_q42rrjjf
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(c) Output signal: a coloured
(correlated) noise process.

(d) Block diagram of system representing convolution.

Figure 1.3: Solutions to the so-called blind deconvolution problem require statistical signal processing
methods.

Sidebar 1 Signal Processing

The IEEE Signal Processing Society makes the following statement regarding signal processing.

The technology we use, and even rely on, in our everyday lives – computers, radios,
video, cell phones – is enabled by signal processing, a branch of electrical engineering
that models and analyzes data representations of physical events.

Signal processing is at the heart of our modern world, powering today’s entertainment
and tomorrow’s technology. It’s at the intersection of biotechnology and social
interactions. It enhances our ability to communicate and share information.

Signal processing is the science behind our digital lives.

Recently, machine learning techniques have been applied to aspects of signal processing, blurring the
lines between the sciences, and causing many shared applications between the two.

June 28, 2021 – 08 : 40



10 Aims and Objectives

Figure 1.4: Empirical Gaussian probability density function.

1.3.1 Module Abstract
New slide The notion of random or stochastic quantities is an extremely powerful concept that can be

constructively used to model observations that result from real-world processes. These quantities
could be scalar measurements, such as an instantaneous measurement of distance, or they could be
vector-measurements such as a coordinate. They could be random signals either in one-dimension,
or in higher-dimensions, such as images. Stochastic quantities such as random signals, by their very
nature, are described using the mathematics of probability and statistics. By making assumptions
such as the availability of an infinite number of observations or data samples, time-invariant statistics,
and known signal or observation models, it is possible to estimate the properties of these random
quantities or signals and, consequently, use them in signal processing algorithms.

In practice, of course, these statistical properties must be estimated from finite-length data signals
observed in noise. In order to understand both the concept of stochastic processes and the inherent
uncertainty of signal estimates from finite-length sequences, it is first necessary to understand the
fundamentals of probability, random variables, and estimation theory.

1.3.2 Description and Learning Outcomes

New slide Module Aims The aims of the two modules Probability, Random Variables, and Estimation Theory
(PET), and Statistical Signal Processing (SSP), are similar to those of the text book
[Manolakis:2000, page xvii]. The principle aim of the modules are:

to provide a unified introduction to the theory, implementation, and
applications of statistical signal processing.

Pre-requisites It is strongly recommended that the student has previously attended an undergraduate
level course in either signals and systems, digital signal processing, automatic control,
or an equivalent course.
Section 1.3.3 provides further details regarding the material a student should have
previously covered.

Short Description The Probability, Random Variables, and Estimation Theory module
introduces the fundamental statistical tools that are required to analyse and describe
advanced signal processing algorithms. It provides a unified mathematical framework
which is the basis for describing random events and signals, and how to describe key
characteristics of random processes.
The module covers probability theory, considers the notion of random variables and
vectors, how they can be manipulated, and provides an introduction to estimation
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theory. It is demonstrated that many estimation problems, and therefore signal
processing problems, can be reduced to an exercise in either optimisation or
integration. While these problems can be solved using deterministic numerical
methods, the module introduces Monte Carlo techniques which are the basis of
powerfull stochastic optimisation and integration algorithms. These methods rely on
being able to sample numbers, or variates, from arbitrary distributions. This module
will therefore discuss the various techniques which are necessary to understand
these methods and, if time permits, techniques for random number generation are
considered.

The Statistical Signal Processing module then consider representing real-world
signals by stochastic or random processes. The tools for analysing these random
signals are developed in the Probability, Random Variables, and Estimation
Theory module, and this module extends them to deal with time series. The notion
of statistical quantities such as autocorrelation and auto-covariance are extended from
random vectors to random processes, and a frequency-domain analysis framework is
developed. This module also investigates the affect of systems and transformations
on time-series, and how they can be used to help design powerful signal processing
algorithms to achieve a particular task.

The module introduces the notion of representing signals using parametric models;
it extends the broad topic of statistical estimation theory covered in the Probability,
Random Variables, and Estimation Theory module for determining optimal model
parameters. In particular, the Bayesian paradigm for statistical parameter estimation
is introduced. Emphasis is placed on relating these concepts to state-of-the-art
applications and signals.

Keywords Probability, scalar and multiple random variables, stochastic processes, power
spectral densities, linear systems theory, linear signal models, estimation theory, and
Monte Carlo methods.

Module Objectives At the end of these modules, a student should be able to have:

1. acquired sufficient expertise in this area to understand and implement spectral
estimation, signal modelling, parameter estimation, and adaptive filtering
techniques;

2. developed an understanding of the basic concepts and methodologies in
statistical signal processing that provides the foundation for further study,
research, and application to new problems.

PETARS Learning Outcomes There are five key learning outcomes for the full PETARS course.
On completion of this course, the student will be able to:

June 28, 2021 – 08 : 40



12 Aims and Objectives

• Define, understand and manipulate scalar and multiple random
variables, using the theory of probability; this should include
the basic tools of probability transformations and characteristic
functions, moments, the central limit theorem (CLT) and its use in
estimation theory and the sum of random variables.

• Understand the principles of estimation theory, and estimation
techniques such as maximum-likelihood, least squares, minimum
variance unbiased estimator (MVUE) estimators, and Bayesian
estimation; be able to characterise the estimator using standard
metrics, including the Cramér-Rao lower-bound (CRLB).

• Explain, describe, and understand the notion of a random process
and statistical time series, and characterise them in terms of its
statistical properties.

• Define, describe, and understand the notion of the power spectral
density of stationary random processes, and be able to analyse and
manipulate them; analyse in both time and frequency the affect of
transformations and linear systems on random processes, both in
terms of the density functions, and statistical moments.

• Explain the notion of parametric signal models, and describe
common regression-based signal models in terms of its statistical
characteristics, and in terms of its affect on random signals; apply
least squares, maximum-likelihood, and Bayesian estimators to
model based signal processing problems.

These are broken down further in the expanded Learning Outcomes below.

Expanded Learning Outcomes At the end of the Probability, Random Variables, and Estimation
Theory module, a student should be able to:

1. define, understand and manipulate scalar and multiple random variables,
using the theory of probability; this should include the tools of probability
transformations and characteristic functions;

2. explain the notion of characterising random variables and random vectors using
moments, and be able to manipulate them; understand the relationship between
random variables within a random vector;

3. understand the CLT and explain its use in estimation theory and the sum of
random variables;

4. understand the principles of estimation theory; understand and be apply to apply
estimation techniques such as maximum-likelihood, least squares, and Bayesian
estimation;

5. be able to characterise the uncertainty in an estimator, as well as characterise
the performance of an estimator (bias, variance, and so forth); understand the
CRLB and MVUE estimators.

6. if time permits, explain and apply methods for generating random numbers,
or random variates, from an arbitrary distribution, using methods such as
accept-reject and Gibbs sampling; understand the notion of stochastic numerical
methods for solving integration and optimisation problems.

At the end of the Statistical Signal Processing module, a student should be able to:
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1. explain, describe, and understand the notion of a random process and statistical
time series;

2. characterise random processes in terms of its statistical properties, including the
notion of stationarity and ergodicity;

3. define, describe, and understand the notion of the power spectral density of
stationary random processes; analyse and manipulate power spectral densities;

4. analyse in both time and frequency the affect of transformations and linear
systems on random processes, both in terms of the density functions, and
statistical moments;

5. explain the notion of parametric signal models, and describe common
regression-based signal models in terms of its statistical characteristics, and in
terms of its affect on random signals;

6. apply least squares, maximum-likelihood, and Bayesian estimators to model
based signal processing problems.

1.3.3 Prerequisites

The mathematical treatment throughout this module is kept at a level that is within the grasp of
final-year undergraduate and graduate students, with a background in digital signal processing
(DSP), linear system and control theory, basic probability theory, calculus, linear algebra, and a
competence in Engineering mathematics.

In summary, it is assumed that the reader has knowledge of:

1. Engineering mathematics, including linear algebra, manipulation of vectors and matrices,
complex numbers, linear transforms including Fourier series and Fourier transforms,
z-transforms, and Laplace transforms;

2. basic probability and statistics, albeit with a solid understanding;

3. differential and integral calculus, including differentiating products and quotients, functions of
functions, integration by parts, integration by substitution;

4. basic digital signal processing (DSP), including:

• the notions of deterministic continuous-time signals, discrete-time signals and digital
(quantised) signals;

• filtering and inverse filtering of signals; convolution;

• the response of linear systems to harmonic inputs; analysing the time and frequency
domain properties of signals and systems;

• sampling of continuous time processes, Nyquist’s sampling theorem and signal
reconstruction;

• and analysing discrete-time signals and systems.

Note that while the reader should have been exposed to the idea of a random variable, it is not
assumed that the reader has been introduced to random signals in any form. A list of recommended
texts covering these prerequisites is given in the section on Learning Resources later in this Handout.
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14 Aims and Objectives

Figure 1.5: The Resource List page, accessible from LEARN, lists the course textbooks, and how to
find them in the University.

1.4 Recommended Texts and Learning Resources

The recommended text for this module is cited throughout this document as [Manolakis:2000]. The
full reference is:

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal
Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array
Processing, McGraw Hill, Inc., 2000.

IDENTIFIERS – Paperback, ISBN10: 0070400512, ISBN13: 9780070400511

It is recommended that, if you wish to purchase a hard-copy of this book, you try and find this
paperback version; it should be possible to order a copy relatively cheaply through the US version
of Amazon (check shipping costs). However, please note that this book is now available, at great
expense, in hard-back from an alternative publisher. The full reference is:

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal
Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array
Processing, Artech House, 2005.

IDENTIFIERS – Hardback, ISBN10: 1580536107, ISBN13: 9781580536103

Images of the book covers are shown in Figure 1.6. For further reading, or an alternative perspective
on the subject matter, other recommended text books for this module include:
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(a) Cover of paperback
version.

(b) Cover of hardback version.

Figure 1.6: The main course text for this module: [Manolakis:2000].

(a) Recommended text:
[Kay:1993].

(b) Recommended text:
[Papoulis:1991].

Figure 1.7: Additional recommended texts for the course.
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(a) Third Edition cover. (b) Fourth Edition cover.

Figure 1.8: Course text: further reading for digital signal processing and mathematics,
[Proakis:1996].

1. Therrien C. W., Discrete Random Signals and Statistical Signal Processing, Prentice-Hall, Inc.,
1992.

IDENTIFIERS – Paperback, ISBN10: 0130225452, ISBN13: 9780130225450

Hardback, ISBN10: 0138521123, ISBN13: 9780138521127

2. Kay S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall,
Inc., 1993.

IDENTIFIERS – Hardback, ISBN10: 0133457117, ISBN13: 9780133457117

Paperback, ISBN10: 0130422681, ISBN13: 9780130422682

3. Papoulis A. and S. Pillai, Probability, Random Variables, and Stochastic Processes, Fourth
edition, McGraw Hill, Inc., 2002.

IDENTIFIERS – Paperback, ISBN10: 0071226613, ISBN13: 9780071226615

Hardback, ISBN10: 0072817259, ISBN13: 9780072817256

These are referenced throughout as [Therrien:1992], [Kay:1993], and [Papoulis:1991], respectively.
Images of the book covers are shown in Figure 1.7. The material in [Kay:1993] is mainly covered
in Handout 6 on Estimation Theory of the PET module. The material in [Therrien:1992] and
[Papoulis:1991] is covered throughout the course, with the former primarily in the SSP module.

KEYPOINT! (Proposed Recommended Text Book for Future Years). Finally, Therrien has also
published a recent book which covers much of this course extremely well, and therefore comes
thoroughly recommended. It has a number of excellent examples, and covers the material in good
detail.

Therrien C. W. and M. Tummala, Probability and Random Processes for Electrical and
Computer Engineers, Second edition, CRC Press, 2011.

IDENTIFIERS – Hardback, ISBN10: 1439826986, ISBN13: 978-1439826980
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Figure 1.9: Further reading for statistical signal processing, [Therrien:2011].

1.4.1 Recommended Texts: Prerequisite Material

As mentioned in the section on mathematic pre-requisites above, it is assumed that the reader has a
basic knowledge of digital signal processing. If not, or if the reader wishes to revise the topic, the
following book which is highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Third edition, Prentice-Hall, Inc., 1996.

IDENTIFIERS – Paperback, ISBN10: 0133942899, ISBN13: 9780133942897

Hardback, ISBN10: 0133737624, ISBN13: 9780133737622

This is cited throughout as [Proakis:1996] and is referred to in the second handout. This is the third
edition to the book, and a fourth edition has recently been released:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Pearson New International Edition, Fourth edition, Pearson Education,
2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

Although it is best to purchase the fourth edition, please bear in mind that the equation references
throughout the lecture notes correspond to the third edition. For an undergraduate level text book
covering an introduction to signals and systems theory, which it is assumed you have covered, the
following is recommended [Mulgrew:2002]:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing: Concepts and
Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562
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(a) [Mulgrew:2002]. (b) [Balmer:1997]. (c) [McClennan:2003].

Figure 1.10: Undergraduate texts on Signals and Systems.

See http://www.homepages.ed.ac.uk/pmg/SIGPRO/

The latest edition was printed in 2003, but any of the book edition will do. An alternative presentation
of roughly the same material is provided by the following book [Balmer:1997]:

Balmer L., Signals and Systems: An Introduction, Second edition, Prentice-Hall, Inc.,
1997.

IDENTIFIERS – Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

The Appendix on complex numbers may prove useful.

For an excellent and gentle introduction to signals and systems, with an elegant yet thorough overview
of the mathematical framework involved, have a look at the following book, if you can get hold of a
copy (but don’t go spending money on it):

McClellan J. H., R. W. Schafer, and M. A. Yoder, Signal Processing First, Pearson
Education, Inv, 2003.

IDENTIFIERS – Paperback, ISBN10: 0131202650, ISBN13: 9780131202658

Hardback, ISBN10: 0130909998, ISBN13: 9780130909992

1.4.2 Further Recommended Reading

For additional reading, and for guides to the implementation of numerical algorithms used for some
of the actual calculations in this lecture course, the following book is also strongly recommended:

Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receipes in
C: The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

http://www.homepages.ed.ac.uk/pmg/SIGPRO/
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(a) Recommended text:
[Press:1992].

Figure 1.11: Further reading for numerical methods and mathematics.

IDENTIFIERS – Paperback, ISBN10: 0521437202, ISBN13: 9780521437202

Hardback, ISBN10: 0521431085, ISBN13: 9780521431088

Please note that there are many versions of the numerical recipes book, and that any version will do.
So it would be worth getting the latest version.

1.4.3 Additional Resources

Other useful resources include:

• The extremely comprehensive and interactive mathematics encyclopedia:

Weisstein E. W., MathWorld, From MathWorld - A Wolfram Web Resource, 2008.

See http://mathworld.wolfram.com

• Connexions is an environment for collaboratively developing, freely sharing, and rapidly
publishing scholarly content on the Web. A wide variety of technical lectures can be found
at:

Connexions, The Connexions Project, 2008.

See http://cnx.org

• The Wikipedia online encyclopedia is very useful, although beware that there is no guarantee
that the technical articles are either correct, or comprehensive. However, there are some
excellent articles available on the site, so it is worth taking a look.

Wikipedia, The Free EncyclopediaWikipedia, The Free Encyclopedia, 2001 –
present.
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(a) The MATLAB logo. MATLAB is a
useful utility to experiment with.

(b) Wikipedia, The Free
Encyclopedia.

Figure 1.12: Some useful resources.

See http://en.wikipedia.org/

• The Mathworks website, the creators of MATLAB, contains much useful information:

MATLAB: The language of technical computing, The MathWorks, Inc., 2008.

See http://www.mathworks.com/

• And, of course, the one website to rule them all:

Google Search Engine, Google, Inc., 1998 – present.

See http://www.google.co.uk

– End-of-Topic 1: Learning resources –

http://en.wikipedia.org/
http://www.mathworks.com/
http://www.google.co.uk
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1.4.4 Convention for Equation Numbering

In this handout, the following labelling convention is used for numbering equations that are taken from
the various recommended texts. This labelling should be helpful for locating the relevant sections in
the books for further reading. Equations labelled as:

M:v.w.xyz are similar to those with the same equation reference in the core recommended text
book, namely [Manolakis:2001];

T:w.xyz are similar to those in [Therrien:1992] with the corresponding label;

K:w.xyz are similar to those in [Kay:1993] with the corresponding label;

P:v.w.xyz are used in chapters referring to basic DSP, and are references made to
[Proakis:1996].

All other equation labeling refers to intra-cross-referencing for these handouts. Most equations are
numbered for ease of referencing the equations, should you wish to refer to them in tutorials or email
communications, and so forth.
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2
Applications of Signal Processing

We live in a society exquisitely dependent
on science and technology, in which hardly
anyone knows anything about science and
technology.

Carl Sagan

This handout begins by motivating the need for this course material by looking at key application
areas and concepts that will be studied in detail during the lectures.

22
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2.1 What is Signal Processing?

New slide Topic Summary 2 What is Signal Processing?

Topic Objectives:

• Learn a high-level overview of signal processing.

• Identify signal processing in our daily lives.

• Understand why signal processing has become common-place.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 41 minute video 3×video length
Discussion Board Your views of signal processing 15 minutes
Read Handout Read page 22 to page 27 8 mins/page

http://media.ed.ac.uk/media/1_t0qrik06

Video Summary: This video explains the role of signal processing in powering
modern communications, entertainment, transportation, and healthcare systems, in
addition to numerous industrial and defence applications. It explains why signal
processing techniques have grown substantially over the past few decades in terms of
improvements in signal processing algorithms as well as other key enabling technologies,
such as low-power computing platforms, sensor technologies, and advances in battery
technology.

Signal processing is a branch of electrical engineering which pulls meaning from the
broad sources of data that are all around us.

Signal processing is at the heart of our modern world: signal processing powers
modern communications (including voice recognition), modern entertainment (including
motion sensing-gaming), tomorrow’s transportation (including autonomous vehicles),
and healthcare.

A nice introduction for the general public is presented in a YouTube video from the IEE Signal
Processing Society, as shown in Figure 2.1.
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http://youtu.be/R90ciUoxcJU

Figure 2.1: A video from the IEEE Signal Processing Society explaining What is Signal Processing?

2.1.1 Modern Signal Processing Applications

New slide The last decade has seen a large number of domestic products which are heavily dependent on
sophisticated signal processing algorithms. Some of these products are actually worth getting excited
about in the sense they are extremely clever, and signal processing isn’t restricted to simple removal
of basic background noise (either in images or in audio). Some examples include:

• Microsoft Kinect, as shown in Figure 2.3, which includes skeletal tracking, depth estimation,
acoustic noise cancellation, and speech identification and recognition; a demonstration of this
will be given in lectures;

• Low-cost low-flying unmanned aerial vehicles (UAVs), which includes sophisticated algorithms
for self-geolocation using on-board cameras and other sensors, and simultaneous localisation
and mapping (SLAM), and on-board sensing of objects and targets; see Figure 2.2

• Video calling such as Skype and Facetime, which requires good audio, image, and video
compression for network communication and online streaming;

• Computer-based music analysis, especially for game play, such as Guitar Hero and Rocksmith;

• Room acoustic calibration (or correction) techniques in audio-visual setups (for example, most
major audio-visual AV receivers);

• Far-field speech enhancement for voice assistance (Amazon Echo, Google Home);

• Digital image manipulation and processing using desktop software (Photoshopping images).

These are domestic applications which have grown over recent years, and of course are in addition
to medical imaging, defence, meteorological, and geophysical applications, amongst many others


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}
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http://youtu.be/Gj-5RNdUz3I

Figure 2.2: A research UAV from Ascending Technologies: http://www.asctec.de/en/
uav-uas-drone-products/asctec-firefly

as described below. It is important, however, to appreciate why digital techniques have grown
substantially over the past few decades. Reasons include:

1. the dramatic improvement in computational power available on low-power devices due to the
microelectronics revolution and advances in battery power;

2. the almost universal adoption of digital media, both audio and video, over the past two decades;

3. the vast improvements in sensor modalities including micro-electromechanical systems
(MEMS) microphones and complementary metal-oxide-semiconductor (CMOS) cameras, as
well as other MEMS devices such as accelerometers on mobile devices;

4. advances in understanding and performance of optimisation algorithms, estimation theory, and
signal filters.

Signal processing is the technology that allows the manipulation, efficient storage, and analysis of
signals that are recorded using a variety of sensor technologies, on electronic hardware. It is vital
to appreciate that many of the electronic products, domestic, civilian, or military, are reliant on the
processing of measured signals, from RAdio Detection And Ranging (Radar) (see Figure 2.5), to
magnetic resonance imaging (MRI), through to cameras and microphones, or temperature sensors. It
is vital to appreciate that most electronic products require some form of signal processing.
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Figure 2.3: Hands-free human-computer interface (HCI).

Figure 2.4: UAVs used for package deliveries.
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Figure 2.5: Radar of the type used for detection of aircraft. It rotates steadily sweeping the airspace
with a narrow beam. Air Force Museum, by Bukvoed / CC BY-SA 3.0.
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KEYPOINT! (Discussion Topic). Signal Processing as a subject has strong overlaps with other
disciplines, such as machine learning in Computer Science, applied statistics in Mathematics and
Econometrics, and remote sensing in the Geosciences. Using the discussion boards, think about and
try and answer the questions:

1. What is signal processing and communications?

2. What applications have signal processing, communications, and machine learning had an
impact on in society?

3. How do sensors play an important role in signal processing?

– End-of-Topic 2: What is Signal Processing? –
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2.1.2 The fields of Signal Processing, Automatic Control, and
Communications

New slide Topic Summary 3 Applications of Signal Processing and Communications

Topic Objectives:

• Examples signal processing applications.

• Privacy aware signal processing.

• Example of a signal processing and communication system.

Topic Activities:

Type Details Duration Progress
Watch video 9 : 25 minute video 3×video length
Read Handout Read page 28 to page 31 8 mins/page

http://media.ed.ac.uk/media/1_cwkcy5dq

Video Summary: This video considers in more detail some applications of signal
processing, including biomedical, surveillance and homeland security, target tracking
and navigation, mobile communications, and speech enhancement and recognition. The
video then considers the application of delivering live music to a remote listener wearing
a wireless headset. The different signal processing and communication systems involved
in this application are discussed. This video provides background information for the
MSc in Signal Processing and Communications.

Although this course has been written with a bias towards electronic engineering, the mathematical
tools and techniques introduced are fundamental in many other areas of Engineering. They are not
limited to the examples given in this course by any stretch of the imagination. More significantly, this
course initially covers continuous-time analogue signals, and then moves onto discrete-time signals.
Discrete-time digital signals are the basis of modern digital and statistical signal processing, and is
used in a plethora of modern Engineering problems. Modern advances in statistical signal processing,
control, and communications include:

Biomedical From medical imaging to analysis and diagnosis, signal processing is now dominant
in patient monitoring, preventive health care, and tele-medicine. From analysing
electroencephalogram (EEG) scans to MRI (or nuclear magnetic resonance imaging
(NMRI)), to classification and analysis of deoxyribonucleic acid (DNA) from
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micro-arrays, signal processing is required to make sense of the analogue signals
to then provide information to clinicians and doctors.

Surveillance and homeland security From fingerprint analysis, voice transcription and
communication monitoring, to the analysis of closed-circuit television (CCTV)
footage, digital signal processing is applied in many areas of homeland security. It is
an especially well-funded area at the moment.

Target tracking and navigation Although radar and sonar principally use analogue signals for
illuminating an object with either an electromagnetic or acoustic wave, discrete-time
signal processing is the primary method for analysing the received data. Typical
features for estimation include detecting targets, estimating the position, orientation,
and velocity of the object, target tracking and target identification.
Of recent interest is tracking groups of targets, such as a convey of vehicles, or a flock
of birds. Attempting to track each individual target is an overly complicated problem,
and by considering the group dynamics of a particular scenario, the multi-target
tracking problem is substantially simplified.

Mobile communications New challenges in mobile communications include next-generation
networks; users demand higher data-rates, which in-turn requires higher bandwidth.
Typically, higher-bandwidth communication systems have shorter ranges. Rather
than have more and more base stations for the mobile network, there is substantial
research into mobile ad-hoc networks.
A mobile ad-hoc network is a self-configuring network of mobile routers connected
by wireless links, forming an arbitrary topology. The routers are free to move
randomly and organize themselves arbitrarily; thus, the network’s wireless topology
may change rapidly and unpredictably. The challenge is to design a system that
can cope with this changing topology, and is a very active area of research in
communication theory.
A testament to the change in mobile communications is the availability of cheap
mobile broadband modems which provide broadband Internet access which is
comparable with fixed-line technologies that were available only a few years ago.

Speech enhancement and recognition Whether for the analysis of a black-box flight recording,
for enhancing speech recognition in noisy and reverberant environments, or for the
improved acoustic clarity of mobile phone conversations, the enhancement of acoustic
signals is still a major aspect of signal processing research.

To consider how signal processing plays a role in modern domestic products, Section 2.1.3 considers
how audio is streamed to your phone.

2.1.3 From Studio to the Ear
New slide As an immediate application of signal and system theory, consider the Engineering processes that

have occurred in delivering down-loadable music to your phone, either high-definition formats such as
free lossless audio codec (FLAC) files (much preferred and strongly encouraged) or lossy-compressed
files (if you really really must and don’t appreciate sonic quality). A very simplified diagram is shown
in Figure 2.6.

A sound is generated in a room, which generates a sound pressure wave which propagates throughout
the room until reaching a microphone. This electo-mechanical device converts the sound pressure
wave into an analogue continuous-time signal which appears as a voltage waveform. This signal is
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Figure 2.6: From an instrument being played through to listening on Advanced Audio Distribution
Profile (A2DP) Bluetooth headphones via a portable media player.
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sampled by an analogue-to-digital converter (ADC), which quantises and samples the signal, thereby
producing a discrete-time digital signal that can be stored in finite-precision memory on a computer
or digital recording device. This digital representation can then be processed on a digital audio
workstation (DAW) which will compose various audio tracks and add any special-effects. Once
the musical track is complete, this can then be delivered via the Internet to an online music server,
probably in a compressed format (using perceptual compression). This audio track can then be
delivered via a mobile network to a laptop or phone, which can then relay the signal to a set of
Bluetooth headphones using the A2DP bluetooth mode. 1 This process involves a number of signal
analysis and processing methods, such as sampling the analogue signal to produce a digital signal; it
also involves systems, such as the effect of the acoustics on the propagation of sound, or the circuitry
within the ADC; it also involves various communication systems, including wired baseband systems,
medium-range wireless systems, and short-range personal wireless systems. This course provides an
introduction to the understanding and analysis of these systems.

– End-of-Topic 3: Examples of Signal Processing –
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2.1.4 Case Study: Digital Audio Processing

New slide Topic Summary 4 Topic Title TBC

Topic Objectives:

• Objectives TBC.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 41 minute video 3×video length
Discussion Board Your views of signal processing 15 minutes
Read Handout Read page 32 to page 33 8 mins/page

http://media.ed.ac.uk/media/1_t0qrik06

Video Summary: To be completed. Video above is a temporary link

From an electronic Engineering perspective, signals and systems is the foundation for the revolution
in digital audio and video processing. Sophisticated digital electronic devices are common-place
in modern everyday life; games consoles, mobile telephones, digital audio recording and playback
devices, digital audio broadcasting (DAB), digital video broadcasting (DVB), digital versitile
disc (DVD) video, and audio and visual streams using Moving Picture Experts Group (MPEG)
compression schemes, are all very familiar to us.

These devices are the direct result of over six decades of research and innovation in the areas of
information theory and signal processing.

It is common knowledge that, for example, a MPEG-1 Audio Layer 3 (MP3) player encodes an audio
signal as a binary sequence of ones and zeros. However, such a statement isn’t saying very much
since, for example, word processing documents are also encoded as ones and zeros. So what makes
an audio file different to an arbitrary electronic document?

To understand thoroughly how MP3 works, more pertinent questions are:

• How is a continuous-time analogue signal turned into a discrete sequence of binary numbers,
and what are the properties of this binary sequence?

1See http://en.wikipedia.org/wiki/Bluetooth_profile#Advanced_Audio_
Distribution_Profile_.28A2DP.29
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• How many ones and zeros are needed to represent the audio signal? If they are stored as
bytes, how many bytes are needed to represent each individual audio sample? How many audio
samples must be recorded to faithfully reproduce the real-world analogue signal?

• The MP3 standard uses a compression technique based on the characteristics of the
human-hearing mechanism; it incorporates a method known as perceptual masking which
removes (or masks) signal components that are not perceived by the human brain. What
tools are used to characterise the properties of human-hearing, and how are these acoustical
properties expressed in terms of an algorithm that runs on a digital signal processing (DSP)?

• How is an analogue signal recreated from a sequence of ones and zeros, and how can the
deficiencies of our electronic systems be overcome by clever schemes with how the data is
encoded in the first place?

The issue of using signals and systems theory to overcome the deficiencies of electronics is the
basis of two recent data-formats that are available for high-quality audio reproduction. The compact
disc (CD) player dominated the digital audio market from the mid-1980’s until the early 2000’s.
Although other web-driven formats now dominate, such as MP3 and other proprietary formats, in
the 1990’s, the music industry initially pushed two new high-end audio formats: SACD and DVD-A.
These formats store more data than the traditional CD, despite the fact that CDs already store just
enough data to accurately encode the audio stream. By storing much more information than needed,
SACD and DVD-A can use several tricks which mean that cheaper and less accurate electronics are
needed in the playback device. How exactly do these tricks work? This will be answered later in the
course.

The physical-media based SACD and DVD-A are essentially a failed format, primarily because of
their high-prices, the lack of interest in multi-channel audio formats at the time, and the fact that
there is sufficient download bandwidth to avoid physical-media for music. Nevertheless, stereo HD
audio files such as 24/96 formats are increasingly becoming available in a download format such as
FLAC and ALAC, amongst others. The insight gained from the SACD and DVD-A are the same
as for downloadable HD audio formats, and Sony is in now pushing the hi-res audio format with
considerable drive: http://www.sony.co.uk/electronics/hi-res-audio.

– End-of-Topic 4: case studies of signal processing –

http://www.sony.co.uk/electronics/hi-res-audio
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(a) The Blu-Ray Disc Logo (b) The digital versitile disc-audio
(DVD-A) logo.

(c) The super-audio CD (SACD) logo. (d) The free lossless audio codec
(FLAC) logo.

(e) Sony and Hi-Res Audio.

Figure 2.7: High-quality audio formats. Note that SACD and DVD-A are essentially a failed format,
but HD audio files such as 24/96 formats are increasingly becoming available in a download format
such as FLAC.
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2.1.5 Why Study Signals and Communications?

New slide Topic Summary 5 Topic Title TBC

Topic Objectives:

• Objectives TBC.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 41 minute video 3×video length
Discussion Board Your views of signal processing 15 minutes
Read Handout Read page 35 to page 37 8 mins/page

http://media.ed.ac.uk/media/1_t0qrik06

Video Summary: To be completed. Video above is a temporary link

The need for formal analysis of signals and systems stems from a number of viewpoints which will
become apparent as the course progresses. In the meantime, it perhaps is simplest to begin with, as an
example, the circuit shown in Figure 2.8. You might have analysed this linear system in other courses
in your degree; the most likely analysis you will have tried is evaluating the output of the circuit when
a sinusoidal signal is applied to the input. We will cover this again in this course, but could you
calculate the output of the system if a microphone were connected to the input of the circuit? In such
a scenario, the microphone converts a sound pressure wave into an electrical signal as the result of an
instrument being played or some arbitrary spoken speech.

KEYPOINT! (Analysing system output to an arbitrary input). Evaluating the output of a linear
system to an arbitrary signal is made possible by using signal analysis techniques such as the Fourier
series and Fourier transforms.

2.2 Fundamental Signal Processing Problems

New slide Consider three fundamental signal processing problems:

1. Extracting desired signals from other signals.
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Figure 2.8: Second-order active high-pass filter.

Figure 2.9: Person undergoing an magnetoencephalography (MEG). National Institute of Mental
Health.

2. Correcting distortions in measured signals.

3. Extracting estimates of indirect quantities from observed signals.

We shall briefly consider each of these fundamental applications in turn, and then consider what tools
we need to solve these problems.

2.2.1 Extracting Signals from Other Signals

New slideThe generic problem of extracting signals from a mixture of other signals covers a wide range of
applications, from simple noise reduction or removal, through to signal separation problems. As an
example application, consider functional neuroimaging technique for mapping brain activity, called
MEG, seen in Figure 2.9. This technique records magnetic fields produced by electrical currents
naturally occurring in the brain using very sensitive magnetometers. These signals are extremely
small; moreover, due to the number of electrodes present, a number of signals are measured, and
there is a variety of interferences from other electromagnetic signals in the human body.

In the examples shown in Figure 2.10a, there are 148 signals of length 1695 samples over 10 seconds,
or a sampling frequency of 169.55 Hz. In order to extract the brain activity, it is necessary to remove
interference resulting from the heart. This interference overlaps with the desired frequencies in the
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brain activity, and therefore cannot be removed with a basic filter. This requires a technique called
blind source separation (BSS), which requires models for the underlying interfering signals, as well
as a model for the system which mixes the signals. The extracted signals are shown in Figure 2.10b,
which show the signal resulting from the heart (can you calculate the patient’s heart-rate?).

2.2.2 Correcting Distortions in Measured Signals

New slide While visible-spectrum camera images are usually very high quality, remote imaging or sensing
technologies are significantly less so. Techniques such as synthetic aperture RADAR (SAR) produce
noisy images with much distortion. Signal processing techniques can be used to significantly improve
the quality of the image, as shown in Figure 2.11.

2.2.3 Indirect Parameter Estimation
New slide A further application of signal processing is the estimation of a quantity indirectly from measured

signals. Figure 2.12 shows a multi-static radar system that uses multiple transmit and receive
antenna’s to locate an aircraft. The underlying signals are pulse chirps transmitted and received,
but the quantity of interest is the actual position of the aircraft.

– End-of-Topic 5: fundamental signal processing problems –
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(a) Example MEG signals.

(b) Extracted heart interference. Data kindly supplied by Dr Javier Escudero (School of Engineering,
University of Edinburgh).

Figure 2.10: Signal processing of MEG signals.
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Figure 2.11: SAR and clearer despeckled views of Titan – Ligeia Mare. NASA/JPL-Caltech/ASI.
Presented here are side-by-side comparisons of a traditional Cassini SAR view and one made using a
new technique for handling electronic noise that results in clearer views of Titan’s surface.

Figure 2.12: A multistatic RADAR Multistatic system, by Srdoughty / CC BY-SA 3.0.

http://photojournal.jpl.nasa.gov/jpeg/PIA19052.jpg
https://commons.wikimedia.org/wiki/File:Multistatic_system.jpg#/media/File:Multistatic_system.jpg
http://creativecommons.org/licenses/by-sa/3.0


2.3. What are Signals and Systems? 41

2.2.4 Tools for solving these problems

New slide Topic Summary 6 Topic Title TBC

Topic Objectives:

• Objectives TBC.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 41 minute video 3×video length
Discussion Board Your views of signal processing 15 minutes
Read Handout Read page 40 to page 40 8 mins/page

http://media.ed.ac.uk/media/1_t0qrik06

Video Summary: To be completed. Video above is a temporary link

In each application scenario considered in this section, it is necessary to:

• Understand the nature and structure of the signal in the real world.

• Understand the nature of how the signal was acquired by our data processing system.

• Understand how the signals are effected by propagation through systems.

• Design systems that can modify or change the signals to our needs.

An example of the different signal processing chains is shown in Figure 2.13, and will be discussed
further in lectures (and expanded on here in due course).

– End-of-Topic 6: The Signal Processing Chain –
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Figure 2.13: The signal processing chain.
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2.3 What are Signals and Systems?

New slideTopic Summary 7 Topic Title TBC

Topic Objectives:

• Objectives TBC.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 41 minute video 3×video length
Discussion Board Your views of signal processing 15 minutes
Read Handout Read page 42 to page 47 8 mins/page

http://media.ed.ac.uk/media/1_t0qrik06

Video Summary: To be completed. Video above is a temporary link

Common usage and understanding of the word signal is actually correct from an Engineering
perspective within some rather broad definitions: a signal is thought of as something that carries
information. Usually, that something is a pattern of variations of a physical quantity that can be
manipulated, stored, or transmitted by a physical process. Examples include speech signals, general
audio signals, video or image signals, biomedical signals, radar signals, and seismic signals, to name
but a few.

So formally, a signal is defined as an information-bearing representation of a real physical process. It
is important to recognise that signals can take many equivalent forms or representations. For example,
a speech signal is produced as an acoustic signal, but it can be converted to an electrical signal by a
microphone, or a pattern of magnetization on a magnetic tape, or even as a string of numbers as in
digital audio recording.

The term system is a little more ambiguous, and can be subject to interpretation. The word system can
correctly be understood as a process, but often the word system is used to refer to a large organisation
that administers or implements some process.

In Engineering terminology, a system is something that can manipulate, change, record, or transmit
signals. In general, systems operate on signals to produce new signals or new signal representations.
For example, an audio CD stores or represents a music signal as a sequence of numbers. A CD player
is a system for converting the numerical representation of the signal stored on the disk to an acoustic
signal that can be heard.
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Plot of segments of speech signal

Figure 2.14: Plot of part of a speech signal. This signal can be represented by the function s(t),
where t is the independent variable representing time. The shaded region is shown in more detail in
Figure 2.15.

2.3.1 Mathematical Representation of Signals

New slide A signal is defined as an information-bearing representation of a real process. It is a pattern of
variations, commonly referred to as a waveform, that encodes, represents, and carries information.

Many signals are naturally thought of as a pattern of variations with time. For example, a speech
signal arises as a pattern of changing air pressure in the vocal tract, creating a sound wave, which is
then converted into electrical energy using a microphone. This electrical signal can then be plotted as
a time-waveform, and an example is shown in Figure 2.14. The vertical axis denotes air pressure
or microphone voltage, and the horizontal axis represents time. This particular plot shows four
contiguous segments of the speech waveform. The second plot is a continuation of the first, and
so on, and each plot is vertically offset with the starting time of each segment shown on the left
vertical axis.

2.3.1.1 Continuous-time and discrete-time signals

New slide The signal shown in Figure 2.14 is an example of a one-dimensional continuous-time signal. Such
signals can be represented mathematically as a function of a single independent variable, t, which
represents time and can take on any real-valued number. Hence, each segment of the speech waveform
can be associated with a function s(t). In some cases, the function s(t) might be a simple function,
such as a sinusoid, but for real signals, it will be a complicated function.

Generally, most real world signals are continuous in time and analogue: this means they exist for
all time-instances, and can assume any value, within a predefined range, at these time instances.
Although most signals originate as continuous-time signals, digital processors and devices can only
deal with discrete-time signals. A discrete-time representation of a signal can be obtained from a
continuous-time signal by a process known as sampling. There is an elegant theoretical foundation
to the process of sampling, although it suffices to say that the result of sampling a continuous-time
signal at isolated, equally spaced points in time is a sequence of numbers that can be represented as a
function of an index variable that can take on only discrete integer values.

The sampling points are spaced by the sampling period, denoted by Ts. Hence, the continuous-time
signal, s(t), is sampled at times t = nTs resulting in the discrete-time waveform denoted by:

s[n] = s(nTs), n ∈ {0, 1, 2, . . . }. (2.1)
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Figure 2.15: Example of a discrete-time signal. This is a sampled version of the shaded region shown
in Figure 2.14.

where n is the index variable. A discrete-time signal is sometimes referred to as a discrete-time
sequence, since the waveform s[n] is a sequence of numbers. Note, the convention that parenthesis
( ) are used to enclose the independent variable of a continuous-time function, and square brackets [ ]
enclose the index variable of a discrete-time signal. Unfortunately, this notation is not always adhered
too (and is not yet consistent in these notes either).

Figure 2.15 shows an example of a short segment of the speech waveform from Figure 2.14, with
a sampling period of Ts = 1

44100
seconds, or a sampling frequency of fs = 1

Ts
= 44.1 kHz. It is

not possible to evaluate the continuous-time function s(t) for every value of t, only at a finite-set of
points, which will take a finite time to evaluate. Intuitively, however, it is known that the closer the
spacing of the sampled points, the more the sequence retains the shape of the original continuous-time
signal. The question arises, then, regarding what is the largest sampling period that can be used to
retain all or most of the information about the original signal.

2.3.1.2 Other types of signals

New slideWhile many signals can be considered as evolving patterns in time, many other signals are not
time-varying patterns at all. For example, an image formed by focusing light through a lens onto
an imaging array is a spatial pattern. Thus, an image is represented mathematically as a function of
two independent spatial variables, x and y; thus, a picture might be denoted as p(x, y). An example of
a gray-scale image is shown in Figure 2.16; thus, the value p(x0, y0) represents the particular shade
of gray at position (x0, y0) in the image.

Although images such as that shown in Figure 2.16 represents a quantity from a physical
two-dimensional (2-D) spatial continuum, digital images are usually discrete-variable 2-D signals
obtained by sampling a continuous-variable 2-D signal. Such a 2-D discrete-variable signal would be
represented by a 2-D sequence or array of numbers, and is denoted by:

p[m, n] = p(m∆x, n∆y), m, n ∈ {0, 1, . . . N − 1}. (2.2)

where m and n take on integer values, and ∆x and ∆y are the horizontal and vertical sampling spacing
or periods, respectively.

Two-dimensional functions are appropriate mathematical representations of still images that do not
change with time; on the other hand, a sequence of images that creates a video requires a third
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Figure 2.16: Example of a signal that can be represented by a function of two spatial variables.

independent variable for time. Thus, a video sequence is represented by the three-dimensional (3-D)
function v(x, y, t).

The purpose of this section is to introduce the idea that signals can:

• be represented by mathematical functions in one or more dimensions;

• be functions of continuous or discrete variables.

The connection between functions and signals is key to signal processing and, at this point, functions
serve as abstract symbols for signals. This is an important, but very simple, concept for using
mathematics to describe signals and systems in a systematic way.

2.3.2 Mathematical Representation of Systems

New slide A system manipulates, changes, records, or transmits signals. To be more specific, a one-dimensional
continuous-time system takes an input signal x(t) and produces a corresponding output signal y(t).
This can be represented mathematically by the expression

y(t) = T {x(t)} (2.3)

which means that the input signal, x(t), be it a waveform or an image, is operated on by the system,
which is symbolised by the operator T to produce the output y(t). So, for example, consider a signal
that is the square of the input signal; this is represented by the equation

y(t) = [x(t)]2 (2.4)

Figure 2.17 and Figure 2.19 show how signals can be generated and observed in a real application. In
Figure 2.17, the sound source and the information received by the observer, or microphone, are the
signals; the room acoustics represent the system. Figure 2.18 shows the input signal to the system,
a characterisation of the system, and the resulting output signal. In Figure 2.19, the blurred images
are the result of the original image being passed through a linear system; the linear system represents
the physical process of a camera, for example, being out-of-focus, or in motion relative to the object
of interest.

The subject of signals and systems is the basis of a branch of Engineering known as signal processing;
this area is formally defined as follows:
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Figure 2.17: Observed signals in room acoustics.
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(c) The system output.

(d) Block diagram representation of signal paths.

Figure 2.18: The result of passing a signal through a system.
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(a) An original unblurred
noiseless image.

(b) An image distorted by an
out-of-focus blur.

(c) Image distorted by motion
blur.

Figure 2.19: A blind image deconvolution problem; restoration of natural photographic images.
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Figure 2.20: Amplitude-verses-time plot.

Signal processing is concerned with the modification or manipulation of a signal, defined
as an information-bearing representation of a real process, that has been passed through
a system, to the fulfillment of human needs and aspirations.

2.3.3 Deterministic Signals

New slide The deterministic signal model assumes that signals are explicitly known for all time from time t =
−∞ to t = +∞, where t ∈ R, the set of all real numbers. There is absolutely no uncertainty
whatsoever regarding their past, present, or future signal values. The simplest description of such
signals is an amplitude-verses-time plot, such as that shown in Figure 2.20; this time history helps in
the identification of specific patterns, which can subsequently be used to extract information from the
signal. However, quite often, information present in a signal becomes more evident by transformation
of the signal into another domain, and one of the most nature examples is the frequency domain.

– End-of-Topic 7: What are Signals and Systems? –
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2.4 Motivation for Signal Modelling

New slideTopic Summary 8 Topic Title TBC

Topic Objectives:

• Objectives TBC.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 41 minute video 3×video length
Discussion Board Your views of signal processing 15 minutes
Read Handout Read page 48 to page 52 8 mins/page

http://media.ed.ac.uk/media/1_t0qrik06

Video Summary: To be completed. Video above is a temporary link

Many signal processing systems are designed to extract information for some purpose. They share
the common problem of needing to estimate the values of a group of parameters. Such algorithms
involve signal modelling and spectral estimation. Some typical applications and the desired parameter
include:

Radar Radar is primarily used in determining the position of an aircraft or other moving
object; for example, in airport surveillance. It is desirable to estimate the range of the
aircraft, as determined by the time for an electromagnetic pulse to be reflected by the
aircraft.

Sonar Sonar is also interested in the position of a target, such as a submarine. However,
whereas radar is, mostly, an active device in the sense that it transmits an
electromagnetic pulse to illuminate the target, sonar listens for noise radiated by the
target. This radiated noise includes sounds generated by machinery, or the propeller
action. Then, by using a sensor array where the relative positions of each sensor are
known, the time delay between the arrival of the pulse at each sensor can be measured
and this can be used to determine the bearing of the target.

Image analysis It might be desirable to estimate the position and orientation of an object from a
camera image. This would be useful, for example, in guiding a robot to pick up an
object. Alternatively, it might be desirable to remove various forms of blur from an
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Figure 2.21: The speech synthesis model.

image, as shown in Figure 2.19; this blur might be characterised by a parametric
function.

Biomedicine A parameter of interest might be the heart rate of a fetus.

Communications Estimate the carrier frequency of a signal such that the signal can be demodulated
to baseband.

Control Estimate the position of a boat such that corrective navigational action can be taken.

Seismology Estimate the underground distance of an oil deposit based on sound reflections due to
different densities of oil and rock layers.

And the list can go on, with a multitude of applications stemming from the analysis of data from
physical experiments through to economic analysis. To gain some motivation for looking at various
aspects of statistical signal processing, some specific applications will be considered that require the
tools this module will introduce. These applications include:

• Speech Modelling and Recognition

• Single Channel Blind System Identification

• Blind Signal Separation

• Data Compression

• Enhancement of Signals in Noise

2.4.1 Speech Modelling and Recognition

New slide Statistical parametric modelling can be used to characterise the speech production system, and
therefore can be applied in the analysis and synthesis of speech. In the analysis of speech, the
waveform is sampled at a rate of about 8 to 20 kHz, and broken up into short segments whose duration
is typically 10 to 20 ms; this results in consecutive segments containing about 80 to 400 time samples.

Most speech sounds, generally, are classified as either voiced or unvoiced speech:

• voiced speech is characteristic of vowels;
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Figure 2.22: Solutions to the blind deconvolution problem requires advanced statistical signal
processing.

• unvoiced speech is characteristic of consonants at the beginning of syllables, fricatives (/f/, /s/
sounds), and a combination of these.

Thinking of the types of sound fields created by vowels, it is apparent that voiced speech has a
harmonic quality. In fact, it is sometimes known as frequency-modulated speech. A commonly used
model for voiced speech exploits this harmonic characteristic, and uses the so-called sum-of-sinusoids
decomposition. Unvoiced speech, on the other hand, does not exhibit such a harmonic structure,
although it does possesses a form that can be modelled using the statistical models introduced in later
lectures.

For both of these types of speech, the production is modelled by driving or exciting a linear system,
representing the vocal tract, with an excitation having a flat (or constant) spectrum.

The vocal tract, in turn, is modelled by using a pole-zero system, with the poles modelling the vocal
tract resonances and the zeros serving the purpose of dampening the spectral response between pole
frequencies. In the case of voiced speech, the input to the vocal tract model is a quasi-periodic
pulse waveform, whereas for unvoiced speech, the source is modelled as random noise. Thus, the
complete set of parameters for this model include an indicator variable as to whether the speech is
voiced or unvoiced, the pitch period for voiced sounds, the gain or variance parameter for unvoiced
sounds, and the coefficients for the all-pole filter modelling the vocal tract filter. The model is shown
in Figure 2.21. This model is widely used for low-bit-rate (less than 2.4 kbits/s) speech coding,
synthetic speech generation, and extraction of features for speaker and speech recognition.

2.4.2 Single Channel Blind System Identification

New slideConsider the following abstract problem that is shown in Figure 2.22:

• The output only of a system is observed, and it is desirable to estimate the source signal that
is applied to the input of the system without knowledge of the system itself. In other-words,
the output observation, x = {x[n], n ∈ Z},2 is modelled as a function of the unknown source
signal, s = {s[n], n ∈ Z}, with an unknown, possibly nonlinear, distortion denoted by F ; more
formally, x = F(s).

• When the function F is linear time-invariant (LTI), and defined by the impulse response h[n],
then:

x[n] = h[n] ∗ s[n] =
∑
k∈Z

h[n− k] s[n] (2.5)

• Problem: Given only {x[n]}, estimate either the channel function, F , which in the LTI case
will be represented by the impulse response h[n], or a scaled shifted version of the source
signal, {s[n]}; i.e. ŝ[n] = a s[n− l] for some l.

2The notation n ∈ Z means that n belongs to, or is an element of, the set of integers:
{−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}. In otherwords, it may take on any integer value.
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Figure 2.23: Standard signal separation using the independent component assumption.

The distortion operator, F , could represent the:

• acoustical properties of a room (with applications in hands free telephones, hearing aids,
archive restoration, and automatic speech recognition);

• effect of multi-path radio propagation (with applications in communication channels);

• non-impulsive excitation in seismic applications (with applications in seismology);

• blurring functions in image processing; in this case, the signals are 2-D.

This problem can only be solved by parametrically modelling the source signal and channel, and
using parameter estimation techniques to determine the appropriate parameter values.

2.4.3 Blind Signal Separation

New slide An extremely broad and fundamental problem in signal processing is BSS, and an important special
case is the separation of a mixture of audio signals in an acoustic environment. Typical applications
include the separation of overlapping speech signals, the separation of musical instruments,
enhancement of speech recordings in the presence of background sounds, or any variation of the
three. In general, a number of sounds at discrete locations within a room are filtered due to room
acoustics and then mixed at the observation points; for example, a microphone will pick up a number
of reverberant sounds simultaneously (see Figure 2.17).

A very powerful paradigm within which signal separation can be achieved is the assumption that the
source signals are statistically independent of one another; this is known as independent component
analysis (ICA). Figure 2.23 demonstrates a separation algorithm based on ICA; an “unmixing” system
is chosen that has minimal statistical correlation (a sufficient but not necessary condition for statistical
independence, as will be seen later in this course) of the hypothesised separated signals, thereby
matching the statistical characteristics of the original signals. This algorithm then uses standard
convex optimisation algorithms to solve the minimisation problem.

It is clear, then, that this approach to ICA requires good estimates of the correlation functions from a
limited amount of data.
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2.4.4 Data Compression

New slide Three basis principles of data compression for communication systems include:

Mathematically Lossless Compression This principle looks for mathematical coding schemes that
reduce the bits required to represent a signal. For example, long runs of 0’s might be
replaced by a shorter representation. This method of compression is used in computer
file compression systems.

Lossy compression by removing redundant information This approach is often performed in a
transform domain, such as the frequency domain. There might be many Fourier
coefficients that are small, and do not significantly contribute to the representation
of the signal. If these small coefficients are not transmitted, then compression is
achieved.

Lossless compression by linear prediction If it is possible to predict the current data sample from
previous data samples, then it would not be necessary to transmit the current data
symbol. Typically, however, the prediction is not completely accurate. However, by
only transmitting the difference between the prediction and the actual value, which is
typically a lot smaller than the actual value, then it turns out a fewer number of bits
need to be transmitted, and thus compression achieved. The trick is to design a good
predictor, and this is where statistical signal processing comes in handy.

– End-of-Topic 8: Examples of Signal Processing Applications –
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(a) The digital
versitile disc-audio
(DVD-A) logo.

(b) The super-audio
CD (SACD) logo.

Figure 2.24: High-quality audio formats.

2.4.5 Enhancement of Signals in Noise

High quality digital audio has in recent years dramatically raised expectations about sound quality.
For example, high quality media such as:

• compact disc

• digital audio tape

• digital versitile disc-audio and super-audio CD.

Audio degradation is any undesirable modification to an audio signal occurring as the result of, or
subsequent to, the recording process. Disturbances or distortions such as

1. background noise,

2. echoes and reverberation,

3. and media noise.

must be reduced to adequately low levels. Ideal restoration reconstructs the original sound exactly as
would be received by transducers (microphone etc.,) in the absence of noise and acoustic distortion.
Interest in historical material led to restoration of degraded sources including

1. wax cylinders recordings,

2. disc recordings (78rpm, etc.),

3. and magnetic tape recordings.

Restoration is also required in contemporary digital recordings if distortion too intrusive. Note that
noise present in recording environment, such as audience noise at a musical performance, considered
part of performance. Statistical signal processing is required in such applications.
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Figure 2.25: Passive source localisation and BSS.

2.5 Passive and Active Target Localisation

New slide This section presents a standard application in signal processing, namely passive target localisation.
Active target localisation will be considered during the day as well, but this section will focus on
the passive scenario. The aim of this section is to present, briefly, solutions to this problem, without
restricting the notation used. If the mathematics is somewhat alien, then great, as the rest of this
tutorial will explain the terms and concepts used here. An expanded version of this section, with a
focus on acoustic source localisation, is included at the end of this handout.

A number of signal processing problems rely on knowledge of the desired source position, for
example:

1. Tracking methods and target intent inference.

2. Estimating mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in speech enhancement).

4. Camera steering for audio-visual BSS (including Robot Audition).

5. Speech diarisation.

• Passive localisation is particularly challenging.
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Figure 2.26: Ideal free-field model.

2.6 Passive Target Localisation Methodology

New slide• In general, most passive target localisation (PTL) techniques rely on the fact that an impinging
wavefront reaches one acoustic sensor before it reaches another (spatio-temporal diversity).

• Many PTL algorithms are designed assuming there is no multipath or reverberation present, the
free-field assumption.

2.6.1 Source Localization Strategies

New slide Existing source localisation methods can loosely be divided into three generic strategies:

1. those based on maximising the steered response power (SRP) of a beamformer:

• location estimate derived directly from a filtered, weighted, and summed version of the
signal data received at the sensors;

2. techniques adopting high-resolution spectral estimation concepts:

• any localisation scheme relying upon an application of the signal correlation matrix;

3. approaches employing time-difference of arrival (TDOA) information:

• source locations calculated from a set of TDOA estimates measured across various
combinations of sensors.
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Figure 2.27: Geometry assuming a free-field model.

2.6.2 Geometric Layout

New slide Suppose there is a:

• sensor array consisting of N nodes located at positions mi ∈ R3, for i ∈ {0, . . . , N − 1}, and

• M talkers (or targets) at positions xk ∈ R3, for k ∈ {0, . . . ,M − 1}.

The TDOA between the sensor node at position mi and mj due to a source at xk can be expressed as:

T (mi, mj, xk) ≜ Tij (xk) =
|xk −mi| − |xk −mj|

c
(2.6)

where c is the speed of the impinging wavefront.

2.6.3 Ideal Free-field Model
New slide• In an anechoic free-field environment, as depicted in Figure 2.26, the signal from source k,

denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t) (2.7)

where bik(t) denotes additive noise, and αik is the attenuation.

• Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω) (2.8)

On the assumption of geometrical wave propagation, which assumes high frequencies, a point
source of single frequency ω, at position xk in free space, emits a pressure wave P(xk,mi), t(ω)
at time t and at position mi:

P(xk,mi)(ω, t) = P0
exp [jω(r/c− t)]

r
(2.9)

where t ∈ R is time, and r = |xk −mi|.
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• The additive noise source is assumed to be uncorrelated with the source and noise sources at
other sensors.

• The TDOA between the i-th and j-th sensor is given by:

τijk = τik − τjk = T (mi, mj, xk) (2.10)

2.7 Indirect TDOA-based Methods
New slide This is typically a two-step procedure in which:

• Typically, TDOAs are extracted using the generalised cross correlation (GCC) function, or an
adaptive eigenvalue decomposition (AED) algorithm.

• A hypothesised spatial position of the target can be used to predict the expected TDOAs (or
corresponding range) at the sensor.

• The error between the measured and hypothesised TDOAs is then minimised.

• Accurate and robust TDOA estimation is the key to the effectiveness of this class of PTL
methods.

• An alternative way of viewing these solutions is to consider what spatial positions of the target
could lead to the estimated TDOA.

2.7.1 Hyperbolic Least Squares Error Function

New slide
KEYPOINT! (Underlying Concept). Suppose that for each pair of sensors, i and j, a TDOA
corresponding to source k is somehow estimated, and this is denoted by τijk. One approach to ASL is
to minimise the total error between the measured TDOAs and the TDOAs predicted by the geometry
given an assumed target position.

• If a TDOA is estimated between two sensor nodes i and j, then the error between this and
modelled TDOA is given by:

ϵij(xk) = τijk − T (mi, mj, xk) (2.11)

where the error is considered as a function of the source position xk.

• The total error as a function of target position

J(xk) =
N∑
i=1

N∑
j ̸=i=1

ϵij(xk) =
N∑
i=1

N∑
j ̸=i=1

(τijk − T (mi, mj, xk))
2 (2.12)

where

T (mi, mj, xk) ≜ Tij (xk) =
|xk −mi| − |xk −mj|

c
(2.13)

• Unfortunately, since T (mi, mj, xk) is a nonlinear function of xk, the minimum least-squares
estimate (LSE) does not possess a closed-form solution.
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2.7.2 TDOA estimation methods
New slide Two key methods for TDOA estimation are using the GCC function and the adaptive eigenvalue

decomposition (AED) algorithm.

GCC algorithm most popular approach assuming an ideal free-field movel. It has the advantages
that

• computationally efficient, and hence short decision delays;

• perform fairly well in moderately noisy and reverberant environments.

However, GCC-based methods

• fail when multipath is high;

• focus of current research is on combating the effect of multipath.

AED Algorithm Approaches the TDOA estimation approach from a different point of view from the
traditional GCC method.

• adopts a multipath rather than free-field model;

• computationally more expensive than GCC;

• can fail when there are common-zeros in the channel.

Note that both methods assume that the signals received at the sensors arise as the result of a single
source, and that if there are multiple sources, the signals will first need to be separated into different
contributions of the individual sources.

2.7.2.1 GCC TDOA estimation

New slideThe GCC algorithm proposed by Knapp and Carter is the most widely used approach to TDOA
estimation.

• The TDOA estimate between two microphones i and j is obtained as the time lag that maximises
the cross-correlation between the filtered versions of the microphone outputs:

τ̂ij = argmax
ℓ

rxi xj
[ℓ] (2.14)

where the signal received at microphone i is given by xi[n], and where xi should not be confused
with the location of the source k, which is denoted by xk = [xk, yk, zk]

T .

• The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Ψx1x2

(
ejωTs

))
(2.15)

= F−1
(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))
(2.16)

where the cross-power spectral density (CPSD) is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
(2.17)

The cross-power spectral density (CPSD) can be estimated in a variety of means. The choice
of the filtering term or frequency domain weighting function, Φ

(
ejωTs

)
, leads to a variety of

different GCC methods for TDOA estimation.
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• For the free-field model, it can be shown that:

∠Pxixj
(ω) = −jω T (mi, mj, xk) (2.18)

In otherwords, all the TDOA information is conveyed in the phrase rather than the amplitude
of the CPSD. This therefore suggests that the weighting function can be chosen to remove the
amplitude information.

2.7.2.2 GCC Processors

New slide The most common choices for the GCC weighting term are listed in the table below. In particular, the
phase transform (PHAT) is considered in detail.

Processor Name Frequency Function
Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)
Pn1n1 (e

jωTs)Pn2n2 (e
jωTs)

Hannon-Thomson or ML

∣∣γx1x2

(
ejωTs

)∣∣2
|Px1x2 (e

jωTs)|
(
1− |γx1x2 (e

jωTs)|2
)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence function is given by

γx1x2

(
ejωTs

)
=

Px1x2

(
ejωTs

)√
Px1x1 (e

jωTs)Px2x2 (e
jωTs)

(2.19)

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω (2.20)

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)|

|Px1x2

(
ejωTs

)
|ej∠Px1x2(ejωTs) ejℓωT dω (2.21)

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(ejωTs)) dω (2.22)

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))
(2.23)

= δ(ℓ Ts − T (mi, mj, xk)) (2.24)

• In the absence of reverberation, the GCC-PHAT (GCC-PHAT) algorithm gives an impulse at a
lag given by the TDOA divided by the sampling period.
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Figure 2.28: Normal cross-correlation and GCC-PHAT functions for a frame of speech.

2.8 Direct Localisation Methods
New slide • Direct localisation methods have the advantage that the relationship between the measurement

and the state is linear.

• However, extracting the position measurement requires a multi-dimensional search over the
state space and is usually computationally expensive.

2.8.1 Steered Response Power Function

New slide
KEYPOINT! (Underlying Concept). The steered beamformer (SBF) or SRP function is a measure
of correlation across all pairs of microphone signals for a set of relative delays that arise from a
hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a spatial position x̂k such that
τ̂pk = |x̂−mp|, using the notation in Equation 13.8, is given by:

S (x̂) =

∫
Ω

∣∣∣∣∣
N∑
p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣∣∣∣∣
2

dω (2.25)

Expanding, rearranging the order of integration and summation, taking expectations of both sides and
setting Φpq

(
ejωTs

)
= Wp

(
ejωTs

)
W ∗

q

(
ejωTs

)
gives

E [S (x̂)] =
N∑
p=1

N∑
q=1

rxi xj
[τ̂pqk] (2.26)

≡
N∑
p=1

N∑
q=1

rxi xj

[
|xk −mi| − |xk −mj|

c

]
(2.27)

In other words, the SRP is the sum of all possible pairwise GCC functions evaluated at the time delays
hypothesised by the target position.
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Figure 2.29: SBF response from a frame of speech signal. The integration frequency range is 300 to
3500 Hz (see Equation 13.84). The true source position is at [2.0, 2.5]m. The grid density is set to
40 mm.

Figure 2.30: An example video showing the SBF changing as the source location moves.
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2.8.2 Conclusions

New slideTo fully appreciate the algorithms in PTL, we need:

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.

4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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Part II

Probability, Random Variables, and
Estimation Theory

65



3
Review of Basic Probability Theory

All knowledge degenerates into probability.

David Hume

This handout motivates the need for and gives a review of the fundamentals of probability theory. The
idea is to motivate the definitions of cumulative distribution functions (cdfs) and probability density
functions (pdfs) in the next handout, which form the foundation of statistical estimation theory and
signal processing.

66
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3.1 Introduction
New slide Topic Summary 9 Motivating Empirical Probability

Topic Objectives:

• Introduce uncertainty through a simple example.

• Discuss general applications of probability.

• Use law-of-large numbers to define empirical probability.

Topic Activities:

Type Details Duration Progress
Watch video 10.54 mins video 3× video length
Read Handout Read page 65 to page 69 8 mins/page
Discussion Board Discuss Taxi-Cab Problem 20 mins

http://media.ed.ac.uk/media/0_3jxfljjc

Video Summary: This video motivates probability by considering the simplest of
problems in the presence of uncertainty. It considers the tools we need to study problems,
and the notion of probability. This begins by discussing how the law-of-large numbers
leads to the definition of empirical probability through counting successes in a series of
Bernoulli trials. The definition of empirical probability, or relative frequency, which will
then lead onto classical probability in the next lecture.

To motivate the need for probability theory, consider the simplest of problems in the presence of
uncertainty. What tools are needed to study this problem?

• The notion of probability and random variables;

• The notion of probability density functions (pdfs);

• The notion of independence of observations;

• The notion of estimation theory and uncertainty quantification, some of which are highlighted
in Figure 3.1 which shows a method called Kernel Density Estimation.

These will be studies in turn throughout this course; we will start off looking at the basics of
probability.
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Figure 3.1: Kernel density estimation for modelling observation data.

Figure 3.2: Is the infamous Monty-Hall problem counter-intuitive or not?

Students are exposed to probability at school from a relatively young age. It is not the intention of
this course to go over basic probability again. Instead, the purpose is to:

• enhance a fundamental understanding of probability that enable us develop more complex
concepts;

• identify limitations of classical definitions;

• reaffirm that human intuition with regards to probability is often wrong; and that careful and
systematic analysis is often needed.

KEYPOINT! (Probability). • The theory of probability deals with averages of mass phenomena
occurring sequentially or simultaneously;

– e.g. signal/anomaly detection, parameter estimation, ...

• Starting from probability of individual events, can develop a probabilistic framework for
analysing signals.

3.2 The Notion of Probability

New slide The theory of probability deals with averages of mass phenomena occurring sequentially or
simultaneously. In signal processing and communications, this phenomena might include signal
returns in active radar or sonar detection (see Figure 3.3), detection of acoustic events in
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Sidebar 2 The Venice Water-Taxi Problem
Understanding probability and statistics helps understand simple, but important, questions related to
estimating the parameters of a sampling distribution from a small sample size.

On a trip to Venice (in July 2016), it was observed that the water taxis appeared to be numbered in
sequential order from number 1 up-wards (a water-taxi with the number 1 on the side was observed,
and only positive integer valued taxi designations).

Assuming that all taxis are in service, suppose we wanted to guess the number N of water taxis in
Venice, based purely on the taxi numbers observed. Let’s assume we observed a taxi with the number
304 on the side. What is our best guess of N?

The solution will be discussed in detail in Chapter 5, but now is a good time to think about it in
advance of learning the techniques that will help us answer the question. Moreover, suppose we
observe more taxis, perhaps with the numbers 157, 202, 11, 248; how will our estimate change?

This problem might seem rather academic, but has actually in the past been far from it, as discussed
in Chapter 5. A well known example is called the German tank problem.
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Figure 3.3: Active radar system; Drawing by Georg Wiora (Dr. Schorsch) / CC BY-SA

environmental sound analysis, anomaly detection in communication systems, parameter estimation,
and so forth.

How does one start considering the notion and meaning of probability, and how can it be extended to
modelling signals and events? To address this, it is first important to consider fundamentals such as
the probability of individual events, from which a probabilistic framework for analysing signals can
be obtained. To motivate the definition of probability, it is first observed that in many fields certain
averages approach a constant value as the number of observations increases. This value remains
the same if the averages are evaluated over any subsequence (of observations) specified before the
experiment is performed. In a coin experiment, for example, the percentage of heads approaches 0.5
or some other constant, and the same average is obtained if every fourth, sixth, or arbitrary selection
of tosses is chosen. Note that the notion of an average is not in-itself a probabilistic term.

This is formalised through the principal of the law of large numbers. As an illustration of the law of
large numbers, consider a particular sequence of rolls of a single six-sided dice. As the number of
rolls in the sequence increases, the average of the values of all the results approaches the theoretical
mean value of 1

6

∑6
k=1 k = 3.5, as shown in Figure 3.4. While different sequences (or trials) would

show a different shape over a small number of throws (at the left of Figure 3.4), over a large number
of rolls (to the right of Figure 3.4) they would be extremely similar.

It follows from the law of large numbers that the empirical probability of success in a series of
Bernoulli trials will converge to the theoretical probability. In the theory of probability and statistics,
a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes,
“success” and “failure”, in which the probability of success is the same every time the experiment
is conducted. For a Bernoulli random variable, the expected value is the theoretical probability of
success, and the average of n such variables (assuming they are independent and identically distributed
(i.i.d.)) is precisely the relative frequency. Therefore, the law of large numbers justifies the empirical
probability, relative frequency, or experimental probability of an event is the ratio of the number
of outcomes in which a specified event occurs to the total number of trials, not in a theoretical
sample space but in an actual experiment. In a more general sense, empirical probability estimates
probabilities from experience and observation.

Therefore, the purpose of the theory of probability is to describe and predict these averages in terms
of probabilities of events. The probability of an event A is a number, Pr (A), assigned to this event.
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Figure 3.4: Illustrating the law-of-large numbers through throwing of a 6-sided dice.

This number could be interpreted as follows:

If an experiment is performed n times, and the event A occurs nA times, then with a high
degree of certainty, the relative frequency nA/n is close to Pr (A), such that:

Pr (A) ≈ nA

n
(3.1)

provided that n is sufficiently large.

This is called the empirical probability, experimental probability, or relative
frequency, and is an estimator of probability.

Note that this frequentist interpretation and the language used is all very imprecise, and phrases such
as high degree of certainty, close to, and sufficiently large have no clear meaning. These terms will
be more precisely defined as concepts are introduced throughout this course.

• Moreover, another problem with this definition is that it implies an experiment needs to be
performed in order to define a probability. In the next section , we will move away from this
restriction.

– End-of-Topic 9: Introduction to Probability, The Law-of-Large
Numbers, and Empirical Probability –
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3.3 Classical Definition of Probability

New slideTopic Summary 10 Classical Probability

Topic Objectives:

• Introduce the definition of classical probability.

• Show simple examples of use of definition.

• Try examples and exercises.

Topic Activities:

Type Details Duration Progress
Watch video 9 : 52 minute video 3× video length
Read Handout Read page 70 to page 73 8 mins/page
Try Examples Work through Example 3.3 5 mins
Practice Exercises Exercise ?? 15 mins

http://media.ed.ac.uk/media/1_akng71lx

Video Summary: This video builds on empirical probability and defines the classical
definition by considering equally probable outcomes. The video discusses several
examples using that can be easily studied with the classical definition.

For several centuries, the theory of probability was based on the classical definition, which states that
the probability Pr (A) of an event A is determined a priori without actual experimentation. It is given
by the ratio:

Pr (A) =
NA

N
(3.2)

where:

• N is the total number of outcomes,

• and NA is the total number of outcomes that are favourable to the event A, provided that all
outcomes are equally probable.

Examples include:


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton13'){ocgs[i].state=false;}}
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Figure 3.5: Two red dice: https://commons.wikimedia.org/wiki/File:Two_red_
dice_01.svg

21 43 65

1

2

4

3

6

5

Figure 3.6: Two dice statespace, and (highlighted) the event of rolling a sum of 7.

1. Probability of a specific number being rolled on a six-sided die (1/6);

2. Probability of rolling an even number on a six-sided die (3/6 = 1/2).

This definition, however, has some difficulties when the number of possible outcomes is infinite, as
illustrated in the detailed example in Section 3.3.3.

3.3.1 Using the Classical Definition

The classical definition is reasonably powerful, and is able to deal with many simple problems.

However, there are difficulties with the classical definition in Equation 3.2, as will be seen in
Bertrand’s Paradox in Section 3.3.3, is determining N and NA.

It is important to ensure that the different possible outcomes are, in fact, equally probable. In this
section, some examples are shown where the incorrect conclusion is obtained through the incorrect
determiniation of an equally probable sample space. Other examples are provided in simple scenarios
where the classical example does actually work.

June 28, 2021 – 08 : 40
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Figure 3.7: Arranging cups and saucers randomly. See Example 3.2.

Example 3.1 (Rolling two dice). Two dice are rolled (see Figure 3.5); find the probability, p, that the
sum of the numbers shown equals 7. Consider three possibilities:

1. The possible outcomes total 11 which are the sums {2, 3, . . . , 12}. Of these, only one (the sum
7) is favourable. Hence, p = 1

11
.

This is, of course, wrong, and the reason is that each of the 11 possible outcomes are not equally
probable.

2. Similarly, writing down the possible pairs of shown numbers, without distinguishing between
the first and second die. There are then 21 pairs, (1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6), of
which there are three favourable pairs (3, 4), (5, 2) and (6, 1). However, again, the pairs (3, 4)
and (6, 6), for example, are not equally likely.

3. Therefore, to count all possible outcomes which are equally probable, it is necessary to count
all pairs of numbers distinguishing between the first and second die, as shown in the statespace
in Figure 3.6. This will give the correct probability of 6/36 = 1/6.

Note that many important problems involve counting the number of equally probable events.

Example 3.2 (Cups and Saucers). Six cups and saucers come in pairs: there are two cups and
saucers which are red (R), two which are green (G), and two which are yellow (Y). If the cups are
placed randomly onto the saucers (one each), find the probability that no cup is upon a saucer of the
same colour.

This problem has parallels in template matching where, for example, the saucers
represent a target sequence of symbols, and the cups represent an input symbol sequence.
The problem is to calculate the probability that at random no input symbol is in the correct
place compared with the target sequence.

SOLUTION. • Lay the saucers in order, say as RRGGY Y . The ordering of the saucers is
arbitrary in this instance.

• The cups may be arranged in 6! ways, but since each pair of a given colour may be switched
without changing the appearance, there are 6!/(2!)3 = 90 distinct arrangements.

By assumption, each of these are equally likely.
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• The arrangements in which cups never match their saucers is determined simply by counting,
and perhaps by some insightful observation, and are:

GGY Y RR, GYRYGR, Y GRYGR, Y Y RRGG

GYRYRG, Y GRYRG

GYYRGR, Y GYRGR

GYYRRG, Y GYRGR

(3.3)
□

Note that the underlinging and bold fonts are to emphasis the prdering more clearly.

• Hence, the required probability is 10/90 = 1/9.

Example 3.3 (Sampling). In sequences of k binary digits, 1’s and 0’s are equally likely. What is the
probability of encountering a sequence with a single 1 in any position, and all other digits zero?

– End-of-Topic 10: Classical Definition of Probability and Examples of
How to Use It –

June 28, 2021 – 08 : 40
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3.3.2 Difficulties with the Classical Definition

New slideTopic Summary 11 Bertrand’s Paradox

Topic Objectives:

• Discuss limitations of the classical definition of probability.

• Show limitations using the infamous Bertrand’s Paradox.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 47 minute video 3× video length
Read Handout Read page 74 to page 77 8 mins/page
Self-study Read further on the paradox 20 mins
Discussion Board Share what you have discovered 10 mins

http://media.ed.ac.uk/media/0_3jxfljjc

Video Summary: This video highlights key difficulties with the classical definition of
probability. It uses Bertrand’s paradox as a problem in which to study the problems
associated with classical probabilities.

The classical definition in Equation 3.2 can be questioned on several grounds, namely:

1. The term equally probable in the definition of probability is making use of a concept still to
be defined!

2. The definition can only be applied to a limited class of problems.

In the die experiment, for example, it is applicable only if the six faces have the same
probability. If the die is loaded and the probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio in Equation 3.2.

3. If the number of possible outcomes is infinite, then some other measure of infinity for
determining the classical probability ratio in Equation 3.2 is needed, such as length, or area.
This leads to difficulties, such as Bertrand’s paradox.
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r

A

B

Circle C

l

(a) Basic problem: line placed
across circle at random, resulting in
the cord AB.

r/2

r

(b) The problem definition
is setup so that the nice
geometrical properties of the
equilateral triangle can be
used.

Figure 3.8: Bertrand’s paradox, problem definition.

3.3.3 Discussion: Bertrand’s Paradox
New slide The Bertrand paradox is a problem within the classical interpretation of probability theory.

Consider a circle C of radius r; what is the probability p that the length ℓ of a randomly selected cord
AB1 is greater than the length, r

√
3, of the inscribed equilateral triangle? This problem is illustrated

in Figure 3.8.

KEYPOINT! (Recalling Geometry!). To fully appreciate this problem, it is perhaps worth being
aware of the geometry of this problem. The idea of the geometry is to keep simple geometric
shapes so that the calculations are very straightforward, rather than to play on some obscure geometric
properties. Therefore, note that if three tangents to a circle of radius r/2 are drawn at angular intervals
of 120 degs, then the resulting equilateral triangle fits inside a larger circle of radius r, as shown in
Figure 3.8. The length of the sides of one of this equilateral triangle is r

√
3. The fact the sizes of the

inscribed triangle are tangential to the circle of radius r/2 is also an important simplifying property
that can be used.

Using the classical definition of probability, three reasonable solutions can be obtained:

• In the first method, the random midpoints method, a cord is selected by choosing a point M
anywhere in the full circle, and two end-points A and B on the circumference of the circle, such
that the resulting chord AB through these chosen points has M as its midpoint. There will only
be a single cord which satisfies this constraint, and this is shown graphically in Figure 3.9a.

It is reasonable, therefore, to consider as favourable outcomes all points inside the inner-circle
of radius r/2, and to consider all possible outcomes as points inside the outer-circle of radius r.
This is because any point M in the innter-circle must have a cord that is at least of length

√
3r.

Therefore, using as a measure of these outcomes the corresponding areas, it follows that:

p =
π
(
r
2

)2
πr2

=
1

4
(3.4)

1A cord is a line connecting two points on the circumference of the circle.
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A

B

M

(a) The midpoint method.

A

BD

E

(b) The endpoint method.

A B
R

(c) The radius method.

Figure 3.9: Different selection methods.

• In the second method, the random endpoints method, consider selecting two random points
on the circumference of the (outer) circle, A and B, and drawing a chord between them. This is
shown in Figure 3.9b, where the point A has been drawn to coincide with the particular triangle
drawn. If B lies on the arc between the two other vertices, D and E, of the triangle whose first
vertex coincides with A, then AB will be longer than the length of the side of the triangle.

The favourable outcomes are now the points on this arc, and since the angle of the arc DE is
2π
3

radians, a measure of this outcome is the arc length 2πr
3

. Moreover, the total outcomes are
all the points on the circumference of the main circle, and therefore it follows:

p =
2πr
3

2πr
=

1

3
(3.5)

• Finally, in the third method, the random radius method, a radius of the circle is chosen at
random, and a point on the radius is chosen at random. The chord AB is constructed as a line
perpendicular to the chosen radius through the chosen point. The construction of this chord is
shown in Figure 3.9c.

The favourable outcomes are the points on the radius that lie inside of the inner-circle, or a
measure of this outcome is given by the diameter of the inner-circle, r. The total outcomes
are the points on the diameter of the outer-circle, and a measure of that respective length is 2r.
Therefore, the probability is given by

p =
r

2r
=

1

2
(3.6)

There are thus three different but reasonable solutions to the same problem. Which one is valid?
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Example 3.4 (Multi-choice: Betrand’s Paradox). Consider a circle of radius r. What is the
probability that the length of a randomly selected cord is greater than the length, r

√
3, of the inscribed

equilateral triangle?

1. 1
4

2. 1
3

3. 1
2

4. Need more information.

KEYPOINT! (Confused?). The solution to this paradox is indeed quite complicated, and has been
discussed in a number of research papers! A discussion will take place in the hybrid classes, but if
you are interested in finding out more, you are encouraged to look into this further.

One interesting solution by Jaynes exploits the fact that the position or size of the circule is not
specified, and argues that any objective solution must be scale and translation invariant.

– End-of-Topic 11: Awareness of the difficulties with the Classical
Definition of Probability –
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3.4 Axiomatic Definition
New slideTopic Summary 12 Axiomatic Definition of Probability

Topic Objectives:

• Review Kolmogorov’s Axioms.

• Derive results from these Axioms.

• Use addition law of probability.

• Examples of using these axioms.

Topic Activities:

Type Details Duration Progress
Watch video 9 : 46 minute video 3× video length
Read Handout Read page 78 to page 80 8 mins/page
Try Example Work through Example 3.5 10 minutes

http://media.ed.ac.uk/media/1_5k714c8b

Video Summary: The Kolmogorov axioms are the foundations of probability theory
introduced by Andrey Kolmogorov in 1933. Using these axioms, this video shows how
many other familiar results can be derived from these axioms. These results are them
applied to several problems which highlights the importance for introducing set theory,
that is covered in Topic 13.

The Kolmogorov axioms are the foundations of probability theory introduced by Andrey Kolmogorov
in 1933. These axioms remain central and have direct contributions to mathematics, the physical
sciences, and real-world probability cases. An alternative approach to formalising probability,
favoured by some Bayesians, is given by Cox’s theorem.

The axiomatic approach to probability is based on the following three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number assigned to this event:

Pr (A) ≥ 0 (3.7)

2. Defining the certain event, S, as the event that occurs in every trial, then:

Pr (S) = 1 (3.8)
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Event

A
Event

BCertain Event

S (”Everything”)

Figure 3.10: A Venn diagram for two mutually exclusive events.

3. If the events A and B are mutually exclusive, then:

Pr (A ∪B) = Pr (A) + Pr (B) (3.9)

This result is apparent from the Venn diagram shown in Figure 3.10. More generally, if
A1, A2, . . . is a collection of disjoint events, such that Ai ∩ Aj = ∅ for all pairs i, j satisfying
i ̸= j, then:

Pr

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr (Ai) (3.10)

Note that Equation 3.10 does not directly follow from Equation 3.9, even though it may
appear to. Dealing with infinitely many sets requires further insight, and here the result of
Equation 3.10 is actually an additional condition known as the axiom of infinite additivity.

These axioms can be formalised by defining measures and fields as appropriate, but the level of detail
is beyond this course.

These axioms, once formalised, are known as the Kolmogorov Axioms, named after the Russian
mathematician. Note that an alternative approach to deriving the laws of probability theory from a
certain set of postulates was developed by Cox. However, this won’t be considered in this course.

3.4.1 Properties of Axiomatic Probability

New slideSome simple consequences of the definition of probability defined in Section 3.4 follow immediately:

Impossible Event The probability of the impossible event is 0, and therefore:

Pr (∅) = 0 (3.11)

Complements Since A ∪ A = S and AA = {∅}, then :

Pr
(
A
)
= 1− Pr (A) (3.12)

Sum Rule The addition law of probability or the sum rule for any two events A and B is:

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B) (3.13)

June 28, 2021 – 08 : 40
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Event
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Event

B

Certain Event

S

Event A Ç��B

Figure 3.11: Venn diagram to prove the addition law of probability.

Example 3.5 (Sum Rule). Let A and B be events with probabilities Pr (A) = 3/4 and Pr (B) = 1/3.
Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A) + Pr (B)− Pr (A ∪B) ≥ Pr (A) + Pr (B)− 1 =
1

12
(3.14)

□

which is the case when the whole sample space is covered by the two events. The second bound
occurs since A ∩ B ⊂ B and similarly A ∩ B ⊂ A, where ⊂ denotes subset. Therefore, it can be
deduced Pr (AB) ≤ min{Pr (A) , Pr (B)} = 1/3.

– End-of-Topic 12: Properties of axiomatic probability theory, and an
interesting example –
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3.4.2 Set Theory

New slide Topic Summary 13 Set theory and its use in Probability Theory

Topic Objectives:

• Basic Definitions in Set Theory.

• Venn diagrams and set manipulations.

• Proof of the Sum Rule.

Topic Activities:

Type Details Duration Progress
Watch video 16.28 min video 3× video length
Study Handout Read page 81 to page 84 8 mins/page
Tutorial Exercise Exercise ?? 20 minutes

http://media.ed.ac.uk/media/1_v1wzihow

Video Summary: This video gives the background to set theory which is fundamental
for dealing with probability more generally. The video discusses using Venn diagrams as
a simple way of proving a number of results, such as De Morgan’s law. However, we also
discuss how to prove this formally using set theory resuls. An example is using various
forms of De Morgan’s law to derive the sum rule, or the addition law of probability. A
tutorial exercise challenges you to derive the sum rule for three events.

Since the classical definition of probability details in total number of outcomes, as well as events, it
is necessary to utilise the mathematical language of sets to formulise precise definitions.

A set is a collection of objects called elements. For example, “car, apple, pencil” is a set with three
elements whose elements are a car, an apple, and a pencil. The set “heads, tails” has two elements,
while the set “1, 2, 3, 5”, has four. It is assumed that most readers will have come across set theory
to some extent, and therefore, it will be used throughout the document as and when needed.

Some basic notation, however, includes the following:

Unions and Intersections are commutative, associative, and distributive, such that:

A ∪B = B ∪ A, (A ∪B) ∪ C = A ∪ (B ∪ C) (3.15)
AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪ AC (3.16)
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Figure 3.12: The complement A of A ⊂ S is the set of all elements of S not in A.
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Figure 3.13: A partition of the certain event using mutually exclusive subsets Ai, whose union equates
to S.

Complements The complement A of a set A ⊂ S is the set consisting of all elements of S not in A:

A ∪ A = S and A ∩ A ≡ AA = {∅} (3.17)

This is shown graphically using a Venn diagram, as shown in Figure 3.12.

Partitions A partition U of a set S is a collection of mutually exclusive subsets Ai of S whose
union equates to S,as shown in Figure 3.13, such that:

∞⋃
i=1

Ai = S, Ai ∩ Aj = {∅}, i ̸= j ⇒ U = [A1, . . . , An] (3.18)

De Morgan’s Law Using Venn diagrams, it is relatively straightforward to show as in Figure 3.15
that:

A ∪B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B (3.19)

As an application of this, note that:

A ∪BC = ABC = A
(
B ∪ C

)
(3.20)

=
(
AB

)
∪
(
AC

)
= A ∪B ∪ A ∪ C (3.21)

⇒ A ∪BC = (A ∪B) (A ∪ C) (3.22)

This result can easily be derived by using Venn diagrams, as shown in Figure 3.15,
and it is worth checking this result yourself. This latter identity will also be used later
in Section 3.4.1.
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Figure 3.14: The event A ∪B.

Event

BCertain Event

S

Event A È�BC

Event

A

Event

C

Figure 3.15: The event A ∪BC.

Example 3.6 (Proof of the Sum Rule). Prove the result in Equation 3.13 regarding the addition law
of probability (or sum rule), namely:

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B) (3.23)

SOLUTION. To prove this, separately write each of A ∪ B and B as the union of two mutually
exclusive events (using Equation 3.22 and the fact A ∪ A = S and S B = B).

• First, to write A ∪B in this way, use S:

A ∪B = S (A ∪B) =
(
A ∪ A

)
(A ∪B) = A ∪

(
AB

)
(3.24)

Since the intersection A ∩
(
AB

)
=
(
AA

)
B = {∅}B = {∅}, then A and AB are mutually

exclusive events, as required.

• Second, and using a similar approach, note that:

B = S B =
(
A ∪ A

)
B = (AB) ∪

(
AB

)
(3.25)

Since the intersection (AB) ∩
(
AB

)
= AAB = {∅}B = {∅} and are therefore mutually

exclusive events.

Using these two disjoint unions, then:

Pr (A ∪B) = Pr
(
A ∪

(
AB

))
= Pr (A) + Pr

(
AB

)
(3.26)

Pr (B) = Pr
(
(AB) ∪

(
AB

))
= Pr (AB) + Pr

(
AB

)
(3.27)
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Eliminating Pr
(
AB

)
by subtracting these equations gives the desired result:

Pr (A ∪B)− Pr (B) = Pr
(
A ∪

(
AB

))
= Pr (A)− Pr (AB) (3.28)

□

– End-of-Topic 13: Set theory and its used in probability theory. –



3.4. Axiomatic Definition 87

3.4.3 Countable Spaces and Principle of Total Probability

New slide Topic Summary 14 Total Probability

Topic Objectives:

• Introduce uncertainty through a simple example.

Topic Activities:

Type Details Duration Progress
Watch video 9 : 46 min video 3× video length
Read Handout Read page 85 to page 88 8 mins/page
Try Example Work through Examples 3.7 and 3.8 20 minutes

http://media.ed.ac.uk/media/1_5k714c8b

Video Summary:

Example 3.7 (Farmer and his Will). A farmer leaves a will saying that they wish for their first child
to get half of his property, the second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed because they don’t want to cut any horses
up.

However, a local statistician lends them a horse so that they have eighteen. The children then take
nine, six, and two horses, respectively. This adds up to seventeen, so they give the statistician the
horse back, and everyone is happy.
What is wrong with this story?

If the certain event, S, consists of N outcomes, and N is a finite number, then the probabilities of all
events can be expressed in terms of the probabilities Pr (ζi) = pi of the elementary events {ζi}.

June 28, 2021 – 08 : 40
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Figure 3.16: A Venn diagram clearly illustrates the principle of total probability.

From the basic axioms, it follows that pi ≥ 0 and that

N∑
i=1

pi = 1 (3.29)

This can be used in obtaining the principle of total probability. Let A1, A2, A3, . . . be a finite or
countably infinite set of mutually exclusive and collectively exhaustive events, then from the Venn
diagram in Figure 3.16, ∑

i

Pr (Ai ∩B) = Pr (B) (3.30)

Example 3.8 (Detection and Classification). An acoustic scene analysis algorithm is monitoring an
Edinburgh City park for animal sounds, and makes a large number of sound classifications on detected
acoustic events, either being labelled as bird, fox, or pet sounds. Each labelled acoustic event is either
a true detection of the corresponding animal sound, or is a false alarms. The false alarms can be
considered as bad detections. Based on previous statistical analysis, it has been determined that in
one (long) recording:

• 29% of the detected sounds are false alarms;

• 3% of labelled bird sounds are false alarm detections;

• 12% of detected bird sounds are correctly labelled;

• 5% of labelled fox sounds are false alarm detections;

• 32% are correct detections of domestic pet sounds.

The following events are defined: correctly classified – C; mis-classified or false alarms – M ; bird
sound – B; fox sound – F ; domestic pet sound – D.

Draw a Venn diagram of the problem, and determine the following:

1. What is the probability that a detection is classified as a bird sound, either correctly or
incorrectly?

2. What is the probability that a detection is a false alarm and/or a labelled bird sound?

3. What is the probability that a sound is correctly classified as a fox or domestic pet sound?
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Figure 3.17: The Venn diagram for this problem, although the size of the events are not to scale.

4. What is the probability of a false alarm for a domestic pet sound?

The Venn diagram for this problem is sketched in Figure 3.17, where the three types of classification
are shown for birds (B), foxes (F ), and domestic pets (D). The cases where events are correctly
classified (C) or mis-classified (M ) are also indicated.

Writing out the known probabilities in terms of the events, we have:
Table 3.1: Known events and probabilities

Event Notation Probability
Detections are false alarms M 0.29
Birds are mis-classifications B ∩M 0.03
Birds are correctly classified B ∩ C 0.12
Foxes are mis-classifications F ∩M 0.05
Pets are correctly classified D ∩ C 0.32

1. The probability that a detection is classified as a bird sound, either correctly or incorrectly, can
be expressed by using total probability:

Pr (B) = Pr (B ∩ C) + Pr (B ∩M) = 0.12 + 0.03 = 0.15 (3.31)

2. The probability that a detection is a false alarm and/or a labelled bird sound is obtained using
the probability sum rule:

Pr (B ∪M) = Pr (B) + Pr (M)− Pr (B ∩M) = 0.15 + 0.29− 0.03 = 0.41 (3.32)

3. Considering the left hand side of the Venn diagram in Figure 3.17, the probability that a sound is
correctly classified as a fox or domestic pet sound can be written as the complement of the event
of being a false alarm or a bird. This is most easily seen from the Venn diagram in Figure 3.18.

Therefore:

Pr ((F ∩ C) ∪ (D ∪M)) = 1− Pr (F ∪B) = 1− 0.41 = 0.59 (3.33)

June 28, 2021 – 08 : 40



90 Probability Theory

C
er

ta
in

 E
v

en
t,

  
S Birds ( )B

False AlarmsCorrect Classifications

Fox ( )F

Domestic Pets ( )D

Figure 3.18: The Venn diagram with the event 1− Pr (B ∪M) highlighted.

4. Finally, the probability of a false alarm for a domestic pet, Pr (D ∩M), can be obtained from
the Venn diagram and total probability:

Pr (M) = Pr (D ∩M) + Pr (F ∩M) + Pr (B ∩M) (3.34)
0.29 = Pr (D ∩M) + 0.05 + 0.03 ⇒ Pr (D ∩M) = 0.21 (3.35)

3.4.4 The Real Line
New slide If the certain event, S, consists of a non-countable infinity of elements, then its probabilities cannot

be determined in terms of the probabilities of elementary events. This is the case if S is the set of
points in an n-dimensional space.

Suppose that S is the set of all real numbers. Its subsets can be considered as sets of points on the real
line. To construct a probability space on the real line, consider events as intervals x1 < x ≤ x2, and
their countable unions and intersections.

To complete the specification, it suffices to assign probabilities to the events {x ≤ xi}.

This notion leads to cumulative distribution functions (cdfs) and probability density functions
(pdfs) in the next handout.

– End-of-Topic 14: Countable Spaces, Total Probabilities, and
Uncountable Spaces on the Real line –
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3.5 Conditional Probability

New slide Topic Summary 15 Conditional Probability and Bayes Rule

Topic Objectives:

• Introduce conditional probability.

• Examples of applying conditional probability.

• Developing Bayes’s Theorem.

• Bayes’s Theorem and Inverse Problems.

• Prisoner’s Problem and Monte Hall.

• Practical application of Bayes Theorem.

Topic Activities:

Type Details Duration Progress
Watch video 21 : 59 minute video 3× video length
Read Handout Read page 89 to page 94 8 mins/page
Try Example Try Examples 3.9 and 3.10 20 minutes
Practice Exercises Exercises ?? and ?? 30 mins

http://media.ed.ac.uk/media/1_7zsoflwm

Video Summary: This slightly longer than usual video covers conditional probability
and gives some examples that are initially counter-intuitive. Bayes theorem is then
developed from conditional probability, and the role of inverse problems in the context of
Bayes theorem is discussed. Bayes theorem is then applied to a puzzle-type problem to
demonstrate the counter-intuitive nature of probability. An example is then presented for
you to consider, which will be answered in the handout.

To introduce conditional probability, consider the discussion about proportions in Section 3.1. If an
experiment is repeated n times, and the occurrences or non-occurrences two events A and B are
observed. Suppose that only those outcomes for which B occurs are considered.
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In this collection of trials, the proportion of times that A occurs, given that B has occurred, is:

Pr
(
A
∣∣B) ≈ nAB

nB

=
nAB/n
nB/n

=
Pr (AB)

Pr (B)
(3.36)

provided that n is sufficiently large.

The conditional probability of an event A assuming another event B, denoted by Pr
(
A
∣∣B), is

defined by the ratio:

Pr
(
A
∣∣B) = Pr (A ∩B)

Pr (B)
(3.37)

It can be shown that this definition satisfies the Kolmogorov Axioms.

Example 3.9 (Two Children). A family has two children. What is the probability that both are boys,
given that at least one is a boy?

SOLUTION. The younger and older children may each be male or female, and it is assumed that each
is equally likely.

A simple method for solving this problem is to list all the possibilities:

C1 C2 Outcome
Gender Gender Relevant? Desired?

B B ✓ ✓
G B ✓
B G ✓
G G

Count 3 1

Therefore, using classical probability, since the events are all equally probable, the answer is p =
NA/N = 1/3.

A more formal solution is to consider the set of four possibilities for the gender of the children,
namely:

S = {GG, GB, BG, BB} (3.38)

where the four possibilities are equally probable:

Pr (GG) = Pr (GB) = Pr (BG) = Pr (BB) =
1

4
(3.39)

The subset of S which contains the possibilities of one child being a boy is at SB = {GB, BG, BB},
and therefore the conditional probability:

Pr
(
BB

∣∣SB

)
=

Pr (BB ∩ (GB ∪BG ∪BB))

Pr (SB)
(3.40)

Note that {BB∩(GB ∪BG ∪BB)} = {BB}, and that Pr (SB) = 1−Pr (SB) = 1−Pr (GG) = 3
4
.

Therefore:

Pr
(
BB

∣∣SB

)
=

Pr (BB)

1− Pr (GG)
=

1/4
3/4

=
1

3
(3.41)

□
Note that the question is completely different if it were what is the probability that both are boys,
given that the youngest child is a boy, in which case the solution is 1/2. This is since information has
been provided about one of the children, thereby distinguishing between the children.
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Example 3.10 (Two Children (Variant)). A family has two children. One of the children is a boy
born in an even month, where even months are defined as Feburary, April, June, August, October, and
December, while odd months are defined as January, March, May, July, September, and November.
What is the probability that both are boys?

SOLUTION. The younger and older children may each be male or female, and it is assumed that
each is equally likely. Moreover, the month in which each child is born is assumed to be equally
likely. Denoting the first child as C1, and the second by C2, there are 16 different but equally likely
possibilities, which are denoted given by:

C1 C2 Outcome
Gender Month Gender Month Relevant? Desired?

B O B O
B O B E ✓ ✓
B E B O ✓ ✓
B E B E ✓ ✓
G O B O
G O B E ✓
G E B O
G E B E ✓
B O G O
B O G E
B E G O ✓
B E G E ✓
G O G O
G O G E
G E G O
G E G E

Count 7 3

□

Therefore, the number of favourable outcomes to the question in hand is 3/7 = 0.428, which is getting
closer to one half than a third.

The example in Unknown exmp.twoChildrew might seem a little abstract to signal processing,
but there are other ways of phrasing exactly the same problem. Using an example taken from
[Therrien:2011], it could be phrased as follows:

A compact disc (CD) selected from the bins at Simon’s Surplus are as likely to be good
as they are bad. Simon decides to sell these CDs in packages of two, but guarantees that
in each package, at least one CD will be good. What is the probability that when you buy
a single package, you get two good CDs?

It should be apparent that this is the same problem as in Unknown exmp.twoChildrew. One further
problem to consider is given below in Example 3.11.

A further example discussed in the lectures covers mobile phones; a company sells mobile phones in
boxes, and are equally likely to be broken (B) or working (W). You are given two boxes and told that
in one of the boxes there is a working phone. What is the probability that the other box also contains
a working phone? Suppose now that all phones are manufactured by four companies: A, E, N , and
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S. You are told that one of the boxes contains a working phone manufactured by company S. What
is the probability that the other box contains a working phone?

Finally, to extend the discussion further, suppose all the phones are made between the years 1997 and
2016, and by the four companies above. One of the boxes contains a working phone made in 2007
by manufacturer A. What is the probability the other box contains a working phone? It should be
apparent that by giving more information about one of the phones, the probability of the other box
containing a working phone approaches a half.

3.6 Bayes’s Rule

New slide Conditional probability leads onto Bayes’s theorem. Returning to Equation 3.37, then writing
Pr (A ∩B) ≡ Pr (AB) as follows:

Pr (AB) = Pr
(
A
∣∣B)Pr (B) = Pr

(
B
∣∣A)Pr (A) (3.42)

giving

Pr
(
B
∣∣A) = Pr

(
A
∣∣B) Pr (B)

Pr (A)
(3.43)

Bayes’s rule will be used throughout this course, and commonly arises in the analysis of signal
and communication systems, machine learning, and data science. Bayesian inference is typically
a computationally expensive problem, but can be solved efficiently using graphical models, sparsity,
and numerical Bayesian methods such as Monte Carlo and Message Passing techniques.

Example 3.11 (Prisoner’s Problem). Three prisoners, A, B and C, are in separate cells and
sentenced to remain there for a long time. The governor has selected one of them at random to
be pardoned and therefore released. The warden knows which one is to be released, but is not allowed
to say. Prisoner A begs the warden to be told the identity of one of the others who will not be released.

Prisoner A says: If B is to be pardoned, give me C’s name, and vice-versa. And if I’m to
be pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

Prisoner A is pleased because s/he believes that the probability of being released has gone up from
1/3 to 1/2, as it is now between A and C. Prisoner A secretly tells C the news, who is also pleased,
because C reasons that A still has a chance of 1/3 to be the pardoned one, but C’s chance has gone up
to 2/3. What is the correct answer?

SOLUTION. This problem is mathematically equivalent to the Monty Hall problem with the main
prize and replaced with freedom. It can be solved using the principle of total probability and Bayes’s
theorem.

• Let A, B, and C be the events that the corresponding prisoner will be pardoned.

• Note that A, B, and C are independent events, before the warden has provided any information.

• Let b be the event that the warden tells A that prisoner B is not to be released.

Using Bayes’s theorem, it follows that:

Pr
(
A
∣∣ b) = Pr

(
b
∣∣A) Pr (A)
Pr (b)

(3.44)
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Figure 3.19: Regular (or normal) and irregular heartbeat rhythms.

Using the principal of total probability:

Pr (b) =
∑

i∈{A,B,C}

Pr (b, i) (3.45)

= Pr (b, A) + Pr (b, B) + Pr (b, C) (3.46)

= Pr
(
b
∣∣A)Pr (A) + Pr

(
b
∣∣B)Pr (B) + Pr

(
b
∣∣C)Pr (C) (3.47)

=
1

2
× 1

3
+ 0× 1

3
+ 1× 1

3
=

1

2
(3.48)

The crucial point here is that ifA is actually to be released, the warden can tell Athat either B or C
will not be released through the toss of the coin, and thereforePr

(
b
∣∣A) = 1

2
. Whereas, ifC is to be

released, then the warden is now constraned to tell A thatB will not be released, so Pr
(
b
∣∣C) = 1.

Finally, returning to Bayes rule,

Pr
(
A
∣∣ b) = Pr

(
b
∣∣A) Pr (A)
Pr (b)

=
1
2
× 1

3
1
2

=
1

3
(3.49)

However, the same calculation for C is different in the numerator:

Pr
(
C
∣∣ b) = Pr

(
b
∣∣C) Pr (C)

Pr (b)
=

1× 1
3

1
2

=
2

3
(3.50)

KEYPOINT! (Why the paradox). The tendency of people to provide the answer 1/2 neglects to take
into account that the warden may have tossed a coin before giving an answer. The warden may have
answered B because either:

• A is to be released and the wardan tossed a coin;

• or C is to be released.

The probabilities of these two events are not equal.

After this lecture, try the following example in the notes:
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Example 3.12 (Classification Accuracy). A statistical signal processing and machine learning
algorithm using electrocardiogram (ECG) data is used to test for a certain irregular heartbeat and
is 95% accurate. A person submits to the test and the results are positve. Suppose that the person
comes from a population of 105, where 2000 people suffer from the irregularity.

What can we conclude about the probability that the person under test has that particular heartbeat
irregularity? 2

SOLUTION. The test is known to be 95% accurate, which means that 95% of all positive tests are
correct, and 95% of all negative tests are correct. Let the events T+ and T− denote the test being
positive and negative respectively. Let the events R and I denote a regular and irregular heartbeat in
a patient. Hence, it is known:

Pr
(
T+

∣∣ I) = 0.95, Pr
(
T+

∣∣R) = 0.05 (3.51)

Pr
(
T−
∣∣ I) = 0.05, Pr

(
T−
∣∣R) = 0.95 (3.52)

The population space gives an empirical probability that a regular heartbeat occurs with probaility
Pr (R) = 98,000

100,000
= 0.98 and Pr (I) = 0.02. Hence, using total probability and Bayes’s theorem, it

follows that:

Pr
(
I
∣∣T+

)
=

Pr
(
T+

∣∣ I) Pr (I)
Pr (T+)

(3.53)

=
Pr
(
T+

∣∣ I) Pr (I)
Pr
(
T+

∣∣ I) Pr (I) + Pr
(
T+

∣∣R) Pr (R)
(3.54)

=
0.95× 0.02

0.95× 0.02 + 0.05× 0.98
= 0.278 (3.55)

The results states that if the test is taken by someone from this population without knowing whether
that person has the irregular heartbeat or not, then even a positive test would only suggest there is a
27.8% chance of having an irregularity. However, if the person knows that they have the irregularity,
then the test is 95% accurage.

KEYPOINT! (Influence of the prior). The resulting accuracy is due to a Baysian update involving
the prior on the population space, so Pr (R) and Pr (I). However, one key question is how are these
probabilities known?
The question assumed that for a given population, the percentage of the population who suffer from
this irregularity is known. But how is this known in practice if we don’t have a reliable test? Can
it be deduced in other ways? This is one of the key questions that influences the Bayesian posterior
inference.

– End-of-Topic 15: Conditional Probability, and a basic but important
Introduction to Bayes Rule –

2As an example of such an algorithm, see Figure 3.19, as described in: https://uk.mathworks.com/help/
signal/examples/classify-ecg-signals-using-long-short-term-memory-networks.html

https://uk.mathworks.com/help/signal/examples/classify-ecg-signals-using-long-short-term-memory-networks.html
https://uk.mathworks.com/help/signal/examples/classify-ecg-signals-using-long-short-term-memory-networks.html
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Scalar Random Variables

Every line is the perfect length if you don’t
measure it.

Marty Rubin

This handout introduces the concept of a random variable, its probabilistic description in terms of
pdfs and cdfs, and characteristic features such as mean, variance, and other moments. It covers the
probability transformation rule and characteristic functions.
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4.1 Abstract
Topic Summary 16 Introduction to Random Variables and Cummulative Distribution Functions

Topic Objectives:

• Notion of a random variable.

• Formal definition involving experimental outcomes, sample space, probability of events, and
assigned values.

• the concept of the cumulative distribution function (cdf).

Topic Activities:

Type Details Duration Progress
Watch video 16 : 12 min video 3× video length
Read Handout Read page 96 to page 100 8 mins/page

http://media.ed.ac.uk/media/1_6m2jkjb8

Video Summary: This video introduces and defines scalar real random variables,
covering the sample/state space, probability of outcomes, and mapping to the real axis.
Some simple examples are presented. The video then motivates the probability set
function by considering the axiomatic interval of the random variable taking on a value
less than or equal to a specific value. It also demonstrates using the Kolmogorov’s axions
and set theory, it is possible to determine the probability of being within an interval. In
the limit, it is demonstrated that the gradient of the cummulative distribution function is
important, which leads to the probability density function. This video sets the foundations
for the rest of this Chapter and indeed course.

Ultimately, the purpose of this course is to move from probability theory through to random signals.
Therefore, before introducing random variables, lets take a step back and consider the bigger picture.

• Deterministic signals are interesting from an analytical perspective since their signal value or
amplitude are uniquely and completely specified by a functional form, albeit that function might
be very complicated. Thus, a deterministic signal is some function of time: x = x(t).

• In practice, this precise description cannot be obtained for real-world signals. Moreover, it
can be argued philosophically that real-world signals are not deterministic but, rather, they are
inherently random or stochastic in nature.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton19'){ocgs[i].state=false;}}
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• Although random signals evolve in time stochastically, their average properties are often
deterministic, and thus can be specified by an explicit functional form.

• The aim of statistical signal processing is to develop the properties of stochastic processes,
both in terms of an exact probabilistic description, but also characteristic features such as
mean, variance, and other moments. This course begins by looking at the simplest description
of random scalars, or random variables, on which the rest of statistical signal processing is
developed.

4.2 Definition Random Variables
New slideA random variable (RV) X(ζ) is a mapping that assigns a real number X ∈ (−∞, ∞) to every

outcome, or elementary event, ζ from an abstract probability space. This mapping from ζ to X
should satisfy the following two conditions:

1. the interval {X(ζ) ≤ x} is an event in the abstract probability space for every x ∈ R;

2. Pr (X(ζ) = ∞) = 0 and Pr (X(ζ) = −∞) = 0.

The second condition states that, although X(ζ) is allowed to take the values x = ±∞, the outcomes
form a set with zero probability.

KEYPOINT! (Nature of Outcomes). Note that the outcomes of events are not necessarily numbers
themselves, although they should be distinct in nature. Hence, examples of outcomes might be:

• outcomes of tossing coins (head/tails); card drawn from a deck (King, Queen, 8-of-Hearts);

• characters or words (A-Z); symbols used in deoxyribonucleic acid (DNA) sequencing (A, T, G,
C);

• a numerical result, such as the number rolled on a die, or a temperature measuement.

A more graphical representation of a discrete RV is shown in Figure 4.1. In this model, a physical
experiment can lead to a number of possible events representing the outcomes of the experiment.
These outcomes may be values, or they may be symbols, or some other representation of the event.
Each outcome (or event), ζk, then has a probability Pr (ζk) assigned to it. Additionally, each outcome
ζk also has a real number assigned to that outcome, xk. The RV is then defined as the collection of
these three values; an outcome event, the probability of the outcome, and the real value assigned to
that outcome, thus X(ζ) = {ζk, Pr (ζk) , xk}.

A more specific example is shown in Figure 4.2 in which the experiment is that of rolling a die, the
outcomes are the colors of the dies, each event is simply each outcome, and the specific user-defined
values assigned are the numbers shown.

Example 4.1 (Rolling die). Consider rolling a die, with six outcomes {ζi, i ∈ {1, . . . , 6}}. In this
experiment, assign the number 1 to every even outcome, and the number 0 to every odd outcome.
Then the RV X(ζ) is given by:

X(ζ1) = X(ζ3) = X(ζ5) = 0 and X(ζ2) = X(ζ4) = X(ζ6) = 1 (4.1)
⋊⋉
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Figure 4.1: A graphical representation of a random variable.
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Figure 4.2: A graphical representation of a random variable for a more specific example. Note that
for continuous random variables, the outcomes are events, such as small intervals on the real axis as
described in the previous lecture handout.
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Figure 4.3: The cumulative distribution function.
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Figure 4.4: The gradient of the cdf is very important, and leads to the probability density function
(pdf).

Example 4.2 (Letters of the alphabet). Suppose the outcome of an experiment is a letter A to Z,
such that X(A) = 1, X(B) = 2, ..., X(Z) = 26. Then the event X(ζ) ≤ 5 corresponds to the letters
A, B, C, D, or E.

4.2.1 Distribution functions

New slide
Random variables are fundamentally characterised by their distribution and density functions. These
concepts are considered in this and the next section.

• The probability set function Pr (X(ζ) ≤ x) is a function of the set {X(ζ) ≤ x}, and therefore
of the point x ∈ R.

• This probability is the cumulative distribution function (cdf), FX (x) of a RV X(ζ), and is
defined by:

FX (x) ≜ Pr (X(ζ) ≤ x) (M:3.1.1)

It is graphically shown in Figure 4.3.

• It hence follows that the probability of being within an interval (xℓ, xr] is given by:

Pr (xℓ < X(ζ) ≤ xr) = Pr (X(ζ) ≤ xr)− Pr (X(ζ) ≤ xℓ) (4.2)
= FX (xr)− FX (xℓ) (4.3)

• For small intervals, it is clearly apparent that gradients are important.
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This can be seen by setting xr = xl + δx:

Pr (xℓ < X(ζ) ≤ xℓ + δx) = Pr (X(ζ) ≤ xℓ + δx)− Pr (X(ζ) ≤ xℓ) (4.4)

≈ Pr (X(ζ) ≤ xℓ) +
dFX (x)

dx

∣∣∣∣
x=xℓ

δx− Pr (X(ζ) ≤ xℓ) (4.5)

≈ dFX (x)

dx

∣∣∣∣
x=xℓ

δx (4.6)

Shortly, it will be seen that dFX(x)
dx

is indeed the pdf.

4.2.2 Kolmogorov’s Axioms

New slide The events {X(ζ) ≤ x1} and {x1 < X(ζ) ≤ x2} are mutually exclusive events. Therefore, their
union equals {X(ζ) ≤ x2}, and thus:

Pr (X(ζ) ≤ x1) + Pr (x1 < X(ζ) ≤ x2) = Pr (X(ζ) ≤ x2) (4.7)∫ x1

−∞
p (v) dv + Pr (x1 < X(ζ) ≤ x2) =

∫ x2

−∞
p (v) dv (4.8)

⇒ Pr (x1 < X(ζ) ≤ x2) =

∫ x2

x1

p (v) dv (4.9)

where p (v) is an probability density function (pdf) that will be described in more detail in the next
section.

Moreover, it follows that Pr (−∞ < X(ζ) ≤ ∞) = 1 and the probability of the impossible event,
Pr (X(ζ) ≤ −∞) = 0. Hence, the cdf satisfies the axiomatic definition of probability.

– End-of-Topic 16: Introduction to Random Variables and
Cummulative Distribution Functions –



4.3. Density functions 103

4.3 Density functions

New slide Topic Summary 17 Introduction to probability density functions (pdfs) and their properties

Topic Objectives:

• The probability density function (pdf).

• Formal properties of probability density functions (pdfs).

• Discrete random variables (RVs), their probability mass function (pmf) the corresponding pdfs
and cdfs, as well as mixtures of continuous and discrete random variables.

• Examples of mixed density functions.

Topic Activities:

Type Details Duration Progress
Watch video 14 : 19 minute video 3× video length
Read Handout Read page 101 to page 104 8 mins/page
Practice Exercises Exercises ?? to ?? 30 mins

http://media.ed.ac.uk/media/1_1egxxc2x

Video Summary: This video discusses the probability density function (pdf) and how
it is used, including how to deal with mixed discrete and continuous random variables.
The key properties of the pdf are then defined, and the viewer should then undertake the
exercises associated with this topic.

It was seen in the previous section that gradients of the cdf are important when determining the
probability of being within small intervals.

• The probability density function (pdf), fX (x) of a RV, X(ζ), is defined as a formal
derivative:

fX (x) ≜
dFX (x)

dx
(M:3.1.2)

Note the density fX (x) is not a probability on its own; it must be multiplied by a certain
interval ∆x to obtain a probability:

fX (x) ∆x ≈ ∆FX (x) ≜ FX (x+∆x)− FX (x) ≈ Pr (x < X(ζ) ≤ x+∆x) (4.10)
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Sidebar 3 Probability of X(ζ) taking on a specific value

The simplest way to consider why the probability of a RV, X(ζ), taking on a specific value, x0, is
zero for a continuous RV, but not a discrete one, is to consider the limiting case:

Pr (X(ζ) = x0) = lim
∆x0→0

Pr (x0 −∆x0 ≤ X(ζ) ≤ x0 + δx0) (4.13)

which can be expressed in terms of its probability density function (pdf), fX (x), as:

Pr (X(ζ) = x0) = lim
∆x0→0

∫ x0+∆x0

x0−∆x0

fX (u) du (4.14)

Suppose that around the region R = [x0 −∆x0, x0 +∆x0], the pdf fX (x) can be expressed as:

fX (x) = p0 δ (x− x0) (4.15)

then using the sifting theorem, which states that∫
R
ϕ(t) δ(t− T ) dt =

{
ϕ(T ) if T ∈ R
0 otherwise

, (4.16)

then it becomes clear that

Pr (X(ζ) = x0) = lim
∆x0→0

∫ x0+∆x0

x0−∆x0

p0 δ (x− x0) du = p0 (4.17)

whereas for the continuous time case, the limit in Equation 4.14 tends to zero. In otherwords, only in
the case when the pdf of X(ζ), fX (x), contains a delta function at a specific value, will the probability
of that specific value be non-zero. A delta function in a pdf corresponds to a discrete-component of
the RV. An example of a mixture of discrete and continous random variables is shown in Figure 4.6.
Note the step function in the cumulative distribution function (cdf).

This can be written, more formally, as:

fX (x) = lim
∆x→0

FX(x+∆x)− FX(x)

∆x
(4.11)

= lim
∆x→0

Pr (x < X(ζ) ≤ x+∆x)

∆x
(4.12)

• It directly follows that:

FX(x) =

∫ x

−∞
fX(v) dv (M:3.1.4)

• For discrete-valued RV, use the probability mass function (pmf), pk, defined as the probability
that X(ζ) takes on a value equal to xk: pk ≜ Pr (X(ζ) = xk).

The pmf for a discrete RVs can be written as a pdf through:

fX (x) =
∑
k

pk δ(x− xk) (4.18)
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Figure 4.5: The cdf and pdf for a fair six-sided die.
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Figure 4.6: A probability density function and its corresponding cumulative distribution function for
a RV which is a mixture of continuous and discrete components.

where δ(x) is the Dirac-delta function, and is given by:

δ(x) = 0 if x ̸= 0 (4.19a)∫ ∞

−∞
δ(x) dx = 1 (4.19b)

Example 4.3 (6-sided die). Describe the cdf and pdf for a fair six-sided die.

SOLUTION. The probability mass function (pmf) is given by pi = Pr (X(ζ) = xi) = 1
6
, where

xi = i, i ∈ {1, . . . , 6}.

The cdf can be drawn by noting that Pr (X(ζ) < x1) = 0 whereas Pr (X(ζ) ≤ x1) = 1/6. In
otherwords, we need to carefully consider the probability of the events on an interval, not a discrete
event, and hence when the cdf actually transitions values.

The pdf is obtained by differentiating the cdf:

fX (x) =
N∑
i=1

pi δ(x− xi) =
1

6

6∑
i=1

δ(x− i) (4.20)
□

Moreover, a mixture of continuous and discrete components will have a pdf that is composed of delta
functions as well as continous functions:

fX,m (x) =
∑
k

pk δ(x− xk) + fX,c (x) (4.21)
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An example of a mixture is shown in Figure 4.6. The pdf for the distribution shown in Figure 4.6 can
be written as:

fX (x) = (1− p) δ(x− a) +
p

c− b
(u(x− b)− u(x− c)) (4.22)

where u(x) is the unit step function, such that u(x) = 1 if x ≥ 0 and zero otherwise.

Integrating, it is can be shown that:

FX (∞) =

∫ ∞

−∞
fX (x) dx = (1− p) +

p

c− b
× (c− b) = 1 (4.23)

The result of a property of pdfs.

KEYPOINT! (Discussion Topic). Can you think of examples of a mixture of discrete and continuous
random variables?

4.4 Properties of Distribution and Density Functions

New slide The following properties are for continuous RVs. Similar properties follow, mutatis mutandis, for
discrete RVs.

• Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1 (M:3.1.6)

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b (4.24)

• Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞
fX (x) dx = 1 (M:3.1.7)

• Probability of arbitrary events:

Pr (x1 < X(ζ) ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x) dx (M:3.1.8)

– End-of-Topic 17: Introduction to pdf and their properties –
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4.5 Examples of Continuous random variables

New slide Topic Summary 18 Common density functions and their properties

Topic Objectives:

• Look at common pdfs used in signal processing algorithms.

• Consider pdfs across different intervals.

• Resources for finding out other density functions.

Topic Activities:

Type Details Duration Progress
Watch video 12 : 54 minute video 3× video length
Read Handout Read page 105 to page 109 8 mins/page

http://media.ed.ac.uk/media/1_tfmx5yn5

Video Summary: This video introduces a number of common probability density
functions (pdfs) that are used in signal processing algorithms. Examples are given over
finite-intervals, the entire real axis, and semi-infinite intervals. More significantly, this
video shows how to use Wikipedia to discover other important densities as and when they
arise in your work. Signal processing applications of the von-Mises and Voigt densities
are mentioned.

Uniform distribution The RV X(ζ) is uniform on [a, b] if it has pdf:

fX (x) =

{
1

b−a
if a < x ≤ b,

0 otherwise
(M:3.1.33)

The pdf is plotted in Figure 4.7.
Consequently, the cdf is given by:

FX (x) =


0 if x ≤ a,
x−a
b−a

if a < x ≤ b,
1 if x > b.

(M:3.1.34)

The cdf is also shown in Figure 4.7. Roughly speaking, X takes on any value between
a and b with equal probability.

June 28, 2021 – 08 : 40
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Figure 4.7: The uniform probability density function and cumulative distribution function.
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(b) The Exponential cdf.

Figure 4.8: The exponential density and distribution functions, for various different values of the
parameter λ.

The mean and variance of this random variable are given by, respectively:

µX =
a+ b

2
and σ2

X =
(b− a)2

12
(M:3.1.35)

Exponential distribution The RV X(ζ) is exponential with parameter λ > 0 if it has pdf:

fX (x) =

{
0 if x < 0,
λe−λx if x ≥ 0,

(4.25)

Consequently, the cdf is given by:

FX (x) =

{
0 if x < 0,
1− e−λx if x ≥ 0,

(4.26)

The exponential distribution occurs very often in practice as a description of the
time elapsing between random events.
The exponential pdf and cdf are shown in Figure 4.8, for various different values of
the parameter λ.
The mean and variance of this random variable are given by, respectively:

µX =
1

λ
and σ2

X = µ2
X =

1

λ2
(4.27)

Hence, for an exponential distribution, the mean and standard deviation are
identical.
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Figure 4.9: The Gaussian density and distribution functions; these plots are for a zero mean normal
pdf, and are plotted for various different variances, σ2

X .

Normal distribution Arguably the most important continuous distribution is the normal or Gaussian
distribution; these terms will be used interchangeably.
The pdf of a Gaussian distributed RV, X(ζ), with mean µX and standard deviation
σ2
X , is given by:

fX (x) =
1√
2πσ2

X

exp

[
−1

2

(
x− µX

σX

)2
]
, x ∈ R (M:3.1.37)

It is common to denote this by:

fX (x) = N
(
x
∣∣µX , σ

2
X

)
(4.28)

Note, however, that if x̂ is a sample of a Gaussian random variable, then it is written:

x̂ ∼ N
(
µX , σ

2
X

)
(4.29)

The Gaussian pdf and cdf are shown in Figure 4.9 for a zero-mean RV, and for various
variances, σ2

X .

Gamma distribution The RV X(ζ) has the Gamma distribution with parameters α > 0, β > 0 if
it has pdf:

fX (x) =

{
0 if x < 0,
1

Γ(β)
αβ xβ−1 e−αx if x ≥ 0,

(4.30)

where Γ(β) is the gamma function given by:

Γ(β) =

∫ ∞

0

xβ−1 e−x dx (4.31)

This distribution is often written as fX (x) = Ga
(
x
∣∣α, β). If β = 1, then X is

exponentially distributed with parameter α.
The Gamma pdf and cdf are shown in Figure 4.10, for the case when α = 1 and for
various values of the parameter β.
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Figure 4.10: The Gamma density and distribution functions, for the case when α = 1 and for various
values of β.

Inverse-Gamma distribution The RV X(ζ) has the inverse-Gamma distribution with parameters
α > 0, β > 0 is related to a Gamma-distributed RV, say U , through the
transformation X = 1

U
. It can be shown using the probability transformation rule

that the pdf of X is thus given by:

fX (x) =

{
0 if x < 0,
1

Γ(β)
αβ x−(β+1) e−

α
x if x ≥ 0,

(4.32)

It is common to denote this by:

fX (x) = IG
(
x
∣∣α, β) (4.33)

Note, however, that if x̂ is a sample of a inverse-gamma distributed variable, then it is
written:

x̂ ∼ IG (α, β) (4.34)

Cauchy distribution The RV X(ζ) has the Cauchy distribution with parameters µX and β if it has
pdf:

fX (x) =
β

π

1

(x− µX)2 + β2
(M:3.1.41)

The Cauchy random variable is symmetric around the value x = µX , but its mean
and variance (or other moments) do not exist. The corresponding cdf is given by:

FX (x) =
1

2
+

1

π
arctan

x− µX

β
(4.35)

The Cauchy distribution is an appropriate model in which a random variable takes
large values with significant probability, and is thus a heavy-tailed distribution.

Beta distribution The RV X(ζ) is beta, parameters a, b > 0, if it has density function:

fX (x) =

{
1

B(a,b)
xa−1(1− x)b−1 0 ≤ x ≤ 1

0 otherwise.
(4.36)
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Figure 4.11: The Weibull density and distribution functions, for the case when α = 1, and for various
values of the parameter β.

where the beta function is given by

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx (4.37)

If a = b = 1, then X is uniform on [0, 1].

Erlang-k distribution The RV X(ζ) has an Erlang-k distribution, with parameters γ > 0 and
k ∈ Z+ is a positive integer, if it has density function:

fX (x) =

{
γk(γkx)k−1

(k−1)!
e−γkx x ≥ 0

0 otherwise.
(4.38)

The mean and variance of this random variable are given by, respectively:

µX =
1

γ
and σ2

X =
1

kγ2
(4.39)

Weibull distribution The RV X(ζ) is Weibull, parameters α, β > 0, if it has density function:

fX (x) =

{
0 x < 0

αβxβ−1 e−αxβ
x ≥ 0

(4.40)

The corresponding the cdf is given by:

FX (x) =

{
0 x < 0

1− e−αxβ
x ≥ 0

(4.41)

Setting β = 1 gives the exponential distribution.
The Weibull pdf and cdf are shown in Figure 4.11, for the case when α = 1, and for
various values of the parameter β.

– End-of-Topic 18: Introduction to common density functions –
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4.6 Probability transformation rule

New slide Topic Summary 19 Probability Transformation Rule and Its Applications

Topic Objectives:

• Need for the Probability Transformation Rule.

• Conceptual Proof.

• Examples and applications.

Topic Activities:

Type Details Duration Progress
Watch video 12 : 25 min video 3× length
Read Handout Read page 110 to page 113 8 mins/page
Try Examples Try Examples 4.4 and 4.5 15 minutes
Practice Exercises Exercise ?? to ?? (4 questions) 60 mins

http://media.ed.ac.uk/media/1_asatl2ps

Video Summary: This video introduces the probability transformation rule, for finding
the pdf of the mapping of another random variable. A derivation of the transformation
rule is presented, by considering mutually exclusive small intervals, such that the rule is
effectively an application of the axiomatic probability sum rule. An example with a single
root is provided, leading to the log-normal distribution. The viewer is recommended to
work through the example at the end of the inverse transformation of a random variable
that is Cauchy distributed.

Suppose a random variable Y (ζ) is a scalar function, g, of a random variable X(ζ), which has pdf
given by fX (x). What is fY (y)?

This functional relationship is shown diagrammatically in Figure 4.12, and an arbitrary function
between X(ζ) and Y (ζ) is shown in Figure 4.13.

This general question is discussed in detail in, for example, [Papoulis:1991, Chapter 5]. It can be
concluded that for Y (ζ) = g(X(ζ)) to be a valid random variable, the function g(x) must have the
following properties:

1. Its domain must include the range of the RV X(ζ).


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton22'){ocgs[i].state=false;}}
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Y g X( ) ( ( ))z z=
X( )z Y( )z

f xX( ) f yY( )
?

Figure 4.12: The mapping y = g(x).

2. It must be a so-called Baire function: that is, for every y, the set Ry = {x : g(x) ≤ y, x ∈ R}
must consist of the union and intersection of a countable number of intervals. Only then the set
{Y (ζ) ≤ y} is an event.

3. The events {g(X(ζ)) = ±∞} must have probability zero.

These properties are usually satisfied, but they are defined in order to avoid difficult cases, where the
function g(x) behaves in a way that mathematical technicalities arise.

Consider the set R ⊂ R of the y-axis that is not in the range of the function g(x); that is, g : R ↛ R.
In this case, Pr (g(X(ζ)) ∈ R) = 0. Hence, fY (y) = 0, y ∈ R. It suffices, therefore, to consider
values of y such that, for some x, g(x) = y.

Theorem 4.1 (Probability Transformation Rule). Denote the real roots of y = g(x) by {xn, n ∈
N}, such that:

y = g(x1) = · · · = g(xN) (4.42)

Then, if the Y (ζ) = g(X(ζ)), the pdf of Y (ζ) in terms of the pdf of X(ζ) is given by:

fY (y) =
N∑

n=1

fX (xn)

|g′(xn)|
(4.43)

where g′(x) is the derivative with respect to (w. r. t.) x of g(x).

PROOF. First consider the output pdf which, by definition, is given by:

fY (y) dy = Pr (y < Y (ζ) ≤ y + dy) (4.44)

KEYPOINT! (Informal proof). It would be more precise to use δx and δy instead of dx and dy, and
then undertake a formal limiting operation as per the fundamental operations of calculus. However,
this is a slightly more informal proof that is adequate for the scope of this course.

The set of values x such that y < g(x) ≤ y + dy consists of the intervals:

xn < x ≤ xn + dxn (4.45)

It is easier to understand these proofs if you consider these intervals to be mutually exclusive (which
is why the function g(x) must satisfy the Baire property). This is shown in Figure 4.13 for the case
when there are three mutually exclusive solutions to the equation y = g(x).

The probability that x lies in this set is, of course:

fX (xn) dxn = Pr (xn < X(ζ) ≤ xn + dxn) (4.46)

June 28, 2021 – 08 : 40
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Figure 4.13: The mapping y = g(x), and the effect of the mapping on intervals.

and, from the transformation from x to y, then

dxn =
dy

|g′(xn)|
(4.47)

where g′(x) is the derivative w. r. t. x of g(x).

Finally, since these are N mutually exclusive sets corresponding to the N different roots to y = g(x),
then

Pr (y < Y (ζ) ≤ y + dy) =
N∑

n=1

Pr (xn < X(ζ) ≤ xn + dxn) (4.48)

≈ fY (y) dy ≈
N∑

n=1

fX (xn) dxn (4.49)

fY (y) dy =
N∑

n=1

fX (xn)
dy

|g′(xn)|
(4.50)

fY (y) =
N∑

n=1

fX (xn)∣∣ dy
dx

∣∣
x=xn

∣∣∣∣∣
xn=g−1(y)

(4.51)
□

where as a reminder xn = g−1(y) is the roots of the equation y = g[x], and thus the desired result is
obtained after minor rearrangement.

Example 4.4 (Log-normal distribution). Let Y = eX , where X ∼ N (0, 1). Find the pdf for the
RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2 (4.52)

Considering the transformation y = g(x) = ex, there is one root, given by x = ln y. Therefore, the
derivative of this expression is g′(x) = d ex

dx
= ex = y. Hence, it follows:

fY (y) =
fX (x)

g′(x)
=

fX (ln y)

y
=

1

y
√
2π

e−
(ln y)2

2 (4.53)
□

This distribution is known as the log-normal distribution. It is important for cases where the random
variable X might describe the amplitude of a signal in decibels, and where Y is the actual amplitude.
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Example 4.5 (Inverse of a random variable). Let Y = 1
X

. Find the pdf for the RV Y , given by
fY (y), in terms of the pdf for the RV X , given by fX (x). Further, consider the special case when X
has a Cauchy density with parameter α, such that:

fX (x) =
α

π

1

x2 + α2
(4.54)

SOLUTION. There is a single solution to the equation y = 1
x
, given by x = 1

y
. Hence, |g′(x)| = 1

x2 =

y2, and:

fY (y) =
1

y2
fX

(
1

y

)
(4.55)

In the special case of a Cauchy density,

fX (x) =
α

π

1

x2 + α2
(4.56)

such that:

fY (y) =
1

y2
fX

(
1

y

)
=

1

y2
α

π

1
1
y2

+ α2
(4.57)

=
1/α

π

1

y2 + 1
α2

(4.58)
□

which is also a Cauchy density with parameter 1
α

.

– End-of-Topic 19: Derivation of the Probability Transformation Rule,
and some examples –
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4.7 Expectations

New slideTopic Summary 20 Expectations and their Properties

Topic Objectives:

• Summary of key aspects of a pdf.

• Properties of the mean value of a random variable.

• Invariance of the Expectation Operator.

• Examples of finding expected value.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 08 min video 3× length
Read Handout Read page 114 to page 116 8 mins/page
Try Example Work through Example 4.6 10 minutes

http://media.ed.ac.uk/media/0_j196xtbds

Video Summary: This video discusses why it is useful to characterise a pdf in terms
of salient features which measure the location, spread, asymmetry, and the tails of the
density. Other key statistics are also mentioned in relation to this characterisation. The
expected value is then formally introduced both for continuous random variables, but also
for discrete random variables. The properties of the mean value is then considered for
even and symmetric densities. Next, the video looks at the invariance of the expectation
operator for finding the expected value of a nonlinear function of another random
variable, including a proof. The video finishes with an example showing the expected
value of a trigonometric transformation of a uniform random variable.

To completely characterise a RV, the pdf must be known. However, it is desirable to summarise key
aspects of the pdf by using a few parameters rather than having to specify the entire density function.
The four salient or key features are shown in Figure 4.14. These can be characteristed by looking at
the notion of expectation, which in turn defines moments.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton23'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/0_j196xtbds


4.7. Expectations 117

f xX( )

m

Mean
- 1st order statistic
- Centre of mass

Variance
- 2nd order statistic
- “spread of the pdf”

Skewness
- 3rd order statistic
- Measure of asymmetry
- Difference in tails

Kurtosis
- 4th order statistic
- Measure of size

of tails

x

s
2

Figure 4.14: The four saliant or key features or statistics of the pdf.

• The expected or mean value of a function of a RV X(ζ) is given by:

E [X(ζ)] =

∫
R
x fX (x) dx (4.59)

• Recall: if X(ζ) is discrete then, as shown earlier in this handout, its corresponding pdf may be
written in terms of its pmf as:

fX (x) =
∑
k

pk δ(x− xk) (4.60)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero otherwise.

• Hence, for a discrete RV, the expected value is given by:

µx =

∫
R
x fX (x) dx =

∫
R
x
∑
k

pk δ(x− xk) dx =
∑
k

xk pk (4.61)

where the order of integration and summation have been interchanged because they do not
depend on each other, and the sifting-property is applied such that:∫

R
x δ(x− xk) dx = xk (4.62)

4.7.1 Properties of expectation operator

New slideThe expectation operator computes a statistical average by using the density fX (x) as a weighting
function. Hence, the mean µx can be regarded as the center of gravity of the density.

• If fX (x) is an even function, then µX = 0. Note that since fX (x) ≥ 0, then fX (x) cannot be
an odd function.

• If fX (x) is symmetrical about x = a, such that fX (a− x) = fX (x+ a), then µX = a
provided that the mean is finite (and therefore exists).
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• The expectation operator is linear:

E [αX(ζ) + β] = αµX + β (M:3.1.10)

• If Y (ζ) = g{X(ζ)} is a RV obtained by transforming X(ζ) through a suitable function, the
expectation of Y (ζ) is:

E [Y (ζ)] ≜ E [g{X(ζ)}] =
∫ ∞

−∞
g(x) fX (x) dx (M:3.1.11)

This property is known as the invariance of the expectation operator.

KEYPOINT! (Invariance of the Expectation Operator). This property means that you don’t
need to keep track of which pdf the expectation is taken with respect to. Rather, you simply
need to consider the RV inside the expectation, and the expectation is takenw. r. t. the pdf of
that RV.

As an outline sketch, or simple proof, to prove this result, consider a monotonic one-to-one
function y = g(x), such that using the probability transformation rulefY (y) = fX(x)

dy
dx

. Then, it
follows that:

EfY [Y (ζ)] =

∫
yfY (y) dy =

∫
g(x)

fX (x)
dy
dx

dy =

∫
g(x) fX (x) dx (4.63)

Note that cancelling the dy’s is not a formal mathematical process, but it gives an overview
of the proposed approach. A more detailed proof for many-to-one functions with negative
gradients is discussed in much more detail in Sidebar 4.

Example 4.6 (Trigonometric Transformation). The continuous random variable (RV), Θ(ζ), is
uniformally distributed between −π and π.

1. Calculate the expected value of Θ(ζ).

2. Now consider the RV, Y (ζ) = A cos2Θ(ζ), where A is assumed to be a constant value. What
is the expected value of Y (ζ)?

SOLUTION. 1. The expected value of Θ(ζ) is:

E [Θ(ζ)] =

∫ ∞

−∞
θ fΘ (θ) dθ =

∫ π

−π

θ
1

2π
dθ (4.68)

=
θ2

4π

∣∣∣∣π
−π

= 0 (4.69)

2. Using the invariance of the expectation operator gives:

E [Y (ζ)] = E
[
A cos2 θ(ζ)

]
=

∫ π

−π

[
A cos2 (θ)

]
fΘ (θ) dθ (4.70)

=
A

2π

∫ π

−π

cos2 (θ) dθ =
A

4π

∫ π

−π

(1 + cos 2θ) dθ =
A

2
(4.71)

□

– End-of-Topic 20: Expectations, their properties, and some examples –
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Sidebar 4 Invariance of Expectation

The invariance of the expectation operator is an extremely important property, and makes statistical
analysis of transformed random variables much simpler. It can be explained using similar techniques
to those used in deriving the probability transformation rule in Theorem 4.1.

Consider again Figure 4.13 on page 112, which is reproduced above. Let Y (ζ) = g (X(ζ)). Consider
first the approximation for the expectation of Y (ζ):

E [Y ] =

∫ ∞

−∞
y fY (y) dy ≈

∑
∀k

yk fY (yk) δy (4.64)

where fY (yk) δy = Pr (yk < Y (ζ) ≤ yk + δy) is the probability that Y (ζ) is in the small interval
yk < Y (ζ) ≤ yk + δy. This probability, as in Theorem 4.1, can be written as the sum of the
probabilities that X(ζ) is each of the corresponding small intervals shown in Figure 4.13 above, such
that:

fY (yk) δy =
N∑

n=1

Pr (xk,n < X(ζ) ≤ xk,n + δxk,n) =
N∑

n=1

fX (xk,n) δxk,n (4.65)

Substituting Equation 4.65 into Equation 4.67 gives:

E [Y ] ≈
∑
∀k

yk

N∑
n=1

fX (xk,n) δxk,n =
∑
∀k

N∑
n=1

g (xk,n) fX (xk,n) δxk,n (4.66)

Since the double summation merely covers all possible regions of x, this can be reindexed as

E [Y ] ≈
∑
∀ℓ

g (xℓ) fX (xℓ) δxℓ (4.67)

which in the limit gives the integral Equation M:3.1.11, page 116. So, in summary, to compute the
expectation of Y (ζ) = g (X(ζ)), it is not necessary to transform and find the pdf of fY (y), but simply
use this invariance of expectation property.
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4.8 Moments
New slide Topic Summary 21 Moments and Definitions

Topic Objectives:

• General definition of moments.

• Examples of calculating moments.

• Central moments and relationship with moments.

Topic Activities:

Type Details Duration Progress
Watch video 17 : 52 min video 3× length
Read Handout Read page 118 to page 122 8 mins/page
Try Example Work through Examples 4.7 and 4.8 20 minutes

http://media.ed.ac.uk/media/1_8kwpp2js

Video Summary: This video builds on Topic 20 by explicitly defining variance in terms
of expectations, and the more general definition of moments. The video then considers
calculating moments for a couple of simple examples, namely the exponential random
variable, but also a property of moments for non-negative random variables. The second
half of the video then considers central moments, and the relationship between moments
and central moments (with an opportunity to mention Pascal’s triangle!).

Recall that mean and variance can be defined as:

E [X(ζ)] = µX =

∫
R
x fX(x) dx (4.72)

var [X(ζ)] = σ2
X =

∫
R
x2 fX(x) dx− µ2

X = E
[
X2(ζ)

]
− E2 [X(ζ)] (4.73)

Thus, key characteristics of the pdf of a RV can be calculated if the expressions E [Xm(ζ)] , m ∈
{1, 2} are known.

Further aspects of the pdf can be described by defining various moments of X(ζ): the m-th moment
of X(ζ) is given by:

r
(m)
X ≜ E [Xm(ζ)] =

∫
R
xm fX(x) dx (M:3.1.12)
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(a) Integration w. r. t. x
first, and then w. r. t. y.

(b) Integration w. r. t. y
first, and then w. r. t. x.

Figure 4.15: The region of integration for the integral in Equation 4.79.

Note, of course, that in general: E [Xm(ζ)] ̸= Em [X(ζ)].

Example 4.7 (Exponential Random Variable). Calculate the moments of the exponential random
variable with parameter λ. We can make use of the formula (proof left as an exercise for the reader!):∫ ∞

0

un e−u du = n! n ∈ {0, 1, 2, . . . } (4.74)

SOLUTION. The pdf for an exponential RV is (see Section 4.5 for full details):

fX (x) =

{
0 if x < 0,
λe−λx if x ≥ 0,

(4.75)

The m-th moment is given by:

E [Xm(ζ)] =

∫ ∞

0

xm fX (x) dx = λ

∫ ∞

0

xm e−λx dx (4.76)

Using the provided formula by setting u = λx such that when x = {0, ∞} then u = {0, ∞}, and
du = λ dx, it follows:

E [Xm(ζ)] =
1

λm

∫ ∞

0

un e−u du =
m!

λm
(4.77)

□

In particular, by setting m = 1, the mean is given by µX = E [X(ζ)] = 1/λ.

Setting m = 2, the second-moment is E [X2(ζ)] = 2/λ2, which means the variance is given by
σ2
X = var [X(ζ)] = 2/λ2 − (1/λ)2 = 1

λ2 = µ2
X .

Example 4.8 (Expectations of non-negative RVs). Let X(ζ) be a non-negative RV with pdf fX (x).
Show that

E [Xm(ζ)] =

∫ ∞

0

mxm−1 Pr (X(ζ) > x) dx (4.78)

for any m ≥ 1 for which the expectation is finite.
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SOLUTION. In this case, since the question says to show that, it is sufficient to manipulate the right
hand side (RHS). This proceeds as follows: notice,

∫ ∞

0

mxm−1 Pr (X(ζ) > x) dx =

∫ ∞

0

mxm−1

{∫ ∞

y=x

fX (y) dy

}
dx (4.79)

and rearrange the order of integration, noting the region of integration as shown in Figure 4.15, and
thus the change in the limits:

=

∫ ∞

0

fX (y)

{∫ y

x=0

mxm−1 dx

}
dy (4.80)

=

∫ ∞

0

fX (y) [xm]y0 dy =

∫ ∞

0

ymfX (y) dy = E [Xm(ζ)] (4.81)
□

4.8.1 Central Moments

Central moments of X(ζ) can also be defined: the m-th central moment of X(ζ) is given by:

γ
(m)
X ≜ E [(X(ζ)− µX)

m] =

∫
R
(x− µX)

m fX(x) dx (M:3.1.14)

Some obvious properties that follow from these definitions are:

• The variance of X(ζ) can be defined as:

var [X(ζ)] ≜ σ2
X ≜ γ

(2)
X = E

[
(X(ζ)− µX)

2
]

(4.82)

• Standard deviation is given by: σX =
√

var [X(ζ)].

• Trivial moments: r(0)X = 1 and r
(1)
X = µX .

• Trivial central moments: γ(0)
X = 1, γ(1)

X = 0, and γ
(2)
X = σ2

X .

The polynomial term in Equation M:3.1.14 can be expanded as

(x− µX)
m = xm − µm−1

X x+ · · · − µX xm−1 + µm
X =

m∑
k=0

(
m

k

)
(−1)k µk

X xm−k (4.83)

where the polynomial coefficients
(
m
k

)
can be found using Pascal’s Triangle, as shown in Sidebar 5.

This leads onto the relationship between moments and central moments as discussed in the next
section.
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Sidebar 5 Combinatorial terms and Pascal’s Triangle

A reminder of high-school maths that mck =
(
m
k

)
can be obtained via Pascal’s triangle. These

combinatorial terms are the coefficients of the polynomial expansion:

(a+ b)m = am + mc1 a
m−1 b+ mc2 a

m−2 b2 + · · ·

which can be calculated from Pascal’s triangle, as shown below.

4.8.2 Relationship between Moments and Central Moments

Moments and central moments are related by the expressions:

γ
(m)
X =

m∑
k=0

(
m

k

)
(−1)k µk

X r
(m−k)
X (M:3.1.16)

r
(m)
X =

m∑
k=0

(
m

k

)
µk
X γ

(m−k)
X (4.84)

where the general combinatorial term nCr =
(
n
r

)
is given by

nCr =
n!

r! (n− r)!
(4.85)

In particular, second-order moments are related as follows:

σ2
X = r

(2)
X − µ2

X = E
[
X2(ζ)

]
− E2 [X(ζ)] (M:3.1.17)

PROOF. These results are proved by expanding the term (x − µx)
m in the expression for

central-moments using the binomial expansion.

Thus, recalling that

γ
(m)
X = E [(X(ζ)− µX)

m] (4.86)

=

∫
R
(x− µX)

m fX(x) dx (M:3.1.14)

then using the binomial:

(x+ a)n =
n∑

k=0

(
n

k

)
xk an−k =

n∑
k=0

(
n

k

)
ak xn−k (4.87)
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it follows:

γ
(m)
X =

∫
R

m∑
k=0

(
m

k

)
xm−k (−µX)

k fX(x) dx (4.88)

=
m∑
k=0

(
m

k

)
(−1)k µk

X

∫
R
xm−k fX(x) dx︸ ︷︷ ︸

r
(m−k)
X

(4.89)

as required. Similarly, note that

r
(m)
X =

∫
R
[(x− µX) + µX ]

m fX(x) dx (M:3.1.12)

=

∫
R

m∑
k=0

(
m

k

)
µk
X (x− µX)

m−k fX(x) dx (4.90)

=
m∑
k=0

(
m

k

)
µk
X

∫
R
(x− µX)

m−k fX(x) dx︸ ︷︷ ︸
γ
(m−k)
X

(4.91)
□

giving the desired result. These expressions can also be obtained by using the linearity property of
the expectation operator, rather than using the integral expressions above.

– End-of-Topic 21: Moments –



4.8. Moments 125

4.8.3 Higher-Order Statistics

New slide Topic Summary 22 Higher-Order Statistics

Topic Objectives:

• Skewness and its intepretation.

• Kurtosis and its intepretation.

• Examples of calculating skewness and kurtosis.

Topic Activities:

Type Details Duration Progress
Watch video 11 : 44 min video 3× length
Read Handout Read page 123 to page 125 8 mins/page
Try Examples Try Examples 4.9 and 4.10 15 minutes
Practice Exercise Exercise ?? 20 minutes

http://media.ed.ac.uk/media/1_8kwpp2js

Video Summary: This video looks at two important and commonly used higher-order
statistics that are useful for characterising a random variable, namely skewness and
kurtosis. The video gives a physical meaning to each statistic and a mathematical
definition. The video shows an example of calculating skewness for the exponential
distribution, and kurtosis for the standard Laplacian distribution. The video then finishes
with examples of using these higher-order statistics in signal processing applications.

Two important and commonly used higher-order statistics that are useful for characterising a random
variable are:

Skewness characterises the degree of asymmetry of a distribution about its mean. It is defined
as a normalised third-order central moment:

κ̃
(3)
X ≜ E

[{
X(ζ)− µX

σX

}3
]
=

1

σ3
X

γ
(3)
X (M:3.1.18)
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Positive SkewNegative Skew

f xX( ) f xX( )

x x

Figure 4.16: A graphical representation of the skewness of a pdf.

and is a dimensionless quantity. The skewness is:

κ̃
(3)
X =


< 0 if the density leans or stretches out towards the left
0 if the density is symmetric about µX

> 0 if the density leans or stretches out towards the right
(4.92)

In otherwords, if the left side or left tail of the distribution is more stretched out than
the right tail, the function is said to have negative skewness (and is sometimes said to
lean to the left). If the reverse is true, it has positive skewness (and leans to the right).
If the two are equal, it has zero skewness.

Kurtosis measures relative flatness or peakedness of a distribution about its mean value. It is
defined based on a normalised fourth-central moment:

κ̃
(4)
X ≜ E

[{
X(ζ)− µX

σX

}4
]
− 3 =

1

σ4
X

γ
(4)
X − 3 (M:3.1.19)

This measure is relative with respect to a normal distribution, which has the property
γ
(4)
X = 3σ4

X , therefore having zero kurtosis. For this reason, this measure is some
times known as kurtosis excess, with kurtosis proper having the same definition but
without the offset of 3.

Example 4.9 (Exponential distribution). Calculate the skewness of an exponential random variable
with parameter λ.

SOLUTION. From earlier calculations in Example 4.7, it was was shown that the m-th moment was
given by r

(m)
X = m!/λm.

It can also be shown, by expanding the expression for skewness (see Unknown exer:skewness), that:

κ̃
(3)
X =

r
(3)
X − 3r

(1)
X r

(2)
X + 2(r

(1)
X )3

σ3
X

(4.93)

Hence, since it was also shown that σ2
X = 1/λ2, then:

κ̃
(3)
X =

3!
λ3 − 31!

λ
2!
λ2 + 2 1

λ3

1
λ3

= 2 (4.94)
□

Positive skewness indicates leaning to the right, which it does!
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Example 4.10 (Laplace distribution). Calculate the Kurtosis of the standard Laplace
distribution, fX (x) = 1

2
e−|x|, x ∈ R.

SOLUTION. Note that as the density is symmetric, the skewness is zero! Moreover, you can show
that the odd moments are also equal to zero through symmetry (left as an exercise to the reader).

The even moments are given by:

r
(m)
X =

1

2

∫ 0

−∞
xm ex dx+

1

2

∫ ∞

0

xm e−x dx =

∫ ∞

0

xm e−x dx = m! (4.95)

Hence, using the formula for Kurtosis (noting r
(1)
X = 0):

κ̃
(4)
X = E

[{
X(ζ)− µX

σX

}4
]
− 3 =

r
(4)
X(

r
(2)
X

)2 − 3 =
4!

(2!)2
− 3 = 3 (4.96)

□

Skewness and kurtosis are used in signal processing in the following applications:

Signal Separation is only possible if the signals are statistically distinctive and this requires
non-Gaussianity; maximising kurtosis means that separated signals are ensured to
be as non-Gaussian as possible.

Outlier detection As kurtosis is a measure of heaviness of the tails, it also provides a metric for the
number of outliers. Outliers, for example positive values, can also lead to asymmetric
densities, measured by skewness.

Features Skewness and kurtosis can be used in feature-based classification and machine
learning algorithms.

– End-of-Topic 22: Skewness, Kurtosis, and their Applications –
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4.9 Characteristic Functions

Topic Summary 23 Characteristic, Moment, Probability, and Cumulant Generating Functions

Topic Objectives:

• General definition of moments.

• Examples of calculating moments.

• Central moments and relationship with moments.

Topic Activities:

Type Details Duration Progress
Watch video 23 : 20 min video 3× length
Read Handout Read page 126 to page 133 8 mins/page
Try Examples Try Examples 4.11, 4.11, and 4.13 30 minutes
Practice Exercise Exercises ?? to ?? 100 minutes

http://media.ed.ac.uk/media/1_qo43cj0q

Video Summary: To readers familiar with Signal and System analysis in Engineering, it
will be second nature to apply the Fourier and Laplace transforms as a powerful tool for
mapping functions from one domain to another in order to simplify subsequent analysis.
This video looks at using this trick for mapping the pdf into a characteristic or moment
generating function (MGF), which can then easily be used for a number of probability
analysis problems. The key application here is for calculating moments for continuous
random variables. The probability generating function (PGF), which is the z-transform
of the pdf, is used in the same way for dealing with discrete-random variables. Finally,
cumulants are also mentioned. An example of calculating the PGF for a geometric
distribution is presented.

The Fourier and Laplace transforms find many uses in probability theory through the concepts of
characteristic functions and MGFs. They have similiar useful applications in probabilistic analysis,
where these transforms can be used to simplify manipulations of pdfs, and evaluating properties such
as finding moments. Ultimately, as with all transform methods, the usefulness of these techniques
depends very much on the availability of transform pairs, or whether numerical calculations of the
transform is efficient.
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The characteristic function of a rv X(ζ) is defined by the integral:

ΦX(ξ) ≜ E
[
ejξ X(ζ)

]
=

∫ ∞

−∞
fX (x) ejξx dx (M:3.1.21)

This can be interpreted as the Fourier transform of fX (x) with a sign reversal in the complex
exponent. To avoid confusion with the pdf, FX(x) is not used to denote this Fourier transform.

When jξ is replaced by a complex variable s, the moment generating function is obtained, as defined
by:

Φ̄X(s) ≜ E
[
esX(ζ)

]
=

∫ ∞

−∞
fX (x) esx dx (M:3.1.22)

which can be interpreted as the Laplace transform of fX (x) with a sign reversal in the complex
exponent.

KEYPOINT! (Relationship to Moments). The MGF can be directly related to the momements by an
expansion of the exponential term, and use of the three R’s, namely: replace, reorder, and recognise.
This will give us a relationship between the MGF and the moments, such that the moments can easily
be obtained (or generated).

One of the most useful applications for the MGF is, as the name suggests, a technique for finding
moments quickly and efficiently. To demonstrate this, consider the following analysis.

Using a series expansion for esX(ζ) gives an alternative expression for the moment generating function
(MGF): 1

Φ̄X(s) = E
[
esX(ζ)

]
= E

[
∞∑
n=0

(sX(ζ))n

n!

]
(4.98)

=
∞∑
n=0

sn

n!
E [Xn(ζ)] (4.99)

Noting that E [Xn(ζ)] = r
(m)
X , it follows that:

Φ̄X(s) =
∞∑
n=0

sn

n!
r
(n)
X (M:3.1.23)

provided that every moment r(m)
X exists. A physical intepretation of this result is that the MGF is the

Laplace transform of the pdf is a weighted summation of all the moments of the RV.

Thus, if all moments of X(ζ) are known and exist, then Φ̄X(s) can be assembled, and upon inverse
Laplace transformation, the pdf fX (x) can be determined. This is described in more detail in
Sidebar 6.

Differentiating Φ̄X(s)m-times w. r. t. s, provides the mth-order moment of the RVX(ζ):

r
(m)
X =

dmΦ̄X(s)

dsm

∣∣∣∣
s=0

= (−j)m
dmΦX(ξ)

dξm

∣∣∣∣
ξ=0

, m ∈ Z+ (M:3.1.24)

1It is better if you can work through some of these results for yourself without always having to check every minor
step, but just in case you’ve forgotten, the power series expansion for the exponential function is given by:

ex =

∞∑
n=0

xn

n!
(4.97)
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Sidebar 6 Estimating pdfs from moments

The relationship between the MGF and the moments of a RV in Equation M:3.1.23 lead to a method
for estimating probability density functions. Suppose, for example, that the first three moments of
a RV have been estimated (using the techniques later in the estimation theory handout) as r̂

(k)
X for

k = {1, 2, 3}.

For example, it will be seen that the first and second moments can be estimated from N data points,
{x[n] , n ∈ {0, . . . , N − 1}, as:

r̂
(1)
X = µX =

1

N

N−1∑
n=0

x[n] and r̂X(1) =
1

N2

N−1∑
n=0

x2[n] (4.103)

The MGF can then be estimated by the approximation:

Φ̂X(s) ≈ 1 + s r̂
(1)
X +

s2

2
r̂
(2)
X +

s3

6
r̂
(3)
X (4.104)

The pdf can then be estimated by taking the inverse-Laplace transform to give:

f̂X (x) ≈ L−1
(
Φ̂X(s)

)
(4.105)

This is shown by differentiating Equation M:3.1.23 term by term:

Φ̄X(s) = 1 + s r
(1)
X +

s2

2
r
(2)
X +

s3

6
r
(3)
X + · · · (4.100)

dΦ̄X(s)

ds
= r

(1)
X + s r

(2)
X +

s2

2
r
(3)
X + · · · ⇒ dΦ̄X(s)

ds

∣∣∣∣
s=0

= r
(1)
X (4.101)

Similarly, differentiating again:

d2Φ̄X(s)

ds2
= r

(2)
X + s r

(3)
X + · · · ⇒ d2Φ̄X(s)

ds2

∣∣∣∣
s=0

= r
(2)
X (4.102)

and the proof continues for all moments.

Characteristic functions and MGFs have applications to:

Manipulations of distributions, and specifically linear functions of independent variables; the
characteristic function helps obtain complex results in a simplified manner.

Used in proofs such as the central limit theorem (CLT) in Section 5.10.

Calculating moments in a much faster way than finding the expectations directly.

Theorem 4.2 (Characteristic Functions). The characteristic function ΦX(ξ) satisfies:

1. |ΦX(ξ)| ≤ ΦX(0) = 1 for all ξ.

2. ΦX(ξ) is uniformly continuous on the real axis: R.
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3. ΦX(ξ) is nonnegative definite, which is to say that:∑
j

∑
k

ΦX(ξj − ξk) zj z
∗
k ≥ 0 (4.106)

for all real ξi and complex zi.

PROOF. 1. Clearly, ΦX(0) = E [1] = 1. Furthermore, using the Schwartz inequality:

ΦX(ξ)| ≤
∫

fX (x) |ejξx| dx =

∫
fX (x) dx = 1 (4.107)

as required.

2. This is quite a technical property, but for completeness is proved here. Consider:

|ΦX(ξ + δξ)− ΦX(ξ)| =
∣∣E [ej(ξ+δξ)X(ζ) − ejξX(ζ)

]∣∣ (4.108)

using the linearity property of the expectation operator. Using Schwartz’s inequality again,
where it can be deduced that |E [·] | ≤ E [| · |], then:

|ΦX(ξ + δξ)− ΦX(ξ)| ≤ E
[∣∣ej(ξ+δξ)X(ζ) − ejξX(ζ)

∣∣] (4.109)

≤ E
[∣∣ejξX(ζ)

(
ejδξX(ζ) − 1

)∣∣] (4.110)

≤ E
[∣∣ejδξX(ζ) − 1

∣∣] (4.111)

Clearly, the quantity
∣∣ejδξX(ζ) − 1

∣∣→ 0 as δξ → 0, and thus

|ΦX(ξ + δξ)− ΦX(ξ)| → 0 as δξ → 0 (4.112)

and therefore ΦX(ξ) is uniformally continuous.

3. Finally, ∑
p

∑
q

ΦX(ξp − ξq) zp z
∗
q =

∑
p

∑
q

zp z
∗
q

∫
fX (x) ej(ξp−ξq)x dx (4.113)

=

∫
fX (x)

{∑
p

∑
q

zpe
jξpx z∗qe

−jξqx

}
dx (4.114)

=

∫
fX (x)

∣∣∣∣∣∑
p

zpe
jξpx

∣∣∣∣∣
2

dx = E

∣∣∣∣∣∑
p

zpe
jξpx

∣∣∣∣∣
2
 ≥ 0 (4.115)

□

Example 4.11 ( [Manolakis:2000, Exercise 3.6, Page 144]). Using the moment generating
function, show that the linear transformation of a Gaussian RV is also Gaussian.

SOLUTION. To answer this question, proceed as follows:

1. Find the moment generating function of a Gaussian RV;

2. Write down Y (ζ) = aX(ζ) + b, such that:

Φ̄Y (s) ≜ E
[
esY (ζ)

]
= E

[
es(aX(ζ)+b)

]
≡ esbE

[
easX(ζ)

]
= esbΦ̄X(s a) (4.116)

where the linearity of the expectation operator has been used.
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3. Check to see what distribution this new moment generating function corresponds to.

Thus, start by noting that a Gaussian random variable has pdf given by:

fX (x) =
1√
2πσ2

X

exp

[
−1

2

(
x− µX

σX

)2
]
, x ∈ R (M:3.1.37)

and the moment generating function is given by:

Φ̄X(s) ≜ E
[
esX(ζ)

]
=

∫ ∞

−∞
fX (x) esx dx (M:3.1.22)

Substituting one into the other gives

Φ̄X(s) =
1√
2πσ2

X

∫ ∞

−∞
exp

[
−1

2

(
x− µX

σX

)2
]
esx dx (4.117)

=
1√
2πσ2

X

∫ ∞

−∞
exp

[
−x2 − 2(µX + σ2

Xs)x+ µ2
X

2σ2
X

]
dx (4.118)

which, by completing the square, can be written as:

Φ̄X(s) =
1√
2πσ2

X

∫ ∞

−∞
exp

[
−(x− {µX + σ2

Xs})
2 − (2µXσ

2
Xs+ {σ2

Xs}2)
2σ2

X

]
dx (4.119)

Φ̄X(s) = exp

[
µXs+

1

2
σ2
Xs

2

]
1√
2πσ2

X

∫ ∞

−∞
exp

[
−(x− {µX + σ2

Xs})
2

2σ2
X

]
dx︸ ︷︷ ︸

=1

(4.120)

Thus gives the moment generating function for a Gaussian RV as:

Φ̄X(s) = exp

[
µXs+

1

2
σ2
Xs

2

]
(4.121)

Hence, the moment generating function for the RV Y (ζ) = aX(ζ) + b is given by:

Φ̄Y (s) = esbΦ̄X(s a) = esb exp

[
aµXs+

1

2
σ2
Xa

2s2
]

(4.122)

= exp

[
(aµX + b)s+

1

2
(σ2

Xa
2)s2

]
= exp

[
µY s+

1

2
σ2
Y s

2

]
(4.123)

□

where µY = aµX + b and σY = aσX . Thus, the form of the moment generating function for Y (ζ) is
the same as that for a Gaussian RV, and therefore is a Gaussian RV.

4.9.1 The probability generating function

• The characteristic function and MGF can be extended to deal with discrete random variables
by replacing the Laplace and Fourier transforms with the z-transform and DTFT, respectively.

• It is, however, necessary to modify how moments are calculated from the PGF, as the following
example shows.
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Example 4.12 (PGF). Let X(ζ) be a discrete random variable taking non-negative integers, k, with
pmf given by pk = Pr (X(ζ) = k) if k ≥ 0, and zero otherwise. Its PGF is defined as

GX (z) = E
[
zX(ζ)

]
=

∞∑
k=0

pk z
k

1. Show that the expected value, µX , of X(ζ) can be written as:

µX = E [X(ζ)] =
dGX (z)

dz

∣∣∣∣
z=z0

stating clearly the value of z0 required for this to be true.

2. Find an expression for the variance σ2
X of X(ζ) in terms of GX (z).

SOLUTION. 1. Differentiating GX (z) w. r. t. z term by term gives:

dGX (z)

dz
=

∞∑
k=0

pk
dzk

dz
=

∞∑
k=0

pk k z
k−1 (4.124)

and setting z = z0 = 1 gives (by definition):

dGX (z)

dz

∣∣∣∣
z=1

=
∞∑
k=0

pk k = µX (4.125)

2. To find an expression for the variance σ2
X of X(ζ) in terms of GX (z), then differentiating

Equation 4.124 again gives:

d2GX (z)

dz2
=

∞∑
k=0

pk k
dzk−1

dk
=

∞∑
k=0

pk k(k − 1)zk−2 (4.126)

Setting z = 1 gives

d2GX (z)

dz2

∣∣∣∣
z=1

=
∞∑
k=0

pk k(k − 1) = E
[
k2
]
− µX (4.127)

Since σ2
X = E

[
X(ζ)2

]
− µ2

X = E [k2]− µ2
X , it follows that

σ2
X =

d2GX (z)

dz2

∣∣∣∣
z=1

+
dGX (z)

dz

∣∣∣∣
z=1

−
[
dGX (z)

dz

∣∣∣∣
z=1

]2
(4.128)

It is also acceptable to leave the first two terms as a combined derivative, so an equally valid
answer would be:

σ2
X =

[
d

dz

(
z
dGX (z)

dz

)]
z=1

−
[
dGX (z)

dz

∣∣∣∣
z=1

]2
(4.129)

□

Example 4.13 (Applying PGF). The geometric distribution is used for modelling the number of
consecutive independent successes before a failure, and its pmf is given by

pk =

{
p (1− p)k−1 k ≥ 1

0 otherwise

where 0 ≤ p ≤ 1 is an individual probability of failure.

June 28, 2021 – 08 : 40



134 Scalar Random Variables

1. Find the probability generating function (PGF) for this distribution, and write down conditions
on z for when the PGF exists.

2. Using the probability generating function, or otherwise, find the mean of this distribution, and
show that the variance is 1−p

p2
.

SOLUTION. 1. To find the PGF of the Geometric density, then noting that p0 = 0, and taking the“
z-transform”:

GX (z) =
∞∑
k=1

p (1− p)k−1 zk (4.130)

setting n = k − 1, so that when k = 1 then n = 0, so that:

GX (z) = pz
∞∑
n=0

[z (1− p)]n (4.131)

GX (z) =
pz

1− z (1− p)
(4.132)

This series converges for |z (1− p)| < 1 or |z| < 1
1−p

.

2. The mean is given by differentiating the PGF which gives:

dGX (z)

dz
=

p [1− z (1− p)]− [− (1− p)] pz

[1− z (1− p)]2
=

p

[1− z (1− p)]2
(4.133)

and by setting z = 1, this gives the mean of µX = p
p2

= 1
p
.

Differentiating for a second time, then

d2GX (z)

dz2
= p

−2×− (1− p)

[1− z (1− p)]3
(4.134)

Setting z = 1 gives
d2GX (z)

dz2

∣∣∣∣
z=1

=
2 (1− p)

p2
(4.135)

Using the result:

σ2
X =

d2GX (z)

dz2

∣∣∣∣
z=1

+
dGX (z)

dz

∣∣∣∣
z=1

−
[
dGX (z)

dz

∣∣∣∣
z=1

]2
(4.136)

and using Equation 4.128 gives the desired answer:

σ2
X =

2 (1− p)

p2
+

1

p
− 1

p2
=

2− 2p+ p− 1

p2
(4.137)

□
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4.9.2 Cumulants

Cumulants are statistical descriptors that are similar to moments, but provide better information
for higher-order moment analysis. Cumulants are derived by considering the moment generating
function’s natural logarithm. This logarithm is commonly referred to as the cumulant generating
function. This is given by:

Ψ̄X(s) ≜ ln Φ̄X(s) = lnE
[
esX(ζ)

]
(M:3.1.26)

When s is replaced by jξ, the resulting function is known as the second characteristic function, and
is denoted by ΨX(ξ).

The cumulants, κ(m)
X , of a RV, X(ζ), are defined as the derivatives of the cumulant generating

function; that is:

κ
(m)
X ≜

dmΨ̄X(s)

dsm

∣∣∣∣
s=0

= (−j)m
dmΨX(ξ)

dξm

∣∣∣∣
ξ=0

, m ∈ Z+ (M:3.1.27)

The logarithmic function in the definition of the cumulant generating function is useful for dealing
with products of characteristic functions, which occurs when dealing with sums of independent RVs.

– End-of-Topic 23: Characteristic, Moment, Probability, and Cumulant
Generating Functions –
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5
Random Vectors and Multiple Random

Variables

This handout extends the concept of a random variable to groups of random variables known as
a random vector. The notion of joint, marginal, and conditional probability density functions is
introduced. Statistical descriptors of joint random variables is discussed including the notion of
correlation. The probability transformation rule and characteristic function is extended to random
vectors, and the multivariate Gaussian distribution studied.

136
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5.1 Abstract
New slide Topic Summary 24 Introduction to Random Vectors

Topic Objectives:

• Introduction to the concept of random vectors.

• Formal definition of random vectors.

• Definition of the joint-cumulative distribution function (cdf) and joint-probability density
function (pdf).

Topic Activities:

Type Details Duration Progress
Watch video 10 : 20 min video 3× length
Read Handout Read page 135 to page 137 8 mins/page

http://media.ed.ac.uk/media/1_asatl2ps

Video Summary: A short introduction to random vectors, why multiple random
variables occur as a group, and some example applications of random vectors. A
graphical representation of a random vector which builds on the same concept from scalar
random variables is presented. A formal definition of the random vector is discussed,
followed by the definition of the joint-cdf and joint-pdf.

A group of signal observations can be modelled as a collection of random variables (RVs) that can be
grouped to form a random vector, or vector RV.

• This is an extension of the concept of a RV, and generalises many of the results presented for
scalar RVs.

• Note that each element of a random vector is not necessarily generated independently from
a separate experiment. In other words, the output of a single experiment might be a series of
related random variables; for example, biomedical signal analysis, where multiple readings are
taken simultaneously.

• Random vectors also lead to the notion of the relationship between the random elements.
For example, an experiment might yield multiple outputs that are related somehow. In
biomedical Engineering, it might be that electroencephalogram (EEG) signals obtained by

June 28, 2021 – 08 : 40


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton27'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_asatl2ps


138 Multiple Random Variables
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Figure 5.1: A graphical representation of a random vector.

taking measurements from various different positions on the human body are related due to
electrical conductance through the body between sensors.

• This course mainly deals with real-valued random vectors, although the concept can be
extended to complex-valued random vectors. Details of how to deal with complex-valued
random vectors will be discussed in these lecture-notes where they are appropriate and useful,
but not specifically as a separate topic. Note that the case of a complex-valued RV, X(ζ) =
XR(ζ) + j XI(ζ) can be considered as a group of XR(ζ) and XI(ζ), where these are both
real-valued RVs.

5.2 Definition of Random Vectors
New slide A real-valued random vector X (ζ) containing N real-valued RVs, each denoted by Xn(ζ) for n ∈

N = {1, . . . , N}, is denoted by the column-vector:

X(ζ) =
[
X1(ζ) X2(ζ) · · · XN(ζ)

]T (M:3.2.1)

Hence, the elements or components of X(ζ) are real-valued RVs. The complex-valued RV X(ζ) =
XR(ζ) + j XI(ζ) where XR(ζ) and XI(ζ) are real-valued RVs can be expressed as the following
complex-valued random vector:

X (ζ) =

[
XR(ζ)
XI(ζ)

]
(5.1)

A real-valued random vector can be thought as a mapping from an abstract probability space to a
vector-valued, real space RN . Thus, the range of this mapping is an N -dimensional space, as shown
in the graphical representation in Figure 5.1.

Denote a specific value for a random vector as:

x =
[
x1 x2 · · · xN

]T (5.2)

Then the notation X (ζ) ≤ x is equivalent to the event {Xn(ζ) ≤ xn, n ∈ N}.
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5.2.1 Distribution and Density Functions

New slide

As with random variables, a random vector is completely characterised by its cdf and pdf. These are
direct generalisations of the case for a RV, and most of the time involve converting a single integral
or summation to a multiple integral or summation.

The joint cdf completely characterises a random vector:

FX (x) ≜ Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x) (M:3.2.2)

A random vector can also be characterised by its joint pdf:

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

(M:3.2.4)

=
∂

∂x1

∂

∂x2

· · · ∂

∂xN

FX (x) (5.3)

where ∆x = ∆x1∆x2 · · ·∆xN , and ∆x → 0 ≜ {∆n → 0, n ∈ N}. The joint pdf must be
multiplied by a certain N -dimensional region ∆x to obtain a probability.

Hence, it follows:

FX (x) =

∫ x1

−∞
· · ·
∫ xN

−∞
fX (v) dvN · · · dv1 =

∫ x

−∞
fX (v) dv (M:3.2.6)

– End-of-Topic 24: Introduction to Random Vectors, its definition, and
joint distribution and density functions –
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Topic Summary 25 Joint Distributions and Densities

Topic Objectives:

• Familiarise with properies of joint-cdf and joint-pdf.

• Example of finding joint-cdf from joint-pdf.

• Consider probability of arbitrary events.

Topic Activities:

Type Details Duration Progress
Watch video 17 : 49 min video 3× length
Read Handout Read page 138 to page 140 8 mins/page
Try Example Try Example 5.1 15 minutes
Practice Exercises Exercises ?? and ?? 40 mins

http://media.ed.ac.uk/media/1_l0k89edo

Video Summary: This video looks at the properties of joint-cdf and joint-pdf. It
also looks at the probability of arbitrary events, and shows that the relationship to the
axiomatic events that define the cdf is slightly more involved than the scalar case. The
video then considers the example of finding the joint-cdf from a joint-pdf. Following the
video, the viewer should consider the problems in the tutorial exercise sheet.

As with scalar RVs, the distribution and density functions satisfy the following conditions:
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• Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1 (5.4)

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b (5.5)

Finally, a valid joint-cdf must have a valid corresponding joint-pdf; it is possible to find a
function of multiple parameters which satisfies the properties required of a joint-cdf, but the
partial differentials of the cdf do not form a valid joint-pdf. An example is given in the tutorial
questions.

• Properties of joint-pdfs:

fX (x) ≥ 0,

∫ ∞

−∞
fX (x) dx = 1 (5.6)

Similarly, a valid pdf must have a corresponding valid cdf – although this is virtually always
the case for functions that satisfy the properties in Equation 5.6.

• Probability of arbitrary events; note that in general the following relationship is not true!

Pr (x1 < X (ζ) ≤ x2) =

∫ x2

x1

fX (v) dv ̸= FX (x2)− FX (x1) (5.7)

There is an exercise in the tutorial questions that will show you the true relationship for two
RVs.

Example 5.1 ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2
(x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise
(5.8)

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:∫ ∞

−∞
fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1
0

dy (5.9)

=

∫ 1

0

1

4
+

3

2
y dy =

[
y

4
+

3y2

4

]1
0

=
1

4
+

3

4
= 1 (5.10)

The pdf and the region over which it is non-zero is shown in Figure 5.2.

The cumulative distribution function is obtained by integrating over both x and y, observing the limits
of integration.

For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 also.

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞
fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ (5.11)

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)
dȳ =

1

2

(
x2

2
y +

3xy2

2

)
=

xy

4
(x+ 3y) (5.12)
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Figure 5.2: A plot of the probability density function, fZ (z), for the problem in [Therrien:1992,
Example 2.1, Page 20], and a figure showing the region over which the pdf is non-zero, which is the
region of integration for calculating the cdf.

Finally, if x > 1 or y > 1, the upper limit of integration for the corresponding variable becomes equal
to 1.

Hence, in summary, it follows:

FZ (z) =



0 x ≤ 0 or y ≤ 0
xy
4
(x+ 3y) 0 < x, y ≤ 1

x
4
(x+ 3) 0 < x ≤ 1, 1 < y

y
4
(1 + 3y) 0 < y ≤ 1, 1 < x

1 1 < x, y < ∞

(5.13)
□

The cdf is plotted in Figure 5.3.

– End-of-Topic 25: Properties and Examples of Joint Distributions and
Densities –



5.2. Definition of Random Vectors 143

−2

0

2

−2

0

2
0

0.5

1

x

CDF

y

F
Z
(z

)

Figure 5.3: A plot of the cumulative distribution function, FZ (z), for the problem in [Therrien:1992,
Example 2.1, Page 20].

5.2.2 Complex-valued RVs and vectors

Please note that this section on complex-valued random variables and vectors will not be examined.
It is purely for completeness of the notes.

In applications such as (radio) channel equalisation, array processing, and so on, complex signal and
noise models are encountered. To help formulate these models, it is necessary to extend the results
introduced above to describe complex-valued random variables and vectors. A complex random
variable is defined as X(ζ) = XR(ζ) + jXI(ζ), where XR(ζ) and XI(ζ) are both real-valued RVs.
Thus, either X(ζ) can be considered as a mapping from an abstract probability space S to a complex
space C, or perhaps more simply, as a real-valued random vector, [XR(ζ) , XI(ζ)]

T , with a joint cdf,
FXR,XI

(xr, xi), and joint pdf, fXR,XI
(xr, xi), that can thus lead to a full statistical description.

Thus, the mean of X(ζ) is defined as:

E [X(ζ)] = µX = E [XR(ζ) + jXI(ζ)] = µXR
+ jµXI

(M:3.2.8)

and the variance is defined as:

var [X(ζ)] = σ2
X = E

[
|X(ζ)− µX |2

]
(M:3.2.9)

which can be shown to equal

var [X(ζ)] = E
[
|X(ζ)|2

]
− |µX |2 (M:3.2.10)

PROOF (EQUIVALENCE OF VARIANCE EXPRESSIONS FOR A COMPLEX-VALUED RV). Beginning
with the natural definition of the variance, then:

σ2
X = E

[
|X(ζ)− µX |2

]
(M:3.2.9)

= E [(X(ζ)− µX)
∗ (X(ζ)− µX)] (5.14)

= E
[
|X(ζ) |2 − µ∗

XX(ζ)−X∗(ζ)µX + |µX |2
]

(5.15)

= E
[
|X(ζ) |2

]
− µ∗

XE [X(ζ)]︸ ︷︷ ︸
E[|µX |2]

−E [X∗(ζ)]µX︸ ︷︷ ︸
E[|µX |2]

+ |µX |2 (5.16)
□

giving the desired result.
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Similarly, a complex-valued random vector is given by:

X (ζ) = XR(ζ) + jXI(ζ) =

XR1(ζ)
...

XRN(ζ)

+ j

XI1(ζ)
...

XIN(ζ)

 (M:3.2.11)

Again, a complex-valued vector can be considered as a mapping from an abstract probability space to
a vector-valued complex space CN . However, some prefer to consider it a mapping to R2N , although
this viewpoint does not always provide an elegant derivation of many results. The joint cdf for X(ζ)
is defined as:

FX (x) ≜ Pr (X (ζ) ≤ x) ≜ Pr (XR(ζ) ≤ xr, XI(ζ) ≤ xi) (M:3.2.12)

while its joint pdf, is defined by

fX (x) = lim
∆x→0

Pr (xr < XR(ζ) ≤ xr +∆xr, xi < XI(ζ) ≤ xi +∆xi)

∆xr1 · · ·∆xrN∆xi1 · · ·∆xiN

=
∂

∂xr1

∂

∂xi1

· · · ∂

∂xrN

∂

∂xiN

FX (x)

(M:3.2.13)

where ∆x = ∆xr1∆xi1 · · ·∆xrN∆xiN . Moreover, it follows:

FX (x) =

∫ xr1

−∞

∫ xi1

−∞
· · ·
∫ xrN

−∞

∫ xiN

−∞
fX (v) dvr1dvi1 · · · dvrNdviN =

∫ x

−∞
fX (v) dv (M:3.2.14)

Note that the single integral in the last expression is used as a compact notation for a multidimensional
integral over all real and imaginary parts, and should not be confused with a complex-contour integral.

These probability functions for a complex-valued random vector or variable possess properties similar
to those for real-valued random vectors, and will not be reproduced here. Note, in particular, however,
that:

∫ ∞

−∞
fX (v) dv = 1 (M:3.2.14)
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5.2.3 Marginal Density Function

New slide Topic Summary 26 Marginal Distributions and Densities

Topic Objectives:

• Introduce notion of marginal density and distribution.

• Example of finding marginal-pdf and marginal-cdf from joint-pdf.

• Consider applications of marginals.

Topic Activities:

Type Details Duration Progress
Watch video 11 : 38 min video 3× length
Read Handout Read page 143 to page 145 8 mins/page
Try Example Try Example 5.2 15 minutes
Practice Exercises Exercise ?? 20 mins

http://media.ed.ac.uk/media/1_abevu23q

Video Summary: This video discusses the marginal-pdf which describes the pdf of a
subset of elements from the random vector. Examples of applications in which this is
useful are described. A worked example of finding marginal-pdfs and marginal-cdfs from
a joint-pdf is provided, along with plots of the functions. The viewer should verify the
results presented in this video for themselves.

Random vectors lead to the notion of dependence between their components. This notion will be
discussed in abstract here, although such dependence between random variables will be emphasised
more vividly when the notion of stochastic processes are introduced later in the course.

The joint pdf characterises the random vector; the so-called marginal pdf describes a subset of RVs
from the random vector.

Let k be an M -dimensional vector containing unique indices to elements in the N -dimensional
random vector X (ζ), such that, for example, if N = 20 and M = 3,

k =
[
1 5 12

]T (5.17)

Now define a M -dimensional random vector, Xk(ζ), that contains the M random variables which are
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components of X (ζ) and indexed by the elements of k. In other-words, if

k =


k1
k2
...

kM

 then Xk(ζ) =


Xk1(ζ)
Xk2(ζ)

...
XkM (ζ)

 (5.18)

Hence, for example, using the vector k above, then:

X[1,5,12](ζ) =

X1(ζ)
X5(ζ)
X12(ζ)

 (5.19)

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
N −M integrals

fX (x) dx−k (5.20)

where x−k is the vector x with the elements indexed by the vector k removed.

A special case is the marginal pdf describing the individual RV Xj:

fXj
(xj) =

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN (M:3.2.5)

In the case of a scalar RV, since it is not characterised by a joint pdf, then its pdf might be called a
marginal pdf. This technical detail, which seems somewhat unnecessary, is ignored here.

Marginal pdfs will become particular useful when dealing with Bayesian parameter estimation later
in the course.

Example 5.2 (Marginalisation). This example is again based on [Therrien:1992, Example 2.1, Page
20].

The joint-pdf of a random vector Z(ζ) which has two elements and therefore two random variables
given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2
(x+ 3y) 0 ≤ {x, y} ≤ 1

0 otherwise
(5.21)

Calculate the marginal-pdfs, fX (x) and fY (y), and their corresponding marginal-cdfs, FX (x) and
FY (y).

SOLUTION. By definition:

fX (x) =

∫
R
fZ (z) dy (5.22)

fY (y) =

∫
R
fZ (z) dx (5.23)

Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise
(5.24)
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(a) The joint-pdf of X(ζ) and
Y (ζ).
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(b) A plot of the marginal-pdf,
X(ζ).
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(c) A plot of the marginal-cdf,
X(ζ).

Figure 5.4: The marginal-pdf, fX (x), and cdf, FX (x), for the RV, X(ζ).

which after a simple integration gives:

fX (x) =

{
1
2

(
x+ 3

2

)
0 ≤ x ≤ 1

0 otherwise
(5.25)

The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞
fX (u) du =


0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

(5.26)

Which after, again, a straightforward integration gives:

FX (x) =


0 x ≤ 0
x
4
(x+ 3) 0 ≤ x ≤ 1

1 x > 1

(5.27)

Note that limx→∞ FX (x) = 1, as expected.

Similarly, it can be shown that:

fY (y) =

{
1
2

(
1
2
+ 3y

)
0 ≤ y ≤ 1

0 otherwise
(5.28)

and

FY (y) =


0 y ≤ 0
y
4
(1 + 3y) 0 ≤ y ≤ 1

1 y > 1

(5.29)

The marginal-pdfs and cdfs are shown in Figure 5.4 and Figure 5.5 respectively.

KEYPOINT! (Intepretation). Note that the marginal-pdf is not a slice of the joint-pdf. Rather it is
the integral of the joint-pdf over the other variable along a given line whose position corresponds to
the value of the variable of interest.

– End-of-Topic 26: Marginal Densities and Distributions and their
Applications –
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(a) A plot of the marginal-pdf for Y (ζ).
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(b) A plot of the marginal-cdf for Y (ζ).

Figure 5.5: The marginal-pdf, fY (y), and cdf, FY (y), for the RV, Y (ζ).
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5.2.4 Independence

New slide Topic Summary 27 Independence, Conditional, and Bayes’s Theorem

Topic Objectives:

• The notion of independence and its applications.

• Conditional densities and Bayes Thereom.

• Examples of testing independence.

• Examples of using Bayes rule.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 59 min video 3× length
Read Handout Read page 147 to page 151 8 mins/page
Try Example Try Examples 5.4, 5.4, 5.5 30 minutes
Practice Exercises Exercises ?? and ?? 40 mins

http://media.ed.ac.uk/media/1_gg8ef3ep

Video Summary: This video introduces the notions of independence, conditional
densities, and Bayes’s theorem. The use of independence in signal processing
applications such as Blind Source Separation is introduced, although this will be
expanded in future videos on Statistical Signal Processing. Analytical tests for
independence given the pdf is considered for a couple of examples, including deriving the
joint density for independent Gaussian random variables. Conditional densities are then
introduced, and Bayes theorem for solving inverse problems is developed from this. The
final section of the video then considers in detail the problem of estimating a parameter
from a noisy observation.

The notion of joint RVs leads to the idea of how they relate to one another. Two random variables,
X1(ζ) and X2(ζ) are independent if the events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly
independent; that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2) (5.30)

June 28, 2021 – 08 : 40
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This then implies that

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2)

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)
(M:3.2.7)

Independence will be discussed again later when stochastic processes are introduced.

KEYPOINT! (Region of support). If the regions of support of the pdfs of X(ζ) and Y (ζ) are
bounded, then X(ζ) and Y (ζ) cannot be independent if their ranges are dependent. Therefore,
independence of X(ζ) and Y (ζ) requires the support of the joint-pdf, fXY (x, y) to be just the
Cartesian product of the support of fX (x) and the support of fY (y).

Example 5.3 (Testing independence). Suppose the joint-pdf of two RVs X(ζ) and Y (ζ) is given by
fXY (x, y) = 1 + xy for 0 < x < 1 and 0 < y < 1. Are X(ζ) and Y (ζ) independent?

SOLUTION. The joint-pdf cannot be written in the form g(x)h(x) for any functions g and h.
Therefore, these RVs are not independent.

Example 5.4 (Testing independence). Let fXY (x, y) = 6x for 0 < x < y < 1. Plot the region of
support and determine if X(ζ) and Y (ζ) are independent.

As a side-up question, check that this is a valid pdf in the first place!

As an example that will be used many times in estimation theory, suppose that NRVs, Xn(ζ) for
n ∈ {0, . . . , N − 1}, are independent, and each have pdf given by fXn (xn). Then the joint-pdf of
the random vector X(ζ) = [X0(ζ) , · · · , XN(ζ)]

T is given by:

fX (x) =
N−1∏
n=0

fXn (xn) (5.31)

For example, suppose that Xn(ζ) is Gaussian distributed with zero-mean and unit variance, such that:

fXn (xn) =
1√
2π

e−
x2n
2 (5.32)

then:

fX (x) =
N−1∏
n=0

1√
2π

e−
x2n
2 =

1

(2π)
N
2

e−
1
2

∑N−1
n=0 x2

n (5.33)

This form will be used extensively in developing likelihood functions.

5.2.5 Conditional Densities and Bayes’s Theorem

New slide The notion of joint probabilities and pdf also leads to the notion of conditional probabilities; what is
the probability of a random vector Y(ζ), given the random vector X (ζ).

The conditional probability of two events Y given X is defined as

Pr
(
Y
∣∣X) = Pr (X, Y )

Pr (X)
(T:2.35)
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Defining the event X as:
X : x ≤ X (ζ) ≤ x+ dx (T:2.36)

and the event Y as:
Y : y ≤ Y(ζ) ≤ y + dy (T:2.37)

then

Pr
(
Y
∣∣X) = Pr (x ≤ X (ζ) ≤ x+ dx, y ≤ Y(ζ) ≤ y + dy)

Pr (x ≤ X (ζ) ≤ x+ dx)
(5.34)

=
fXY (x, y)

∏
dx dy

fX (x)
∏

dx
=

{
fXY (x, y)

fX (x)

}∏
dy (5.35)

≜ fY|X (y | x)
∏

dy (5.36)

hence, the conditional pdf of Y(ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)
(T:2.39)

Note that ∫
R
fY|X (y | x) dy =

∫
R

fXY (x, y)

fX (x)
dy =

fX (x)

fX (x)
= 1 (T:2.40)

This emphasises that fY|X (y | x) is the density for Y(ζ) that depends on X (ζ) almost as if it were a
parameter. Note that the integral of fY|X (y | x) with respect to (w. r. t.) x is meaningless.

If the random vectors X (ζ) and Y(ζ) are independent, then the conditional pdf must be identical to
the unconditional pdf: fY|X (y | x) = fY (y). Hence, it follows that:

fXY (x, y) = fX (x) fY (y) (T:2.41)

as previously defined.

Bayes’s rule or Bayes’s theorem is based on the fact that the joint pdf of two events can be expressed
in terms of either the conditional probability for the first event, or the conditional probability for the
second event. Hence, Bayes’s theorem for events follows by noting:

Pr (X, Y ) = Pr
(
X
∣∣Y )Pr (Y ) = Pr

(
Y
∣∣X)Pr (X) = Pr (Y, X) (5.37)

and therefore

Pr
(
X
∣∣Y ) = Pr

(
Y
∣∣X)Pr (X)

Pr (Y )
(T:2.42)

An analogous expression can be written for density functions. Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x) (T:2.43)

it follows

fX|Y (x | y) =
fY|X (y | x) fX (x)

fY (y)
(T:2.44)

This result can also be derived by considering an events based approach as used above in the derivation
of conditional probabilities.

Since fY (y) can be expressed as:

fY (y) =

∫
R
fXY (x, y) dx =

∫
R
fY|X (y | x) fX (x) dx (5.38)
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then it follows

fX|Y (x | y) =
fY|X (y | x) fX (x)∫

R fY|X (y | x) fX (x) dx
(T:2.45)

Bayes’s Theorem arises frequently in problems of statistical decision and estimation, the latter of
which will be considered later in the course. Suppose that Y(ζ) is an observation of an experiment
which depends on some unknown random vector X (ζ); for example, Y(ζ) is X (ζ) observed in
additive noise. Then given X (ζ), it is easy to find the likelihood of Y(ζ), which is represented by
the density fY|X (y | x); this is the likelihood function, and will again be introduced later in this
course. The prior density, fX (x), represents the density of the unknown random vector before it is
observed. Hence, given the likelihood and the prior, it is possible to calculate the posterior density,
fX|Y (x | y), which is the density of the unseen random vector X (ζ) given the observations Y(ζ).

Example 5.5 (Bayes’s Theorem (Papoulis, Example 6-42)). An unknown random phase Θ(ζ) is a
priori assumed to be uniformally distributed in the interval [0, 2π). The phase is observed through a
noisy sensor, such that R(ζ) = Θ(ζ)+N(ζ), where N(ζ) is Gaussian distributed with zero mean and
variance σ2

N .

What is the posterior pdf fΘ|R (θ | r), which gives the distribution of Θ(ζ) given an observation?

SOLUTION. In practical situations, it is reasonable to assume that Θ(ζ) and N(ζ) are independent.
Using the probability transformation rule for scalar random variables, from N(ζ) to R(ζ) = θ+N(ζ)
where Θ(ζ) = θ is considered fixed, it follows there is one inverse solution n = r − θ, and the
Jacobian of the transformation is unity. Therefore:

fR|Θ (r | θ) = 1

1
fN (r − θ) =

1√
2πσ2

N

e
− (r−θ)2

2σ2
N (5.39)

Using Bayes theorem, it directly follows that:

fΘ|R (θ | r) =
fR|Θ (r | θ) fΘ (θ)∫ 2π

0
fR|Θ

(
r | θ̂

)
fΘ

(
θ̂
)
dθ̂

(5.40)

which, since fΘ (θ) = 1
2π

for 0 ≤ θ < 2π, can be written as:

fΘ|R (θ | r) = e
− (r−θ)2

2σ2
N∫ 2π

0

e
− (r−θ)2

2σ2
N dθ

0 ≤ θ < 2π (5.41)
□

and zero otherwise, where it is noted that the factors 1
2π

and 1√
2πσ2

N

have cancelled each other in the

numerator and denominator.

Note the knowledge about the observation, r, is reflected in the posterior pdf of Θ(ζ), as shown in
Figure 5.6, and it shows higher probability density in the neighbourhood of Θ(ζ) = r.

Example 5.6 (Chapman-Kolmogorov Equation). Consider a state-space model with an unknown
state xn and measurement vector yn.

Assume the Markov property that p (xn | xn−1, y1:n−1) = p (xn | xn−1) and p (yn | xn, y1:n−1) =
p (yn | xn).

Show that:

p (xn | y1:n−1) =

∫
p (xn | xn−1) p (xn−1 | y1:n−1) dxn−1 (5.42)

p (xn | y1:n) =
p (yn | xn) p (xn | y1:n−1)

p (yn | y1:n−1)
(5.43)
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given an observation R(ζ) = r.

Figure 5.6: The knowledge about the observation r is reflected in the posterior pdf.

SOLUTION. The first equation is a direct application of marginalisation of a joint-pdf:

p (xn | y1:n−1) =

∫
p (xn, xn−1 | y1:n−1) dxn−1 (5.44)

=

∫
p (xn | xn−1, y1:n−1) p (xn−1 | y1:n−1) dxn−1 (5.45)

=

∫
p (xn | xn−1) p (xn−1 | y1:n−1) dxn−1 (5.46)

using the Markov property.

The second equation is a direct application of Bayes’s theorem keeping y1:n−1 a conditional in each
term:

p (xn | y1:n) = p (xn | yn, y1:n−1) (5.47)

=
p (yn | xn, y1:n−1) p (xn | y1:n−1)

p (yn | y1:n−1)
(5.48)

□

and then using p (yn | xn, y1:n−1) = p (yn | xn).

– End-of-Topic 27: Independence, Conditionals, and Bayes’s Theorem
Revisited –
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Topic Summary 28 Gull’s Lighthouse Problem

Topic Objectives:

• Use all the techniques discussed in the course so far to address a simple inverse problem.

• Appreciate application of this techniques to localisation or tomography.

• Be aware of the importance of optimisation and integration in signal processing.

Topic Activities:

Type Details Duration Progress
Watch video 22 : 29 min video 3× length
Read Handout Read page 152 to page 155 8 mins/page
Try Example Try Example 5.7 40 minutes
Try Code Use the MATLAB code 10 minutes
Further Reading Search for more on this problem 30 mins

http://media.ed.ac.uk/media/1_yuj5go1d

Video Summary: Gull’s lighthouse problem is a famous problem in tomography
or localisation problem, that is an example of an inverse problem. This exercise
uses all the knowledge gained so far in the course, including using probability
transformations, conditional probabilities, independence, Bayes theorem, marginalisation
and optimisation. This relatively simple problem is analysed systematically, with the
various assumptions discussed. The video then finishes by discussing two key problems
in signal processing: the problems of integration (for marginalisation of nuisance
parameters), and optimisation (for finding estimators). Some example techniques for
addressing these problems are then discussed.
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(a) Gull’s lighthouse problem. (b) Related problems.

Figure 5.7: The geometry of the lighthouse problem, and related problems.

Example 5.7 (Gull’s lighthouse problem). A lighthouse is somewhere off a piece of straight
coastline at a position α along the shore and a distance β out at sea. It emits a series of short highly
collimated flashes (i.e. essentially a single ray of light) at random intervals and hence at random
azimuths (i.e. the angle at which the light ray is emitted). These pulses are intercepted on the coast
by photo-detectors that record only the fact that a flash has occurred, but not the angle of arrival from
which it came. N flashes have so far been recorded at positions{xk}. Where is the lighthouse?

KEYPOINT! (Other Forms). This problem can be phrased in a number of other ways, such as
throwing darts randomly at a wall and so forth. It is essentially a tomography problem, and is a
classic inverse problem.
It can also be phrased as a geolocation problem, and there are a number of articles on this topic if you
search the web!

SOLUTION. The aim of the problem is to estimate the values of α and β from the observations.
Estimating both of these parameters from the data is somewhat complicated for this example, and so
it will be assumed that the distance out-to-sea, β, is known. The geometry of the lighthouse problem
is shown in Figure 5.7.

Given the characteristics of the lighthouse emissions, it seems reasonable to assign a uniform pdf to
the azimuth of the observation, or if referring to a single observation, the datum, which is given by θ.
Hence,

fΘ (θ) =

{
1
π

−π
2
< θ < π

2

0 otherwise
(5.49)

The angle must lie between ±π
2

radians to have been detected. Since the photo-detectors are only
sensitive to position along the coast rather than direction, it is necessary to relate θ to x. An inspection
of Figure 5.7 shows that:

β tan θ = x− α (5.50)

Using the probability transformation rule, it is possible to show that:

fX (x | α) = β

π [β2 + (x− α)2]
(5.51)
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(a) Surface plot of the log-posterior.
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(b) Contour plot of the log-posterior.

Figure 5.8: Visualising the log-posterior function described in Equation 5.56 when both α and β are
unknown. In this case, the number of data-points used is N = 500. The actual lighthouse location is
at (α, β) = (15, 45). Note the error in the estimate of the maximum value.

where, as a reminder, it is assumed that β is known. This transformation is left as an exercise to the
reader. Assuming that the observations are independent, then the joint-pdf of all the data points is
given by:

fX (x | α) = fX (x1, . . . , xN | α) =
N∏
k=1

fX (xk | α)

=
N∏
k=1

β

π [β2 + (xk − α)2]

(5.52)

The position of the lighthouse is then expressed by:

fA (α | x) = fX (x | α) fA (α)

fX (x)
(5.53)

It is reasonable, also, to assign a simple uniform pdf for the prior density for the distance along the
shore:

fA (α) =

{
1

αmax−αmin
αmin ≤ α ≤ αmax

0 otherwise
(5.54)

Hence, it follows that:

fA (α | x) = fX (x | α) fA (α)

fX (x)
∝ fX (x | α) fA (α) (5.55)

∝ 1

αmax − αmin

N∏
k=1

β

π [β2 + (xk − α)2]
, for αmin ≤ α ≤ αmax (5.56)

□

and zero otherwise. Hence, this posterior density can be maximised to find the best estimate of the
distance along the shore, α. Unfortunately, in this case, this maximisation is not easy.

The result in Equation 5.56 can easily be generalised when both α and β are unknown, and the
logarithm of the posterior can be plotted as a function of α and β. The resulting two-dimensional (2-D)
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(a) Surface plot of the log-posterior.
β

α

Log-posterior f(α, β | x), max. at (15.08, 44.92)
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(b) Contour plot of the log-posterior.

Figure 5.9: Visualising the log-posterior function described in Equation 5.56 when both α and β are
unknown. In this case, the number of data-points used is N = 50000. The actual lighthouse location
is at (α, β) = (15, 45). Note the error in the estimate of the maximum value is much less than for
N = 500.

function is shown in Figure 5.8 and Figure 5.9 for when the lightouse is actually at (α, β) = (15, 45).
Note that for N = 500 data-points, there is a relatively large error in the estimate, especially when
compared with N = 50000. This will be discussed in later handouts. Moreover, note that when you
run the corresponding MATLAB code, in which the data is generated synthetically, a new estimate is
obtained each time. Can you explain why? Finally, if N is small, a typical estimate might be far from
the true solution.

KEYPOINT! (Key Problems). This example highlights two key problems in Signal Processing:

Integration Marginalising out nuisance parameters:

fA (α | x) =
∫

fA (α, β | x) dβ (5.57)

Optimisation Finding the maximum marginal a posteriori (MMAP) estimate:

α̂ = argα max fA (α | x) (5.58)
□

– End-of-Topic 28: Tomography: An Inverse Problem using Probability
Transformations, Conditional Probability, Independence, Bayes

Theorem, Marginalisation, and Optimisation. –
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5.3 Probability Transformation Rule

New slideTopic Summary 29 Probability Transformation Rule for Random Vectors

Topic Objectives:

• Extend probability transformation rule to random vectors.

• Understand what a Jacobian is and how to calculate it.

• Application to the Cartesian to Polar transformation.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 18 min video 3× length
Read Handout Read page 156 to page 160 8 mins/page
Practice Exercises Exercises ?? and ?? 20 mins

http://media.ed.ac.uk/media/1_7rnjbf3t

Video Summary: This video extends the probability transformation rule from the scalar
case to the vector case for vector functions of random vectors. The video discusses how
the Jacobian determinant needs to be calculated instead of a simple gradient, and therefore
this can influence whether the Jacobian or its inverse should be calculated depending on
the ease of calculating the derivatives for the mapping or inverse mapping. The video
provides a reminder of the physical interpretation of the Jacobian. Finally, the video
considers the probability transformation for the Cartesian to Polar coordinate mappings.

The probability transformation rule for scalar RVs can be extended to multiple RVs using a similar
derivation.

Theorem 5.1 (Probability Transformation Rule). The set of random variables X (ζ) =
{Xn(ζ), n ∈ N} where N = {1, . . . , N} are transformed to a new set of RVs,
Y(ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N (5.61)

or, using an alternative notation,
Y(ζ) = g(X (ζ)) (5.62)

where g(·) denotes a vector of functions such that Yn(ζ) = gn(X (ζ)) as above.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton32'){ocgs[i].state=false;}}
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Sidebar 7 Jacobian
The Jacobian determinant is used to represent how an elemental region in one domain changes volume
when it is mapped to another domain. Consider the elemental area δAxy = δx δy in the (x, y) domain:

dy

dx

y

x

dAxy» x yd d

dv

du

v

u

dAxy u v» d d

( ) = ( )u,v x,yg

This elemental area is mapped into the (u, v) domain through the relationships u = g1(x, y) and
v = g2(x, y). The elemental area in the (u, v) domain is approximately given by δAuv = δu δv. The
Jacobian determinant indicates the ratio of these two elemental areas, namely:

δAuv ≈ Jxy→uv δAxy Jxy→uv ≈
δu δv

δx δy
(5.59)

In the limit, it can be shown that the Jacobian determinant, or just the Jacobian, is given by :

Juv→xy =

∣∣∣∣∂u∂x ∂v
∂x

∂u
∂y

∂v
∂y

∣∣∣∣ (5.60)

Informally, the Jacobian can be considered as the multi-dimensional version of the scalar derivative∣∣ dy
dx

∣∣.
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Assuming M -real vector-roots of the equation y = g(x) by {xm, m ∈ M}, such that

y = g(x1) = · · · = g(xM) (5.63)

then the joint-pdf of Y(ζ) in terms of (i. t. o.) the joint-pdf of X (ζ) is:

fY (y) =
M∑

m=1

fX (xm)

|J(xm)|
(5.64)

where the Jacobian of the transformation, Jg(x), is given by:

Jg(x) ≜
∂(y1, . . . , yN)

∂(x1, . . . , xN)
=

∣∣∣∣∣∣∣∣∣∣

∂g1(x)
∂x1

∂g2(x)
∂x1

· · · ∂gN (x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

· · · ∂gN (x)
∂x2...

... . . . ...
∂g1(x)
∂xN

∂g2(x)
∂xN

· · · ∂gN (x)
∂xN

∣∣∣∣∣∣∣∣∣∣
(T:2.123)

It should also be noted, from vector calculus results, that the Jacobian can also be expressed as:

1

Jg(x)
≜

∂(x1, . . . , xN)

∂(y1, . . . , yN)
=

∣∣∣∣∣∣∣∣∣
∂x1

∂y1

∂x2

∂y1
· · · ∂xN

∂y1
∂x1

∂y2

∂x2

∂y2
· · · ∂xN

∂y2
...

... . . . ...
∂x1

∂yN

∂x2

∂yN
· · · ∂xN

∂yN

∣∣∣∣∣∣∣∣∣ (T:2.123)

For further background information on the Jacobian, see Sidebar 7.

PROOF. The proof follows a very similar line to that for the scalar RVs case. The definition of the
joint-pdf is:

fY (y)
∏

dy = Pr (y < Y(ζ) ≤ y + dy) (5.65)

where
∏

dy = dy1 dy2 . . . dyN . The set of values x such that y < g(x) ≤ y + dy, consists of the
intervals:

xm < x ≤ xm + dxm (5.66)

The probability that x lies in this set is, of course,

fX (xm)
∏

dxm = Pr (xm < X (ζ) ≤ xm + dxm) (5.67)

Moreover, the transformation from x to y is given by the Jacobian:∏
dy = Jg(x)

∏
dx (5.68)

Since these are mutually exclusive sets, then

Pr (y < Y(ζ) ≤ y + dy) =
M∑

m=1

Pr (xm < X (ζ) ≤ xm + dxm) (5.69)

=
M∑

m=1

fX (xm)

∏
dy

Jg(xm)
(5.70)

□

and thus the desired result is obtained after minor rearrangement.
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Figure 5.10: The Cartesian and polar coordinate systems.

5.3.1 Polar Transformation
New slide An important transformation example is the mapping from Cartesian to polar coordinates. Each of

these coordinates are shown in Figure 5.10.

Consider the transformation from the random vector C(ζ) = [X(ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T ,
where

r(ζ) =
√
X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X(ζ)

(5.71)

where it is assumed that r(ζ) ≥ 0, and |θ(ζ)| ≤ π. With this assumption, the transformation r =√
x2 + y2, θ = arctan y

x
has a single solution:

x = r cos θ

y = r sin θ

}
for r > 0 (5.72)

The Jacobian is given by:

Jg(c) =
∂(r, θ)

∂(x, y)
=

∣∣∣∣ ∂θ∂x ∂r
∂x

∂θ
∂y

∂r
∂y

∣∣∣∣ = ∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣−1

(5.73)

In the case of polar transformations, Jg(c) simplifies to:

Jg(c) =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣−1

=
1

r
(5.74)

Thus, it follows that:
fR,Θ (r, θ) = rfXY (r cos θ, r sin θ) (5.75)

Example 5.8 (Cartesian to polar transformation of RVs). If X(ζ) and Y (ζ) are independent and
identically distributed (i. i. d.) Gaussian distributed coordinates in Cartesian space, such that
X(ζ) , Y (ζ) ∼ N (0, σ2), find the distribution when these are transformed into polar coordinates.

SOLUTION. First, note:

fXY (x, y) = fX (x) fY (y) =
1

2πσ2
exp

{
−x2 + y2

2σ2

}
(5.76)

Hence, applying the transformation r =
√

x2 + y2, θ = arctan y
x
, it directly follows that

fRΘ (r, θ) =
r

2πσ2
exp

{
− r2

2σ2

}
I[−π,π] (θ) IR+ (r) (5.77)
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where, as a reminder, IA (a) = 1 if a ∈ A and zero otherwise. This density is a product of a function
of r times a function of θ. Hence, the RVs r and θ are independent with:

fR (r) =
r

σ2
exp

{
− r2

2σ2

}
IR+ (r) and fΘ (θ) =

1

2π
I[−π,π] (θ) (5.78)

□

where the scaling factors have been apportioned such that these are proper densities, in the sense that∫
R fR (r) dr =

∫
R fΘ (θ) dθ = 1. Note that θ is uniformally distributed, while r has a Rayleigh

distribution.

– End-of-Topic 29: Probability Transformation rule for Random
Vectors –
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5.3.2 Generating Gaussian distributed samples

New slide Topic Summary 30 Generating Gaussian Samples

Topic Objectives:

• Investigate Box-Muller transformations for generating Gaussians.

• Use probability transformation rule to prove this result.

• Understand importance of simulating random variables.

Topic Activities:

Type Details Duration Progress
Watch video 14 : 04 min video 3× length
Read Handout Read page 161 to page 164 8 mins/page
Try the code Use MATLAB code on LEARN 20 mins

http://media.ed.ac.uk/media/1_g0nvuf4r

Video Summary: In this video, the probability transformation rule is used to show
that the Box-Muller transformation can convert two uniform random variables into two
independent Gaussian random variables. Although one aim of this video is to provide
as another example of how to use the probability transformation rule, it also motivates
the discussion about tools that can be used for simulating random numbers from various
distributions.

It is often important to generate samples from a Gaussian density, primarily for simulation studies. In
practice, it is difficult for a computer to generate random numbers from an arbitrary density. However,
it is possible to generate uniform random variates fairly easily. This will be seen in later handouts.

The probability transformation rule can be used to take random variables from one distribution
as inputs, and outputs random variables in a new distribution function. One particular well-known
example is the Box-Muller (1958) transformation that takes two uniformly distributed random
variables, and transforms them to a bivariate Gaussian distribution. Consider the transformation
between two uniform random variables given by,

fXk
(xk) = I0,1 (xk) , k = 1, 2 (5.79)

where IA (x) = 1 if x ∈ A, and zero otherwise.

June 28, 2021 – 08 : 40
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Figure 5.11: This histogram shows an empirical Gaussian probability density function, where the
samples are drawn from a Gaussian density. But how are these samples drawn?

Now let two random variables y1, y2 be given by:

y1 =
√

−2 lnx1 cos 2πx2 (5.80)

y2 =
√
−2 lnx1 sin 2πx2 (5.81)

It follows, by rearranging these equations, that:

x1 = exp

[
−1

2
(y21 + y22)

]
(5.82)

x2 =
1

2π
arctan

y2
y1

(5.83)

The Jacobian determinant can be calculated as:

J(x1, x2) =

∣∣∣∣∣ ∂y1∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣ (5.84)

=

∣∣∣∣∣ −1
x1

√
−2 lnx1

cos 2πx2 −2π
√
−2 lnx1 sin 2πx2

−1
x1

√
−2 lnx1

sin 2πx2 2π
√
−2 lnx1 cos 2πx2

∣∣∣∣∣ (5.85)

=
2π

x1

(5.86)

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y21/2

] [
1√
2π

e−y22/2

]
(5.87)

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus covering the range of real numbers.
This is the product of the pdfs of y1alone and y2 alone, and therefore each yk is i. i. d. according to
the normal distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution in order to obtain
samples that have the same pdf as a Gaussian random variable.
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Figure 5.12: The first Box-Muller transformation.

Figure 5.13: The resulting histogram from the generation of these Gaussian samples.
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– End-of-Topic 30: Generating Gaussian Samples –
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5.3.3 Auxiliary Variables

New slide Topic Summary 31 Auxiliary Variables

Topic Objectives:

• Use auxiliary variables for functions of multiple random variables.

• Applications of one random variable as a function of two random variables.

• Choices of auxiliary variable.

• Detailed examples to demonstrate application of technique.

Topic Activities:

Type Details Duration Progress
Watch video 21 : 25 min video 3× length
Read Handout Read page 165 to page 168 8 mins/page
Try Example Try Examples 5.9 and 5.10 25 minutes

http://media.ed.ac.uk/media/1_5n9ox5os

Video Summary: Auxiliary variables are introduced as a method for calculating a
single function of multiple random variables, through a two-stage process of using the
probability transformation rule followed by marginalisation. While there are alternative
methods for calculating a single function of multiple random variables, the auxiliary
variable method is very algorithmic. More generally, the auxiliary variable method is
for transforming N random variables to M random variables, where M < N . The video
presents several problems of varying complexities and choice of axuiliary variables.

So far, when considering functions of random variables, the problem of transforming from NRVs to
NRVshas been considered. However, what about the case of transforming from NRVs to MRVs,
where M < N ; for example, Z(ζ) = g(X(ζ) , Y (ζ))?

Note that it the case of M > N need not be considered, as in this case, it can be shown that multiple
variables are deterministically related, or 100% correlated.

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of two RVs can be determined from
the results above, by choosing a convenient auxiliary variable, W (ζ). The choice of this auxiliary
variable comes with experience, but usually the simpler the better. Examples might be W (ζ) = X(ζ)
or W (ζ) = Y (ζ).
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The density of the function Z(ζ) can then be found by the probability transformation rule,

fWZ (w, z) dw =
M∑

m=1

fXY (xm, ym)

|J(xm, ym)|
(5.88)

followed by marginalisation:

fZ (z) =

∫
R
fWZ (w, z) dw =

M∑
m=1

∫
R

fXY (xm, ym)

|J(xm, ym)|
dw (5.89)

Example 5.9 (Sum of two RVs). If X(ζ) and Y (ζ) have joint-pdf fXY (x, y), find the pdf of the RV
Z(ζ) = aX(ζ) + bY (ζ) for constants a and b.

SOLUTION. Use as the auxiliary variable the function W (ζ) = Y (ζ). The system z = ax+by, w = y
has a single solution at x = z−bw

a
, y = w.

Hence, the Jacobian is given by:

J(x, y) =

∣∣∣∣∂w∂x ∂z
∂x

∂w
∂y

∂z
∂y

∣∣∣∣ = ∣∣∣∣0 a
1 b

∣∣∣∣ = −a (5.90)

Hence, it follows that:

fWZ (w, z) =
1

|a|
fXY

(
z − bw

a
, w

)
(5.91)

Thus, it follows that:

fZ (z) =
1

|a|

∫
R
fXY

(
z − bw

a
, w

)
dw (5.92)

□

KEYPOINT! (Choosing the auxiliary variable). Note that you might be concerned about the choice
of the auxiliary variable, and what happens if you chose something different to that used here.
The answer is that, as long as the auxliary variable is a function of at least one of the RVs, then it
doesn’t really matter, as the marginalisation stage will usually yield the same answer. An example
is discussed in Sidebar 8 on page 167. Nevertheless, it usally pays to chose the auxiliary variable
carefully to minimise any difficulties in evaluating the marginal-pdf.
As an example, consider using W (ζ) = X(ζ)− Y (ζ) in the previous example (Example 5.9).

Example 5.10 ( [Papoulis:1991, Page 149, Problem 6-8]). The RVs X(ζ) and Y (ζ) are
independent with Rayleigh densities:

fX (x) =
x

α2
exp

{
− x2

2α2

}
IR+ (x) (5.102)

fY (y) =
y

β2
exp

{
− y2

2β2

}
IR+ (y) (5.103)

1. Show that if Z(ζ) = X(ζ)/Y(ζ), then:

fZ (z) =
2α2

β2

z(
z2 + α2

β2

)2 IR+ (z) (5.104)
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Sidebar 8 What if you chose a complicated auxiliary variable?

Consider Example 5.9 and suppose that rather than chosing W (ζ) = Y (ζ), you accidentally chose
something more complicated such as:

W (ζ) =
X(ζ)

Y (ζ)
(5.93)

Will the resulting expression for fZ (z) be the same as Equation 5.92? The answer can be seen through
an example, or a more detailed generic analysis. Here, we show an example. While the joint-pdf
fWZ (w, z) will be different from Equation 5.91, it is the marginalisation stage that ensures the
expressions for fZ (z) are the same. For the auxiliary variable shown in Equation 5.93, noting that
Z(ζ) = aX(ζ) + bY (ζ), then

x = w y ⇒ z = awy + by = y(aw + b) (5.94)

y =
z

aw + b
, x =

wz

aw + b
(5.95)

The Jacobian is given by:

J = abs

[ ∂z
∂x

∂z
∂y

∂w
∂x

∂w
∂y

]
= abs

[
a b
1
y

− x
y2

]
(5.96)

= abs
ax+ by

y2
= abs

z

y2
= abs

(aw + b)2

z
(5.97)

For simplicity, assume that (x, y) > 0.a Then, the joint-pdf is given by:

fWZ (w, z) =
z

(b+ aw)2
fXY

(
wz

aw + b
,

z

aw + b

)
(5.98)

This is clearly different to that in Equation 5.91. However, the marginal for Z(ζ) is:

fZ (z) =

∫
z

(b+ aw)2
fXY

(
wz

aw + b
,

z

aw + b

)
dw (5.99)

Let θ =
z

aw + b
, such that dθ = − az

(aw + b)2
dw, and also note that

wz

aw + b
= θ w = θ

(
z − bθ

θ a

)
=

z − bθ

a
(5.100)

Substituting into Equation 5.99, and noting that the minus sign in the differential term will get
absorbed into the limits of the integral, then Equation 5.99 becomes:

fZ (z) =
1

a

∫
fXY

(
z − bθ

a
, θ

)
dθ (5.101)

which is indeed equivalent to Equation 5.92.

aThis ensures that it is not necessary to worry about the absolute value of the Jacobian. Depending on the range of
values that X(ζ) and Y (ζ) take on, this proof will need to be tightened up to take account of the absolute value of the
Jacobian.
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2. Using this result, show that for any k > 0,

Pr (X(ζ) ≤ k Y (ζ)) =
k2

k2 + α2

β2

(5.105)

SOLUTION. Considering the first part of the question, then choose the auxiliary variable as W (ζ) =
X(ζ), then the system z = x

y
, w = x has the single solution x = w, y = w

z
. The Jacobian is given

by:

J(x, y) = abs

∣∣∣∣∂w∂x ∂z
∂x

∂w
∂y

∂z
∂y

∣∣∣∣ = abs

∣∣∣∣1 1
y

0 − x
y2

∣∣∣∣ = abs

∣∣∣∣− x

y2

∣∣∣∣ = ∣∣∣∣z2w
∣∣∣∣ (5.106)

The RVs X(ζ) and Y (ζ) only take on positive values, since they are Rayleigh distribution, and
therefore in this case the Jacobian can be simplified to

J(x, y) =
z2

w
(5.107)

Hence, since X(ζ) and Y (ζ) are independent,

fWZ (w, z) =
w

z2
fX (w) fY

(w
z

)
(5.108)

=
1

α2β2

w3

z3
exp

{
−w2

2

(
1

α2
+

1

z2β2

)}
IR+×R+ (w, z) (5.109)

=
α̂2

z3α2β2

[
w2 w

α̂2
exp

{
− w2

2α̂2

}]
IR+×R+ (w, z) (5.110)

where α̂2 = α2 z2

z2+α2

β2

. Integrating over all values of w gives:

fZ (z) =

∫
R+

fXZ (w, z) dw =
α̂2

z3α2β2

∫ ∞

0

w2 w

α̂2
exp

{
− w2

2α̂2

}
dw (5.111)

The integral is the second moment of a Rayleigh distribution. It can be shown that∫ ∞

0

w2 w

α̂2
exp

{
− w2

2α̂2

}
dw = 2α̂2 (5.112)

Finally, therefore,

fZ (z) =
2α̂4

z3α2β2
IR+ (z) =

2α2

β2

z(
z2 + α2

β2

)2 IR+ (z) (5.113)

For the second part of the question, notice that:

Pr (X(ζ) ≤ kY (ζ)) = Pr (Z(ζ) ≤ k) =

∫ k

0

fZ (z) dz (5.114)

=
α2

β2

∫ k

0

2z(
z2 + α2

β2

)2 dz = −α2

β2

[
1

z2 + α2

β2

]k
0

(5.115)

=
α2

β2

[
1
α2

β2

− 1

k2 + α2

β2

]
= 1−

α2

β2

k2 + α2

β2

(5.116)
□

which gives the desired result when these fractions are combined.

– End-of-Topic 31: Using auxiliary variables and their applications –
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5.4 Statistical Description

New slideTopic Summary 32 Statistical Description of Random Vectors

Topic Objectives:

• Appreciate the notion of correlation between random variables.

• Understand the details of the mean vector and correlation matrix.

• Calculate mean vector and correlation matrix from a joint-pdf.

• Awareness of statistical orthogonality.

Topic Activities:

Type Details Duration Progress
Watch video 23 : 53 min video 3× length
Read Handout Read page 169 to page 175 8 mins/page
Try Example Try Examples 5.11 and 5.12 20 minutes
Practice Exercise Exercise ?? 25 mins

http://media.ed.ac.uk/media/1_vxk6rqpd

Video Summary: This video extends the concept of statistical descriptors of pdfs to
random vectors or multiple random variables. It introduces the concept of correlation,
and how this relates to the dependency of the random variables. The mean vector and
correlation matrix are introduced in detail with careful attention to the exact meaning
of these expectations. An example of calculating these values for a given joint-pdf is
covered carefully. Finally, the notion of statistical orthogonality is mentioned, although
this will be covered in another video.

As with scalar RVs, the probabilistic descriptions require an enormous amount of information that is
not always easy to obtain, or is too complex mathematically for practical use.

Statistical averages are more manageable, but less of a complete description of random vectors. With
care, it is possible to extend many of the statistical descriptors for scalar RVs to random vectors.
Rather than list them all here, they will be introduced where necessary.

In particular, note that using second-order moments of individual RVs does not adequately capture the
key characteristics of the joint-pdf. For example, as shown in Figure 5.14, two very different joint-pdfs

June 28, 2021 – 08 : 40
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(a) A contour plot
of a typical pdf with
correlation between
parameters.
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(b) A contour plot of
a typical pdf with no
correlation.

Figure 5.14: Mean and second-moments of individual RVs does not capture all of the information
about the joint-pdf.

can have the same position and spread measurements, if only considered from the perspective of the
cartesian axis representing the random variables. As will be see, other statistical descriptors are need
to catch the richer information in a multi-dimensional pdf. Further examples of how the a joint-pdf
relates to the key statistical feature of correlation is shown in Figure 5.15.

http://media.ed.ac.uk/media/1_gi3zlzp9

Video Summary: An annimation showing how a bi-variate Gaussian changes with
correlation term.

Consequently, it is important to understand that multiple RVs leads to the notion of measuring their
interaction or dependence. This concept is useful in abstract, but also when dealing with stochastic
processes or time-series.

The most important statistical descriptors discussed in this section are the mean vector, the
correlation matrix and the covariance matrix.
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(a) A joint-pdf with strong correlation.

(b) A joint-pdf with very weak correlation, so almost independent.

Figure 5.15: Relating correlation to the description of the joint-pdf.
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Sidebar 9 Elaborating on the Mean Vector for Real Random Vectors

The mean-vector, when written as the expectation µX = E [X (ζ)], has a lot of hidden steps involved.
This Sidebar deals with real random vectors; to deal with complex random vectors, it is necessary to
extend this discussion by integrating over the real and imaginary elements separately. First, note that
the mean vector can be written as:

µX = Ef(x) [X (ζ)] =

∫
x f (x) dx (5.117)

=

∫
· · ·
∫

xf (x1, x2, . . . , xN) dx1 dx2 · · · dxN (5.118)

where dx ≡
∏N

i=1 dxi = dx1 dx2 · · · dxN and the multi-dimensional integral has been expanded.
Therefore, note that this integral is a vector multiplied by a scalar function, and that dx isn’t in this
context considered as a vector. Thus, it follows that:

µX =

∫ x1
...
xN

 f (x) dx (5.119)

=


∫
x1f (x) dx

...∫
xNf (x) dx

 (5.120)

Note that the k-th row can be simplified as µk = [µX]k:∫
xk f (x) dx =

∫
· · ·
∫

︸ ︷︷ ︸
N integrals

xkf (x) dx1 . . . dxk−1 dxk dxk+1 . . . dxN (5.121)

=

∫
xk


∫

· · ·
∫

︸ ︷︷ ︸
N − 1 integrals

f (x) dx1 . . . dxk−1 dxk+1 . . . dxN

 dxk

=

∫
xkf (xk) dxk = E [Xk(ζ)] (5.122)

which results from the marginalisation formula earlier. It therefore yields the results given in the
definition of the mean vector, namely that the mean vector is the vector of the means of the individual
elements.

Note that the element dx does depend on context, and in some cases, should infact be interpreted as:

dx =


dx1

dx2
...

dxN

 (5.123)

This alternative definition will be introduced when appropriate.
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Figure 5.16: The region-of-support for the pdf in Example 5.11.

5.4.1 Mean Vectors and Correlation Matrices
New slide Mean vector The most important statistical operation is the expectation operator. The mean vector

is the first-moment of the random vector, and is given by:

µX = E [X (ζ)] =

E [X1(ζ)]
...

E [XN(ζ)]

 =

µX1

...
µXN

 (M:3.2.16)

Further discussion on the mean-vector is given in Sidebar 9.

Example 5.11 (Mean Vector). This question follows up on Example 5.4 which
introduced a simple pdf that clearly had dependency between the random variables.
This example is similar, but different, so that a numerical example is easily generated
in MATLAB.
Let fXY (x, y) = 2 for 0 < x < y < 1 and zero otherwise. Find the mean-vector.

SOLUTION. The calculation involves finding the marginals and then the expected
value. Using the region-of-support for this problem as shown in Figure 5.16, then:

fX (x) =

∫ 1

y=x

fXY (x, y) dy =

∫ 1

x

2 dy = 2(1− x) (5.124)

fY (y) =

∫ y

x=0

fXY (x, y) dx =

∫ y

0

2 dx = 2y (5.125)

Taking expectations then gives:

µX =

∫ 1

0

x fX (x) dx =

∫ 1

0

2x(1− x) dx (5.126)

µX = 2

[
x2

2
− x3

3

]1
0

=
1

3
(5.127)

µY =

∫ 1

0

y fY (y) dy = 2

∫ 1

0

y2 dy = 2

[
y3

3

]1
0

=
2

3
(5.128)

□

This can be verified with the following very simple code:
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Correlation Matrix The second-order moments of the random vector describe the spread of the
distribution. The autocorrelation matrix is defined by:

RX ≜

E [X1(ζ)X
∗
1 (ζ)] · · · E [X1(ζ)X

∗
N(ζ)]

... . . . · · ·
E [XN(ζ)X

∗
1 (ζ)] · · · E [XN(ζ)X

∗
N(ζ)]

 (5.129)

or, more succinctly,

RX ≜ E
[
X (ζ)XH(ζ)

]
=

rX1X1 · · · rX1XN

... . . . ...
rXNX1 · · · rXNXN

 (M:3.2.17)

where the superscript H denotes the conjugate transpose operation; in otherwords,
for a general N ×M matrix A ∈ CN×M with complex elements aij ∈ C, then

AH =


a11 a12 · · · a1M
a21 a22 · · · a2M

...
... · · · ...

aN1 aN2 · · · aNM


H

=


a∗11 a∗21 · · · a∗N1

a∗12 a∗22 · · · a∗N2
...

... . . . ...
a∗1M a∗2M · · · a∗NM

 ∈ CM×N (5.130)

The diagonal terms

rXiXi
≜ E

[
|Xi(ζ)|2

]
, i ∈ {1, . . . , N} (M:3.2.18)

are the second-order moments of each of the RVs, Xi(ζ).
The off-diagonal terms

rXiXj
≜ E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i ̸= j (M:3.2.19)

measure the correlation, or statistical similarity, between RVs Xi(ζ) and Xj(ζ).
If Xi(ζ) and Xj(ζ) are orthogonal, then their correlation is zero:

rXiXj
= E

[
Xi(ζ)X

∗
j (ζ)

]
= 0, i ̸= j (M:3.2.26)

Hence, if all the RVs are mutually orthogonal, then the RX will be diagonal.
Note that the correlation matrix RX is conjugate symmetric, which is also known as
Hermitian; that is, RX = RH

X.

Example 5.12 (Correlation Matrix). Following on from Example 5.11, find the
correlation matrix for random variables with joint-pdf given by fXY (x, y) = 2 for
0 < x < y < 1 and zero otherwise.

SOLUTION. The second-moments can utilise the marginals calculated in
Example 5.11, such that:

E
[
X2(ζ)

]
=

∫ 1

0

x2 fX (x) dx =

∫ 1

0

2x2(1− x) dx (5.131)

= 2

[
x3

3
− x4

4

]1
0

=
1

6
(5.132)

E
[
Y 2(ζ)

]
=

∫ 1

0

y2fY (y) dy = 2

∫ 1

0

y3 dy = 2

[
y4

4

]1
0

=
1

2
(5.133)
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The correlation terms are given by:

E [X(ζ)Y (ζ)] =

∫ 1

0

∫ y

0

xy fXY (xy) dx dy (5.134)

2

∫ 1

0

y

∫ y

0

x dx dy = 2

∫ y

0

y

[
x2

2

]y
0

dy (5.135)

=

∫ 1

0

y3 dy =

[
y4

4

]1
0

=
1

4
(5.136)

This correlation matrix can be evaluated by the MATLAB expressionin addition to
the code in Example 5.11,: Hence, putting all of these calculations together gives the
correlation matrix:

RXY =

[
rXX rXY

rY X rY Y

]
=

[
1
6

1
4

1
4

1
2

]
(5.137)

□

– End-of-Topic 32: Key Statistical definitions –

June 28, 2021 – 08 : 40



178 Multiple Random Variables

5.4.2 Properties of Correlation Matrices

New slideTopic Summary 33 Properties of Correlation Matrices

Topic Objectives:

• Understand properties that a valid correlation matrix must satisfy.

• Understand how to calculate positive semi-definiteness.

• Test several matrices to see if they are valid correlation matrices.

Topic Activities:

Type Details Duration Progress
Watch video 15 : 50 min video 3× length
Read Handout Read page 176 to page 179 8 mins/page
Try Example Try Examples 5.13, 5.14, and 5.15 30 minutes
Practice Exercise Exercises ?? and ?? 25 mins

http://media.ed.ac.uk/media/1_xcdewkq9

Video Summary: This video considers the properties of valid correlation matrix,
including the Hermitian property, positive semi-definiteness, and positive real-valued
leading diagonal. This video proves these results, and shows how to test for postive
semi-definiteness. The video then continues with a few examples, testing whether several
matrices are valid correlation matrices or not.

It should be noticed that the correlation matrix is positive semidefinite; that is, the correlation
matrices satisfies the relation:

aH RXa ≥ 0 (T:2.65)

for any complex vector a.

aH RXa = aH E
[
xxH

]
a = E

[∣∣xHa
∣∣2] (5.138)

A more detailed proof is given in Theorem 5.2. Note that a Hermitian matrix is semi-positive definite
if all its eigenvalues are greater than or equal to zero. Moreover, note that if RX is real, then the
expressions simplify somewhat to replacing a with a real value, as shown in Sidebar 10. Hence, using
the transpose rather than the Hermitian, such that aT RXa ≥ 0.
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Sidebar 10 Positive semi-definiteness of Real Matrices
If a matrix Γ is real, then the calculation aH Γa simplifies to only needing to consider any real vector
a. This can be shown by writing:

a = aR + jaI (5.142)

where aR and aI are real column vectors. Hence, assuming Γ is real, it follows:

I = aHΓa = (aR + jaI)
H (ΓaR + jΓaI) (5.143)

= aT
R (ΓaR + jΓaI)− jaT

I (ΓaR + jΓaI) (5.144)

= aT
RΓaR + jaT

RΓaI − jaT
I ΓaR + aT

I ΓaI (5.145)

= aT
RΓaR + aT

I ΓaI + j
(
aT
RΓaI − aT

I ΓaR

)
(5.146)

Now, noting that I is a scalar quantity, and with Γ = ΓT , I is also a real scalar quantity. Hence, as
I cannot have any imaginary terms, the last term above disappears and therefore aH

RΓaI = aH
I ΓaR,

such that:

I = aTΓa = aT
RΓaR + aT

I ΓaI (5.147)

Since both of these terms are real, then there is no need for both the real and imaginary components
of the vector a, and therefore it makes sense to set aI = 0.

Theorem 5.2 (Positive semi-definiteness of correlation matrix). Covariance and correlation
matrices are positive semi-definite.

PROOF. There are various methods to demonstrate this, but one is as follows. Consider the sum of
RVs:

Y (ζ) =
N∑

n=1

anXn(ζ) = aT X(ζ) (5.139)

where X(ζ) =
[
X1(ζ) · · · XN(ζ)

]T ∈ RN×1 and a =
[
a1 · · · aN

]T ∈ RN×1 is a non-random
but arbitrary vector of coefficients.
The variance of Y (ζ) must, by definition, be positive, as must its second moment. Considering the
second moment, then:

r
(2)
Y = E

[
Y 2(ζ)

]
= E [Y (ζ)Y (ζ)] = E

 aT X(ζ)X(ζ)T a︸ ︷︷ ︸
(1×N)(N×1)(1×N)(N×1)

 (5.140)

= aTE
[
X(ζ)X(ζ)T

]
a = aT RX a ≥ 0 (5.141)

□

A similar expression can be obtained for the covariance matrix.
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Example 5.13 (Valid correlation matrix). Determine whether the following is a valid correlation
matrix:

RX =

[
0 1
2 3

]
(5.148)

SOLUTION. This is not a valid correlation matrix as it is not symmetric, which is a requirement of a
valid correlation matrix. In otherwords, RT

X ̸= RX .

Example 5.14 (Valid correlation matrix). Determine whether the following is a valid correlation
matrix:

RX =

[
1 2
2 1

]
(5.149)

SOLUTION. Writing out the product I = aTRXa gives:

I =
[
α β

] [1 2
2 1

] [
α
β

]
(5.150)

=
[
α β

] [α + 2β
2α + β

]
(5.151)

= α (α + 2β) + β (2α + β) (5.152)
= α2 + 4αβ + β2︸ ︷︷ ︸

look to complete the square

(5.153)

I = = α2 + 2αβ + β2︸ ︷︷ ︸
complete the square

+2αβ (5.154)

= (α + β)2︸ ︷︷ ︸
always positive

+2αβ (5.155)
□

Noting that the term 2αβ is not always positive, then selecting α = −β, it follows that I = −2α2 < 0.
Hence, RX is not a positive semi-definite matrix, and is therefore not a correlation matrix.

Example 5.15 ( [Manolakis:2001, Exercise 3.14, Page 145]). Determine whether the following
matrices are valid correlation matrices:

R1 =

[
1 1
1 1

]
R2 =

1 1
2

1
4

1
2

1 1
2

1
4

1
2

1

 (5.156)

R3 =

[
1 1− j

1 + j 1

]
R4 =

1 1
2

1
1
2

2 1
2

1 1 1

 (5.157)

SOLUTION. Correlation matrices are Hermitian and positive semidefinite. The first three correlation
matrices are Hermitian, and are therefore valid. R4 is not, and so therefore is not a valid correlation
matrix. Next, it is necessary to test whether these matrices are positive semi-definite, and this test is
performed below:

1. Setting a = [a1, a2]
T , then

aTR1a =
[
a1 a2

] [a1 + a2
a1 + a2

]
= a21 + 2a1a2 + a22 = (a1 + a2)

2 ≥ 0 (5.158)

for all a1, a2. Thus, this is a valid correlation matrix.
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2. Setting a = [a1, a2, a3]
T , then

aTR2a =
[
a1 a2 a3

] a1 + a2
2
+ a3

4
a1
2
+ a2 +

a3
2

a1
4
+ a2

2
+ a3

 (5.159)

= a21 + a1a2 +
1

2
a1a3 + a22 + a2a3 + a23 (5.160)

=
1

2
(a1 + a2 + a3)

2 +
1

2
(a1 −

1

2
a3)

2 +
1

2
a22 +

3

8
a23 ≥ 0 (5.161)

for all a1, a2. Thus, this is a valid correlation matrix.

3. Finally, for this complex case, a = [a1, a2]
T , then

aHR3a =
[
a∗1 a∗2

] [a1 + (1− j)a2
(1 + j)a1 + a2

]
(5.162)

= |a1|2 + (1− j)a∗1a2 + (1 + j)a∗2a1 + |a2|2 (5.163)
= |a1 + (1− j)a2|2 − |a2|2 (5.164)

□

for all a1, a2. To see that this is not always positive, choose the counter-example: a1 = −1 + j
and a2 = 1; then clearly aHR3a = −1 < 0. Therefore, this is not a valid correlation matrix.

4. As mentioned above, but repeated here for completeness, R4 is not Hermitian, and is therefore
not a valid correlation matrix.

– End-of-Topic 33: Positive Semi-Definiteness for Correlation Matrices
–
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5.4.3 Further Statistical Descriptions

New slideTopic Summary 34 Further Statistical Descriptors

Topic Objectives:

• Define and understand the covariance matrix and its properties.

• Define and understand the correlation coefficient and its properties.

• Understand the notion of cross-correlation and cross-covariance matrices.

• Example of using cross-correlation for sum of random vectors.

Topic Activities:

Type Details Duration Progress
Watch video 17 : 13 min video 3× length
Read Handout Read page 180 to page 182 8 mins/page
Try Example Try Example 5.16 5 minutes

http://media.ed.ac.uk/media/1_2vfmik1w

Video Summary: This video builds on the Statistical Descriptors introduced in
Topic 32 by discussing the covariance matrix, the correlation coefficient, and then
the cross-correlation and cross-covariance matrices for multiple random vectors. The
properties of these matrices are discussed, including uncorrelatedness, followed by an
example of calculating the cross-correlation of the sum of random vectors.

Building on the notes from the previous sections.

Covariance Matrix The autocovariance matrix is defined by:

ΓX ≜ E
[
(X (ζ)− µX) (X (ζ)− µX)

H
]
=

γX1X1 · · · γX1XN

... . . . · · ·
γXNX1 · · · γXNXN

 (M:3.2.20)

The diagonal terms

γXiXi
≜ σ2

Xi
= E

[
|Xi(ζ)− µXi

|2
]
, i ∈ {1, . . . , N} (M:3.2.21)
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are the variances of each of the RVs, Xi(ζ).
The off-diagonal terms

γXiXj
≜ E

[
(Xi(ζ)− µXi

)
(
Xj(ζ)− µXj

)∗]
= rXiXj

− µXi
µ∗
Xj

= γ∗
XjXi

, i ̸= j
(M:3.2.22)

measure the covariance Xi(ζ) and Xj(ζ).
It can easily be shown that the covariance matrix, ΓX, must also be positive-semi
definite, and is also a Hermitian matrix.

aH ΓXa ≥ 0 (T:2.65)

Moreover, as for scalar RVs, the covariance, γXiXj
, can also be expressed in terms of the standard

deviations of Xi(ζ) and Xj(ζ):

ρXiXj
≜

γXiXj

σXi
σXj

= ρ∗XjXi
(M:3.2.23)

Again, the correlation coefficient measures the degree of statistical similarity between two random
variables.

Note that: ∣∣ρXiXj

∣∣ ≤ 1, i ̸= j, and ρXiXi
= 1 (M:3.2.24)

If
∣∣ρXiXj

∣∣ = 1, i ̸= j, then the RVs are said to be perfectly correlated. However, if ρXiXj
= 0, which

occurs when the covariance γXiXj
= 0, then the RVs are said to be uncorrelated.

The autocorrelation and autocovariance matrices are related, and it can easily be seen that:

ΓX ≜ E
[
[X (ζ)− µX] [X (ζ)− µX]

H
]
= RX − µXµ

H
X (M:3.3.25)

which shows that the two moments have essentially the same amount of information. In fact, if
µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0

(M:3.3.36)

Note, however, that uncorrelatedness does not imply independence, unless the RVs are
jointly-Gaussian. If one or both RVs have zero means, then uncorrelatedness also implies
orthogonality.

Naturally, the correlation and covariance between two random vectors can also be defined. Let X(ζ)
and Y (ζ) be random N - and M - vectors.

Cross-correlation is defined as

RXY ≜ E
[
X (ζ)YH(ζ)

]
=

E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M(ζ)]

... . . . ...
E [XN(ζ)Y

∗
1 (ζ)] · · · E [XN(ζ)Y

∗
M(ζ)]

 (M:3.2.28)

which is a N ×M matrix. The elements rXiYj
= E

[
Xi(ζ)Y

∗
j (ζ)

]
are the correlations

between the RVs X(ζ) and Y (ζ).
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Cross-covariance is defined as

ΓXY ≜ E
[
{X (ζ)− µX} {Y(ζ)− µY}

H
]

= RXY − µXµ
H
Y

(M:3.2.29)

which too is a N × M matrix. The elements γXiYj
=

E
[
(Xi(ζ)− µXi

)
(
Yj(ζ)− µYj

)∗] are the covariances between X(ζ) and Y (ζ).

In general, cross-matrices are not square, and even if N = M , they are not necessarily symmetric.

Two random-vectors X(ζ) and Y (ζ) are said to be:

• Uncorrelated if ΓXY = 0 ⇒ RXY = µXµ
H
Y.

• Orthogonal if RXY = 0.

Again, if µX or µY or both are zero vectors, then uncorrelatedness implies orthogonality.

Example 5.16 (Sum of Random Vectors). Consider the sum of two zero-mean random vectors that
are uncorrelated. What are the correlation and covariance matrices of the sum of random variables?

SOLUTION. Let Z(ζ) = X(ζ) +Y(ζ). Then:

RZ = E
[
Z(ζ) ZH(ζ)

]
= E

[
(X(ζ) +Y(ζ)) (X(ζ) +Y(ζ))H

]
(5.165)

= E
[
X(ζ)XH(ζ)

]
+ E

[
X(ζ)YH(ζ)

]
+ E

[
Y(ζ)XH(ζ)

]
+ E

[
Y(ζ)YH(ζ)

]
(5.166)

= RX +RXY +RYX +RYY (5.167)
□

Since the random vectors are uncorrelated, then RXY = RYX = 0, and therefore RZ = RX +
RY. Moreover, the covariance matrix is equal to the correlation matrix as the random vectors are
zero-mean.

– End-of-Topic 34: Further Statistical Descriptions –
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5.5 Linear Transformations
Topic Summary 35 Linear Transformations

Topic Objectives:

• Appreciate importance of linear transformations in probabilistic systems.

• Find transformed pdf in terms of the input pdf using the probability transformation rule.

• Calculate statistical descriptors for linearly transformed variables.

• Apply these results to a simple example.

Topic Activities:

Type Details Duration Progress
Watch video 15 : 36 min video 3× length
Read Handout Read page 183 to page 186 8 mins/page
Try Example Try Example 5.17 10 minutes
Practice Exercise Exercises ??, ??, and ?? 90 mins

http://media.ed.ac.uk/media/1_k6muyz6h

Video Summary: Since linear transformations is such an important class of signal
processing systems, this video looks at considering linear transformations of random
vectors. After discussing various types of linear transformations, the video considers the
relationships from the approach of using the probability transformation rule, but notes
this is a rather tedious process in most cases. A more practical approach is to manipulate
the statistical descriptors, which leads to a set of elegant results. An example of a 3-to-2
linear transformation is presented, and the viewer is encouraged to try the corresponding
self-study exercises.

Since linear systems represent such an important class if signal processing systems, it is important to
consider linear transformations of random vectors. Thus, consider a random vector Y(ζ) defined
by a linear transformation of the random vector X (ζ) through the matrix A:

Y (ζ) = AX (ζ) (M:3.2.32)

The matrix A is not necessarily square and, in particular, if X (ζ) is of dimension M , and Y(ζ) of
dimension N , then A is of size N ×M (rows by columns).
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Sidebar 11 Jacobian of a Linear Transformation
A linear transformation of N variables, {xi}N1 , to N variables, {yi}N1 , can either be written in
matrix-vector form as shown in Equation M:3.2.33, or equivalently:

y1
y2
...
yN


︸ ︷︷ ︸
Y(ζ)

=


a11 a12 · · · a1N
a21 a22 · · · a2N

...
... . . . . . .

aN1 aN2 · · · aNN


︸ ︷︷ ︸

A


x1

x2
...
xN


︸ ︷︷ ︸
X(ζ)

(5.168)

or in the scalar form by the linear equation:

yi =
N∑
k=1

aik xk (5.169)

where aij is the ith row and jth column of the matrix A. The Jacobian is obtained by calculating:

∂yi
∂xj

=
N∑
k=1

aik
∂xk

∂xj

= aij (5.170)

using the fact that
∂xk

∂xj

=

{
1 if k = j

0 if k ̸= j
(5.171)

Hence, constructing the Jacobian matrix using Equation 5.170 gives the matrix A.

If N > M , then only M Ym(ζ) RVs can be independently determined from X (ζ). The remaining
N −M Ym(ζ) RVs can then be obtained from the first M Ym(ζ) RVs. If, however, M > N , then the
random vector Y(ζ) can be augmented into an M -vector by introducing the auxiliary RVs,

Yn(ζ) = Xn(ζ), for n > m (M:3.2.33)

These additional auxiliary variables must then be marginalised out to obtain the joint-pdf for the
original N -vector, Y(ζ).

Both of these cases, for M ̸= N , lead to less elegant expressions for fY (y), and therefore it will be
assumed that M = N , and that A is nonsingular.

The Jacobian of a nonsingular linear transformation defined by a matrix A is simply the absolute
value of the determinant of A as shown in Sidebar 11. Thus, assuming X (ζ), Y(ζ), and A are all
real, then:

fY (y) =
fX
(
A−1y

)
|detA|

(M:3.2.34)

In general, determining fY (y) is a laborious exercise, except in the case of Gaussian random vectors.
In practice, however, the knowledge of µX, µY, ΓY, ΓXY or ΓYX is sufficient information for many
algorithms.

Taking expectations of both sides of Equation M:3.2.32, Y (ζ) = AX (ζ), the following relations are
found:
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Mean vector:
µY = E [AX (ζ)] = AµX (M:3.2.38)

Autocorrelation matrix:
RY = E

[
Y(ζ)YH(ζ)

]
= E

[
AX (ζ)XH(ζ)AH

]
= AE

[
X (ζ)XH(ζ)

]
AH = ARXA

H
(M:3.2.39)

Autocovariance matrix:
ΓY = AΓXA

H (M:3.2.40)

Cross-correlation matrix:
RXY = E

[
X (ζ)YH(ζ)

]
= E

[
X (ζ)XH(ζ)AH

]
= E

[
X (ζ)XH(ζ)

]
AH = RXAH

(M:3.2.42)

and hence RYX = ARX.

Cross-covariance matrices:
ΓXY = ΓX AH and ΓYX = AΓX (M:3.2.43)

These results will be used to show what happens to a Gaussian random vector under a linear
transformation in Section 5.6.

Example 5.17 (Linear Transformation). A random vector X(ζ) = [X1(ζ) X2(ζ) X3(ζ)]
T has

correlation matrix

RX =

9 3 1
3 9 3
1 3 9

 (5.172)

This vector is transformed to another random vector Y(ζ) by the following linear transformation:[
Y1(ζ)
Y2(ζ)

]
=

[
3 2 1
1 −2 1

]X1(ζ)
X2(ζ)
X3(ζ)

 (5.173)

1. Find the correlation matrix RY for Y(ζ)

2. Find the cross-correlation matrix RXY.

SOLUTION. The linear transformation can be written in the matrix-vector form as:

Y = AX (5.174)

1. Using Equation M:3.2.39, the autocorrelation matrix is given by:

RY = ARXA
H =

[
3 2 1
1 −2 1

]9 3 1
3 9 3
1 3 9

3 1
2 −2
1 1

 (5.175)

Feel free to test your maths, or just use MATLAB:

A = [3 2 1; 1 -2 1]
RX = [9 3 1; 3 9 3; 1 3 9]
RY = A*RX*A.'

giving

RY =

[
180 −8
−8 32

]
(5.176)
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2. Finally, Equation M:3.2.42, then the cross-correlation is given by:

RXY = RX AH =

9 3 1
3 9 3
1 3 9

3 1
2 −2
1 1

 (5.177)

=

34 4
30 −12
18 4

 (5.178)
□

– End-of-Topic 35: Linear Transformations and the Resulting Statistics
–
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5.6 Multivariate Gaussian Density Function

New slide Topic Summary 36 The Multivariate Guassian Distribution

Topic Objectives:

• Derive an expression for the pdf of a multivariate Gaussian.

• Understand how the Gaussian depends on the correlation coefficient.

• Key properties of the multivariate Gaussian.

Topic Activities:

Type Details Duration Progress
Watch video 20 : 20 min video 3× length
Read Handout Read page 187 to page 191 8 mins/page
Try Code Use the MATLAB code 10 minutes
Practice Exercise Revisit Exercise ?? 30 minutes

http://media.ed.ac.uk/media/1_0pfz5b1l

Video Summary: This video reviews the pdf for the multivariate Gaussian random
variable. This pdf is then derived by developing the isotropic multivariate Gaussian, and
then transforming through a linear transformation. The effect of the linear transformation
on both the pdf and second-order statistical descriptors are considered. The video
considers how the bivariate Gaussian density depends on the correlation coefficient,
and how its orientation changes with this coefficient. Finally, the video considers key
properties of the multivariate Gaussian, such as the fact that the linear transformation
of a Gaussian is a Gaussian; that the marginal of a Gaussian is a Gaussian; and that the
conditional distribution of a Gaussian is a Gaussian. The role of the multivariate Gaussian
distribution within statistical signal processing is also discussed.

Gaussian random vectors and Gaussian random sequences, as will be seen in the following handouts,
play a very important role in the design and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian density function.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX|

1
2

exp

[
−1

2
(x− µX)

T Γ−1
X (x− µX)

]
(M:3.2.44)
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190 Multiple Random Variables

where N is the dimension of X (ζ), and X (ζ) has mean µX and covariance ΓX. It is often denoted
as:

fX (x) = N
(
x
∣∣µX, ΓX

)
(5.179)

Note the difference between the notation used here, and the notation used to indicate when a random
vector is distributed, or sampled, from a normal distribution:

X (ζ) ∼ N (µX, ΓX) (5.180)

The complex-valued normal random vector has pdf:

fX (x) =
1

πN |ΓX|
exp

[
− (x− µX)

H Γ−1
X (x− µX)

]
(M:3.2.47)

again with mean µX and covariance ΓX. For a more detail discussion of complex random variables,
see [Therrien:1991].

5.6.1 Deriving the Multivariate Gaussian

New slide The pdf for the multivariate Gaussian is often quoted, but where does it come from? It is most easily
obtained by reusing some results from Section 5.2.4 and more specifically Topic 27.

Suppose that NRVs, Xn(ζ) for n ∈ {0, . . . , N − 1}, are independent zero-mean unit variance
Gaussian densities, and each have pdf given by fXn (xn). Then the joint-pdf of the multivariate
random vector X(ζ) = [X0(ζ) , · · · , XN−1(ζ)]

T is given by:

fX (x) =
N−1∏
n=0

fXn (xn) (5.181)

Since Xn(ζ) is Gaussian distributed with zero-mean and unit variance, such that xk ∼ N (0, 1) or:

fXn (xn) = N
(
xn

∣∣ 0, 1) = 1√
2π

e−
x2n
2 (5.182)

and hence, as previously developed, it follows that:

fX (x) =
N−1∏
n=0

1√
2π

e−
x2n
2 =

1

(2π)
N
2

e−
1
2

∑N−1
n=0 x2

n (5.183)

Defining the vector x = [x0, · · · , xN−1]
T , then it follows that

xT x =
[
x1 · · · xN

] x1
...
xN

 =
N−1∑
n=0

x2
n (5.184)

Using this relationship, it is possible to write Equation 5.183 as:

fX (x) =
1

(2π)
N
2

e−
1
2
xT x (5.185)

This is an isotropic Gaussian, which is circularly symmetric.

A non-isotropic Gaussian can be obtained by a linear shift, scale, and rotation using the linear
transformations from Topic 35. Hence, set:

y = Ax+ µ (5.186)



5.6. Multivariate Gaussian Density Function 191

Figure 5.17: A graphical representation of an isotropic Gaussian random vector.

Similar to Topic 35, apply the probability transformation rule, noting there is one solution x =
A−1 (y − µ) and the Jacobian Jx→y = detA. Hence:

fY (y) =
fX
(
A−1 (y − µ)

)
|detA|

(5.187)

and

fY (y) =
1

|detA|
1

(2π)
N
2

exp

[
−1

2

(
A−1 (y − µ)

)T (
A−1 (y − µ)

)]
(5.188)

=
1

(2π)
N
2

∣∣ATA
∣∣ 12 exp

[
−1

2
(y − µ)T A−TA−1 (y − µ)

]
(5.189)

where it has been noted that
∣∣AAT

∣∣ 12 = detA.

Finally, writing ΓY = AAT and µY = µ, then:

fY (y) =
1

(2π)
N
2 |ΓY|

1
2

exp

[
−1

2
(y − µY)

T Γ−1
Y (y − µY)

]
(5.190)

= N
(
y
∣∣µY, ΓY

)
(5.191)

This is the expression for the multivariate Gaussian, which can be seen as a linear transformation of an
isotropic Gaussian, which is derived from first principles. By calculating the second central moment
for this density, it can be shown that ΓY is indeed the covariance matrix, and it is also evident that
µY is the mean vector.

Using the definition of the correlation coefficient in Topic 34, for a bivariate Gaussian, the covariance
matrix can be written as:

ΓY =

[
σ2
Y1

ρY1Y2σY1σY2

ρY1Y2σY1σY2 σ2
Y2

]
(5.192)

The pdf can then be plotted as ρY1Y2 changes. This can be seen in the annimation video shown in
Topic 32
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5.6.2 Properties of Multivariate Gaussians

New slideThe term in the exponent of Equation M:3.2.44 is a positive definite quadratic function of xn, and can
be written as:

(x− µX)
T Γ−1

X (x− µX) =
N∑
i=1

N∑
j=1

⟨Γ−1
X ⟩ij(xi − µi)(xj − µj) (M:3.2.45)

where ⟨Γ−1
X ⟩ij denotes the (i, j)th element of Γ−1

X . It is therefore straightforward to calculate the
marginal distribution for the RV Xn(ζ) by marginalising over all the other RVs.

The normal distribution is a useful model of a random vector because of its many important properties.

1. fX (x) = N
(
x
∣∣µX, ΓX

)
is completely specified by its mean µX and covariance ΓX. All

other higher-order moments can be obtained from these parameters.

Theorem 5.3 (Moments of a Gaussian RV). The moments of a Gaussian RV X(ζ) ∼
N (0, σ2

x), are given by:

E
[
Xk(ζ)

]
=

{
1 · 3 · · · (k − 1)σk

x k even
0 k odd

(5.193)

PROOF. Since fX (x) is an even function, then it follows that the odd moments are zero. The
proof for the even moments then follows by using integration by parts to obtain a recursive
relationship between E

[
Xk(ζ)

]
and E

[
Xk+2(ζ)

]
. This is left as an exercise for the reader.

This theorem can be extended to the multivariate case.

2. If the components of X (ζ) are mutually uncorrelated, then they are also independent. This
property has an important consequence in blind signal separation or independent component
analysis (ICA).

3. A linear transformation of a normal random vector is also normal. This result builds on the
results derived earlier for obtaining the standard expression of a multivariate Gaussian. It can be
readily extended as follows, where the proof assumes a real normal random vector; the proof for
a complex normal random vector follows a similar line. Noting that for a linear transformation,

fY (y) =
fX
(
A−1y

)
|detA|

(M:3.2.34)

then if fX (x) = N
(
x
∣∣µX, ΓX

)
, it follows:

fY (y) =
1

|detA|
1

(2π)
N
2 |ΓX|

1
2

exp

[
−1

2

(
A−1y − µX

)T
Γ−1

X

(
A−1y − µX

)]
(5.194)

=
1

(2π)
N
2

∣∣AΓXA
T
∣∣ 12 exp

[
−1

2
(y −AµX)

T A−TΓ−1
X A−1 (y −AµX)

]
(5.195)
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where it has been noted that
∣∣AΓXA

T
∣∣ 12 = |A||ΓX|

1
2 . Thus, using the expressions for µY and

ΓY above, it directly follows that

fY (y) =
1

(2π)
N
2 |ΓY|

1
2

exp

[
−1

2
(y − µY)

T Γ−1
Y (y − µY)

]
(5.196)

= N
(
y
∣∣µY, ΓY

)
(5.197)

This is a particularly useful, since the output of a linear system subject to a Gaussian input is
also Gaussian.

4. If X (ζ) and Y(ζ) are jointly-Gaussian, then so are their marginal-distributions, and their
conditional-distributions. This can be shown as follows, assuming real random vectors and
that X (ζ) ∈ RN , Y(ζ) ∈ RM ; as usual, a similar derivation follows for the complex case.
Defining the joint random vector:

Z(ζ) =

[
X (ζ)
Y(ζ)

]
(T:2.101)

then the corresponding mean vector and covariance matrix is given by:

µZ = E
[[

X (ζ)
Y(ζ)

]]
=

[
µX

µY

]
(T:2.102)

ΓZ = E
[[

X (ζ)− µX

Y(ζ)− µY

] [
X (ζ)− µX Y(ζ)− µY

]H]
=

[
ΓX ΓXY

ΓH
XY ΓY

]
(T:2.103)

Hence, the joint-pdf is given by:

fXY (x, y) = fZ (z) = N
(
z
∣∣µZ, ΓZ

)
(5.198)

=
1

(2π)
N+M

2 |ΓZ|
1
2

exp

[
−1

2
(z− µZ)

T Γ−1
Z (z− µZ)

]
(5.199)

But by substituting for z, µz and Γz in terms of the x and y components and their respective
means and covariances, it can be shown that the marginal densities are also Gaussian, where:

fX (x) = N
(
x
∣∣µX, ΓX

)
(5.200)

fY (y) = N
(
y
∣∣µY, ΓY

)
(5.201)

Moreover, since

fY|X (y | x) = fXY (x, y)

fX (x)
(T:2.39)

then the conditional density is also Gaussian, given by:

fY|X (y | x) = 1

(2π)
M
2

∣∣ΓY|X
∣∣ 12 exp

[
−1

2

(
y − µY|X

)T
Γ−1

Y|X
(
y − µY|X

)]
(T:2.106)

where

µY|X = µY + ΓH
XYΓ

−1
X (x− µX) (T:2.108)

ΓY|X = ΓY − ΓH
XYΓ

−1
X ΓXY (T:2.109)

– End-of-Topic 36: Multivariate Gaussian Distribution –
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5.7 Characteristic Functions
Topic Summary 37 The Multivariate Characteristic Function

Topic Objectives:

• Concept of extending the characteristic and moment generating function (MGF) to random
vectors.

• Example of calculating the characteristic function of a multivariate Gaussian.

• Conceptual use of these transform domain operators.

Topic Activities:

Type Details Duration Progress
Watch video 12 : 45 min video 3× length
Read Handout Read page 192 to page 195 8 mins/page
Try Example Try Example 5.18 20 minutes

http://media.ed.ac.uk/media/1_kv2kkbar

Video Summary: The concept of the characteristic function for scalar random variables
is extended to multivariate densities of random vectors. This is defined as the
multi-dimensional Fourier transform, or the multi-dimensional Laplace transform for
MGFs. There is a discussion that the multi-dimensional transforms are perhaps more
useful as a conceptual rather than practical tool. The video then considers an example of
finding the characteristic function of the multivariate Gaussian. As an Appendix to this
Topic, a derivation of a key integral identify used in the example is provided.

The characteristic function and moment generating function for a scalar random variable can be
extended to deal with random vectors. Essentially, these are defined as the multi-dimensional Fourier
and Laplace transforms of the joint-pdf. Hence, the characteristic function is:

ΦX(ξ) ≜ E
[
ejξ

T X(ζ)
]
=

∫ ∞

−∞
fX (x) ejξ

Tx dx (5.202)

Here, as x is a vector, so is the variable ξ which is defined as:

ξ =
[
ξ1 ξ2 · · · ξN

]T (5.203)

such that ξTx is a scalar, ξT x =
∑N

n=1 ξn xn, and the differential dx =
∏N

n=1 dxn.
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Similarly, the moment generating function is given by:

Φ̄X(s) ≜ E
[
es

T X(ζ)
]
=

∫ ∞

−∞
fX (x) es

Tx dx (5.204)

Example 5.18 (Multivariate Gaussian). Calculate the characteristic function for a multivariate
Gaussian.

SOLUTION. This problem is an interesting exercise in multi-dimensional integration, and some of
the identities used will be used again in later Topics.

The characteristic function for a real-valued Gaussian random vector is given by:

ΦX(ξ) =

∫ ∞

−∞
fX (x) ejξ

Tx dx (5.205)

=
1

(2π)
N
2 |ΓX|

1
2

∫ ∞

−∞
exp

[
−1

2
(x− µX)

T Γ−1
X (x− µX)

]
ejξ

Tx dx (5.206)

=
1

(2π)
N
2 |ΓX|

1
2

∫ ∞

−∞
exp

[
−xTΓ−1

X x+ 2xTβ + µT
XΓ

−1
X µX

2

]
dx (5.207)

where β = −
(
Γ−1

X µX + jξ
)T , and the relationship that βTx =

(
xTβ

)T both equals scalar values
have been used.

Using the integral identity:∫
RP

exp

{
−1

2

[
α + 2yTβ + yTΓy

]}
dy

=
(2π)

P
2

|Γ| 12
exp

{
−1

2

[
α− βTΓ−1β

]} (5.208)

where y ∈ RP is a P -dimensional column vector. This result is proved in Sidebar 12. Then it follows,
by setting α = µT

XΓ
−1
X µX, Γ = Γ−1

X , y = x and P = N , that:

ΦX(ξ) = exp

[
−1

2

{
µT

XΓ
−1
X µX −

(
µT

XΓ
−1
X + jξT

)
ΓX

(
Γ−1

X µX + jξ
)}]

(5.209)

which, after multiplying out, gives:

ΦX(ξ) = exp

[
jξTµX − 1

2
ξTΓXξ

]
(M:3.2.46)

where, of course, ξT = [ξ1, . . . , ξN ]. It can be shown that the characteristic function for the
complex-valued normal random vector is given by

ΦX(ξ) = exp

[
jℜ{ξHµX} −

1

4
ξHΓXξ

]
(M:3.2.50)

□

The multivariate characteristic function is perhaps more useful as a powerful conceptual tool than a
practical method for manipulation, as there are only a few cases where analytical results exist. The
concept can also be extended to a multi-dimensional version of the probability generating function
(PGF) for discrete random variables.

The result for the characteristic function of a multivariate Gaussian yields some interesting
consequences:
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Sidebar 12 Proof of the Multivariate Gaussian Identity

The identity in Equation 5.208 can be derived by using another axiomatic identity, which is the fact
that a multivariate Gaussian pdf integrates to one, such that:∫ ∞

−∞

1

(2π)
P
2 |ΣY|

1
2

exp

[
−1

2
(y − µY)

T Σ−1
Y (y − µY)

]
dy = 1 (5.210)

where y ∈ RP×1. Set Γ = Σ−1
Y ; this substitution arguably looks as though it is confusing things

further, but it does keep the manipulations simpler when working towards the required identity. This
means that detΓ = |Γ| = 1/ |ΣY|. Hemce, substituting and rearranging by bringing the constant
term outside the exponent and to the other side of the equation gives:∫ ∞

−∞
exp

[
−1

2
(y − µY)

T Γ (y − µY)

]
dy =

(2π)
P
2

|Γ|
1
2

(5.211)

Expanding the exponent, noting that µT
YΓy = yTΓµY, as ΓT = Γ, then:∫ ∞

−∞
exp

[
−1

2

(
yTΓy − 2yTΓµY + µT

YΓµY

)]
dy =

(2π)
P
2

|Γ|
1
2

(5.212)

Setting β = −ΓµY, such that µY = −Γ−1β gives:∫ ∞

−∞
exp

[
−1

2

(
yTΓy + 2yTβ +

(
−βTΓ−1

)
Γ
(
−Γ−1β

))]
dy =

(2π)
P
2

|Γ|
1
2

(5.213)

Simplifying
(
−βTΓ−1

)
Γ
(
−Γ−1β

)
= βTΓ−1β, splitting up the exponent, and taking the term in

βTΓ−1β to the other side gives:∫ ∞

−∞
exp

[
−1

2

(
yTΓy + 2yTβ

)]
dy =

(2π)
P
2

|Γ|
1
2

exp

[
1

2
βTΓ−1β

]
(5.214)

Finally, multipling both sides by exp
(
−α

2

)
gives the desired identity:∫ ∞

−∞
exp

[
−1

2

(
yTΓy + 2yTβ + α

)]
dy =

(2π)
P
2

|Γ|
1
2

exp

[
−1

2

(
α− βTΓ−1β

)]
(5.215)

There are many variants of this proof, and indeed of this identity, but they all broadly follow the same
starting point.
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1. The Fourier transform of a Gaussian function is still a Gaussian function.

2. The Fourier transform is a linear transformation, and therefore this result is a natural
consequence.

– End-of-Topic 37: Characteristic Functions –

5.8 Higher-Order Statistics

Random vectors, and random processes as introduced in the forthcoming lectures, can also be
characterised by higher-order moments. These, again, are a generalisation of the equivalent definitions
for scalar-random variables. However, they become significantly more complicated for random
vectors since the various products of the random variables creates a very large set of combinations.
These will not be discussed in this course, although an introduction can be found in [Therrien:1992,
Section 4.10.1]. As an example, taken from [Manolakis:2000, Page 89], it is noted that the
fourth-order moment of a normal random vector

X (ζ) =
[
X1(ζ) X2(ζ) X3(ζ) X4(ζ)

]T (5.216)

can be expressed in terms of its second order moments. For the real case when X (ζ) ∼ N (0, ΓX),
then:

E [X1(ζ)X2(ζ)X3(ζ)X4(ζ)] =E [X1(ζ)X2(ζ)]E [X3(ζ)X4(ζ)]

+ E [X1(ζ)X3(ζ)]E [X2(ζ)X4(ζ)]

+ E [X1(ζ)X4(ζ)]E [X2(ζ)X3(ζ)]

(M:3.2.53)

Note that each RV appears only once in each term. It is also possible to define higher-order
cumulants which can be extremely useful; for example, they are identically zero for Gaussian random
processes, which can help identify whether a process is Gaussian or not.
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5.9 Sum of Independent Random Variables
Topic Summary 38 Sum of Independent Random Variables

Topic Objectives:

• Investigate pdfs of sum of random variables.

• Apply to simple examples.

• Understand the role of characteristic functions in this case.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 23 min video 3× length
Read Handout Read page 196 to page 198 8 mins/page
Try Example See video 10 mins
Practice Exercise Try Exercises ?? to ?? 80 minutes

http://media.ed.ac.uk/media/1_kxi2oy5p

Video Summary: This Topic considers further the sum of random variables that was
introduced in Topic 31 on auxiliary variables. The case of independent random variables
and vectors is considered specifically, where it is seen that the pdf of the sum is the
convolution of the individual pdfs. An example shown in the video, but not in the
notes, is the probability mass function (pmf) of the sum of two fair dice. The video then
shows how the sum of independent random variables can be elegantly dealt with using
characteristic functions, because convolution in the pdf space becomes multiplication in
the characteristic function space. This becomes useful in proofs such as the central limit
theorem (CLT) in Topic 39.

Theorem 5.4 (Sum of Random Variables and Vectors). If X (ζ) and Y(ζ) have joint-pdf,
fXY (x, y), then Z(ζ) = X (ζ) +Y(ζ) has density function:

fZ (z) ≜ fX+Y (z) =

∫
R
fXY (x, z− x) dx (5.217)

PROOF. This can easily be obtained using the probability rule and an appropriate auxiliary variable,
as in Section 5.3.3, and indeed is a simplification of the result already proved there. However, an
alternative proof which avoids the use of auxiliary variables is given here for completeness.
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Define the event Z = {(x, y) : x+ y ≤ z}. Then:

Pr (X+Y ≤ x) =

∫∫
Z

fXY (u, v) du dv =

∫
v∈R

∫ z−v

u=−∞
fXY (u, v) du dv (5.218)

and by making the substitution w = u+ v.

=

∫
v∈R

∫ z

w=−∞
fXY (w − u, v) dw dv (5.219)

=

∫ z

w=−∞

∫
v∈R

fXY (u, w − v) du dv ≜
∫ z

w=−∞
fX (v) dv (5.220)

□

giving the result as required.

Theorem 5.5 (Sum of Independent Random Variables and Vectors). If X (ζ) and Y(ζ) are
independent, this result becomes

fZ (z) ≜ fX+Y (z) =

∫
R
fX (x) fY (z− x) dx (5.221)

=

∫
R
fX (z− y) fY (y) dy = fX (z) ∗ fY (y) (5.222)

PROOF. Follows trivially by writing fXY (x, y) = fX (x) fY (y)

Independent RVs can also be dealt with using characteristic functions or moment generating
functions (MGFs) as introduced in the lecture on scalar random variables.

If Z(ζ) = X(ζ) + Y (ζ), then its characteristic function is:

ΦZ(ξ) ≜ E
[
ejξ Z(ζ)

]
= E

[
ejξ[X(ζ)+Y(ζ)]

]
= E

[
ejξ X(ζ)

]
E
[
ejξ Y(ζ)

]
(M:3.2.59)

where the last inequality follows from independence. More explicitly, observe that:

ΦZ(ξ) = E
[
ejξ[X(ζ)+Y(ζ)]

]
=

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) ejξ[x+y] dx dy (5.223)

and noting that due to independence fXY (x, y) = fX (x) fY (y), then

ΦZ(ξ) =

∫ ∞

−∞

∫ ∞

−∞
fX (x) fY (y) ejξ xejξ y dx dy (5.224)

=

{∫ ∞

−∞
fX (x) ejξ x dx

}{∫ ∞

−∞
fY (y) ejξ y dy

}
(5.225)

giving the desired result.

Hence, from the convolution property of the Fourier transform, it follows directly from this result that

fZ (z) = fX (x) ∗ fY (y) (M:3.2.61)

This result can be generalised to the summation of M independent RVs:

Y (ζ) =
M∑
k=1

ck Xk(ζ) (M:3.2.55)

June 28, 2021 – 08 : 40



200 Multiple Random Variables

where {ck}M1 is a set of fixed (deterministic) coefficients.

It follows straightforwardly that:

ΦY (ξ) ≜ E
[
ejξ Y(ζ)

]
=

M∏
k=1

E
[
ejξ ckXk(ζ)

]
=

M∏
k=1

ΦXk
(ckξ) (M:3.2.72)

Hence, the pdf of Y (ζ) is given by:

fY (y) =
1

|c1|
fX1

(
y

c1

)
∗ 1

|c2|
fX2

(
y

c2

)
∗ · · · ∗ 1

|cM |
fXM

(
y

cM

)
(M:3.2.73)

where, implicitly, the Fourier transform of a frequency scaled signal has been used, which is
equivalent to using the probability transformation rule for a scalar random variable.

Theorem 5.6 (Mean and variance of sum of independent RVs). Using the linearity of the
expectation operator, and taking expectations of both sides of Equation M:3.2.55, then:

µY =
M∑
k=1

ck µXk
(M:3.2.56)

Moreover, assuming independence, then the variance of Y (ζ) is given by:

σ2
Y = E

∣∣∣∣∣
M∑
k=1

ck µXk
− µXk

∣∣∣∣∣
2
 =

M∑
k=1

|ck|2 σ2
Xk

(M:3.2.57)

PROOF. These results follow from the linearity of the expectation operator, and the independence
property of the random variables. The proof is left as an exercise for the reader.

Finally, the cumulant generating, or second characteristic, function can be used to determine the
nth-order cumulants for Y (ζ).

Recall that
ΨX(ξ) ≜ lnΦX(ξ) = lnE

[
ej ξ X(ζ)

]
(5.226)

Then, from Equation M:3.2.72,

ΨY (ξ) ≜ lnE
[
ejξ Y(ζ)

]
=

M∑
k=1

lnE
[
ejξ ckXk(ζ)

]
=

M∑
k=1

ΨXk
(ckξ) (M:3.2.74)

Therefore, it can readily be shown that the cumulants of Y (ζ) are given by:

κ
(n)
Y =

M∑
k=1

cnk κ
(n)
Xk

(M:3.2.75)

It is left as an exercise for the reader to demonstrate this.

When these results are extended to the sum of an infinite number of statistically independent random
variables, a powerful theorem known as the central limit theorem (CLT) is obtained.

Another interesting concept develops when the sum of i. i. d. random variables preserve their
distribution, which results in so-called stable distributions. Examples are the Gaussian and Cauchy
distributions.

– End-of-Topic 38: Sum of Independent Random Variables –
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5.10 Central limit theorem

New slideTopic Summary 39 The Central Limit Theorem

Topic Objectives:

• Motivate the central limit theorem (CLT) using an example.

• Demonstrate the CLT using a simulated numerical example.

• Formally define the CLT.

• Give an outline proof of the CLT.

Topic Activities:

Type Details Duration Progress
Watch video 23 : 02 min video 3× length
Read Handout Read page 199 to page 202 8 mins/page
Try Example Try Example 5.19 15 minutes
Try Code Use the MATLAB code 10 minutes
Practice Exercise Try Exercise ?? 10 minutes

http://media.ed.ac.uk/media/1_795s4i9h

Video Summary: This Topic motivates the CLT by considering the pdf of the sum of
uniform random variables, from two through to just four variables. It is shown that this
pdf approaches a Gaussian very rapidly. In addition to a mathematical development, the
video also shows simulated numerical results (in this case using MATLAB, but easily
done in any language). The video considers the formal definition of the CLT in terms of
normalised random variables. Finally, for completeness, the video gives an outline sketch
of the CLT using characteristic functions.

To motivate the central limit theorem, consider the following example.

Example 5.19. In Exercise ??, the problem considers the sum of four independent random variables.
Suppose {Xk(ζ)}4k=1 are four i. i. d. random variables uniformally distributed over [−0.5, 0, 5].
Compute and plot the pdfs of YM(ζ) ≜

∑M
k=1 Xk(ζ) for M = {2, 3, 4}.

June 28, 2021 – 08 : 40
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-1 1

1

fY2( )y

y

Figure 5.18: The pdf fY2 (u), the sum of two uniform random variables.

-1.5 1.5

fY3( )y

-0.5 0.5

0.5

0.75

y

Figure 5.19: The pdf fY3 (u), the sum of three uniform random variables.

-0.5 0.5

1

fX( )x

x

SOLUTION. The zero-mean uniform pdf for fXk
(xk) as specified is shown in Figure ??, where the

subscripts have been dropped for clarity. Using the convolution result for the sum of independent
random variables from Section 5.9, it follows:

fY2 (y) = fX1 (y) ∗ fX2 (y) = fX (y) ∗ fX (y) (5.227)
fY3 (y) = fY2 (y) ∗ fX3 (y) = fY2 (y) ∗ fX (y) (5.228)
fY4 (y) = fY3 (y) ∗ fX4 (y) = fY3 (y) ∗ fX (y) (5.229)

The convolution calculations to this problem Example ?? should yield the following pdfs:

fY2 (y) =


1 + y −1 ≤ y < 0

1− y 0 ≤ y < 1

0 otherwise
(5.230)

fY3 (y) =


1
2

(
y + 3

2

)2 −3
2
≤ y < −1

2
3
4
− y2 −1

2
≤ y < 1

2
1
2

(
y − 3

2

)2 1
2
≤ y < 3

2

0 otherwise

(5.231)

fY4 (y) =



1
6
(y + 2)3 −2 ≤ y < −1

−1
2
y3 − y2 + 2

3
−1 ≤ y < 0

1
2
y3 − y2 + 2

3
0 ≤ y < 1

−1
6
(y − 2)3 1 ≤ y < 2

0 otherwise

(5.232)
□

Thse pdfs is plotted in Figure 5.18, Figure 5.19, and Figure 5.20, respectively.
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Figure 5.20: The pdf of fY4 (y), and also the pdf of N
(
y
∣∣ 0, 1

3

)
.

Consider the random variable Y (ζ) given by:

YM(ζ) =
M∑
k=1

Xk(ζ) (M:3.2.55)

What is the distribution of YM(ζ) as M → ∞?

If YM(ζ) is a sum of i. i. d. RVs with a stable distribution, the distribution of YM(ζ) also converges to
a stable distribution. If the distributions are not stable and, in particular, have finite variance, then the
CLT reveals the distribution for limM→∞ YM(ζ).

Informally, the CLT is well known, and the answer is a Gaussian. However, more care is needed.
Assume that the XM(ζ)’s are i. i. d., and the mean and variance of Xm(ζ) are finite and given by µX

and σ2
X . Then:

• the mean of YM(ζ) is

E [YM ] = E

[
M∑

m=1

Xm(ζ)

]
=

M∑
m=1

E [Xm(ζ)] (5.233)

µY = MµX What is µY as M → ∞? (5.234)

• the variance of YM(ζ) is

var [YM ] = var

[
M∑

m=1

Xm(ζ)

]
=

M∑
m=1

var [Xm(ζ)] (5.235)

σ2
Y = Mσ2

X Similarly, what is σ2
Y as M → ∞? (5.236)

Theorem 5.7 (Central limit theorem). Let {Xk(ζ)}Mk=1 be a collection of RVs that are independent
and identically distributed and for which the mean and variance of each RV exists and is finite, such
that µX = µXk

< ∞ and σX = σ2
Xk

< ∞ for all k = {1, . . . ,M}. Define the normalised random
variable:

ŶM(ζ) =
YM(ζ)− µYM

σYM

where YM(ζ) =
M∑
k=1

Xk(ζ) (M:3.2.55)
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Then the distribution of ŶM(ζ) approaches that of a normal random variable with zero mean and unit
standard deviation as M → ∞; in other words,

lim
M→∞

fŶM
(y) = N

(
y
∣∣ 0, 1) (5.237)

PROOF. Since the Xk(ζ)’s are i. i. d., then µYM
= MµX and σ2

YM
= Mσ2

X . Let

Zk(ζ) =
Xk(ζ)− µX

σX

(5.238)

such that µZk
= µZ = 0, σ2

Zk
= σ2

Z = 1 andthe normalised random variable can be written as:

ŶM(ζ) =
1√
M

M∑
k=1

Zk(ζ) (5.239)

Noting that if V (ζ) = aU(ζ) for some real-scalar a then

ΦV (ξ) = E
[
ejξ aU(ζ)

]
= ΦU(aξ) (5.240)

Hence, from Equation M:3.2.72, the characteristic function for ŶM(ζ) is given by:

ΦŶM
(ξ) =

M∏
k=1

ΦZk

(
ξ√
M

)
(5.241)

Since the Xk(ζ)’s and therefore the Zk(ζ)’s are i. i. d., then ΦZk
(ξ) = ΦZ(ξ), or:

ΦŶM
(ξ) = ΦM

Z

(
ξ√
M

)
(5.242)

From the previous chapter on scalar random variables,

ΦZ(ξ) = E
[
ejξ Z(ζ)

]
=

∞∑
n=0

(jξ)n

n!
E [Zn(ζ)] (5.243)

and therefore, the characteristic function for ŶM(ζ) becomes:

ΦŶM
(ξ) =

{
∞∑
n=0

1

n!

(
jξ√
M

)n

E [Zn(ζ)]

}M

(5.244)

=

{
1 +

jξµZ√
M

− ξ2σ2
Z

2M
+O

({
ξ√
M

}3
)}M

(5.245)

Using the moments µZ = 0 and σ2
Z = 1,

ΦŶM
(ξ) =

{
1− ξ2

2M
+O

({
ξ√
M

}3
)}M

→ e−
1
2
ξ2 as M → ∞ (5.246)

where the following limit is used:
lim
n→∞

(
1 +

x

n

)n
= ex (5.247)

□
This last term is the characteristic function of the N

(
y
∣∣ 0, 1) distribution.

– End-of-Topic 39: Central Limit Theorem –



6
Principles of Estimation Theory

An approximate answer to the right
problem is worth a good deal more than an
exact answer to an approximate problem.

John Tukey

This handout presents an introduction to estimation theory, including the notion of an estimator,
measures of performance of the estimator (bias, variance, mean-squared error (MSE), the Cramér-Rao
lower-bound (CRLB), and consistency). Discusses various estimators such as maximum-likelihood
estimate (MLE), least-squares, and Bayesian estimators.
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6.1 Introduction

New slideTopic Summary 40 Introduction to Estimation Theory

Topic Objectives:

• Motivation for Estimating Parameters from Data.

• Examples of Parameter Estimation.

• Properties of Statistical Estimations.

• Conceptual difference between a point-estimate and the estimator as a random variable or
vector.

• Numerical example showing the sampling distribution.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 31 min video 3× length
Read Handout Read page 204 to page 209 8 mins/page
Try Code Use the MATLAB code 10 minutes
Try Example Try Example 6.1 15 mins

http://media.ed.ac.uk/media/1_1tynr4nm

Video Summary: In this video, Estimation Theory is introduced in which unknown
parameters are estimated from data, rather than assuming that problems can be described
by fully known distributions or statistics. The taxi-cab problem from Topic 9 is
highlighted as an example. Examples of parameter estimation problems are discussed,
followed by the concept of an estimator. The concept of distinguishing point-estimators
from an estimator as a random variable before a set of observations is introduced, and a
numerical example of the sampling distribution of the sample mean is presented in depth.

• Thus far, the theory and material presented in this lecture course have assumed that either the
probability density function (pdf) or statistical values, such as mean, covariance, or higher order
statistics, associated with a problem are fully known. As a result, all required probabilities,
and statistical functions could either be derived from a set of assumptions about a particular
problem, or were given a priori.
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• In most practical applications, this is the exception rather than the rule. In fact, unless the
process by which observations, such as random values or vectors, are generated is known
exactly, such that desired pdf or statistical properties could be theoretically calculated, there
is absolutely no reason why they should be known a priori.

• The properties and parameters of random events must be obtained by collecting and analysing
finite set of measurements. Again, it would be impossible or very rare indeed to known
the ensemble of realisations of a sample space, and it will always be the case in practical
applications that only a few realisations will ever be observed.

• This handout will consider the problem of Parameter Estimation. This refers to the estimation
of a parameter that is fixed, but is unknown. For example, given a collection of observations
that are known to be from a Gaussian distribution with unknown mean, estimate the mean from
the observations.

6.1.1 A (Confusing) Note on Notation

New slideNote that, unfortunately, from this point onwards, a slightly different (and abusive use of) notation for
random quantities is used than what was presented in the first set of handouts.

So far, as in the literature, the nth-order particular observation of a random variable are written as
lower-case letters, possibly using subscripts such as xn, but also often using square brackets, such
as x[n]. This is all fine; except that for convenience, lower-case letters are also used in some literature
to refer to the random variable itself with the consequence that, in different contexts, x[n] can refer
both to a particular observation, as well as a potentially random value (x[n] = X(ζ)). Where possible,
upper-case letters are used to denote random elements, but this isn’t always true.

The reason for this sloppiness is due to the notation used to describe random processes later in
the course, where the representation of a random process in the frequency domain is discussed, and
upper-case letters are exclusively reserved to denote spectral representations. Moreover, lower-case
letters for time-series are generally more recognisable and readable, and helps with the clarity of the
presentation (where, as will be seen, x[n] is short-hand notation for x[n, ζ]).

Since this handout leads onto the notation of stochastic processes in the next course, this sloppy
notation will be introduced now, but note that where the existing notation can be used without
ambiguity in exam questions, it will be.

6.1.2 Examples of parameter estimation

New slideTo motivate this handout, this section lists a number of potential problems in which parameters might
wish to be estimated.

Frequency Estimation Consider estimating the spectral content of a harmonic process, x[n],
consisting of a single-tone, given by

x[n] = A0 cos(ω0n+ ϕ0) + w[n] (6.1)

where A0, ϕ0, and ω0 are unknown constants, and where w[n] is an additive white
Gaussian noise (AWGN) process with zero-mean and variance σ2. It is desired to
estimate the unknown constants, namely the amplitude A0, phase ϕ0, and frequency
ω0 from a realisation of the random process, giving rise to observations x[n].
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Sidebar 13 The taxi-cab problem (Repeated)

The following taxicab problem has been part of the orally transmitted folklore in the area of
elementary parameter estimation for several decades [Jaynes:2003, Page 190], and is essentially an
application of estimating the parameters of a sampling distribution from a small sample size. It was
initially discussed as the Venice Water-Taxi problem in Chapter 2.

It goes as follows: you are travelling on a night train; on awakening from sleep, you notice that the
train has stopped at some unknown town, and all you can see is a taxicab with the number 27 on it.
What, then, is your guess as to the number N of taxicabs in the town, which would in turn give a clue
as to the size of the town?

Many people intuitively answer that there seems to be something about the choice Nest = 2×27 = 54
that recommends itself; but few can offer a convincing rationale for this. The obvious model that
seems to apply is that there will be N taxicabs numbered 1 through N , and, given N , the taxicab
observed is equally likely to be any of them. Given that model, it is deductively known that N ≥ 27,
but from that point on, the reasoning depends on what metric is being used for deciding what a good
estimator is.

If the problem seems to abstract by virtue of just one observation, consider observing a number of
taxi’s, say 2 or 3 taxi’s with numbers 27, 13, and 28. Now what would your estimate be, and how
many taxi’s would you prefer to see before estimating the value of N?

This problem might seem rather academic, but has actually in the past been far from it.

Sampling Distribution Parameters It is known that a set of observations, {x[n]}N−1
0 , are drawn

from a sampling distribution with unknown parameters θ, such that:

x[n] ∼ fX (x | θ) (6.2)

For example, if it is known that x[n] ∼ U[a, b], then it might be of interest to estimate
the parameters a and b.

Estimate of Moments It might be of interest to estimate the moments of a set of observations,
{x[n]}N−1

0 , for example µX = E [x[n]] and σ2
X = var [x[n]].

Constant value in noise An example which covers the various cases above is estimating a “direct
current” (DC) constant in noise:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1} (6.3)

This list isn’t exhaustiive, but gives an example of the type of parameter estimation problems that
need to be addressed.

6.2 Properties of Estimators

New slide Consider the set of N observations, X = {x[n]}N−1
0 , from a random experiment; suppose they are

used to estimate a parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
(6.4)
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Sidebar 14 German Tank Problem
In the statistical theory of estimation, the problem of estimating the maximum of a discrete uniform
distribution from sampling without replacement is known in English as the German tank problem,
due to its application in World War II to the estimation of the number of German tanks.

In this scenario, an intelligence officer has spotted a number of enermy tanks, with serial numbers
that were assumed to be sequentially numbered from 1 to N . Given these observations, what is the
prediction of the number of tanks produced? http://en.wikipedia.org/wiki/German_
tank_problem

The function θ̂ [X ] is known as an estimator whereas the value taken by the estimator, using a
particular set of observations, is called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the true value of the parameter, θ, as
possible.

Since θ̂ is a function of a number of particular realisations of a random outcome (or experiment), then
it is itself a random variable (RV), and thus has a mean and variance. As an example of an estimator,
consider estimating the mean µX of a random variate, X(ζ), from N observations X = {x[n]}N−1

0 .
The most natural estimator is a simple arithmetic average of these observations, given by the sample
mean:

µ̂X = θ̂[X ] =
1

N

N−1∑
n=0

x[n] (M:3.6.1)

Similarly, a natural estimator of the variance, σ2
X , of the random variable X(ζ), x[n], would be:

σ̂2
X = θ̂′[X ] =

1

N

N−1∑
n=0

(x[n]− µ̂X)
2 (M:3.6.2)

Thus, to demonstrate that these estimates are RVs, consider repeating the procedure for calculating
the sample mean and sample variance from a large number of difference sets of realisations. Then a
large number of estimates of µX and σ2

X , denoted by the set {µ̂X} and {σ̂2
X} respectively, is obtained,

and these can be used to generate a histogram showing the distribution of the estimates.

Example 6.1 (Numerical Example). Suppose that N = 1000 observations are generated from a
Gaussian density with mean µ = 5 and variance σ2 = 1. Use MATLAB and a Monte Carlo
experiment to find the distribution of the sample mean.

SOLUTION. One realisation of the experiment would generate N = 1000 data points generated from
x[n] ∼ N (µ = 5, σ2 = 1) using the code:

mu = 5; sigma = 1; N = 1000;
x = mu + sigma * randn(N, 1);
muEst = sum(x)/N

The second line of the code utilises a probability transformation rule from a Gaussian density of unit
variance and zero mean. This experiment can be repeated K = 100000 times to produce a Monte
Carlo estimate. This can be achieved with the following code:
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Figure 6.1: A Monte Carlo experiment showing the distribution of the Sample Mean estimator.

clear var; close all
N = 1000; K = 100000;
mu = 5; sigma = 1;

muEst = zeros(1, K);
for k = 1 : K
x = mu + sigma * randn(N, 1);
muEst(k) = sum(x) / N;

end
mean(muEst)

figure; histogram(muEst, 'Normalization', 'pdf');

L = 1000; % Number of points to plot
muPlot = linspace(min(muEst), max(muEst), L);
muPDF = normpdf(muPlot, mu, sigma/sqrt(N));

hold on; plot(muPlot, muPDF, 'r-', 'linewidth', 3);

The results of this Monte Carlo experiment are hence shown in Figure 6.12.

The set of N observations, {x[n]}N−1
n=0 can be regarded as one realisation of the random process

{x[n, ζ]}N−1
n=0 which, technically, is defined on an N -dimensional sample space. Hence, the estimator

θ̂
[
{x[n, ζ]}N−1

0

]
becomes a RV whose probability density function can be obtained from the joint-pdf

of the random variables {x[n, ζ]}N−1
0 using the probability transformation rule. This distribution is

called the sampling distribution of the estimator, and is a fundamental concept in estimation theory
because it provides all the information needed to evaluate the quality of an estimator.
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Now, the sampling distribution of a good estimator should be concentrated as closely as possible
around the parameter that it estimates. To determine how good an estimator is, and how different
estimators of the same parameter compare with one another, it is necessary to determine their
sampling distributions. Of course, in practice, the joint-pdf for the random process x[n, ζ] is rarely
known, so frequently it is not possible to obtain the sampling distribution. However, it is possible to
estimate the statistical properties of the sampling distribution, such as lower-order moments (mean,
variance, mean-squared error, and so forth), and that is the subject of this handout.

– End-of-Topic 40: Introduction to Estimation Theory and the
Definition of an Estimator –

June 28, 2021 – 08 : 40
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6.2.1 What makes a good estimator?

New slideTopic Summary 41 Measuring Performance of an Estimator

Topic Objectives:

• Understanding how good an estimator is.

• Concepts and definitions of bias and variance.

• Calculating bias and variance.

• Understanding the bias-variance tradeoff for an estimator.

Topic Activities:

Type Details Duration Progress
Watch video 20 : 20 min video 3× length
Read Handout Read page 210 to page 213 8 mins/page
Try Example Try Example 6.2 and Example 6.2 15 mins
Practice Exercises Exercises ?? to ?? 40 mins

http://media.ed.ac.uk/media/1_7isroiw3

Video Summary: In this video, the question of measuring and quantifying the
performance of an estimator is discussed. The video focusses on the concepts
and definitions of bias and variance of the pdf of the estimator, and highlights the
bias-variance trade-off; namely, that by introducing a small amount of bias in an
estimator, the variance can be reduced. The normalised bias and normalised variance
are also defined. Assuming the observations are independent, then the bias of the sample
mean is calculated and shown to be unbiased. Similarly, the variance of the sample mean
is calculated, using two similar but different calculations.

Figure 6.2 and Figure 6.3 illustrate properties of the sampling distribution, and how they might inform
how to choose a good estimator.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton45'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_7isroiw3


6.2. Properties of Estimators 213
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Figure 6.2: Here, the pdf of the estimated value, µ̄, is biased away from the true value, µ. However,
the spread of the estimated value around the true value is small.
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Figure 6.3: Here, the pdf of the estimated value, µ̄, is centered on the true value, µ. However, the
spread of the estimated value around the true value is very large.
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Figure 6.4: It is important to note that higher-order statistics can also play a part in quantifying the
performance of an estimator, although that won’t be considered further here.
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Sidebar 15 Expectation w. r. t. what?

Note that the expectation is taken with respect to the pdf of the data X , denoted by p (X | θ). Thus,
more precisely one would write:

B(θ̂) ≜ Ep(X | θ)

[
θ̂
]
− θ (6.5)

where
Ep(X | θ)

[
θ̂
]
≜
∫
Θ

θ̂ (X ) p (X | θ) dX (6.6)

However, often in textbooks and the literature, the pdf with which the expecation is taken against is
omitted.

6.2.2 Bias of estimator
New slide The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) ≜ E
[
θ̂
]
− θ (M:3.6.3)

It is important to appreciate that the expectation is taken with respect to (w. r. t.) the observed data
given the true parameter θ.

Therefore, the normalised bias is often used:

ϵb(θ̂) ≜
B(θ̂)

θ
=

E
[
θ̂
]

θ
− 1, θ ̸= 0 (M:3.6.4)

Example 6.2 (Biasness of sample mean estimator). Is the sample mean, µ̂x = 1
N

∑N−1
n=0 x[n]

biased?

SOLUTION. No, since E [µ̂x] = E
[

1
N

∑N−1
n=0 x[n]

]
= 1

N

∑N−1
n=0 E [x[n]] = NµX

N
= µX .

When B(θ̂) = 0, the estimator is said to be unbiased and the pdf of the estimator is centered exactly
at the true value of θ. Generally, estimators that are unbiased should be selected, such as the sample
mean above, or very nearly unbiased. However, as will be seen later, it is not always wise to select
an unbiased estimator. That an estimator is unbiased does not necessarily mean that it is a good
estimator, only that it guarantees on average that it will attain the true value. It might have a higher
variance, as discussed below, than a biased estimator. On the other hand, biased estimators are ones
that are characterised by a systematic error, which presumably should not be present, and a persistent
bias will always result in a poor estimator.

[Therrien:1992, Section 6.1.3, Page 290] gives a more formal definition of unbiasedness, and this is
as follows:

Definition 6.1 (Bias of an estimator). An estimate θ̂N , based on N data observations, of a parameter
θ is unbiased if

E
[
θ̂N

]
= θ (6.7)

Otherwise, the estimate is biased with bias B(θ̂N) = E
[
θ̂N

]
− θ. An estimate is asymptotically

unbiased if
lim

N→∞
E
[
θ̂N

]
= θ (6.8)

♢
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6.2.3 Variance of estimator
New slide The variance of the estimator θ̂ is defined by:

var
[
θ̂
]
= σ2

θ̂
≜ E

[∣∣∣θ̂ − E
[
θ̂
]∣∣∣2] (M:3.6.5)

This, as with any variance value, measures the spread of the pdf of θ̂ around the mean. Therefore,
it would, at first sight, seem sensible to select an estimate with the smallest variance. However, a
minimum variance criterion is not always compatible with the minimum bias requirement; reducing
the variance may result in an increase in bias.

Therefore, a compromise or balance between these two conflicting criteria is required, and this is
provided by the mean-squared error (MSE) measure described in the next topic.

The normalised standard deviation is defined by:

ϵr ≜
σθ̂

θ
, θ ̸= 0 (M:3.6.6)

Example 6.3 (Variance of Sample Mean). Calculate the variance of the sample mean, assuming the
observations are independent.

SOLUTION. Noting that the samples {x[n]}N−1
n=0 are independent and identically distributed (i. i. d.)

with variance σ2
x, then there are two approaches to calculating the variance.

The first is to use the result that the variance of a sum of independent random variables, is equal to
the sum of the variances, or generalised to:

var

[
N−1∑
n=0

cn Xn(ζ)

]
=

N−1∑
n=0

c2n var [Xn(ζ)] (6.9)

Therefore,

var [µ̂x] = var

[
1

N

N−1∑
n=0

x[n]

]
=

1

N2

N−1∑
n=0

var [x[n]] =
σ2
x

N
(6.10)

The second approach uses the result that E [x[n]x[m]] = σ2
x δ(n − m) + µ2

x. The sample mean
estimator is unbiased, and therefore writing θ = µx, then E [µ̂x] = µx. Therefore:

var [µ̂x] = E

∣∣∣∣∣
{

1

N

N−1∑
n=0

x[n]

}
− µx

∣∣∣∣∣
2
 (6.11)

= E

[
1

N2

N−1∑
n=0

N−1∑
m=0

x[n]x[m]− 2
µx

N

N−1∑
n=0

x[n] + µ2
x

]
(6.12)

=
1

N2

{
N
[
σ2
x +Nµ2

x

]
− 2N2µ2

x +N2µ2
x

}
=

σ2
x

N
(6.13)

□

– End-of-Topic 41: What makes a good estimator? Introduction to bias
and variance –
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6.2.4 Mean square error

New slideTopic Summary 42 Minimum Mean Square Error Estimators

Topic Objectives:

• Definition of MSE and the MSE estimator.

• Relationship to bias and variance.

• Example of calculating MSE estimator.

Topic Activities:

Type Details Duration Progress
Watch video 14 : 50 min video 3× length
Read Handout Read page 214 to page 217 8 mins/page
Try Code Use the MATLAB code 10 minutes
Try Example Try Example 6.4 15 mins

http://media.ed.ac.uk/media/1_4h9u0wfx

Video Summary: This video introduces the simple MSE as a criterion which trades-off
bias and variance for an estimator. The relationship between the MSE and bias and
variance is defined. The minimum MSE is introduced as an estimator which would appear
to produce an improved design. However, through an example, it is shown that such
estimators are sometimes unrealisable if there is bias. Nevertheless, there are applications
where the MSE can produce results, or indeed inspire other estimators, such as estimators
for variance (examples will be given later in the course).

Minimising variance can increase bias. A compromise criterion, and a natural one at that, is the MSE:

MSE(θ̂) = E
[∣∣∣θ̂ − θ

∣∣∣2] = σ2
θ̂
+ |B(θ̂)|2 (M:3.6.7)

Again, it is important to remember that the expectation in the MSE term is w. r. t. the data, x, as
discussed in Sidebar 15 page 212.

PROOF (RELATIONSHIP BETWEEN MSE, VARIANCE AND BIAS OF AN ESTIMATOR.). Rewriting


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton46'){ocgs[i].state=false;}}
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Equation M:3.6.7 by substracting and adding the mean of the estimator gives:

MSE(θ̂) = E
[
|θ̂ − E

[
θ̂
]
− (θ − E

[
θ̂
]
)|2
]

(6.14)

= E
[
|θ̂ − E

[
θ̂
]
|2
]
− E

[
(θ̂ − E

[
θ̂
]
)∗(θ − E

[
θ̂
]
)
]

(6.15)

− E
[
(θ − E

[
θ̂
]
)(θ̂ − E

[
θ̂
]
)∗
]
+ E

[
|θ − E

[
θ̂
]
|2
]

(6.16)

Now, note that E
[
|θ − E

[
θ̂
]
|2
]
= |θ − E

[
θ̂
]
)|2, since both θ and E

[
θ̂
]

are deterministic values.
Moreover,

E
[
(θ − E

[
θ̂
]
)∗(θ̂ − E

[
θ̂
]
)
]
= (θ − E

[
θ̂
]
)∗E

[
θ̂ − E

[
θ̂
]]

(6.17)

= (θ − E
[
θ̂
]
)∗
{
E
[
θ̂
]
− E

[
θ̂
]}

= 0 (6.18)

giving:
MSE(θ̂) = E

[
|θ̂ − E

[
θ̂
]
|2
]

︸ ︷︷ ︸
σ2
θ̂

+ |θ − E
[
θ̂
]
|2︸ ︷︷ ︸

B(θ̂)

(M:3.6.9)
□

as required.

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is the minimum mean-square error:

θ̂MSE = argθ̂ min MSE(θ̂) (6.19)

This measures the average mean squared deviation of the estimator from its true value. Unfortunately,
the last expression in the right hand side (RHS) of Equation M:3.6.7 indicates that adoption of this
natural criterion leads to unrealisable estimators; ones which cannot be written solely as a function of
the data.

To see how this problem arises, note from Equation M:3.6.7 that the MSE is composed of errors due
to the variance of the estimator, as well as the bias. This inevitable leads to an optimal estimator that
is a function of the true parameter value.

Note that when finding the minimum MSE through application of Equation 6.19, the argument (or
parameter) that is minimised is usually a parameter that defines the structure of the estimator and is
not necessarily the unknown parameter of interest. Thus, a parameter α might affect the functional
form of the estimator such that θ̂ = θ̂ [X , α], and it is actually α that is used as the variable parameter
in the optimisation. The following examples demonstrates these issues.

Example 6.4 ( [Kay:1993, Example 2.1, Pages 16 and 19]). Consider the observations

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1} (K:2.2)

where A is the parameter to be estimated, and w[n] is white Gaussian noise (WGN) with variance σ2.
The parameter A can take on any value in the interval −∞ < A < ∞. A reasonable estimator for the
average value of x[n], A, is:

Âa = a
1

N

N−1∑
n=0

x[n] (6.20)

If a = 1, then this is just the sample mean. Find the optimal (modified) estimatorÂa by finding the
value ofa that minimises the MSE.
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SOLUTION. Due to the linearity properties of the expectation operator, then it can be seen, as in the
previous example, that:

E
[
Âa

]
= E

[
a
1

N

N−1∑
n=0

x[n]

]
= aA (6.21)

for all A. Therefore, this is a biased estimate with bias B
(
Âa

)
= A(a − 1). As in the previous

example, then:

var
[
Âa

]
= var

[
a
1

N

N−1∑
n=0

x[n]

]
(6.22)

=
a2

N2

N−1∑
n=0

var [x[n]] =
a2σ2

N
(6.23)

Hence, the MSE is given by:

MSE(Âa) = var
[
Âa

]
+ |B(Âa)|2 =

a2σ2

N
+ (a− 1)2A2 (6.24)

In order to find the minimum mean-square error (MMSE), then differentiate this and set to zero:

dMSE(Âa)

da
=

2aσ2

N
+ 2(a− 1)A2 (6.25)

which is equal to zero when

aopt =
A2

A2 + σ2

N

(6.26)

Thus, unfortunately, the optimal value of a depends upon the unknown parameter A. The estimator
is therefore not realisable, and this is since the bias term is a function of A. It would therefore seem
that any criterion which depends on the bias of the estimator will, generally, lead to an unrealisable
estimator. Although this is generally true, on occasion realisable MMSE estimators can be found.

Despite the unrealisable estimator, the result in Equation 6.27 can still be informative. First, note that
Equation 6.27 can be written in the form:

aopt =
1

1 + 1
N

(
σ2

A2

) =
1

1 + 1
N SNR

(6.27)

where the signal-to-noise ratio (SNR) is the signal power, which in this case is the mean value squared,
divided by the noise power, which in this case is the variance: SNR = A2

σ2 . It is apparent that when N
and the SNR are low, some value less than a = 1 may be appropriate.

Substituting Equation 6.27 into Equation 6.24, the minimum MSE can be calculated as:

MSE (aopt) =
a2optσ

2

N
+ (aopt − 1)2A2 (6.28)

=
σ2

N

[
a2opt + (aopt − 1)2 (N SNR)

]
(6.29)

=
σ2

N

[(
1

1 + 1
NSNR

)2

+

(
1

1 + 1
NSNR

− 1

)2

(NSNR)

]
(6.30)

=
σ2

N

[(
1

1 + 1
NSNR

)2

+

( 1
NSNR

1 + 1
NSNR

)2

(NSNR)

]
(6.31)

MSE (aopt) =
σ2

N

(
1

1 + 1
NSNR

)
(6.32)

□
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Figure 6.5: MSE vs N × SNR for the sample mean estimation problem.

This MSE is therefore the MSE of the sample mean, multiplied by the a factor dependent on the
SNR. This can therefore be plotted against this value, as shown in Figure 6.5, and indicates that
for low SNR or a low number of samples, the estimator can do better than just the sample mean.
Moreover, by plotting the bias, variance, and MSE separately, Figure 6.6 ultimately shows the
bias-variance trade-off. Here, as the parameter a approaches 1, the bias reduces but the variance
increases. Figure 6.6 also shows that a slightly lower value of a than unity gives a lower MSE.

Moreover, by plotting the bias, variance, and MSE as shown in Figure 6.6, we can see how the
bias-variance trade-off occurs.

From a practical viewpoint, therefore, the MMSE estimator needs to be abandoned. An alternative
approach is to constrain the bias to be zero, and find the estimator that minimises the variance. Such
an estimator is termed the minimum variance unbiased estimator (MVUE). Note that the MSE of an
unbiased estimator is just the variance.

It should be noted, however, that the MMSE criterion is the basis of most least-squares algorithms as
will be seen later in the course, and is also intimately connected with Gaussian processes. However,
in those contexts, the meaning and application is somewhat different, as will be seen.

– End-of-Topic 42: Mean Square Error and MSE Estimators –
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Figure 6.6: Plotting the bias, variance, and MSE.

6.2.5 Consistency of an Estimator

New slideTopic Summary 43 Cramer Rao Lower Bound

Topic Objectives:

• Understanding the concept of a lower bound as a performance benchmark.

• Introduce the concept of the MVUE.

• Define and use the Cramér-Rao lower-bound (CRLB).

• Apply to the example of the sample mean.

Topic Activities:

Type Details Duration Progress
Watch video 20 : 20 min video 3× length
Read Handout Read page 221 to page 227 8 mins/page
Try Example Try Example 6.6 15 mins

If the MSE of the estimator,

MSE(θ̂) = E
[
|θ̂ − θ|2

]
= σ2

θ̂
+ |B(θ̂)|2 (M:3.6.7)

can be made to approach zero as the sample size N becomes large, then both the bias and the variance
tends toward zero. Thus, the sampling distribution tends to concentrate around θ, and as N → ∞, it
will become an impulse at θ. This is a very important and desirable property, and such an estimator
is called a consistent estimator.

Note that [Therrien:1992, Section 6.1.3, Page 290] gives a slightly more formal definition of a
consistent estimator:
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Definition 6.2 (Consistent Estimator). An estimate θ̂N , based on N data observations, is consistent
if

lim
N→∞

Pr
(∣∣∣θ̂N − θ

∣∣∣ < ϵ
)
= 1 (6.33)

♢

for any arbitrarily small number ϵ. The sequence of estimates {θ̂N}∞0 is said to converge in
probability to the true value of the parameter θ.

Example 6.5 ( [Manolakis:2001, Exercise 3.32, Page 147]). The Cauchy distribution with mean µ
is given by:

fX (x) =
1

π

1

1 + (x− µ)2
, x ∈ R (6.34)

Let {xk}N−1
k=0 be N i. i. d. RVs with this distribution. Consider the mean estimator based on these

samples:

µ̂ =
1

N

N−1∑
k=0

xk (6.35)

Determine whether µ̂ is a consistent estimator of µ.

SOLUTION. It is simplest to use the definition that an estimator is consistent if limN→∞ MSE(θ) = 0,
where

MSE(θ) = E
[
|θ̂ − θ|2

]
= σ2

θ̂
+ |B(θ̂)|2 (M:3.6.7)

and

σ2
θ̂
≜ E

[∣∣∣θ̂ − E
[
θ̂
]∣∣∣2] ≡ E

[∣∣∣θ̂∣∣∣2]− E2
[
θ̂
]

(M:3.6.5)

Hence, by noting that E [µ̂] = µ, such that |B(θ̂)|2 = 0, then the MSE is given by:

MSE(θ) = σ2
θ̂
= E

[
|µ̂|2
]
− E2 [µ̂] (6.36)

≡ E
[
|µ̂− E [µ̂]|2

]
= E

∣∣∣∣∣ 1N
N−1∑
k=0

xk − µ

∣∣∣∣∣
2
 (6.37)

≡ 1

N2

N−1∑
k=0

N−1∑
l=0

E [xk xl]− µ2 (6.38)

Since the samples are independent and identically distributed (i. i. d.), then the autocorrelation
function is given by:

E [xk xl] =

{
E [xk] E [xl] k ̸= l

E [x2
k] k = l

(6.39)

=

{
µ2 k ̸= l

µ2 + σ2 k = l
(6.40)

= σ2 δ(k − l) + µ2 (6.41)
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Hence,

MSE(θ) =
1

N2

N−1∑
k=0

N−1∑
l=0

(
σ2 δ(k − l) + µ2

)
− µ2 (6.42)

=
1

N2

N−1∑
k=0

(
σ2 +Nµ2

)
− µ2 (6.43)

=
1

N

(
σ2 +Nµ2

)
− µ2 =

σ2

N
(6.44)

□

Since the variance for a Cauchy distribution is unbounded, such that σ2 → ∞, then limN→∞ MSE(θ)
does not converge to zero, and is therefore not consistent.

Definition 6.3 (Efficiency of an estimator). An estimate is said to be efficient w. r. t. another
estimate if it has a lower variance. Thus, if θ̂N is an estimator that depends on N observations and is
both unbiased and efficient with respect to θ̂N−1 for all N , then θ̂N is a consistent estimate.

– End-of-Topic 43: Consistency of Estimator –
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6.2.6 Cramer-Rao Lower Bound

New slide Topic Summary 44 Cramer Rao Lower Bound

Topic Objectives:

• Understanding the concept of a lower bound as a performance benchmark.

• Introduce the concept of the MVUE.

• Define and use the CRLB.

• Apply to the example of the sample mean.

Topic Activities:

Type Details Duration Progress
Watch video 20 : 20 min video 3× length
Read Handout Read page 221 to page 227 8 mins/page
Try Example Try Example 6.6 15 mins
Practice Exercises Exercises ?? and ?? 50 mins

http://media.ed.ac.uk/media/1_r6cqib2g

Video Summary: In this video, the question of finding the lower bound on the
performance of all estimators for a particular probabilistic problem, as a benchmark with
which to compare the performance of a given estimator. The CRLB is introduced in this
video for this benchmark, for the class of unbiased estimators. The Fisher Information
is discussed, and it is shown how to test for the existence of a MVUE which attains the
CRLB. An example is shown for deriving the sample mean, which is a MVUE (and as a
result also the MSE estimator). In the example, the minimum variance is found through
the two alternate but equivalent expressions for the CRLB.

In the previous sections, the performance of a given estimator has been considered; what is the bias,
and what is the variance? The MSE criterion gives a possible design method for finding the structural
form of an optimal estimator, but isn’t always realisable. This leads to the general question of whether
there is a particular methodology for designing an estimator for a given probabilistic problem.

Being able to place a lower bound on the variance of any unbiased estimator process to be an
extremely useful tool in practice. At best, it allows the identification of a minimum variance
unbiased (MVU) estimator. This will be the case if the estimator attains the bound for all values
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of the unknown parameter. At worst, it provides a benchmark against which the performance of any
unbiased estimator can be compared.

Moreover, it highlights the physical impossibility of finding an unbiased estimator whose variance is
less than the bound, and this can be useful in signal processing feasibility studies. Although many
such bounds on the variance of an estimator exists, the CRLB is by far the easiest to determine.
Additionally, the theory of the CRLB provides a condition for which it is possible to determine
whether an estimator exists that attains the bound.

If the MSE can be minimised when the bias is zero, then clearly the variance is also minimised. Such
estimators are called MVUEs. MVUE possess the important property that they attain a minimum
bound on the variance of the estimator, called the Cramér-Rao lower-bound (CRLB).

Theorem 6.1 (CRLB - real scalar parameter). Recalling {x[n]}N−1
0 is just one realisation of the

RVs {x[n, ζ]}N−1
0 , defined on an N -dimensional space, then if X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]T

and fX (x | θ) is the joint density of X(ζ) which depends on the fixed but unknown parameter θ, then
the variance of the estimator θ̂ is bounded by:

var
[
θ̂
]
≥ 1

E
[(

∂ ln fX(x | θ)
∂θ

)2] (M:3.6.17)

Alternatively, it may also be expressed as:

var
[
θ̂
]
≥ − 1

E
[
∂2 ln fX(x | θ)

∂θ2

] (M:3.6.18)

The function ln fX (x | θ) is called the log-likelihood function of θ. A discussion about the
likelihood-function is given in Sidebar 16.

Furthermore, an unbiased estimator may be found that attains the bound for all θ if, and only if, (iff)

θ̂ − θ = K(θ)
∂ ln fX (x | θ)

∂θ
(K:3.7)

for some function K(θ), and where θ̂ = θ̂(x) is a function of the data only and, importantly, not
a function of the true value of θ. Alternatively, a more useful way of writing Equation K:3.7 is to
determine whether the log-likelihood function can be written in the form:

∂ ln fX (x | θ)
∂θ

= I(θ)
(
θ̂ − θ

)
, where I(θ) = K−1(θ). (6.49)

The estimator θ̂ which attains this bound is the MVUE, and the minimum variance is given by K(θ).
Note that an estimator which is unbiased and attains the CRLB is also said to be an efficient estimator
in that it efficiently used the data.

PROOF. If θ̂ is unbiased, then E
[
θ̂ − θ

]
= 0, which may be expressed as:∫ ∞

−∞
· · ·
∫ ∞

−∞
(θ̂ − θ)fX (x | θ) dx = 0 (M:3.6.11)

Differentiating w. r. t. the true parameter θ, and assuming a real-value θ̂, then:

0 =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∂

∂θ

[
(θ̂ − θ)fX (x | θ)

]
dx (6.50)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
(θ̂ − θ)

∂fX (x | θ)
∂θ

dx−
∫ ∞

−∞
· · ·
∫ ∞

−∞
fX (x | θ) dx︸ ︷︷ ︸

=1

(M:3.6.12)
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Sidebar 16 The likelihood function
The likelihood function is discussed in detail in Section 6.3. As has been noted throughout this
course, given a physical model of a problem, it is possible to write down the joint density of the RVs
X(ζ) = {x[n, ζ]}N−1

n=0 , which depends on a fixed but unknown parameter vector θ: it is given by
fX (x | θ), and can be viewed as a function of x.

This same quantity, viewed as a function of the parameter θ when given a particular set of
observations, x = x̂, is known as the likelihood function. It is usually written as:

L (θ; x) ≡ fX (x | θ)|fixed x, variable θ (6.45)

Thus, the likelihood function L (θ; x) should be intepreted as a function of θ given x. However, it
is important to note that L (θ; x) ≡ fX (x | θ) as a function of θ is not necessarily a pdf since, in
general, it does not integrate to one over θ:∫

L (θ; x) dθ =

∫
fX (x | θ) dθ ̸= 1 (6.46)

Note, however, that according to Bayes’s theorem:∫
fΘ (θ | x) dθ =

∫
fX (x | θ) fΘ (θ)

fX (x)
dθ = 1 (6.47)

or alternatively, a weighted version of the likelihood gives rise to the probability of the observations:∫
L (θ; x) fΘ (θ) dθ = fX (x) (6.48)

In otherwords, it is simply important to not intepret the likelihood function as a pdf, and simply to be
carefull with the manipulations.
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Note that here it has been assumed differentiation and integration may be interchanged. This is
generally true except when the domain of the pdf for which it is nonzero depends on the known
parameter. Using the fact that

∂ ln fX (x | θ)
∂θ

=
1

fX (x | θ)
∂fX (x | θ)

∂θ
(6.51)

or,

∂fX (x | θ)
∂θ

=
∂ ln fX (x | θ)

∂θ
fX (x | θ) (M:3.6.13)

then substituting into Equation M:3.6.12 gives:∫ ∞

−∞
· · ·
∫ ∞

−∞

{
(θ̂ − θ)

∂ ln fX (x | θ)
∂θ

}
fX (x | θ) dx = 1 (M:3.6.14)

which can be written using the expectation operator as:

E
[
(θ̂ − θ)

∂ ln fX (x | θ)
∂θ

]
= 1 (M:3.6.15)

Now, using the Cauchy-Schwartz inequality (see [Papoulis:1991]), which states that:

|E [X(ζ)Y(ζ)]|2 ≤ E
[
|X(ζ)|2

]
E
[
|Y(ζ)|2

]
(6.52)

then squaring both sides of Equation M:3.6.15 gives

1 = E2

[
(θ̂ − θ)

∂ ln fX (x | θ)
∂θ

]
≤ E

[
(θ̂ − θ)2

]
E

[(
∂ ln fX (x | θ)

∂θ

)2
]

(M:3.6.16)

Note that the Cauchy-Schwartz inequality becomes and equality iff the two integrands that are implicit
in the expectation operator are related by a constant multiplier, independent of x. That is, when:

(θ̂ − θ)2 fX (x | θ) = K(θ)

(
∂ ln fX (x | θ)

∂θ

)2

fX (x | θ) (6.53)

or, alternatively,

θ̂ − θ = K(θ)
∂ ln fX (x | θ)

∂θ
(K:3.7)

This is the minimum variance unbiased estimator. Since the estimator is unbiased, then var
[
θ̂
]
=

E
[
(θ̂ − θ)2

]
, and therefore:

var
[
θ̂
]
≥ 1

E
[(

∂ ln fX(x | θ)
∂θ

)2] (M:3.6.17)

To derive the second form by starting with the simple condition that:∫ ∞

−∞
· · ·
∫ ∞

−∞
fX (x | θ) dx = 1 (6.54)

Differentiating once w. r. t. to θand using Equation M:3.6.13 gives∫ ∞

−∞
· · ·
∫ ∞

−∞

∂fX (x | θ)
∂θ

dx =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∂ ln fX (x | θ)
∂θ

fX (x | θ) dx = 0 (6.55)
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and differentiating again gives:

∫ ∞

−∞
· · ·
∫ ∞

−∞

(
∂2 ln fX (x | θ)

∂θ2
fX (x | θ) +

{
∂ ln fX (x | θ)

∂θ

}2

fX (x | θ)

)
dx = 0 (6.56)

which gives the desired result

E
[
∂2 ln fX (x | θ)

∂θ2

]
= −E

[{
∂ ln fX (x | θ)

∂θ

}2
]

(6.57)
□

This can then be substituted into Equation M:3.6.17.

Note that a generalisation of the CRLB for biased estimates is given by:

var
[
θ̂
]
≥

(
1 + ∂B(θ̂)

∂θ

)2
E
[(

∂ ln fX(x | θ)
∂θ

)2] (6.58)

where B(θ̂) is the bias as previously defined. The proof follows a very similar line as given above,
and is left as an exercise for the reader.

Example 6.6 ( [Kay:1993, Example 3.3, Page 31]). Consider again the observations:

x[n] = A+ w[n] , n ∈ {0, . . . , N − 1} (K:2.2)

where A is the parameter to be estimated, and w[n] is WGN. The parameter A can take on any value
in the interval −∞ < A < ∞. Determine the CRLB for an estimator, Â, of the parameter A.

SOLUTION. Since the transformation between w[n] and x[n] is linear, with a multiplication factor of
1, the likelihood function can be written down as:

fX (x | A) =
N−1∏
n=0

1√
2πσ2

exp

[
− 1

2σ2
(x[n]− A)2

]
(6.66)

=
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− A)2
]

(6.67)

Note, a more detailed derivation of this likelihood is given in Sidebar 17 on page 226. Taking the first
derivative of the log-likelihood gives:

∂ ln fX (x | A)
∂A

=
∂

∂A

[
−N

2
ln
(
2πσ2

)
− 1

2σ2

N−1∑
n=0

(x[n]− A)2
]

(6.68)

=
1

σ2

N−1∑
n=0

(x[n]− A) =
N

σ2

({
1

N

N−1∑
n=0

x[n]

}
− A

)
(6.69)

=
N

σ2
(µ̂X − A) (K:3.8)

where µ̂X is the sample mean.
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Sidebar 17 Likelihood Derivation for Signal in Noise

A common model for a set of observations X = {x[n]}N−1
0 is the signal in noise:

x[n] = s[n; θ] + w[n] , w[n] ∼ N
(
0, σ2

w

)
(6.59)

where s[n; θ] denotes a parametric model for the underlying signal, and is dependent on a parameter
(vector) θ. The noise process w[n] is assumed to be i. i. d.; therefore, since x[n] does not depend on
previous values of either the input, w[n], or the observed process, x[n], it follows that x[n] is also
i. i. d..

Conditional on θ and a particular time index n, the pdf for the observed sample x[n] can be obtained
using the probability transformation rule. Hence, noting that there is one unique solution w[n] =
x[n]− s[n; θ], and that the Jacobian of the transformation is given by:

Jw[n]→x[n] =
∂x[n]

∂w[n]
= 1 (6.60)

it follows that

fX (x[n] | θ) = fW (x[n]− s[n; θ])

Jw[n]→x[n]

=
1√
2πσ2

w

exp

{
−(x[n]− s[n; θ])2

2σ2
w

}
(6.61)

where it is implicitly understood that fX (x[n] | θ) = fX (x[n] | θ, σ2
w) also depends on the noise

variance σ2
w although this isn’t always explicitly written. Since the x[n]’s are i. i. d., then it follows

that:

fX (x | θ) = fX (x[0] , . . . , x[N − 1] | θ) (6.62)

=
N−1∏
n=0

fX (x[n] | θ) (6.63)

=
N−1∏
n=0

1√
2πσ2

w

exp

{
−(x[n]− s[n; θ])2

2σ2
w

}
(6.64)

=
1

(2πσ2
w)

N
2

exp

{
−
∑N−1

n=0 (x[n]− s[n; θ])2

2σ2
w

}
(6.65)

Note, therefore, that many of the examples in this handout have a likelihood function that take this
form. Nevertheless, it is important to derive these results carefully each time you attempt to solve
a problem, as a different model might give a different result. Moreover, this derivation should be
included in any example questions that you tackle.
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Differentiating again, then:
∂2 ln fX (x | A)

∂A2
= −N

σ2
(6.70)

and noting that this second derivative is constant, then the CRLB is given by:

var
[
Â
]
≥ σ2

N
(K:3.9)

Comparing Equation K:3.7 and Equation K:3.8, where it is noted the first derivative of the
log-likelihood is in the form:

∂ ln fX (x | θ)
∂θ

= I(θ)
(
θ̂ − θ

)
=

N

σ2

({
1

N

N−1∑
n=0

x[n]

}
− A

)
(6.71)

□

then it is clear that the sample mean attains the bound, such that Â = µX , and must therefore be the
MVUE. Hence, the minimum variance will also be given by var

[
Â
]
= σ2

N
.

– End-of-Topic 44: Introduction to the CRLB and how to identify
MVUE that satisfy the bound –
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Sidebar 18 Alternative Solution to Example 6.6

The solution to Example 6.6 used the second derivative form of the CRLB. But what if, in fact, the
first version of the CRLB had been used, which calculates the square of the first derivative? What
would the calculation look like?

Returning to Equation 6.69 and using the first form of the CRLB:

var
[
θ̂
]
≥ 1

E
[(

∂ ln fX(x | θ)
∂θ

)2] (M:3.6.17)

Then note that (
∂ ln fX (x | θ)

∂θ

)2

=

[
1

σ2

(
N−1∑
n=0

x[n]− A

)]2
(6.72)

=
1

σ4

N−1∑
n=0

N−1∑
m=0

(x[n]− A) (x[m]− A) (6.73)

Taking expectations, then note that

E [(x[n]− A) (x[m]− A)] =

{
E
[
(x[n]− A)2

]
= σ2 n = m

E [(x[n]− A)]E [(x[n]− A)] = 0 m ̸= n
(6.74)

where the independence of x[n] and x[m] have been used for n ̸= m, and the fact that the first and
second central moments are zero and the variance, respectively. Hence, in the double summation,
n = m occurs N times (giving rise to N σ2 terms), and n ̸= m occurs N2 −N times (giving rise to
N2 −N zero terms). Therefore:(

∂ ln fX (x | θ)
∂θ

)2

=
1

σ2
×N × σ2 =

N

σ2
(6.75)

which gives the same answer as determined in Unknown Exercise:Taxi2.
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6.2.7 Estimating Multiple Parameters

Topic Summary 45 Cramer-Rao Lower Bound for Parameter Vectors

Topic Objectives:

• Extending the properties of scalar estimators to parameter vectors.

• Defining the Fisher information matrix (FIM) and the multi-parameter CRLB.

• Apply to the example of fitting a straight line.

Topic Activities:

Type Details Duration Progress
Watch video 24 : 39 min video 3× length
Read Handout Read page 229 to page 234 8 mins/page
Try Example Try Example 6.7 25 mins
Practice Exercises Exercises ?? 30 mins

http://media.ed.ac.uk/media/1_sxx68ats

Video Summary: In this video, the concepts in estimation theory introduced so far for
scalar random variables are extended to deal with estimating multiple parameters, for
example the mean and variance of a distribution simultaneously. The definition of a
vector parameter estimator is introduced, and the example of extending the definition of
bias. The principal focus of the video is on extending the CRLB to real parameter vectors,
by placing a bound on the covariance matrix of the estimator. Parallels with the scalar
CRLB are made throughout, but the emphasis is on the key calculation of the Fisher
information matrix (FIM). This is the expectation of functions of the derivatives of the
log-likelihood function, but considering the derivatives with respect to all the elements
of the parameter vector. Finally, the line-fitting example of estimating the parameters
of a straight line to fit a set of data that is assumed to follow a linear model. The FIM
and CRLB are calculated, and it is shown that in this case the MVUE can be found as
before. Numerical simulations are also provided to demonstrate the correctness of the
calculations.

Multiple parameters occur in, for example, estimating the statistical properties of a random
time-series, estimating the parameters of a curve fitted to a set of data, estimating any model or
pdf described by a set of parameters. To deal with these vectors of parameters, the previous results
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can be extended and defined in an analogous way.

A vector of parameters, θ, of a random event X(ζ) can be estimated from a set of observations,
X = {x[n]}N−1

0 , using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
(6.76)

The definitions of unbiasedness, consistency, efficiency, and the CRLB are all straightforward
extensions of the definitions and results for scalar parameter estimates.

Assuming θ is a P × 1 parameter vector, these properties are:

Unbiased Estimator An estimate θ̂N is unbiased if

E
[
θ̂N

]
= θ (6.77)

Otherwise, the estimate is biased with bias b(θ̂N) = E
[
θ̂N

]
− θ. An estimate is

asymptotically unbiased if:

lim
N→∞

E
[
θ̂N

]
= θ (6.78)

Consistent Estimator An estimate θ̂N , based on N data observations, is consistent if

lim
N→∞

Pr
(∣∣∣θ̂N − θ

∣∣∣ < ϵ
)
= 1 (6.79)

for any arbitrarily small number ϵ. The sequence of estimates {θ̂N}∞0 is said to
converge in probability to the true value of the parameter θ.

Efficient Estimator An estimate θ̂ is said to be efficient w. r. t. another estimate θ̂
′
if the difference

of their covariance matrices Γ
θ̂
′−Γθ̂ is positive definite. This implies that the variance

of every component of θ̂ must be smaller than the variance of the corresponding
component of θ̂

′
. If θ̂N is unbiased and efficient with respect to θ̂N−1 for all N , then

θ̂N is a consistent estimate.

Theorem 6.2 (CRLB - real parameter vectors). This theorem is only for real parameter vectors.
Complex-parameter vectors are slightly more detailed, but the principle no different, as highlighted by
the note following this theorem. Assuming that the estimator θ̂ is unbiased, then the vector parameter
CRLB will place a bound on the variance of each element, as well as all the elements of the covariance
matrix. This CRLB for a vector parameter is similar in concept to the scalar form, but requires a little
more slickness in mathematical presentation.

Define the gradient of the log-likelihood function to be:

s ≡ s(x;θ) ≜ ∇θ ln fX (x | θ) (T:6.43)

The vector s is called the score for θ based on x. If θ̂ is substituted for θ, the score is a measure of
the optimality of the estimate, which scores near 0P×1 being more desirable (albeit, not necessarily
revealing the optimum solution). The covariance of the score vector is known as the FIM, and is
assumed to be nonsingular:

J(θ) = E
[
s(x;θ) sT (x;θ)

]
(T:6.42)

This form is equivalent to the first form of the scalar CRLB shown in Equation M:3.6.17 on page 228.



6.2. Properties of Estimators 233

The Fisher information matrix can also be written in the following equivalent form:

[J(θ)]ij = −E
[
∂2 ln fX (x | θ)

∂θi∂θj

]
(K:3.21)

If θ̂ is any unbiased estimate, and Γθ̂ is the covariance matrix of θ̂, then the CRLB can be stated as:

Γθ̂ ≥ J−1(θ) (6.80)

where the notation ≥ means that the difference matrix Γθ̂ − J−1(θ) is positive definite.

This bound is satisfied with equality iff the estimate satisfies an equation of the form:

θ̂ − θ = J−1(θ)s(x;θ) (T:6.47)

where θ̂ = θ̂(x) is a function of the data only (and, importantly, not a function of the true value
of θ. Note that an estimator which is unbiased and attains the CRLB is also said to be an efficient
estimator in that it efficiently used the data.

PROOF. For a full proof, see [Therrien:1992, Page 298], or [Kay:1993]. However, the proof is
relatively straightforward and is analogous to the proof for the case of the scalar real parameter.
It currently omitted from this document.

The CRLB derived here can, of course, be applied to complex parameters by separating the parameter
into real and imaginary parts, and including those parts separately into the real vector θ. It is possible
to develop a direct complex version of this bound, and this is discussed in [Therrien:1992, Page 298].

Example 6.7 ( [Kay:1993, Example 3.7, Page 41] - Line fitting). Consider the problem of fitting a
line to a set of observations, that is dependent on the observation index n. This, given a random
process X(ζ, n) = x[n], and the model:

x[n] = A+Bn+ w[n] , n ∈ {0, 1, . . . , N − 1} (6.81)

where w[n] is WGN with variance σ2. Determine the CRLB for the slope B and the intercept A,
assuming σ2 is known.
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SOLUTION. The 2× 2 Fisher information matrix (FIM) is given by:

J(θ) = E
[
s(x;θ) sT (x;θ)

]
(T:6.42)

= E
[
∇θ ln fX (x | θ) ∇T

θ ln fX (x | θ)
]

(6.82)

=

 E
[(

∂ ln fX(x |θ)
∂A

)2]
E
[
∂ ln fX(x |θ)

∂A
∂ ln fX(x |θ)

∂B

]
E
[
∂ ln fX(x |θ)

∂B
∂ ln fX(x |θ)

∂A

]
E
[(

∂ ln fX(x |θ)
∂B

)2]
 (6.83)

where the notation θ = [A, B]T is used as a shorthand.

Alternatively, the elements of the Fisher information matrix be found using:

[J(θ)]ij = −E
[
∂2 ln fX (x | θ)

∂θi∂θj

]
(K:3.21)

or as a matrix:

J(θ) = −

[
∂2 ln fX(x |θ)

∂A2

∂2 ln fX(x |θ)
∂A∂B

∂2 ln fX(x |θ)
∂A∂B

∂2 ln fX(x |θ)
∂B2

]
(6.84)

This alternative expression is often a more straightforward method for evaluating the Fisher
information matrix, and will be used here. Similar to the derivation in the case of a DC signal in
WGN, the likelihood function can be written as

fX (x | θ) = 1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− A−Bn)2
]

(6.85)

from which the following derivatives follow:

∂ ln fX (x | θ)
∂A

=
1

σ2

N−1∑
n=0

(x[n]− A−Bn) (6.86)

∂ ln fX (x | θ)
∂B

=
1

σ2

N−1∑
n=0

(x[n]− A−Bn)n (6.87)

and

∂2 ln fX (x | θ)
∂A2

= −N

σ2
(6.88)

∂2 ln fX (x | θ)
∂A∂B

= − 1

σ2

N−1∑
n=0

n (6.89)

∂2 ln fX (x | θ)
∂B2

= − 1

σ2

N−1∑
n=0

n2 (6.90)

where it is noted that
∂2 ln fX (x | θ)

∂A∂B
=

∂2 ln fX (x | θ)
∂B∂A

(6.91)

Using the identities that

N∑
n=1

n =
1

2
N(N + 1) and

N∑
n=1

n2 =
1

6
N(N + 1)(2N + 1) (6.92)
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and noting that the second-order derivatives do not depend on x and therefore equal their expected
values, then the Fisher information can be written as follows:

J(θ) =
1

σ2

[
N N(N−1)

2
N(N−1)

2
N(N−1)(2N−1)

6

]
(6.93)

Inverting this FIM yields:

J−1(θ) = σ2

[
2(2N−1)
N(N+1)

− 6
N(N+1)

− 6
N(N+1)

12
N(N2−1)

]
(6.94)

or, equivalently, the covariance matrix of θ̂ is given by:

Γθ̂ ≥ 2σ2

N(N + 1)

[
(2N − 1) −3

−3 6
N−1

]
(6.95)

Hence, it can be deduced that the variances for the individual parameters are given by the CRLB or:

var
[
Â
]
≥ 2(2N − 1)σ2

N(N + 1)
(6.96)

var
[
B̂
]
≥ 12σ2

N(N2 − 1)
(6.97)

Finally, note that a MVUE, if it exists, satisfies the relationship:

θ̂ − θ = J(θ)−1∇θ ln fX (x | θ) (T:6.47)

where the estimator θ̂ depends on the observations only, and not the true parameter θ; if this were not
the case, then the MVUE cannot exist physically. Hence, it follows that using the expressions for the
terms in the RHS

θ̂ − θ = J(θ)−1

[
∂ ln fX(x |θ)

∂A
∂ ln fX(x |θ)

∂B

]
(6.98)

[
Â− A

B̂ −B

]
= σ2

[
2(2N−1)
N(N+1)

− 6
N(N+1)

− 6
N(N+1)

12
N(N2−1)

][
1
σ2

∑N−1
n=0 (x[n]− A−Bn)

1
σ2

∑N−1
n=0 (x[n]− A−Bn)n

]
(6.99)

=

[
2(2N−1)
N(N+1)

∑N−1
n=0 (x[n]− A−Bn)− 6

N(N+1)

∑N−1
n=0 (x[n]− A−Bn)n

− 6
N(N+1)

∑N−1
n=0 (x[n]− A−Bn) + 12

N(N2−1)

∑N−1
n=0 (x[n]− A−Bn)n

]
(6.100)

=
2

N(N + 1)

[
(2N − 1)

∑N−1
n=0 x[n]− 3

∑N−1
n=0 nx[n]

−3
∑N−1

n=0 x[n] + 6
(N−1)

∑N−1
n=0 nx[n]

]
−
[
A
B

]
(6.101)

where again the identities for
∑N−1

n=0 n and
∑N−1

n=0 n2 have been used, and the terms not involving
the data have been grouped, simplified, and ultimately either cancelled or rearranged into the second
column vector on the RHS.

This gives the final result that:[
Â

B̂

]
=

2

N(N + 1)

[
(2N − 1)

∑N−1
n=0 x[n]− 3

∑N−1
n=0 nx[n]

−3
∑N−1

n=0 x[n] + 6
(N−1)

∑N−1
n=0 nx[n]

]
(6.102)

Since the estimator is not dependent on the true value of the parameters, then this is indeed the MVUE
for the line fitting problem. It would not be straightforward to have intuitively determined what this
estimator should have been without using the CRLB.

A numerical result is show to finish off this example.
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Figure 6.7: Data drawn from the model in Equation 6.81.

• Let σ2 = 1000, A = 4, B = −4, and generate 100 data points.

• This gives the covariance matrix of θ̂ as:

Γθ̂ =

[
39.2079 −0.5941
−0.5941 0.0120

]
(6.103)

□

• Remember θ̂ only depends on N and σ2, and is not actually related to the value of A and B. So
for a given N and σ2, the uncertainty is always the same.

• The estimates of the intercept, Â, will have a lot higher variance than the estimates fo the
gradient, B̂.

A given realisation is shown in Figure 6.7, and the validation of the results is shown in Figure 6.8
which is a histogram of parameter estimates drawn from a Monte Carlo estimate of 1000 different
noise realisations. The sample variances are also shown, and sample variance will be discussed
elsewhere.

This previous example leads to an interesting observation. Note first that the CRLB for Â has
increased over that obtained when B is known, for in the latter case, it can be determined that
var
[
Â
]
≥ σ2

N
, which for N ≥ 2, is less than 2(2N−1)σ2

N(N+1)
. This relates to quite a general result that

asserts that the CRLB always increases as more parameters are estimated.

– End-of-Topic 45: Introduction to the CRLB for multiple random
variables –
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Figure 6.8: Data drawn from the model in Equation 6.81.
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6.3 Maximum Likelihood Estimation

New slide Topic Summary 46 Maximum Likelihood Estimation

Topic Objectives:

• Introduction to the notion of maximising the likelihood function.

• The maximum-likelihood estimate (MLE) techniques and the properties of the MLE.

• Example of applying the MLE technique.

• The invariance property of the MLE.

Topic Activities:

Type Details Duration Progress
Watch video 15 : 26 min video 3× length
Read Handout Read page 236 to page 241 8 mins/page
Try Example Try Example 6.8 15 mins
Practice Exercises Exercises ?? to ?? 60 mins

http://media.ed.ac.uk/media/1_t7jwroia

Video Summary: This video introduces the MLE technique as a way of determining a
good estimator for a given probabilistic problem. This method is very straightforward and
intuitive, and the video motivates the approach by considering again how the likelihood
function is formed. The properties of the MLE is discussed, and it is noted that many
of the caveats and tricks used in optimisation theory simply apply to maximising the
likelihood function. An example is shown for finding the MLE for estimating the mean
of a Gaussian distributed set of data. This, of course, equals the MVUE since, as we
know from a previous video, the MVUE exists. Finally, the video considers the MLE
for a transformed parameter, and its application to, for example, calculating the SNR
(although a detailed solution is saved for other exercises for the viewers).

This section now investigates an alternative to the MVUE, which is desirable in situations where
the MVUE does not exist, or cannot be found even if it does exist. This estimator, which is based
on the maximum likelihood principle, is overwhelmingly the most popular approach to practical
estimators. It has the advantage of being a recipe procedure, allowing it to be implemented for
complicated problems. Additionally, for most cases of practical interest, its performance is optimal


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton49'){ocgs[i].state=false;}}
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for large enough data records. Specifically, it is approximately the MVUE estimator due to its
approximate efficiency. For these reasons, almost all practical estimators are based on the maximum
likelihood principle.

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends on fixed but unknown parameter

vector θ, is given by fX (x | θ). This same quantity, viewed as a function of the parameter θ when a
particular set of observations, x̂ is given, is known as the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ, denoted by θ̂ml, is defined as that
value of θ that maximises fX ( x̂ | θ). In other-words, the MLE for a parameter θ is that estimate that
makes the given value of the observation vector the most likely value.

This point cannot be over-emphasised; it is common to think of fX (x | θ) as a function of x; now it
is necessary to turn this thinking around, and view fX (x | θ) as a function of θ, for a given x.

The MLE for θ is defined by:

θ̂ml(x) = argθ max fX (x | θ) (T:6.40)

Note that since θ̂ml(x) depends on the random observation vector x, and so is itself a RV.

Assuming a differentiable likelihood function, and that θ ∈ RP , the MLE is found from


∂fX(x |θ)

∂θ1...
∂fX(x |θ)

∂θP

 =

0...
0

 (6.104)

or, more simply,

∇θfX (x | θ) ≜ ∂fX (x | θ)
∂θ

= 0P×1 (K:7.35)

where 0P×1 denotes the P × 1 vector of zero elements. If multiple solutions to this exist, then the one
that maximises the likelihood function is the MLE.

There is a slight abuse of notation here, in that x is used to denote both the argument in fX (x | θ), as
well as the given parameter in the likelihood function. However, this strict distinction is not important
here, although it can be useful to be more careful in advanced work of this nature.

6.3.1 Properties of the MLE

New slide
1. The MLE satisfies

∇θfX (x | θ)|θ=θ̂ml
= 0P×1 (T:6.41a)

∇θ ln fX (x | θ)|θ=θ̂ml
= 0P×1 (T:6.41b)

where θ ∈ RP×1.
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Figure 6.9: A single parameter MLE that occurs at a boundary, and therefore for which
∂fX(x | θ)

∂θ

∣∣∣
θ=θ̂ml

̸= 0. Hence, in this case, a MLE and the MVUE are not necessarily equal.

KEYPOINT! (Specific Conditions). These results assume that the MLE does not occur at a
boundary, and that in the set of stationary points of the function, one of them corresponds
to a global maximum. Note that minimising the likelihood is equivalent to minimising the
log-likelihood, since the likelihood function is always positive, and the logarithm is a monotonic
function. It is also necessary to verify which of the stationary points corresponds to the global
maximum.

Note that in the case of a scalar parameter, θ, then these expressions reduce:

∂fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (T:6.10a)

∂ ln fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (T:6.10b)

2. If an MVUE exists and the MLE does not occur at a boundary, then the MLE is the MVUE. If
the MLE occurs at the boundary, then the derivative of the likelihood function is not necessarily
equal to zero.

PROOF (EQUIVALENCE OF MVUE AND MLE). For clarity and simplicity, only the proof for
the scalar case is given. The extension to parameter vectors is straightforward. As shown in the
derivation of the CRLB, the MVUE satisfies:

θ̂ − θ = K(θ)
∂ ln fX (x | θ)

∂θ
(6.105)

The MLE satisfies

∂fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (6.106)

∂ ln fX (x | θ)
∂θ

∣∣∣∣
θ=θ̂ml

= 0 (6.107)

Hence, setting θ = θ̂ml and substituting these into one another, gives:

θ̂ − θ̂ml = K(θ̂ml)
∂ ln fX (x | θ)

∂θ

∣∣∣∣
θ=θ̂ml

= 0 (6.108)

Hence,
θ̂ = θ̂ml (6.109)

□



6.3. Maximum Likelihood Estimation 241

3. If the pdf, fX (x | θ), of the data x satisfies certain regularity conditions, then the MLE of
the unknown parameter θ is asymptotically distributed (for large data records) according to a
Gaussian distribution:

θ̂ml ∼ N
(
θ, J−1(θ)

)
(6.110)

where J(θ) is the Fisher information evaluated at the true value of the unknown parameter.

From the asymptotic distribution, the MLE is seen to be asymptotically unbiased and asymptotically
attains the CRLB. It is therefore asymptotically efficient, and hence asymptotically optimal.

6.3.2 DC Level in white Gaussian noise
New slideAn example of the maximum likelihood principle begins with the scalar case, and again deals with a

DC level in WGN.

Example 6.8 ( [Therrien:1991, Example 6.1, Page 282]). A constant but unknown signal is
observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)
(6.111)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown signal A.

SOLUTION. Since x[n] = A+ w[n], then consider the probability transformation from w[n] to x[n].
Then it is clear that

fX (x[n] | A) = fW (w[n] | A) = fW (x[n]− A) (6.112)

Moreover, since this is a memoryless system, and w[n] are i. i. d., then so is x[n], and therefore:

fX (x | A) =
∏
n∈N

fW (x[n]− A) =
1

(2πσ2
w)

N
2

exp

{
−
∑

n∈N (x[n]− A)2

2σ2
w

}
(6.113)

The log-likelihood is given by the logarithm of the likelihood function, and is usually a simpler
function to minimise, at least for distributions which involve exponential functions. Hence, for this
case, the log-likelihood is given by:

ln fX (x | A) = −N

2
ln(2πσ2

w)−
∑

n∈N (x[n]− A)2

2σ2
w

(6.114)

Differentiating this expression w. r. t. A gives

∂ ln fX (x | A)
∂A

=

∑
n∈N (x[n]− A)

σ2
w

(6.115)

and setting this to zero yields the MLE:

Âml =
1

N

∑
n∈N

x[n] (6.116)

This is the sample mean, and it has already been seen that this is an efficient estimator. Hence,
the MLE is efficient. This result is true in general; if an efficient estimator exists, the maximum
likelihood procedure will produce it.

To complete the solution, note that it is worth checking that Equation 6.116 does, in fact, correspond
to a maximum rather than a minimum or other stationary point. This can be verified by differentiating
Equation 6.115 for a second time:

∂2 ln fX (x | A)
∂A2

=

∑
n∈N (−1)

σ2
w

=
−N

σ2
w

< 0 (6.117)
□

which is always negative and therefore corresponds to a minimum.
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Example 6.9 ( [Kay:1993, Example 7.3, Page 162 ]). The previous example of a DC level in WGN
is considered again, except that in this case, the DC level is assumed to be positive (A > 0), and
the variance of w[n] is now proportional to A. Thus, for a large value of A, a higher noise power is
expected. Thus, the observations may be modelled as:

x[n] = A+ w[n] where w[n] ∼ N
(
0, Aσ2

w

)
(6.118)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown signal A.

SOLUTION. Following the development of the previous example, the pdf for the observed data and,
equivalently, the likelihood function is given by:

fX (x | A) = 1

(2πAσ2
w)

N
2

exp

{
−
∑

n∈N (x[n]− A)2

2Aσ2
w

}
(6.119)

and thus the log-likelihood function is given by:

ln fX (x | A) = −N

2
ln(2πAσ2

w)−
∑

n∈N (x[n]− A)2

2Aσ2
w

(6.120)

Differentiating the log-likelihood function w. r. t. A gives:

∂ ln fX (x | A)
∂A

= − N

2A
+

4Aσ2
w

∑
n∈N (x[n]− A) + 2σ2

w

∑
n∈N (x[n]− A)2

4A2σ4
w

(6.121)

= − N

2A
+

∑
n∈N (x[n]− A)

Aσ2
w

+

∑
n∈N (x[n]− A)2

2A2σ2
w

(6.122)

and setting this equal to zero produces:

ANσ2
w =

∑
n∈N

{
(x[n]− A)2 + 2A(x[n]− A)

}
(6.123)

A2 + Aσ2
w =

1

N

∑
n∈N

x2[n] (6.124)

Solving for Â > 0 gives:

Â = −σ2
w

2
+

√
σ4
w

4
+

1

N

∑
n∈N

x2[n] (6.125)
□

Finally, that Â indeed maximises the log-likelihood function can be verified by examining the second
derivative.

6.3.3 MLE for Transformed Parameter
New slide Theorem 6.3 (Invariance Property of the MLE). The invariance property is discussed further in

[Kay:1993, Theorem 7.2, Page 176] and [Kay:1993, Theorem 7.4, Page 185], for scalar and vector
parameters respectively. The following theorem is presented for vector parameters, and can be
simplified accordingly for scalar parameters. The MLE of the parameter α = g(θ), where g is
an r-dimensional function of the P × 1 parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml) (6.126)
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where θ̂ml is the MLE of θ.

The MLE of θ, θ̂ml, is obtained by maximising fX (x | θ). If the function g is not an invertible
function, then α̂ maximises the modified likelihood function p̄T (x | α) defined as:

p̄T (x | α) = max
θ:α=g(θ)

fX (x | θ) (6.127)
♢

– End-of-Topic 46: Introduction to MLE –
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6.4 Least Squares

New slideTopic Summary 47 Least Squares Estimation

Topic Objectives:

• Understanding the principle of least squares estimation.

• Comparing least-squares principle with probabilistic approaches.

• Example of calculating the least-squares estimator.

• Understanding nonlinear least squares.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 38 min video 3× length
Read Handout Read page 242 to page 245 8 mins/page
Try Example Try Example 6.10 and Example 6.11 10 mins
Practice Exercises Exercises ?? and ?? 30 mins

http://media.ed.ac.uk/media/1_cza5m1gf

Video Summary: The least squares approach is presented as a non-probabilistic method
for designing an estimator of a set of parameters, assuming a model is provided for
describing the data. This is presented as an approach which makes good sense as opposed
to being optimal. The least squares approach seeks to minimise the squared difference
between the observed data and an assumed signal model. This is in contrast to the MLE
which also assumes a statistical model on the excitation variable. Other norms, such as
the L1 norm is also mentioned as a comparison. The video considers a simple example
to complement the techniques discussed in previous topics. Nonlinear least squares is
also presented as a general approach, although needing more sophisticated optimisation
techniques.

The estimators discussed so far have attempted to find an optimal or nearly optimal (for large data
records) estimator by considering the class of unbiased estimators and determining the one exhibiting
minimum variance, the MVUE. For some techniques, this means that the pdf of the data must be
known somehow. An alternate philosophy is a class of estimators that in general have no optimality
properties associated with them, but make good sense for many problems of interest: the principle of
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Additive WGN

Figure 6.10: In the MLE method, the observed data x[n, ζ] is considered to be a random variable
consisting of a known signal model, denoted by s[n;θ], where θ is a set of unknown model
parameters, plus a noise term w[n, ζ] which has a given pdf.

x[ ]n

n

A

1 2 3 40 5 6 7 N-1....

e n[ ] = modelling
error

Figure 6.11: In contrast to Figure 6.10, the least squares method considers the observed data x[n] to
be the sum of the known signal model, s[n;θ], plus an error term, e[n]. The least squares method
aims to minimise the total error term.

least squares.

The principle or method of least squares dates back to 1821 when Carl Friedrich Gauss used the
method to determine the orbit of the asteroid Ceres by formulating the estimation problem as an
optimisation problem.

A salient feature of the method is that no probabilistic assumptions are made about the data; only a
signal model is assumed. The advantage is that it is a simpler procedure to find a parameter estimate
since, for the MVUE and MLE, the pdf must either be known, or computable from the information
in the problem, which makes these estimates difficult to compute and implement. As will be seen,
it turns out that the least-squares estimate (LSE) can be calculated when just the first and second
moments are known, and through the solution of linear equations. Hence, the method has a broader
range of possible applications. On the negative side, no claims about optimality can be made, and
furthermore, the statistical performance cannot be assessed without some specific assumptions about
the probabilistic structure of the data.

6.4.1 The Least Squares Approach

New slideThus far, in determining a good estimator, the focus has been on finding one that is unbiased and has
minimum variance. Hence, it is sought to minimise the average discrepancy between the estimate and
the true parameter value. For unbiased estimates, this corresponds to minimising the variance of the
estimator.

In the least-squares (LS) approach, it is sought to minimise the squared difference between the given,
or observed, data x[n] and the assumed, or hidden, signal or noiseless data.

To clarify this further, consider the following difference between the MLE considered in Section 6.3,
and the proposed approach. In the MLE method, the observed data x[n] ≡ x[n, ζ] is considered to be
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a random variable consisting of a known signal model, denoted bys[n;θ], where θ is a set of unknown
model parameters which define the functional form of the model, plus a noise term, w[n, ζ], which
has a given pdf. In contrast to the MLE method, the least squares method considers x[n] to be the
sum of a known signal model, s[n;θ], plus an error term e[n]. This error term really consists of two
components: the modelling error, and an observation error.

The modelling error accounts for the fact that the proposed signal model may indeed just be
wrong; for example, fitting a straight line to a set of data that is better described by a higher-order
polynomial. The observation error or sensor error models the fact that any sensor will add noise to the
measurement, and that the measurement therefore is itself not a true representation of the underlying
signal model even if the signal model were perfectly accurate. In this chapter, these two errors are
lumped together, but it should be noted that in general they should be considered as different concepts.

Here it is assumed that the hidden or unobserved signal is generated by some model which, in
turn, depends on some unknown parameter θ. Due to observation noise or model inaccuracies, the
observation x[n], is a perturbed version of s[n].

Now, one approach to finding the estimator is to minimise the sum of the absolute errors:

θ̂L1 = argθ min J1(θ) where J1(θ) =
N−1∑
n=0

|x[n]− s[n, θ]| (6.128)

However, in practice, while this is a good optimisation problem to try and solve, this is a difficult
calculation to do in many cases.

The LSE of θ chooses the value that makes s[n] closest to the observed data x[n], and this closeness
is measured by the LS error criterion:

J(θ) =
N−1∑
n=0

(x[n]− s[n])2 (K:8.1)

where s[n] = s[n;θ] is a function of θ. The LSE is given by:

θ̂LSE = argθ min J(θ) (6.129)

Note that no probabilistic assumptions have been made about the data x[n] and that the method is
equally valid for Gaussian as well as non-Gaussian noise. Of course, the performance of the LSE
will depend on the properties of the corrupting noise, as well as any modelling errors. LSEs are
usually applied in situations where a precise statistical characterisation of the data or noise process
is unknown. They are also applied when an optimal estimator cannot be found, or may be too
complicated to apply in practice.

6.4.2 DC Level
New slide Again, start by considering an example with a scalar parameter. The case with vector parameters

follows a similar line.

Example 6.10 (Sample mean revisited: [Kay:1993, Example 6.1, Page 221]). It is assumed that
an observed signal, x[n], is a perturbed version of an unknown signal, s[n], which is modelled as
s[n] = A, for n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown signal A.

SOLUTION. According to the LS approach, then:

ÂLSE = argA min J(A) where J(A) =
N−1∑
n=0

(x[n]− A)2 (6.130)
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Differentiating w. r. t. A and setting the result to zero produces

ÂLSE =
1

N

N−1∑
n=0

x[n] (6.131)
□

which is the sample mean estimator. Differentiating for a second time shows this indeed minimises
the squared error.

This LSE cannot, however, be claimed to be optimal in the MVU sense, but only in that it minimises
the LS error. If it is known that x[n] = A + w[n], where w[n] is zero-mean WGN, then the LSE will
also be the MVUE, but otherwise not.

6.4.3 Nonlinear Least Squares

New slideExample 6.11 (Sinusoidal Frequency Estimation). Again, it is assumed that an observed signal,
x[n], is a perturbed version of an unknown signal, s[n], which is modelled as

s[n] = cos 2πf0n (6.132)

in which the frequency f0 is to be estimated. The LSE can be found by minimising:

J(f0) =
N−1∑
n=0

(x[n]− cos 2πf0n)
2 (6.133)

⋊⋉

In contrast to the DC level signal for which the minimum is easily found, here the LS error function
is highly nonlinear in the parameter f0. The minimisation cannot be done in closed form. Since the
error criterion is a quadratic function of the signal, a signal that is linear in the unknown parameter
yields a quadratic function for J , as in the previous example. The minimisation is then easily carried
out. A signal model that is linear in the unknown parameter is said to generate a linear least squares
problem. Nonlinear least squares problems are solved via grid searches or iterative minimisation
methods.

– End-of-Topic 47: Introduction to Least Squares Estimation –
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6.4.4 Linear Least Squares

New slideTopic Summary 48 Linear Least Squares Estimation

Topic Objectives:

• Awareness of linear in the parameters (LITP) signal model.

• Linear least square theory.

• Example of applying the linear least-squares estimator.

Topic Activities:

Type Details Duration Progress
Watch video 20 : 15 min video 3× length
Read Handout Read page 246 to page 248 8 mins/page
Try Code Use the MATLAB code 20 minutes
Try Example Try Example 6.12 10 mins
Practice Exercises Exercise ?? 30 mins

http://media.ed.ac.uk/media/1_1wtlkjn8

Video Summary: The special case of linear least squares is presented as an extremely
useful estimation approach, in cases when the signal model can be written as a linear
combination of known basis functions, with unknown weighting parameters. The linear
least squares problem can be written as a matrix vector formulation and solved to yield
the so-called normal equations. The video considers an example of estimating the Fourier
coefficients of a signal modelled as a linear combinations of trigonometric functions.
Finally, a numerical example is shown. The linear algebra manipulations are shown
throughout in order to help the viewer manipulate similar types of equations, although
a full geometric interpretation is not considered here.

Again, assume that an observed signal, {x[n]}N−1
0 , is a perturbed version of an unknown signal,

{s[n]}N−1
0 , where each of these processes can be written by the random vectors:

s =
[
s[0] s[1] · · · s[N − 1]

]T and x =
[
x[0] x[1] · · · x[N − 1]

]T (6.134)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton51'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_1wtlkjn8
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In a linear signal model, it is assumed the signal, s[n], can be written as a linear combination of P
known functions, {hk[n]}Pk=1, with weighting parameters {θk}Pk=1; thus:

s[n] =
P∑

k=1

θk hk[n] (6.135)

Writing this in matrix-vector notation, it follows that:
s[0]
s[1]

...
s[N − 1]


︸ ︷︷ ︸

s

=


h1[0] h2[0] · · · hP [0]
h1[1] h2[1] · · · hP [1]

...
... . . . ...

h1[N − 1] h2[N − 1] · · · hP [N − 1]


︸ ︷︷ ︸

H


θ1
θ2
...
θP


︸ ︷︷ ︸

θ

(6.136)

Thus, the unknown random-vector s is linear in the unknown parameter vector θ = [θ1, · · · , θP ] ,
and can be written as:

s = Hθ (K:8.8)

As shown above, H is a known N × P matrix, where N > P , and must be of full rank. It is referred
to as the observation matrix. The LSE is found by minimising:

J(θ) =
N−1∑
n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ) (K:8.9)

This can be written as:
J(θ) = xTx− 2xTHθ + θTHTHθ (6.137)

and using the two identities that:

∂bT a

∂a
= b and

∂aTBa

∂a
=
(
B+BT

)
a (6.138)

then observing in this case B = HTH = BT it follows that

∂J(θ)

∂θ
= −2HTx+ 2HTHθ (6.139)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(
HTH

)−1
HTx (K:8.10)

The equations HTHθ = HTx, to be solved for θ̂, are termed the normal equation.

The minimum LS error is found from Equation K:8.9 and Equation K:8.10:

Jmin = J(θ̂) =
(
x−Hθ̂

)T (
x−Hθ̂

)
(6.140)

=
(
x−H

(
HTH

)−1
HTx

)T (
x−H

(
HTH

)−1
HTx

)
(6.141)

or alternatively

Jmin = xT
(
IN −H

(
HTH

)−1
HT
)(

IN −H
(
HTH

)−1
HT
)
x (6.142)
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Now, the matrix A = IN − H
(
HTH

)−1
HT is an idempotent matrix in that it has the property

A2 = A. This follows from noting that:

A2 = IN − 2H
(
HTH

)−1
HT +H

(
HTH

)−1
HT H

(
HTH

)−1
HT︸ ︷︷ ︸

=H(HTH)
−1

HT

= A (6.143)

Hence,
Jmin = xT

(
IN −H

(
HTH

)−1
HT
)
x (K:8.11)

Other forms for Jmin are:

Jmin = xT x− xTH
(
HTH

)−1
HTx (K:8.12)

= xT (x−Hθ) (K:8.13)

Example 6.12 (Fourier Series Estimation). An application of the general linear model is in spectral
estimation. Suppose that a signal, s[n], is modelled as the sum of sinusoids:

s[n] =
P∑

p=1

ap sin (p ω0 n) + bp cos (pω0n) (6.144)

where the coefficients {ap, bp}Pp=1 are the unknown amplitudes to be estimated, and the fundamental
frequency, ω0, and model order P , are assumed to be known. It is implicitly assumed that the sampling
period T = 1 and that the fundamental ω0 is normalised to between 0 and π.

The signal, s[n], is observed in noise. Write down the least squares solution.

SOLUTION. Writing the relationship between the observation, signal model, and modelling error:

x[n] = s[n] + e[n] =
P∑

p=1

(ap sinωp n+ bp cosωpn) + e[n] (6.145)

This model can be written in a so-called LITP form by defining the matrix, where ℓ ≜ N − 1:

H =


0 1 0 1 · · · 0 1

sinω0 cosω0 sin 2ω0 cos 2ω0 · · · sinPω0 cosPω0

sin 2ω0 cos 2ω0 sin 4ω0 cos 4ω0 · · · sin 2Pω0 cos 2Pω0
...

...
...

... . . . ...
...

sin ℓω0 cos ℓω0 sin 2ℓω0 cos 2ℓω0 · · · sinPℓω0 cosPℓω0

 (6.146)

Hence, with the parameter vector defined as:

θ =
[
a1 b1 a2 b2 · · · aP bP

]T (6.147)

the signal model is s = Hθ, and the linear LSE estimator is then given by:

θ̂ =
(
HTH

)−1
HTx (6.148)

□

where the parameter vector, θ̂, is of dimension 2P , and therefore the size of H is N × 2P .

Using the orthognality of the Fourier basis, it is possible to show that this relationship can simplify
further, and this is left as an exercise.

– End-of-Topic 48: Introduction to Linear Least Squares Estimation –



6.4. Least Squares 251

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Sample index

-1.5

-1

-0.5

0

0.5

1

1.5

O
b
s
e
rv

a
ti
o
n
s

Least Squares Signal Estimation

Real signal value

Observed signal (in noise)

Estimated signal

Figure 6.12: In this figure, the true underlying signal model is shown (the sawtooth), the observed
signal (with sensor noise), and the estimated Fourier signal model.

6.4.5 Weighted Linear Least Squares

An extension of the linear LS problem is weighted linear least squares. Instead of minimising
Equation K:8.9, an N ×N positive definite, and by definition, therefore symmetric, weighting matrix
W, so that

J(θ) = (x−Hθ)T W (x−Hθ) (K:8.14)

If, for instance, W is diagonal with diagonal elements [W]ii = wi > 0, then the LS error of
Equation K:8.1 reduces to:

J(θ) =
N−1∑
n=0

wn (x[n]− s[n])2 (6.149)

The rationale for introducing weighting factors into the error criterion is to emphasise the
contributions of those data samples that are deemed to be more reliable. Hence, consider again
Example 6.10 on page 244, and assume that x[n] = A+w[n], where w[n] is a zero-mean uncorrelated
noise signal with variance σ2

n; if σ2
n is large compared with A, then the estimate of the underlying

signal s[n] = A from x[n] will be unreliable. Thus, it would seem reasonable to choose a weighting
factor of wn = 1

σ2
n

.

Example 6.13 ( [Kay:1993, Problem 8.8, Page 276]). Find the weighted least squares estimate of
an unknown signal, s[n] = A, from an observed signal x[n], where the known weighting factors are
given by wn = 1

σ2
n

.

SOLUTION. The weighted LS error is given by:

J(θ) =
N−1∑
n=0

1

σ2
n

(x[n]− A)2 (6.150)

Differentiating w. r. t. A, and setting to zero gives:

0 =
N−1∑
n=0

1

σ2
n

(x[n]− A) (6.151)
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Rearranging gives straightforwardly:

ÂLSE =

∑N−1
n=0

1
σ2
n
x[n]∑N−1

n=0
1
σ2
n

(6.152)
□

The general form of the weighted LSE is readily shown to be:

θ̂ =
(
HTWH

)−1
HTWx (K:8.16)

and its minimum LS error is

Jmin = xT
(
W −WH

(
HTWH

)−1
HTW

)
x (K:8.17)

6.5 Bayesian Parameter Estimation

New slide Topic Summary 49 Introduction to Advanced Bayesian Estimation Theory

Topic Objectives:

• Introduction to Bayesian Parameter Estimation.

• The Removal of Nusiance Parameters and Prior Probabilities.

• The General Linear Model.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 250 to page 257 8 mins/page
Try Example Try Example 6.14 15 mins

Using the method of maximum likelihood (or least squares) to infer the values of a parameter has
several significant limitations:

1. First, the likelihood function does not use information other than the data itself to infer the
values of the parameters. No prior knowledge, stated before the data is observed, is utilised
regarding the possible or probable values that the parameters might take. In many applications,
a physical understanding of the problem at hand, or of the circumstances surrounding how an
experiment is conducted, can suggest that some values of the parameters are impossible, and
that some are more likely to occur than others.

There are cases where the maximum-likelihood estimate (MLE) can return parameter estimates
outside the sensible range of the parameters, or outside the physical constraints of the system
under consideration.

2. The likelihood function on its own does not limit the number of parameters in a model used to
fit the data. The number of parameters is chosen in advance, by the Signal Processing Engineer,
but the likelihood function does not indicate whether the number of parameters chosen is more
than necessary to model the data, or less than needed.

In general, the more parameters used to model the data, the better the model will fit the data. For
example, a data set consisting of N observations can always be described exactly by a model
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with N parameters. However, suppose that a model is used to describe a particular realisation of
a stochastic process with no error by using N parameters to model N observations. If another
realisation of that random process is generated, then a new model is required to describe the
new data with no error. Often the new parameter estimates can be vastly different to the old
parameter set.

This problem arises from the tendency to attempt to over-parameterize the data; there is
clearly a tradeoff between modelling a signal with no error and having a more complicated or
sophisticated model. With this in mind, model simplicity is the key to maximising the degree of
consistency between parameter estimates computed from independent realisations of a process.

There are methods to this model order selection problem: these include final prediction error
(FPE), Akaike’s information criterion (AIC), minimum description length (MDL), Parzen’s
criterion autoregressive transfer function (CAT) and B-Information criterion (BIC). However,
it would be preferable to have a parameter estimation method that explicitly takes into account
the fact that the model order is unknown. Although model selection will not be discussed in
detail in this course, Bayesian parameter estimation is a framework in which it is consistent
and straightforward to consider the model order as simply another unknown parameter.

6.5.1 Bayes’s Theorem (Revisited)

Suppose N observations, x = {x[n]}N−1
0 , of a random process, x[n, ζ], is denoted by X(ζ) =

{x[n, ζ]}N−1
0 . It is assumed that this process can be assigned a signal model, Ik, such that it is

possible to write down a likelihood function:

Lk (θk; x) = pX|Θk
(x | θk, Ik) (6.153)

where θk is an unknown parameter vector which characterises the k-th signal model, Ik. Suppose
knowledge prior to observing the data regarding the probability of the values of the parameters of Ik

is summarised by the probability density function, pΘk
(θk | Ik). Then Bayes’s theorem gives:

pΘk|X (θk | x, Ik) =
pX|Θk

(x | θk, Ik) pΘk
(θk | Ik)

pX (x | Ik)
(6.154)

Equation 6.154 is composed of the following terms:

Prior: pΘk
(θk | Ik) summarises all the knowledge of the values of the parameters θk prior

to observing the data;

Likelihood: pX|Θk
(x | θk, Ik), is determined by the signal model Ik;

Evidence: pX (x | Ik), which is the normalising expression in Equation 6.154, is known as the
Bayesian evidence. Since the left hand side (LHS) must integrate to unity to be a
valid pdf, then it follows:

pX (x | Ik) =

∫
Θk

pX|Θk
(x | θk, Ik) pΘk

(θk | Ik) dθk (6.155)

This term is of interest in model selection; in cases where only one model is under
consideration, this term may be considered as a constant, since it is not a function of
the unknown parameters θk.

Posterior: pΘk|X (θk | x, Ik) is the joint posterior pdf for the unknown parameters θk given the
observations x.
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The posterior density may be used for parameter estimation, and various estimators exist. One
common estimator is the value of θk that maximises the posterior pdf:

θ̂k = argθk
max pΘk|X (θk | x, Ik) (6.156)

This is known as the maximum a posteriori (MAP) estimate.

Note that in order to simplify the notation, Bayes’s theorem is frequently written as:

p (θk | x, Ik) =
p (x | θk, Ik) p (θk | Ik)

p (x | Ik)
(6.157)

It is understood in Equation 6.157 that the probability density functions, p ( · | ·), are identified based
on its context. In other-words, it is important to realise that each term in Equation 6.157 represents a
different functional form for the pdfs.

In cases where there is only one model in consideration, Equation 6.157 simplifies further to:

p (θ | x, I) = p (x | θ, I) p (θ | I)
p (x | I)

(6.158)

6.5.2 The Removal of Nuisance Parameters

Consider a signal model, I, that involves two parameters, α and β:

p (α, β | x, I) = p (x | α, β, I) p (α, β | I)
p (x | I)

(6.159)

It might be that it is only of interest to estimate α, and that an estimate of β is unnecessary. The
marginal a posteriori pdf for α can be obtained by marginalising over the random variable β:

p (α | x, I) =
∫

p (α, β | x, I) dβ

=
1

p (x | I)

∫
p (x | α, β, I) p (α, β | I) dβ

(6.160)

Marginalisation, also known as marginal inference, is an appealing procedure when the integral in
Equation 6.160 can be calculated in closed form. In such cases, the marginal posterior density is
reduced in dimensionality since the parameter β is no longer present in the term p (α | x, I). Note
that marginalisation necessitates a loss of information; the integration in Equation 6.160 means that
all the information about the value of β is lost.

If the marginal is used for parameter estimation, then the value of α that maximises the marginal:

α̂ = argα max p (α | x, I) = argαmax

∫
p (α, β | x, I) dβ (6.161)

is known as the maximum marginal a posteriori (MMAP) estimate.

6.5.3 Prior Probabilities

The selection of prior densities is a highly involved topic for discussion, and is only briefly mentioned
here. A prior density is selected to describe ones state of knowledge, or lack of it, about the value of
a parameter before it is observed.
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One can claim to have no knowledge whatsoever about the value of a parameter prior to observing the
data. This state of ignorance may be described by using a prior pdf that is very broad and flat relative
to the likelihood function. The most intuitively obvious non-informative prior is a uniform density.
This prior is typically used for discrete distributions, or for unbounded real value parameters:

p (θk | Ik) = k (6.162)

where k is a constant. In the case of an uniform prior, parameter estimates obtained from a MAP
estimate are identical to those obtained using maximum likelihood. The problem with the uniform
prior in Equation 6.162 is that is is not normalisable, and is therefore not a valid pdf.

Prior probabilities are non-informative if they convey ignorance of the parameter values before
observing the data compared with the state of knowledge afterwards. Therefore, the prior pdf need
only be diffuse in relation to the likelihood function. Thus, to avoid the normalisation problem with
the uniform prior, frequently a Gaussian prior is adopted:

p (θk | Ik) =
1

(2πδ2)
P
2

exp

[
−θT

k θk

2δ2

]
(6.163)

where P is the number of parameters inside the vector θk. The parameter δ is known as a
hyper-parameter, and needs to be chosen somehow. To indicate ignorance of the value of a
parameter, δ should be set to a large value. Alternatively, it is possible to assign another prior to
the hyper-parameter δ itself. This hyper-prior will be characterised by hyper-hyper-parameters.

Often a prior is chosen for mathematical convenience. In many situations, the likelihood function has
an exponential form. For the ease of analysis, the prior density can be chosen to be conjugate to
the likelihood function so that the posterior density is of the same functional form as the likelihood.
In general, however, it is desirable to convey all prior knowledge in a prior density function; this is
problem specific, and is discussed in many many research texts.

6.5.4 General Linear Model

The general linear model has previously been introduced in the discussion on the method of least
squares. Any data that may be described in terms of a linear combination of basis functions with an
additive Gaussian noise component satisfies the general linear model. Suppose that the observed data
may be described by a signal model of the form:

x[n] =
P∑

p=1

ap gp[n] + e[n] , where 0 ≤ n ≤ N − 1 (6.164)

and gp(n) is the value of a time-dependent model or basis function evaluated at time index n, and e[n]
is WGN with variance σ2

e : thus, e[n] ∼ N (0, σ2
e). Consider writing Equation 6.164 for all values of

n: 
x[0]
x[1]

...
x[N − 1]


︸ ︷︷ ︸

x

=


g1[0] g2[0] · · · gP [0]
g1[1] g2[1] · · · gP [1]

...
... . . . ...

g1[N − 1] g2[N − 1] · · · gP [N − 1]


︸ ︷︷ ︸

G


a0
a1
...
aP


︸ ︷︷ ︸

a

+


e[0]
e[1]

...
e[N − 1]


︸ ︷︷ ︸

e

(6.165)

In other-words, Equation 6.164 may be written as:

x = Ga+ e (6.166)
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where x is an N × 1 vector of observations, e is an N × 1 vector of i. i. d. Gaussian noise samples,
G is a N × P matrix, and a is a P × 1 vector of parameters. The columns of matrix G are the
basis functions evaluated at each time index, and the basis functions themselves are a function of
some unknown parameters θ. For example, the basis functions might be sinusoids, and θ denotes the
frequencies of these sinusoids.

The vector-matrix equation in Equation 6.166 is linear in the parameter vector a; hence, the model
in Equation 6.166 is often called the LITP model. Now, consider finding the likelihood function
p (x | θ, a, σ2

e , I), where θ is the unknown parameter vector of the basis functions that form the
matrix G. The probability density function for the noise vector is given by:

p
(
e | σ2

e

)
=

1

(2πσ2
e)

N
2

exp

[
−eTe

2σ2
e

]
(6.167)

Now, suppose that G is not a function of the observations x; the probability transformation from
the random vector e to the random vector x is linear, and has unity Jacobian. Hence, the likelihood
function for the observations is given by:

p
(
x | θ, a, σ2

e , I
)
=

1

(2πσ2
e)

N
2

exp

[
−(x−Ga)T (x−Ga)

2σ2
e

]
(6.168)

where I indicates all the known information in the chosen signal model. Now, suppose that the aim
is to infer the values of the parameters of the basis functions, θ, without inferring the values of the
nuisance parameters, namely the linear parameters, a, and the variance of the white noise, σ2

e . The
Bayesian methodology is thus applied. First some priors are required for the variance and the linear
parameters.

The variance term is known as a scale parameter and is a measure of scale or magnitude. A vague
non-informative prior that is usually assigned to scale parameters is the inverse-Gamma density; the
reason for this is not discussed here. Therefore:

p
(
σ2
e

∣∣ αe, βe

)
= IG

(
σ2
e

∣∣αe, βe

)
=

{
0 if σ2

e < 0,
αβe
e

Γ(βe)
(σ2

e)
−(βe+1)

e
−αe

σ2
e if σ2

e ≥ 0,
(6.169)

Note that αe and βe are hyper-parameters. Further, for linear parameters, it is usual to apply a vague
Gaussian prior similar to that in Equation 6.163:

p
(
a | σ2

e , I
)
= N

(
a
∣∣ 0, δ2σ2

eIP
)
=

1

(2πδ2σ2
e)

P
2

exp

[
− aTa

2δ2σ2
e

]
(6.170)

where IP is the P × P identity matrix. Note that the prior p (a | σ2
e , δ, I) is conditional on σ2

e ;
the choice of this prior allows both σ2

e and a to be marginalised analytically. The hyper-parameters
δ, αe, βe are all assumed to be known.

Using Bayes’s theorem, the posterior density for all the parameters θ, a, σ2
e is given by:

p
(
θ, a, σ2

e

∣∣ x, I) ∝ p
(
x | θ, a, σ2

e , I
)
p
(
θ, a, σ2

e

∣∣ I) (6.171)

where the evidence term is considered as a constant and therefore omitted, and ∝ indicates
proportionality. The prior term factorises as:

p
(
θ, a, σ2

e

)
= p (θ) p

(
a | σ2

e

)
p
(
σ2
e

)
(6.172)
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where the dependence on the model I has been dropped for convenience. Thus, the joint posterior
density is given by:

p
(
θ, a, σ2

e

∣∣ x, I) ∝ p (θ)
1

(2πσ2
e)

N
2

exp

[
−(x−Ga)T (x−Ga)

2σ2
e

]

× 1

(2πδ2σ2
e)

P
2

exp

[
− aTa

2δ2σ2
e

]
αβe
e

Γ(βe)

(
σ2
e

)−(βe+1)
e
−αe

σ2
e

(6.173)

Since the observations and hyper-parameters are known, and therefore constant from the perspective
of the posterior density, then after some manipulation, this may be written as

p
(
θ, a, σ2

e

∣∣ x, I) ∝ p (θ)

(σ2
e)

N+P
2

+βe+1
exp

[
−
aT
(
GTG+ δ−2IP

)
a− 2xTGa+ xTx+ 2αe

2σ2
e

]
(6.174)

The linear parameters a can be marginalised out using the identity:∫
RP

exp

{
−1

2

[
α + 2yTβ + yTΓy

]}
dy =

(2π)
P
2

|Γ| 12
exp

{
−1

2

[
α− βTΓ−1β

]}
(6.175)

To perform this, set y = a, Γ = 1
σ2
e

(
GTG+ δ−2IP

)
, α = xTx+2αe

σ2
e

, and β = − 1
σ2
e
GTx, so that

p
(
θ, σ2

e

∣∣ x, I) = ∫ ∞

−∞
p
(
θ, a, σ2

e

∣∣ x, I) da (6.176)

∝ p (θ)√
det
∣∣GTG+ δ−2IP

∣∣ (σ2
e)

R+1
exp

[
−
xTx+ 2αe − xTG

(
GTG+ δ−2IP

)−1
GTx

2σ2
e

]
(6.177)

where R = N+2βe

2
. Finally, the variance can be marginalised using the fact that the inverse-Gamma

pdf implies:

1 =

∫ ∞

0

IG
(
σ2
∣∣α, β, ) dσ2 =

∫ ∞

0

αβ

Γ(β)

(
σ2
)−(β+1)

e−
α
σ2 dσ2 (6.178)

and therefore: ∫ ∞

0

(
σ2
)−(β+1)

e−
α
σ2 dσ2 =

Γ(β)

αβ
(6.179)

Hence, this gives the marginal a posterior pdf for the parameters θ as

p (θ | x, I) =
∫ ∞

0

p
(
θ, σ2

e

∣∣ x, I) dσ2
e

∝ p (θ)

[
xTx+ 2αe − xTG

(
GTG+ δ−2IP

)−1
GTx

]−(N
2
+βe)√

det
∣∣GTG+ δ−2IP

∣∣
(6.180)

The MMAP estimate can be found by maximising this expression with respect to the parameters θ
which are implicitly incorporated in the basis matrix G.

It is important to realise that the expression in Equation 6.180 is a function of the basis parameters
θ only. This means that there is no need to know about the standard deviation, σ2

e , nor the values
of the linear parameters to infer the values of θ. Moreover, since the integrals in the marginalisation
process have been performed analytically, the dimensionality of the parameter space has been reduced
for each parameter integrated out. This reduction of the dimensionality is a property of Bayesian
marginal estimates and is a major advantage in many applications.
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Example 6.14 (Frequency estimation). An application of the general linear model is in frequency
estimation. Suppose that a signal, s[n], is modelled as the sum of sinusoids:

s[n] =
P∑

p=1

(ap sinωp n+ bp cosωpn) (6.181)

where the coefficients {ap, bp}P1 are the amplitudes, {ωp}P1 are the frequencies, and P is the model
order. As usual, it is implicitly assumed that the sampling period T = 1 and that the frequencies
{ωp}P1 are normalised to between 0 and π. The signal, s[n], is observed in white Gaussian noise
(WGN) with unknown variance σ2

e :

x[n] = s[n] + e[n] =
P∑

p=1

(ap sinωp n+ bp cosωpn) + e[n] (6.182)

This model can be written in the LITP form by defining the matrix:

G =


0 1 0 1 · · · 0 1

sinω1 cosω1 sinω2 cosω2 · · · sinωP cosωP

sin 2ω1 cos 2ω1 sin 2ω2 cos 2ω2 · · · sin 2ωP cos 2ωP
...

...
...

... . . . ...
...

sin ℓω1 cos ℓω1 sin ℓω2 cos ℓω2 · · · sin ℓωP cos ℓωP

 (6.183)

where ℓ = N − 1. Hence, with the parameter vector defined as:

a =
[
a1 b1 a2 b2 · · · aP bP

]T (6.184)

the marginal a posterior pdf for the unknown frequencies {ωp}P1 is given by:

p
(
{ωp}P1

∣∣ x) ∝ p
(
{ωp}P1

) [xTx+ 2αe − xTG
(
GTG+ δ−2I2P

)−1
GTx

]−(N
2
+βe)√

det
∣∣GTG+ δ−2I2P

∣∣ (6.185)
⋊⋉

where the parameter vector, a, is of dimension 2P , and therefore the size of G is N × 2P .

The MMAP estimate can be found by maximising this w. r. t. the frequencies {ωp}P1 . Note that the
hyper-parameters and a prior for {ωp}P1 must also be chosen; typically, a uniform prior on ωp between
0 and π will be sufficient.

6.5.4.1 Model Selection using Bayesian Evidence

Next, the Bayesian evidence term is considered:

pX (x | Ik) =

∫
Θk

pX|Θk
(x | θk, Ik) pΘk

(θk | Ik) dθk (6.186)

This term can be used to select signal models and noise statistics appropriate to the observed data. To
clarify, in this equation, Θk is the parameter space, and Ik denotes the structure of the k-th model. The
term Ik represents the joint assumption of both the noise statistics and the signal model; together, this
is called the data model. It is important to note that the integral in Equation 6.186 is the likelihood
multiplied by the prior integrated over all the parameters in that data model. In the case of discrete
distributions, the integration simplifies to a summation.
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Consider a set of competing possible data models labelled {Ik}M1 proposed to describe a given set of
observations. Bayes’s theorem can be used to find the posterior density of each model given the data:

pI|X (Ik | x) =
pX|I (x | Ik) pI (Ik)

pX (x)
(6.187)

where the probability of the observations is given by:

pX (x) =
M∑
k=1

pX|I (x | Ik) pI (Ik) (6.188)

If all the models are equally likely a priori, then

pI (Ik) =
1

M
(6.189)

Therefore, the posterior probability of a model is given by the relative evidence:

pI|X (Ik | x) =
pX|I (x | Ik)

M∑
k=1

pX|I (x | Ik)

(6.190)

This expression constitutes the evidence framework for the selection of signal models. It is important
to realise that in terms of real data, the correct data model may not be in the set chosen. It is only
possible to compare the candidate models that have been considered to determine which models are
more plausible.

– End-of-Topic 49: Introduction to Advanced Bayesian Parameter
Estimation –
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7
Monte Carlo Methods

This handout discusses the problem of generating sequences of random numbers or variates, for use
in numerical simulations, including Monte Carlo integration and optimisation.

7.1 Introduction
New slide Many signal processing problems can be reduced to either an optimisation problem or an integration

problem:

Optimisation: involves finding the solution to

θ̂ = argmax
θ∈Θ

h(θ) (7.1)

where h(·) is a scalar function of a multi-dimensional vector of parameters, θ.
Typically, h(·) might represent some cost function, and it is implicitly assumed
that the optimisation cannot be calculated explicitly. An example of a complicated
optimisation problem might be finding the maximum of the equation:

h(x) = (cos 50x+ sin 20x)2 , 0 ≤ x ≤ 1 (7.2)

This function is plotted in Figure 7.1.

Integration: involves evaluating an integral,

I =

∫
Θ

f(θ) dθ, (7.3)

that cannot explicitly be calculated in closed form. For example, the Gaussian-error
function:

Φ(t) =

∫ t

−∞

1√
2π

e−
θ2

2 dθ (7.4)

Again, the integral may be multi-dimensional, and in general θ is a vector.

260
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Figure 7.1: Plot of the function in Equation 7.2.

Optimisation and Integration Some problems involve both integration and optimisation: a
fundamental problem is the maximisation of a marginal distribution:

θ̂ = argmax
θ∈Θ

∫
Ω

f(θ, ω) dω (7.5)

The reader is encouraged to honestly consider how many problems they solve reduce to either an
integration or an optimisation problem.

7.1.1 Deterministic Numerical Methods
New slideThere are various deterministic solutions to the optimisation and integration problems. A browse

through [Press:1992, Chapters 4 and 10], for example, reveals a variety of well-known approaches:

Optimisation: 1. Golden-section search and Brent’s Method in one dimension;

2. Nelder and Mead Downhill Simplex method in multi-dimensions;

3. Gradient and Variable-Metric methods in multi-dimensions, typically an
extension of Newton-Raphson methods.

Integration: Most deterministic integration is only feasible in one-dimension, and many methods
rely on classic formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced abscissas at which
the function is evaluated. These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.
Unfortunately, these methods are not easily extended to multi-dimensions.

Some examples of deterministic numerical solutions to these problems are considered in
Section 7.1.1.1 and Section 7.1.1.2.
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7.1.1.1 Deterministic Optimisation

New slide The Nelder-Mead Downhill Simplex method simply crawls downhill in a straightforward fashion
that makes almost no special assumptions about your function. This can be extremely slow, but in
some cases, it can be robust.

Gradient methods are typically based on the Newton-Raphson algorithm which solves the equation
∇h(θ) = 0. For a scalar function, h(θ), of a vector of independent variables θ, a sequence θn is
produced such that:

θn+1 = θn −
(
∇∇Th (θn)

)−1 ∇h (θn) (7.6)

Numerous variants of Newton-Raphson-type techniques exist, and include the steepest descent
method, or the Levenberg-Marquardt method.

The primary difficulty in evaluating Equation 7.6 is the computation of the Hessian term ∇∇Th (θn).
However, it is not crucial to obtain an exact estimate of the Hessian in order to reduce the cost function
at each iteration. In fact, any positive definite matrix will suffice, and often a matrix proportional to
the identity matrix is used.

The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm, for example, constructs an approximate
Hessian matrix by analyzing successive gradient vectors, and by assuming that the function can be
locally approximated as a quadratic function in the region around the optimum.

7.1.1.2 Deterministic Integration

New slide Numerical computation of the scalar case of the integral in Equation 7.7 can be done using simple
Riemann integration, or by improved methods such as the trapezoidal rule. For example, the

I =

∫ b

a

f(θ) dθ, (7.7)

can be solved with the trapezoidal rule using:

Î =
1

2

N−1∑
k=0

(θk+1 − θk) (f(θk) + f(θk+1)) (7.8)

where the θk’s constitute an ordered partition of [a, b]. Another formula is Simpson’s rule:

Î =
δ

3

{
f(a) + 4

N∑
k=1

f(θ2k−1) + 2
N∑
k=1

h(θ2k) + f(b)

}
(7.9)

in the case of equally spaced samples with δ = θk+1 − θk.

7.1.2 Monte Carlo Numerical Methods

New slide
Monte Carlo methods are stochastic techniques, in which random numbers are generated and use to
examine some problem.
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Figure 7.2: Estimating the value of π through Monte Carlo integration.

7.1.2.1 Monte Carlo Integration

New slide Consider the integral,

I =

∫
Θ

f(θ) dθ. (7.10)

Defining a function π(θ) which is non-zero and positive for all θ ∈ Θ, this integral can be expressed
in the alternate form:

I =

∫
Θ

f(θ)

π(θ)
π(θ) dθ, (7.11)

where the function π(θ) > 0, θ ∈ Θ is a probability density function (pdf) which satisfies the
normalised expression: ∫

Θ

π(θ) dθ = 1 (7.12)

It can now be seen that Equation 7.57 can be viewed as an expectation of the function h(θ) =
f(θ) π(θ)−1 over the pdf of π(θ). In other-words, Equation 7.57 becomes

This may be written as an expectation:

I = Eπ

[
f(θ)

π(θ)

]
(7.13)

This expectation can be estimated using the idea of the sample expectation, and leads to the idea
behind Monte Carlo integration:

1. Sample N random variates from a density function π(θ),

θ(k) ∼ π(θ), k ∈ N = {0, . . . , N − 1} (7.14)

2. Calculate the sample average of the expectation in Equation 7.13 using

Î =
1

N

N−1∑
k=0

f(θ(k))

π(θ(k))
≈ Eπ

[
f(θ)

π(θ)

]
(7.15)
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This technique is known as importance sampling because the function f(θ) is sampled with the
density π(θ), thereby giving more importance to some values of f(θ) than others.

7.1.2.2 Stochastic Optimisation

New slide There are two distinct approaches to the Monte Carlo optimisation (here, maximisation) of the
objective function h(θ):

θ̂ = argmax
θ∈Θ

h(θ) (7.16)

The first method is broadly known as an exploratory approach, while the second approach is based
on a probabilistic approximation of the objective function.

Exploratory approach This approach is an exploratory method in that it is concerned with fast
explorations of the sample space rather than working with the objective function
directly.
For example, Equation 7.16 can be solved by sampling a large number, N , of
independent random variables, {θ(k)}, from a pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(
θ(k)
)

(7.17)

Typically, when no specific features regarding the function h (θ), are taken into
account, π(θ) will take on a uniform distribution over Θ. Although this method
converges as N → ∞, the method is very slow: one can usually do better by finding
a density π(θ) that is related to h (θ), but this requires some additional insight into
the function h (θ).

Stochastic Approximation • The Monte Carlo EM algorithm

A more sophisticated approach to stochastic exploration is based on the deterministic gradient-based
methods. A modified form of Equation 7.6 is:

θn+1 = θn +Gn∇h (θn) (7.18)

where Gn is a sequence which may approximate the Hessian of h (θn) in order to ensure the algorithm
converges.

7.1.2.3 Implementation issues

Monte Carlo methods rely on the assumption that is is possible to simulate samples or variates {θ(k)}
from the density π (θ).

The next sections address how such samples can be obtained.

7.2 Generating Random Variables

New slide This section discusses a variety of techniques for generating random variables from a different
distributions.
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7.2.1 Uniform Variates
New slide The foundation underpinning all stochastic simulations is the ability to generate a sequence of

independent and identically distributed (i. i. d.) uniform random variates over the range (0, 1]. All
random variates are generated using techniques that assume uniform random variates are available.

Random variates are pseudo or synthetic and not truly random since they are usually generated using
a recurrence of the form:

xn+1 = (a xn + b) mod m (7.19)

This is known as the linear congruential generator. For the purposes of generating random variates,
it is importance that knowledge of a particular set of variates gives no discernible knowledge of the
next variate drawn provided that the transformation in Equation 7.19 is unknown. Of course, given
the sample x0, and the parameters {a, b, m}, the samples {x1, . . . , xn} are always the same.

However, suitable values of a, b and m can be chosen such that the random variates pass all statistical
tests of randomness.

7.2.2 Transformation Methods
New slideIt is possible to sample from a number of extremely important probability distributions by being

able to sample from the simplest of distribution functions, namely the uniform density, and then
applying various probability transformation methods. Assuming that it is possible to sample from the
uniform distribution, this section gives an overview of the methods for obtaining variates from other
well-known distributions.

Beyond the basic definitions of random variables (RVs), the fundamental probability transformation
rule forms the basis of most of the methods described in this section.

Theorem 7.1 (Probability transformation rule). Denote the real roots of y = g(x) by {xn, n ∈
N}, such that:

y = g(x1) = · · · = g(xN) (7.20)

Then, if the Y (ζ) = g(X(ζ)), the pdf of Y (ζ) in terms of the pdf of X(ζ) is given by:

fY (y) =
N∑

n=1

fX (xn)

|g′(xn)|
(7.21)

where g′(x) is the derivative with respect to (w. r. t.) x of g(x).

PROOF. The proof is given in the handout on scalar random variables.

7.2.3 Generating white Gaussian noise (WGN) samples

Recall that the probability transformation rule takes random variables from one distribution as
inputs and outputs random variables in a new distribution function:

Theorem 7.2 (Probability transformation rule (revised)). If {x1, . . . xn} are random variables
with a joint-pdf fX (x1, . . . , xn), and if {y1, . . . yn} are random variables obtained from functions
of {xk}, such that yk = gk(x1, x2 . . . xn), then the joint-pdf, fY (y1, . . . , yn), is given by:

fY (y1, . . . , yn) =
1

|J(x1, . . . , xn)|
fX (x1, . . . , xn) (7.22)
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where J(x1, . . . , xn) is the Jacobian of the transformation given by:

J(x1, . . . , xn) =
∂(y1, . . . yn)

∂(x1, . . . xn)
(7.23)

♢

One particular well-known example is the Box-Muller (1958) transformation that takes two uniformly
distributed random variables, and transforms them to a bivariate Gaussian distribution. Consider the
transformation between two uniform random variables given by,

fXk
(xk) = I0,1 (xk) , k = 1, 2 (7.24)

where IA (x) = 1 if x ∈ A, and zero otherwise, and the two random variables y1, y2 given by:

y1 =
√

−2 lnx1 cos 2πx2 (7.25)

y2 =
√
−2 lnx1 sin 2πx2 (7.26)

It follows, by rearranging these equations, that:

x1 = exp

[
−1

2
(y21 + y22)

]
(7.27)

x2 =
1

2π
arctan

y2
y1

(7.28)

The Jacobian determinant can be calculated as:

J(x1, x2) =

∣∣∣∣∣ ∂y1∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣ =
∣∣∣∣∣ −1
x1

√
−2 lnx1

cos 2πx2 −2π
√
−2 lnx1 sin 2πx2

−1
x1

√
−2 lnx1

sin 2πx2 2π
√
−2 lnx1 cos 2πx2

∣∣∣∣∣ = 2π

x1

(7.29)

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y21/2

] [
1√
2π

e−y22/2

]
(7.30)

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus covering the range of real numbers.
This is the product of y1 alone and y2 alone, and therefore each y is i. i. d. according to the normal
distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution
in order to obtain samples that have the same pdf as a Gaussian random variable.

Example 7.1 (MSc. Exam Question, 2005). 1. Let U be a random variable generated from a
uniform pdf on the interval [0, 1], such that

fU (u) =

{
1, if 0 ≤ u ≤ 1

0, otherwise

Show the random variable X = − 1
λ
logU has an exponential distribution with parameter λ,

where logU is the natural logarithm of U .
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2. Let Y be a Beta random variable with parameters α and 1 − α, where 0 ≤ α < 1, such that it
has pdf:

fY (y) =

{
1

B(α,1−α)
yα−1 (1− y)−α , 0 ≤ y ≤ 1

0, otherwise

where B(a, b) is the Beta function.

The independent random variables X , from part 1, and Y are transformed to give two new
random variables W = X and Z = XY .

Show that the joint-pdf of W and Z is given by:

fWZ (w, z) =

{
λ

B(α, 1−α)
e−λw zα−1 (w − z)−α , if (w, z) ∈ R

0, otherwise

and write down the region R over which the density is non-zero.

3. Hence, show that the marginal-pdf of the random variable Z is Gamma distributed. Use the
substitution g = λ(w − z) where appropriate.

You may assume that the Beta function may be written as:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
where Γ(p) =

∫ ∞

0

xp−1 e−x dx ⋊⋉

is the Gamma function with Γ(1) = 1.

4. Suppose two random number generators are available, one which generates samples from a
uniform distribution, and the other from a beta distribution.

Describe an algorithm that generates random samples from a Gamma distribution.

SOLUTION. 1. The transformation X = g(U) = − 1
λ
logU for 0 ≤ u ≤ 1 has a single root:

u =

{
e−λx if x ≥ 0

0 otherwise
(7.31)

The derivative of the function X = g(U) for 0 ≤ u ≤ 1 is given by:

g′(u) =
dg(u)

du
= − 1

λu
(7.32)

Hence, noting that the pdf for the RV U is uniform, then the pdf for X is:

fX (x) =
N∑

n=1

fU (un)

|g′(un)|
=

{
1
1
λu

= λu if 0 ≤ u ≤ 0

0 otherwise
(7.33)

which gives the desired exponential distribution with pdf:

fX (x) =

{
λe−λx if x ≥ 0

0 otherwise
(7.34)
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Figure 7.3: Region of non-zero probability density

2. Consider the transformation from the two RVs X and Y to the two new random variables
W = X and Z = X Y . In this case, the probability transformation rule for two random
variables is required. This is a straightforward extension of the scalar case, but the Jacobian
needs to be evaluated:

J =
∂(w, z)

∂(x, y)
=

∣∣∣∣∂w∂x ∂w
∂y

∂z
∂x

∂z
∂y

∣∣∣∣ = ∣∣∣∣1 0
y x

∣∣∣∣ = x = w (7.35)

Moreover, note that there is one root of the transformation, and this is given by:

x = w and y =
z

w
(7.36)

Since X and Y are independent RVs, the joint-pdf of W and Z is therefore:

fWZ (w, z) =
1

J
fXY (x, y) =

1

w
fX (w) fY

( z
w

)
(7.37)

Note that if x < 0, then fX (x) = 0. Moreover, if y < 0 or y > 1, then fY (y) = 0. Thus, z
varies between 0× w and 1× w. Thus, the regions of non-zero probability density is shown in
Figure 7.3

Substituting for fX (x) and fY (y) in the non-zero region gives:

fWZ (w, z) =
1

w
λe−λw 1

B(α, 1− α)

( z
w

)α−1 (
1− z

w

)−α

(7.38)

=
λ

B(α, 1− α)
e−λw zα−1w−α

(
w − z

w

)−α

(7.39)

which gives the desired result:

fWZ (w, z) =

{
λ

B(α,1−α)
e−λw zα−1 (w − z)−α w ≥ 0 and 0 ≤ z ≤ w

0 otherwise
(7.40)

3. The marginal-pdf of Z is given by integrating over w:

fZ (w) =

∫ ∞

z

fWZ (w, z) dw (7.41)

The limits of this integration are obtained by looking back at Figure 7.3, and considering the
values of w for a fixed value of z. Hence, for z > 0,

fZ (z) =

∫ ∞

z

λ

B(α, 1− α)
e−λw zα−1 (w − z)−α dw (7.42)

=
λ

B(α, 1− α)
zα−1

∫ ∞

z

e−λw (w − z)−α dw (7.43)
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Figure 7.4: A simple derivation of the inverse transform method

Making the substitution g = λ(w − z), such that when w = z, g = 0, and when w → ∞,
g → ∞. Further, dg = λ dw. Therefore,

fZ (z) =
λ

B(α, 1− α)
zα−1

∫ ∞

0

e−(g+λ z)
(g
λ

)−α dg

λ
(7.44)

=
λα

B(α, 1− α)
zα−1 e−λ z

∫ ∞

0

e−g g−α dg (7.45)

Finally, using the identities given in the question:

B(α, 1− α) =
Γ(α)Γ(1− α)

Γ(1)
where Γ(1− α) =

∫ ∞

0

x1−α−1 e−x dx (7.46)

where Γ(1) = 1, then it follows that:

fZ (z) =
λα

Γ(α)Γ(1− α)
zα−1 e−λ z Γ(1− α) =

λα

Γ(α)
zα−1 e−λ z, z ≥ 0 (7.47)

and zero otherwise, which, using the definition given in the notes, is a Gamma distribution with
parameters λ and α: fZ (z) = Γ(z |λ, α).

4. To generate a Gamma random variable, assuming that a uniform and beta random number
generators are available, the algorithm is thus:

(a) Generate random variate, u, between 0 and 1 from uniform generator.

(b) Generate variate, y, from the beta generator with parameters α, 1− α.

(c) Calculate x = − 1
λ
log u.

(d) Calculate product z = xy; z is a variate from a Gamma distribution with parameters λ
and α. □

Note, in the above example, a Beta generator is required. It is possible to generate Beta random
variates when the distribution has integer parameters using order statistics.

7.2.4 Inverse Transform Method
New slideThere are various ways of deriving the inverse transform method, but a straightforward approach

follows a similar line to the derivation of the probability transformation rule.
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Figure 7.5: Rejection sampling

Referring to Figure 7.4, suppose that X(ζ) and Y (ζ) are RVs related by the function Y (ζ) =
Π(X(ζ)). The function Π(ζ) is monotonically increasing so that there is only one solution to the
equation y = Π(x), and this solution is denoted byx = Π−1(y).

Writing the probability transformation rule in an inverted form:

fX (x) =
dΠ(x)

dx
fY (y) (7.48)

Now, suppose Π(x) only takes on values in the range [0, 1], and that Y (ζ) ∼ U[0, 1] is a uniform
random variable. If the function Π(x) is the cumulative distribution function (cdf) corresponding to a
desired pdf π (x), then since π(x) and Π(x) are related by the equation

π(x) =
dΠ(x)

dx
(7.49)

it follows that
fX (x) = π(x), where x = Π−1(y) (7.50)

In otherwords, if
U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x) (7.51)

Example 7.2 (Exponential variable generation). If X(ζ) ∼ Exp(1), such that π(x) = e−x and
Π(x) = 1 − e−x, then solving for x in terms of u = 1 − e−x gives x = − log(1 − u). Therefore,
if U(ζ) ∼ U[0, 1], then the RV from the transformation X(ζ) = − logU(ζ) has the exponential
distribution (since U(ζ) and 1− U(ζ) are both uniform).

7.2.5 Acceptance-Rejection Sampling

New slide For most distributions, it is often difficult or even impossible to directly simulate using either the
inverse transform or probability transformations. If if the distribution could be represented in an
usable form, such as a transformation or as mixture, it would in principle be possible to exploit
directly the probabilistic properties to derive a simulation method; unfortunately, it is not usually
possible to make such representations.

Thus, acceptance-rejection sampling is a flexible class of methods that relies on the simpler
requirement of finding a density p (x) from which it is easy to sample from, where Mp (x) > π (x).
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The basic idea of acceptance-rejection sampling is shown in Figure 7.5. It is desired to sample from
the distribution π (x) which cannot be sampled from using the transform methods above. However,
assume it has been possible to find a proper density p (x) and a constant M such that Mp (x) > π (x).
This is shown in Figure 7.5 as a generous envelope around the desired function. For simplicity of
explanation, assume that M = 1.

Imagine now that a sample variate X has been drawn from the density p (x). This sample has been
drawn with probability Pg δx where Pg = p (X). However, if the sample were really to have been
drawn from the desired distribution, it should have probability Pπ δx where Pπ = π (X). Hence, on
average, you would expect to have too many variates that take on the value X by a factor of

u(X) =
Pp

Pπ

=
p (X)

π (X)
(7.52)

Thus, to reduce the number of variates that take on a value of X , simply throw away a number of
samples in proportion to the amount of over sampling. This throwing away of samples is also called
discarding samples, or rejecting samples.

Rather than drawing a large number of samples and discarding a certain proportion, the accept-reject
method will accept a sample with a certain probability given by:

Pa = Pr (accept variate X) =
π (X)

Mp (x)
(7.53)

This leads to the full accept-reject algorithm which takes the form:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ Pa =
π(X)
Mp(x)

;

3. Otherwise, reject and return to first step.

7.2.5.1 Envelope and Squeeze Methods

New slideA problem with many sampling methods, which can make the density π (x) difficult to simulate, is
down to the complexity of the function π (x) itself; the function may require substantial computing
time at each evaluation.

It is possible to reduce the algorithmic complexity of the accept-reject algorithm by looking for
another computationally simple function, q (x) which bounds π (x) from below.

In the case that the proposed variate X satisfies q (X) ≤ π (X), then considering the probability of
acceptance in the accept-reject algorithm the proposed variate X should be accepted when U ≤ q(X)

Mp(x)
,

since this also satisfies U ≤ π(X)
Mp(x)

. This is shown graphically in Figure 7.7.

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x)

;

3. Otherwise, accept X if U ≤ π(X)
Mp(x)

;

4. Otherwise, reject and return to first step.
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Figure 7.6: Envelope Rejection sampling

By construction of a lower envelope on π (x), the number of function evaluations is potentially
decreased by a factor of

Pπ̄ =
1

M

∫
q (x) dx (7.54)

which is the probability that π (x) is not evaluated.

7.2.6 Importance Sampling

New slide The problem with accept-reject sampling methods is finding the envelope functions and the constant
M . This difficulty can easily be resolved if the eventual application of the samples is considered,
rather than considering the sampling process as an end to-itself.

The simplest application of importance sampling is in Monte Carlo integration. Suppose that is is
desired to evaluate the function:

I =

∫
Θ

f(θ) dθ. (7.55)

In principle, this integral can be solved by drawing samples from the density f(θ) and finding those
values of θ that lie in the region of integration: θ ∈ Θ. In other words, an empirical average of I is:

Î =
1

N

N−1∑
k=0

IΘ
(
θ(k)
)
, where θ(k) ∼ f(θ) (7.56)

where IA (a) is the indicator function, and is equal to one if a ∈ A and zero otherwise.

It is often difficult to sample directly from f(θ), and in any case, there are other problems with the
estimator in Equation 7.56. A best estimate is as follows:

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫
Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]
, (7.57)

leads to an estimator based on the sample expectation;

Î =
1

N

N−1∑
k=0

f(θ(k))

π(θ(k))
(7.58)



7.3. Markov chain Monte Carlo Methods 273

Figure 7.7: Graphical representation of the Metropolis-Hastings algorithm.

7.2.7 Other Methods
New slide Include:

• representing pdfs as mixture of distributions;

• algorithms for log-concave densities, such as the adaptive rejection sampling scheme;

• generalisations of accept-reject;

• method of composition (similar to Gibbs sampling);

• ad-hoc methods, typically based on probability transformations and order statistics (for
example, generating Beta distributions with integer parameters).

7.3 Markov chain Monte Carlo Methods
New slideIn the previous chapter on sampling random variables, the variates are drawn from an independent

process.

A Markov chain is the first generalisation of an independent process, where each state of a Markov
chain depends on the previous state only.

7.3.1 The Metropolis-Hastings algorithm

New slideThe Metropolis-Hastings algorithm is an extremely flexible method for producing a random
sequence of samples from a given density.

Metropolis-Hastings explores the parameter space of the density π (x) by means of a random walk.
Unlike the accept-reject algorithm, each new sample is proposed as a random perturbation of a
previously accepted variate. The Metropolis-Hastings algorithm is as follows, given a previously
drawn sample X(k):

1. Generate a random sample from a proposal distribution: Y ∼ g
(
y | X(k)

)
.
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2. Set the new random variate to be:

X(k+1) =

{
Y with probability ρ(X(k), Y )

X(k) with probability 1− ρ(X(k), Y )
(7.59)

where the acceptance ratio function ρ(x, y) is given by:

ρ(x, y) = min

{
π (y)

g (y | x)

(
π (x)

g (x | y)

)−1

, 1

}
≡ min

{
π (y)

π (x)

g (x | y)
g (y | x)

, 1

}
(7.60)

This calculation is represented graphically in Figure 7.7.

7.3.1.1 Gibbs Sampling

New slide Gibbs sampling is a Monte Carlo method that facilitates sampling from a multivariate density
function, π (θ0, θ1, . . . , θM) by drawing successive samples from marginal densities of smaller
dimensions.

Using the probability chain rule,

π
(
{θm}Mm=1

)
= π

(
θℓ | {θm}Mm=1,m ̸=ℓ

)
π
(
{θm}Mm=1,m ̸=ℓ

)
(7.61)

The Gibbs sampler works by drawing random variates from the marginal densities
π
(
θℓ | {θm}Mm=1,m ̸=ℓ

)
in a cyclic iterative pattern.

This proceeds as follows assuming the components are initialised with values θ(0)0 , θ
(0)
1 , . . . , θ

(0)
M

First iteration:

θ
(1)
1 ∼ π

(
θ1 | θ(0)2 , θ

(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)
θ
(1)
2 ∼ π

(
θ2 | θ(1)1 , θ

(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)
θ
(1)
3 ∼ π

(
θ3 | θ(1)1 , θ

(1)
2 , θ

(0)
4 , . . . , θ

(0)
M

)
...

...

θ
(1)
M ∼ π

(
θM | θ(1)1 , θ

(1)
2 , θ

(1)
4 , . . . , θ

(1)
M−1

)
(7.62)

Second iteration:

θ
(2)
1 ∼ π

(
θ1 | θ(1)2 , θ

(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)
θ
(2)
2 ∼ π

(
θ2 | θ(2)1 , θ

(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)
θ
(2)
3 ∼ π

(
θ3 | θ(2)1 , θ

(2)
2 , θ

(1)
4 , . . . , θ

(1)
M

)
...

...

θ
(2)
M ∼ π

(
θM | θ(2)1 , θ

(2)
2 , θ

(2)
4 , . . . , θ

(2)
M−1

)
(7.63)
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k + 1-th iteration:

θ
(k+1)
1 ∼ π

(
θ1 | θ(k)2 , θ

(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)
θ
(k+1)
2 ∼ π

(
θ2 | θ(k+1)

1 , θ
(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)
θ
(k+1)
3 ∼ π

(
θ3 | θ(k+1)

1 , θ
(k+1)
2 , θ

(k)
4 , . . . , θ

(k)
M

)
...

...

θ
(k+1)
M ∼ π

(
θM | θ(k)1 , θ

(k)
2 , θ

(k)
4 , . . . , θ

(k)
M−1

)
(7.64)

At the end of the j-th iteration, the samples θ(j)0 , θ
(j)
1 , . . . , θ

(j)
M are considered to be drawn from the

joint-density π (θ0, θ1, . . . , θM).
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8
Review of Fourier Transforms and

Discrete-Time Systems

This handout will review complex Fourier series and Fourier transforms, followed by a review of
discrete-time systems. It covers complex Fourier series, Fourier transforms, Discrete-time Fourier
transforms, Discrete Fourier Transforms, Parseval’s Theorem, the bilaterial Z-transform, frequency
response, and rational transfer functions.

8.1 Introduction

This handout will review complex Fourier series and Fourier transforms, followed by a review of
discrete-time systems. The reader is expected to have previously covered most of the concepts in this
handout, although it is likely that the reader might need to revise the material if it’s been a while since
it’s been studied. Nevertheless, this revision material is included in the module as review material
purely for completeness and reference. It is not intended as a full introduction, although some parts
of the review cover the subject in detail.

As discussed in the first handout, if the reader wishes to revise these topics in more detail, the
following book comes highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Pearson New International Edition, Fourth edition, Pearson Education,
2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

278
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For undergraduate level text books covering signals and systems theory, which it is assumed you have
covered, the following book is recommmended:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing: Concepts and
Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.homepages.ed.ac.uk/pmg/SIGPRO/

The latest edition was printed in 2002, but any edition will do. An alternative presentation of roughly
the same material is provided by the following book:

Balmer L., Signals and Systems: An Introduction, Second edition, Prentice-Hall, Inc.,
1997.

IDENTIFIERS – Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

In particular, the appendix on complex numbers may prove useful.

8.2 Signal Classification

New slideTopic Summary 50 Deterministic time-series signal classification

Topic Objectives:

• Distinguish periodic and non-periodic, discrete-time and continuous signals.

• Ability to distinguish different signal types.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 277 to page 281 8 mins/page

Before considering the analysis of signals and systems, it is necessary to be aware of the general
classifications to which signals can belong, and to be aware of the significance of some subtle
characteristics that determine how a signal can be analysed. Not all signals can be analysed using
a particular technique.

Different types of deterministic signals include:

• continuous-time periodic signals;

• continuous-time non-periodic (or aperiodic) signals;

• discrete-time periodic signals;

• discrete-time aperiodic signals.

The variety of signal classes rapidly changes when the notion of random or stochastic signals are
introduced (not until the fourth-year!).
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t0 Period T

x t( )

(a) An example of a periodic signal with period T .

w= wn
00

w =2p
0

/T

X
n

w
0 3w

0

(b) The Fourier series of the periodic signal in Figure 8.1a with fundamental
frequency ω0 = 2π/T .

Figure 8.1: Example of a periodic signal and its spectral representation, found using the Fourier series.

8.2.1 Types of signal

New slideIn general, there are four distinct types of deterministic signals that must be analysed:

Continuous-time periodic Such signals repeat themselves after a fixed length of time known as the
period, usually denoted by T . This repetition continues ad-infinitum (i.e. forever).
Formally, a signal, x(t), is periodic if

x(t) = x(t+mT ) , ∀m ∈ Z (8.1)

where the notation ∀m ∈ Z means that m takes on all integer values: in other-words,
m = −∞, . . . , −2, −1, 0, 1, 2, . . . , ∞. The smallest positive value of T which
satisfies this condition is the defined as the fundamental period.
These signals will be analysed using the Fourier Series, and are used to represent
real-world waveforms that are near to being periodic over a sufficiently long period
of time.
An example of a periodic signal is shown in Figure 8.1a. This kind of signal vaguely
represents a line signal in analogue television, where the rectangular pulses represent
line synchronisation signals.

Continuous-time aperiodic Continuous-time aperiodic signals are not periodic over all time,
although they might be locally periodic over a short time-scale.
These signals can be analysed using the Fourier transform for most cases, and more
often using the Laplace transform. Aperiodic signals are more representative of
many real-world signals.
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t0

x t( )

(a) An example of an aperiodic signal.

w0

X( )w

(b) The Fourier transform of the aperiodic signal in Figure 8.2a, where every possible
frequency exists.

Figure 8.2: Example of an aperiodic signal and its spectral representation, found using the Fourier
transform.

Again, real signals don’t last for all time, although can last for a considerably long
time. An example of an aperiodic signal is shown in Figure 8.2a.

Discrete-time periodic A discrete-time periodic signal is shown in Figure 8.3, which is essentially
a sampled version of the signal shown in Figure 8.1a. Note in this case, the period
is often denoted by N , primarily to reflect the fact the time-index is now n; in other
words, x[n] = x(nTs) , n ∈ {0, 1, 2, . . . }, where Ts is the sampling interval.
A discrete-time signal, x[n], is periodic if:

x[n] = x[n+mN ] , ∀m ∈ Z (8.2)

This is, of course, similar to Equation 8.1. Discrete-time periodic signals can be
analysed using the discrete-time Fourier series or discrete Fourier transform (DFT)
depending on whether the period is a multiple of the number of samples.

Discrete-time aperiodic Analogous to the continuous-time aperiodic signal in Figure 8.2a, a
discrete-time aperiodic signal is shown in Figure 8.4.
Aperiodic discrete-time signals will be analysed using the discrete-time Fourier
transform (DTFT). It can also be analysed using the so-called z-transform, which
is the discrete-time version of the Laplace transform, although this will not be
covered in complete detail until the third and fourth year courses, Signals and
Communications 3, Discrete-Time Signal Analysis.

Finite-length discrete-time signals Discrete-time signals can also be classified as being finite in
length. In other words, they are not assumed to exist for all-time, and what happens
outside the window of data is assumed unknown. These signals can be modelled
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n0 Period N

x n[ ]

5 10

Figure 8.3: A discrete-time periodic signal.

n0

x n[ ]

Figure 8.4: An example of a discrete-time aperiodic signal.
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n0

x n[ ]

N-1

Figure 8.5: An example of a finite-duration signal.

using the so-called DFT, but again this is not covered until the fourth year course,
Discrete-Time Signal Analysis. The Fast Fourier transform (FFT) is the well-known
fast (low complexity) version of the DFT.

– End-of-Topic 50: Summary of Different Types of Signals? –
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Figure 8.6: Which signal is the largest?

8.2.2 Energy and Power Signals

New slideTopic Summary 51 Measuring the size of a signal (and introduction to signal norms)

Topic Objectives:

• Understanding how to measure the size (or norm) of a signal.

• Motivation for Energy and Power.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 282 to page 284 8 mins/page
Try Example Try Example 8.1 15 mins

The are many applications, such as signal detection, where knowing the size of a signal is important.
A large signal such as aircraft noise as it flies over a particular town might be more or less significant
than a longer signal of lower amplitude, but it all depends on the application.

Example 8.1 (Multi-choice Question). Which of the signals shown in Figure 8.6 is the largest!?

Moreover, as stated in Section 8.2.1, signals can be analysed using a variety of frequency-domain
transform methods, such as the Fourier series, Fourier transform, Laplace transform, and for
discrete-time, the z-transform. For example, the Fourier transform is used to analyse aperiodic
continuous-time signals.
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Figure 8.7: What is the size of an object?

Sidebar 19 Size of a Human Being

Suppose we wish to devise a signal number V as a measure of the size of a human being. Then
clearly, the width (or girth) must also be taken into account as well as the height. One could make the
simplifying assumption that the shape of a person is a cylinder of variable radius r (which varies with
the height h). Then one possible measure of the size of a person of height H is the person’s volume,
given by:

V = π

∫ H

0

r2(h) dh (8.3)

This can be found by dividing the object into circular discs (which is an approximation), where each
disc has a volume δV ≈ πr2(h) δh. Then the total volume is given by V =

∫
dV .

However, not all aperiodic signals can be analysed using the Fourier transform, and the reason for this
can be directly related to a fundamental property of a signal: a measure of how much signal there is.

Therefore it is relevant to consider the energy or power as a means for characterising a signal. The
concepts of power and energy intuitively follow from their use in other aspects of the physical
sciences. However, the concept of signals which exist for all time requires careful definitions, in
order to determine when it has energy and when it has power.

Intuitively, energy and power measure how big a signal is. A motivating example of measuring the
size of something is given in Sidebar 19, and in Figure 8.7. However, there are other possible signal
measures, as discussed in Sidebar 20.

8.2.2.1 Motivation for Energy and Power Expressions

New slideConsidering power from an electrical perspective, if a voltage x(t) is connected across a resistance
R, the dissipated power at time τ is given by:

P (τ) =
x2(τ)

R
∝ x2(τ) (8.4)
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t0

x t
2
( )

dt

t+dtt

Figure 8.8: Energy Density.

where ∝ denotes proportional to. In this case, the constant of proportionality is the inverse resistance.
Since energy and power are related through the expression

Energy = Power × Time, (8.5)

the energy dissipated between times τ and τ + δτ , as indicated in Figure 8.8, is:

δE(τ) ∝ P (τ) δτ ∝ x2(τ)δτ (8.6)

The total energy over all time can thus be found by integrating over all time:

E ∝
∫ ∞

−∞
x2(τ) dτ (8.7)

This leads to the formal definitions of energy and power.

– End-of-Topic 51: Introduction to Energy and Power Signals –
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Sidebar 20 Other signal measures

1. While the area under a signal x(t) is a possible measure of its size, because it takes account not
only of the amplitude but also of the duration, is defective since even for a very large signal, the
positive and negative areas could cancel each other out, indicating a signal of a small size.

2. Using the sum of square values can potentially give undue weighting to any outliers in the
signal, where an outlier is defined as an unusual signal variation that is not characteristic of the
rest of the signal; an example might be a high-energy shot burst of interference.

3. Therefore, taking the integral of the absolute value, |x(t) | ≡ absx(t), is a possible measure
and in some circumstances can be used. The relationship between input and output for this
signal measure is shown below.

| x t( ) |

0 x t( )

Unfortunately, dealing with the absolute value of a function can be difficult to manipulate
mathematically. However, using the area under the square of the function is not only more
mathematically tractable but is also more meaningful when compared with the electrical
examples and the volume in Sidebar 19.

4. These notions lead onto the more general subject of signal norms. The Lp-norm is defined by:

Lp(x) ≜

(∫ ∞

−∞
|x(t)|p dt

) 1
p

, p ≥ 1 (8.8)

In particular, the expression for energy is related to the L2-norm, while using the absolute value
of the signbal gives rise to the L1-norm:

L1(x) ≜
∫ ∞

−∞
|x(t)| dt (8.9)

which is the integral of the absolute value as described above in part 3.

5. While Parseval’s theorem, described on later for the power of periodic signals, develops a
relationship between the L2-norms in the time-domain and frequency-domain, in general no
relation exists for other values of p.

6. Note that the Lp-norm generalises for discrete-time signals as follows:

Lp(x) ≜

(
∞∑
−∞

|x[t]|p
) 1

p

, p ≥ 1 (8.10)
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8.2.2.2 Formal Definitions for Energy and Power

New slide Topic Summary 52 Energy and Power Definitions

Topic Objectives:

• Formal definitions for Energy and Power.

• Units of Energy and Power.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 286 to page 288 8 mins/page
Try Example Try Examples 8.2, 8.3, and 8.4 15 mins

Based on the justification in Section 8.2.2.1, the formal abstract definitions for energy and power that
are independent of how the energy or power is dissipated are defined below.

Energy Signals A continuous-time signal x(t) is said to be an energy signal if the total energy, E,
dissipated by the signal over all time is both nonzero and finite. Thus:

0 < E < ∞ where E =

∫ ∞

−∞
|x(t)|2 dt (8.11)

where |x(t) | means the magnitude of the signal x(t). If x(t) is a real-signal, this is just
its amplitude. If x(t) is a complex-signal, then |x(t) |2 = x(t) x∗(t) where ∗ denotes
complex-conjugate. In this course, however, only real signals will be encountered.
A necessary condition for the energy to be finite is that the signal amplitude |x(t) | →
0 as |t| → ∞, otherwise the integral in Equation 8.11 will not exist. When the
amplitude of x(t) does not tend to zero as |t| → ∞, the signal energy is likely to be
infinite. A more meaningful measure of the signal size in such a case would be the
time average of the energy if it exists. This measure is called the power of the signal.

Power signals If the average power delivered by the signal over all time is both nonzero and finite,
the signal is classified as a power signal:

0 < P < ∞ where P = lim
W→∞

1

2W

∫ W

−W

|x(t)|2 dt (8.12)

where the variable W can be considered as half of the width of a window that covers
the signal and gets larger and larger.

Example 8.2. Name a type of signal which is not an example of an energy signal?

SOLUTION. A periodic signal has finite energy over one period, so consequently has infinite energy.
However, as a result it has a finite average power and is therefore a power signal, and not an energy
signal.

Example 8.3 (Rectangular Pulse). What is the energy of the rectangular pulse shown in Figure 8.9
as a function of τ , and for the particular case of τ = 4?
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Figure 8.9: Rectangular pulse of length τ .
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Figure 8.10: The total energy of the signal in Figure 8.9 can be found as the area under the curve
representing the square of the rectangular pulse, as shown here.

SOLUTION. The signal can be represented by

x(t) =

{
2 0 ≤ t < τ

0 otherwise
(8.13)

so that the square of the signal is also rectangular and given by

x2(t) =

{
4 0 ≤ t < τ

0 otherwise
(8.14)

Since an integral can be interpreted as the area under the curve (see Figure 8.10), the total energy is
thus:

E = 4τ (8.15)
□

When τ = 4, E = 16.

Example 8.4 (Multiple Choice). The signal x(t) = exp (−|t|) is:

1. an energy signal, but not a power signal;

2. a power signal, but not an energy signal;

3. both an energy and a power signal;

4. not an energy signal, nor a power signal?
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8.2.2.3 Units of Energy and Power

New slideIt is important to consider the physical units associated with energy and power, and therefore to
determine how the abstract definitions of E and P in Equation 8.11 and Equation 8.12 can be
converted into real energy and power.

Consider again power from an electrical perspective. When considering “direct current” (DC) signals,
power is given by

PDC =
V 2

R
=

Volts2

Ohms
= Watts (8.16)

where V is the signal voltage, and R is the resistance through which the power is dissipated. Consider
now the units of the abstract definition of power, P in Equation 8.12:

P =
1

time
× Volts2 × time = Volts2 = Watts × Ohms (8.17)

where the second unit of time comes from the integral term dt, and in which the integral may be
considered as a summation. Therefore, by comparing Equation 8.16 and Equation 8.12, the abstract
definition of power, P , can be converted to real power by Ohms for the case of electrical circuits.

Similarly, the units of energy in Equation 8.11 is given by

E = volts2 × time (8.18)

Therefore, to convert the abstract energy to Joules, it is again necessary to divide by Ohms by noting
that energy is power multiplied by time.

8.2.2.4 Power for Periodic Signals

New slide The expression for power in Equation 8.12 can be simplified for periodic signals. Consider the
periodic signal in Figure 8.1a. Let 2W = T and define:

PT =
1

2W

∫ W

−W

|x(t)|2 dt (8.19)

Thus, the average power over two periods is 2PT , and the average power over N periods is PNT .
Then, it should becomes clear that:

PT = PNT , ∀N ∈ Z (8.20)

since the average in each period is the same. Consequently, power for a periodic signal with period
T may be defined as:

P =
1

T

∫ T

0

|x(t)|2 dt (8.21)

Note that the limits in Equation 8.21 may be over any period and thus can be replaced by (τ, τ + T )
for any value of τ .

– End-of-Topic 52: Definitions of Energy and Power Signals –
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8.3 Fourier Series and Fourier Transforms
New slide Topic Summary 53 Fourier Transform Theory

Topic Objectives:

• Understanding how to measure the size (or norm) of a signal.

• Motivation for Energy and Power.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 289 to page 296 8 mins/page
Try Example Try Examples 8.5, 8.6, and 8.7 40 mins

In this review of Fourier series and transforms, the topics covered are:

• Complex Fourier series

• Fourier transform

• The discrete-time Fourier transform

• Discrete Fourier transform

8.3.1 Complex Fourier series

New slideThe complex Fourier series is a frequency analysis tool for continuous time periodic signals.
Examples of periodic signals encountered in practice include square waves, triangular waves,
sawtooth waves, pulse waves and, of course, sinusoids and complex exponentials, as well as half-wave
recitifed, full-wave rectified and p-phased rectified sinusoids. The basic mathematical representation
of periodic signals is the Fourier series, which is a linear weighted sum of harmonically related
sinusoids or complex exponentials.

A periodic continuous-time deterministic signal, xc(t), with fundamental period Tp can be expressed
as a linear combination of harmonically related complex exponentials:

xc(t) =
∞∑

k=−∞

X̌c(k) e
jkω0t, t ∈ R, (M:2.2.1)

where ω0 = 2πF0 = 2π
Tp

is the fundamental frequency. Here, ω0 is in radians per second, and the
fundamental frequency, in Hertz, is given by F0 =

1
Tp

. Moreover,

X̌c(k) =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt, k ∈ Z (M:2.2.2)

are termed the Fourier coefficients, or spectrum of xc(t). Note that although the region of integration
in Equation M:2.2.2 is from 0 to Tp, it can actually be over any period of the waveform, since the
signal, xc(t), is periodic with period Tp.

The kth frequency component corresponds to frequency ωk = kω0 = k 2π
Tp

. The set of exponential
functions

F(t) = {ejω0kt, k ∈ Z} (8.22)
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Figure 8.11: Function f(t) of Example 8.5

can be thought of as the basic building blocks from which periodic signals of various types can be
constructed with the proper choice of fundamental frequency and Fourier coefficients.

Example 8.5 (Complex Fourier Series). Find the complex form of the Fourier series expansion of
the periodic function f(t) defined by:

f(t) = cos
1

2
t (−π < t < π)

f(t+ 2π) = f(t)
(8.23)

SOLUTION. A graph of the function f(t) over the interval −π ≤ t ≤ 3π is shown in Figure 8.11. The
period Tp = 2π, so therefore the complex coefficients, denoted by Fn, are given by Equation M:2.2.2
as:

Fn =
1

Tp

∫ Tp

0

f(t) e−jnω0t dt, n ∈ Z (8.24)

=
1

2π

∫ π

−π

cos
t

2
e−jnt dt =

1

4π

∫ π

−π

(
ej

t
2 + e−j t

2

)
e−jnt dt (8.25)

=
1

4π

∫ π

−π

(
e−j(n− 1

2)t + e−j(n+ 1
2)t
)
dt (8.26)

which, after some trivial integration, gives:

Fn =
1

4π

[
−2e−j(2n−1) t

2

j(2n− 1)
− 2e−j(2n+1) t

2

j(2n+ 1)

]π
−π

(8.27)

=
j

2π

[(
e−jnπ ej

π
2

2n− 1
+

e−jnπ e−j π
2

2n+ 1

)
−
(
ejnπ e−j π

2

2n− 1
+

ejnπ ej
π
2

2n+ 1

)]
(8.28)

Noting that e±j π
2 = ±j, and e±jnπ = cosnπ = (−1)n, then it follows that:

Fn =
j

2π

(
j

2n− 1
− j

2n+ 1
+

j

2n− 1
− j

2n+ 1

)
(−1)n (8.29)

=
(−1)n

π

(
1

2n+ 1
− 1

2n− 1

)
=

2(−1)n+1

(4n2 − 1)π
(8.30)

Note that in this case, the coefficients Fn are real. This is expected, since the function f(t) is an even
function of t. The complex Fourier series expansion for f(t) is therefore:

f(t) =
∞∑

n=−∞

2(−1)n+1

(4n2 − 1)π
ejnt (8.31)

□
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8.3.1.1 Common Fourier Series Expansions

In the following Fourier series expansions, ω0 =
2π
T

is the fundamental frequency.

Half-wave rectified cosine-wave:

xc(t) =
1

π
+

1

2
cosω0t+

2

π

∞∑
n=1

(−1)n+1 cos(2nω0t)

4n2 − 1

p-phase rectified cosine-wave (p ≥ 2):

xc(t) =
p

π
sin

π

p

[
1 + 2

∞∑
n=1

(−1)n+1 cos(pnω0t)

p2n2 − 1

]

Square wave:

xc(t) =
4

π

∞∑
n=1

sin(2n− 1)ω0t

2n− 1

Triangular wave:

xc(t) =
8

π2

∞∑
n=1

(−1)n+1 sin(2n− 1)ω0t

(2n− 1)2

Sawtooth wave:

xc(t) =
2

π

∞∑
n=1

(−1)n+1 sinnω0t

n

Pulse wave:

xc(t) =
τd
T

[
1 + 2

∞∑
n=1

sin(nπ τd
T
)

(nπ td
T
)

cos(nω0t)

]

8.3.1.2 Dirichlet Conditions

An important issue that arises in the representation of the continuous time periodic signal xc(t) by the
Fourier series representation,

x̄c(t) =
∞∑

k=−∞

X̌c(k) e
jkω0t, (P:4.1.5)
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is whether or not the series converges for every value of t ∈ R; i.e., is it true that

x̄c(t)
?
= xc(t), ∀t ∈ R (8.32)

The so-called Dirichlet conditions guarantee that the Fourier series converges everywhere except
at points of discontinuity. At these points, the Fourier series representation x̄c(t) converges to the
midpoint, or average value, of the discontinuity.

The Dirichlet conditions require that the signal xc(t):

1. has a finite number of discontinuities in any period;

2. contains a finite number of maxima and minima during any period;

3. is absolutely integrable in any period; that is:∫
Tp

|xc(t)| dt < ∞ (P:4.1.6)

where the integral is over one period. Many periodic signals of practical interest easily satisfy
these conditions, and it is reasonable to assume that all practical periodic signals do. However, it
is important to beware that pathological cases can make certain proofs or algorithms collapse.

8.3.1.3 Parseval’s Theorem (for Fourier series)

New slide It is sometimes relevant to consider the energy or power as a means for characterising a signal.
These concepts of power and energy intuitively follow from their use in other aspects of the physical
sciences. However, the concept of signals which exist for all time requires careful definitions for
when it has energy and when it has power. Consider the following signal classifications:

Energy Signals A signal xc(t) is said to be an energy signal if the total energy, E, dissipated by the
signal over all time is both nonzero and finite. Thus:

0 < E < ∞ where E =

∫ ∞

−∞
|xc(t)|2 dt (8.33)

Power signals If the average power delivered by the signal over all time is both nonzero and finite,
the signal is classified as a power signal:

0 < P < ∞ where P = lim
T→∞

1

2T

∫ T

−T

|xc(t)|2 dt (8.34)

A periodic signal has infinite energy, but finite average power. The average power of xc(t) is given by
Parseval’s theorem:

Px =
1

Tp

∫ Tp

0

|xc(t)|2 dt =
∞∑

k=−∞

|X̌c(k)|2 (M:2.2.3)

The term |X̌c(k)|2 represents the power in the kth frequency component, at frequency ωk = k 2π
Tp

.
Hence,

P̌x(k) = |X̌c(k)|2, −∞ < k < ∞, k ∈ Z (8.35)

is called the power spectrum of xc(t). Consequently, it follows Px may also be written as:

Px =
∞∑

k=−∞

P̌x(k) (8.36)
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PROOF. Starting with

Px =
1

Tp

∫ Tp

0

xc(t)x
∗
c(t) dt (8.37)

then substituting for the Fourier series expansion of xc(t) gives:

Px =
1

Tp

∫ Tp

0

xc(t)

{
∞∑

k=−∞

X̌c(k) e
jkω0t

}∗

dt (8.38)

Noting that the conjugate of a summation (multiplication) is the summation (multiplication) of the
conjugates, then:

Px =
1

Tp

∫ Tp

0

xc(t)
∞∑

k=−∞

X̌∗
c (k) e

−jkω0t dt (8.39)

Rearranging the order of the integration and the summation gives:

Px =
∞∑

k=−∞

X̌∗
c (k)

{
1

Tp

∫ Tp

0

xc(t) e
−jkω0t(t) dt

}
︸ ︷︷ ︸

Xc(k)

(8.40)
□

which is the desired result and completes the proof.

Later in this course, the notion of a power spectrum will be extended to stochastic signals.

Example 8.6 ( [Proakis:1996, Example 4.1.1, Page 237]). Determine the Fourier series and the
power density spectrum of a rectangular pulse train that is defined over one period as follows:

xc(t) =


0 if −Tp

2
≤ t < − τ

2

A if − τ
2
≤ t < τ

2

0 if τ
2
≤ t < Tp

2

(8.41)

where τ < Tp.

SOLUTION. The signal is periodic with fundamental period Tp and, clearly, satisfies the Dirichlet
conditions. Consequently, this signal can be represented by the Fourier series. Hence, it follows that

X̌c(k) =
1

Tp

∫ Tp
2

−Tp
2

xc(t) e
−jkω0t dt =

A

Tp

∫ τ
2

− τ
2

e−jkω0t dt (8.42)
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Two different integrals need to be performed depending on whether k = 0 or not. Considering the
case when k = 0, then the average value of the signal is obtained and given by:

X̌c(0) =
1

Tp

∫ τ
2

− τ
2

xc(t) dt =
1

Tp

∫ τ
2

− τ
2

Adt =
Aτ

Tp

(8.43)

For k ̸= 0, then

X̌c(k) =
A

Tp

∫ τ
2

− τ
2

e−jkω0t dt =
A

Tp

[
e−jkω0t

−jkω0

] τ
2

− τ
2

(8.44)

=
A

jkω0Tp

(
ejkω0

τ
2 − e−jkω0

τ
2

)
=

Aτ

Tp

sin τω0k
2

kω0
τ
2

(8.45)

=
Aτ

Tp

sinc
τω0k

2
where sincx ≜

sinx

x
(8.46)

Hence, the power density spectrum for the rectangular pulse is:

∣∣X̌c(k)
∣∣2 = (Aτ

Tp

)2

sinc2
τω0k

2
, k ∈ Z (P:4.1.19)

□

where it is noted that sinc (0) = 1.

8.3.2 Fourier transform
New slide An aperiodic continuous-time deterministic signal, xc(t), can be expressed in the frequency domain

using the Fourier transform pairs:

xc(t) =
1

2π

∫ ∞

−∞
Xc(ω) e

jωt dω (M:2.2.5)

and
Xc(ω) =

∫ ∞

−∞
xc(t) e

−jωt dt (M:2.2.4)

Xc(ω) is called the spectrum of xc(t). Again, note that [Manolakis:2000] uses the defintion F = ω
2π

.
Continuous-time aperiodic signals have continuous aperiodic spectra.

There are a few mathematical requirements that xc(t) must satisfy for Xc(ω) to exist; these can
be summarised by the phrase that the signal must be well-behaved. More specifically, the set of
conditions that guarantee the existence of the Fourier transform are the Dirichlet conditions which are
the same as for Fourier series.

Example 8.7 (Fourier Transforms). Find the Fourier transform of the one-sided exponential
function

f(t) = H(t) e−at where a > 0 (8.47)

and where H(t) is the Heaviside unit step function show in Figure 8.12 and given by:

H(t) =

{
1 if t ≥ 0

0 otherwise
(8.48)
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Figure 8.12: The Heaviside step function H(t).

Figure 8.13: Exponential decaying function, f(t) = H(t) e−at for a > 0.

SOLUTION. Since f(t) → 0 as t → ∞, then the signal energy is bounded, as indicated by plotting
the graph of f(t) as shown in Figure 8.13.

A Fourier transform therefore exists, and is given by:

Xc(ω) =

∫ ∞

−∞
H(t) e−at e−jωt dt (8.49)

=

∫ ∞

0

e−(a+jω)t dt =

[
−e−(a+jω)t

a+ jω

]∞
0

(8.50)

giving

Xc(ω) =
1

a+ jω
, for −∞ < ω < ∞ (8.51)

□

8.3.2.1 Parseval’s theorem (for Fourier transforms)

New slideThe energy of xc(t) is, as for Fourier series, computed in either the time or frequency domain by
Parseval’s theorem:

Ex =

∫ ∞

−∞
|xc(t)|2 dt =

1

2π

∫ ∞

−∞
|Xc(ω)|2 dω (M:2.2.7)

The function |Xc(ω)|2 ≥ 0 shows the distribution of energy of xc(t) as a function of frequency, ω,
and is called the energy spectrum of xc(t).

PROOF. The derivation of Parseval’s theorem for Fourier transforms follows a similar line to the
derivation of Parseval’s theorem for Fourier series; it proceeds as follows:

Ex =

∫ ∞

−∞
xc(t)x

⋆
c(t) dt =

∫ ∞

−∞
xc(t)

1

2π

∫ ∞

−∞
X⋆

c (ω) e
−jωt dω dt

=
1

2π

∫ ∞

−∞
X⋆

c (ω)

∫ ∞

−∞
xc(t) e

−jωt dt dω =
1

2π

∫ ∞

−∞
X⋆

c (ω)Xc(ω) dω

(8.52)
□
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– End-of-Topic 53: Revision of the Continuous-Time Fourier Analysis:
the Complex Fourier Series and the Fourier Transform –
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8.3.3 The discrete-time Fourier transform
New slide Topic Summary 54 Fourier Transform Theory

Topic Objectives:

• Understanding how to measure the size (or norm) of a signal.

• Motivation for Energy and Power.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 297 to page 301 8 mins/page

Turning to discrete-time deterministic signals, the natural starting point is to consider aperiodic signals
that exist for all discrete-time; i.e. {x[n]}∞−∞. It is interesting to note that there are fewer convergence
issues with transforms for discrete-time signals than there are in the continuous-time case.

An aperiodic discrete-time deterministic signal, {x[n]}∞−∞, can be synthesised from its spectrum
using the inverse-discrete-time Fourier transform, given by:

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω, n ∈ Z (M:2.2.13)

and the discrete-time Fourier transform (DTFT):

X
(
ejωT

)
=
∑
all n

x[n] e−jωn, ω ∈ R (M:2.2.12)

X
(
ejωT

)
is the spectrum of x[n].

Since X
(
ejωT

)
= X

(
ej(ω+2πk)

)
, discrete-time aperiodic signals have continuous periodic spectra

with fundamental period 2π. However, this property is just a consequence of the fact that the
frequency range of any discrete-time signal is limited to [−π, π) or [0, 2π); any frequency outside
this interval is equivalent to some frequency within this interval.

There are two basic differences between the Fourier transform of a discrete-time finite-energy
aperiodic signal, as represented by the discrete-time Fourier transform, and the Fourier transform
of a finite-energy continuous-time aperiodic signal:

1. For continuous-time signals, the Fourier transform, and hence the spectrum of the signal, have
a frequency range of (−∞,∞). In contrast, the frequency range for a discrete-time signal is
unique over the frequency range [−π, π) or, equivalently, [0, 2π).

2. Since X
(
ejωT

)
in the DTFT is a periodic function of frequency, it has a Fourier series

expansion, provided that the conditions for the existence of the Fourier series are satisfied. In
fact, from the fact that X

(
ejωT

)
is given by the summation of exponentially weighted versions

of x[n] is is clear that the DTFT already has the form of a Fourier series. This is not true for the
Fourier transform.

In order for X
(
ejωT

)
to exist, x[n] must be absolutely summable:∑

all n

|x[n] | < ∞ (M:2.2.11)
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Finally, as for the Fourier series, and the Fourier transform, discrete-time aperiodic signals have
energy which satisfies Parseval’s theorem:

Ex =
∞∑

n=−∞

|x[n] |2 = 1

2π

∫ π

−π

|X
(
ejωT

)
|2 dω (P:4.2.41)

8.3.4 Discrete Fourier transform

New slide Any finite-length or periodic discrete-time deterministic signal, {x[n]}N−1
0 , can be written by the

Fourier series, or inverse-DFT (IDFT):

x[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N

nk, n ∈ N (M:2.2.8)

where N = {0, 1, . . . , N − 1} ⊂ Z+, and where the DFT:

Xk =
N−1∑
n=0

x[n] e−j 2π
N

nk, k ∈ N (M:2.2.9)

are the corresponding Fourier coefficients. The sequence Xk, k ∈ R is the spectrum of x[n]. Xk is
discrete and periodic with the same period as x[n].

Note that a finite-length discrete-time signal of length N has the same Fourier transform, through
the DFT, as an infinite-length discrete-time periodic signal of period N . Hence, these equivalent
perspectives will be considered synonymous.

PROOF (DERIVATION OF DISCRETE FOURIER TRANSFORM). If the discrete-time signal x[n] is
periodic over N samples, then it can be written over one period in continuous time as:

xc(t) = Tp

∑
n∈N

x[n] δ(t− nTs) , 0 ≤ t < Tp (8.53)

where N = {0, . . . , N − 1}, Ts is the sampling period, and Tp = N Ts is the period of the process.
Substituting into the expression for the Fourier series, using the sifting property and noting that
ω0 =

2π
Tp

= 2π
NTs

, gives:

Xk =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt (8.54)

=
1

Tp

∫ Tp

0

{
Tp

∑
n∈N

x[n] δ(t− nTs)

}
e−jkω0t dt (8.55)

=
∑
n∈N

x[n]

∫ Tp

0

δ(t− nTs) e
−jkω0t dt (8.56)

=
∑
n∈N

x[n] e−j 2π
N

nk (8.57)
□

The IDFT can be obtained using the appropriate identities to ensure a unique inverse.
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8.3.4.1 Parseval’s Theorem for Finite Length Discrete-Time Signals

The average power of a finite length or periodic discrete-time signal with period N is given by the
sum of squared sample values:

Px =
N−1∑
n=0

|x[n] |2 (P:4.2.10)

Through the same manipulations as for Parseval’s theorems in the cases presented above, which are
left as an exercise for the reader, it is straightforward to show that:

Px =
N−1∑
n=0

|x[n] |2 = 1

N

N−1∑
k=0

|Xk|2 (P:4.2.11)

8.3.4.2 The DFT as a Linear Transformation

New slideThe formulas for the DFT and IDFT may be expressed as:

Xk =
N−1∑
n=0

x[n] W nk
N , k ∈ N (P:5.1.20)

x[n] =
1

N

N−1∑
k=0

Xk W
−nk
N , n ∈ N (P:5.1.21)

where, by definition:
WN = e−j 2π

N (P:5.1.22)

which is the N th root of unity. Note here that, if WN has been pre-calculated, then the computation
of each point of the DFT can be accomplished by N complex multiplications and N − 1 complex
additions. Hence, the N -point DFT can be computed in a total of N2 complex multiplications and
N(N − 1) complex additions.

It is instructive to view the DFT and IDFT as linear transformations on the sequences {x[n]}N−1
0 and

{Xk}N−1
0 . Defining the following vectors and matrices:

xN =

 x[0]
...

x[N − 1]

 , XN =

 X0
...

XN−1

 (8.58)

WN =


1 1 1 · · · 1
1 WN W 2

N · · · WN−1
N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

... · ...
1 WN−1

N W
2(N−1)
N · · · W

(N−1)(N−1)
N

 (8.59)

Observe that Xk can be obtained by the inner-product of the (k − 1) th-order row with the column
xN :

Xk =
[
1 W k

N W 2k
N · · · W

(N−1)k
N

] x[0]
...

x[N − 1]

 (8.60)

Then the N -point DFT may be expressed in vector-matrix form as:

XN = WNxN (P:5.1.24)
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where WN is the matrix of the linear transformation. Observe that WN is a symmetric matrix.
Assuming that the inverse of WN exists, then Equation P:5.1.24 can be inverted by pre-multiplying
both sides by W−1

N , to obtain:
xN = W−1

N XN (P:5.1.25)

This is the expression for the IDFT, which can also be expressed in matrix form as:

xN =
1

N
W∗

NXN (P:5.1.26)

where W∗
N denotes the complex conjugate of the matrix WN . Hence, it follows that:

W−1
N =

1

N
W∗

N or WNW
∗
N = NIN (P:5.1.27)

where IN is the N ×N identity matrix. Hence, WN is an orthogonal or unity matrix.

8.3.4.3 Properties of the discrete Fourier transforms

New slide There are some important basic properties of the DFT that should be noted. The notation used to
denote the N -point DFT pair x[n] and Xk is

x[n]
DFT
⇌ Xk (8.61)

Periodicity If x[n]
DFT
⇌ Xk, then:

x[n+N ] = x[n] for all n (P:5.2.4)
Xk+N = Xk for all k (P:5.2.5)

These periodicities in x[n] and Xk follow immediately from the definitions of the
DFT and IDFT.

Linearity If x[n]
DFT
⇌ Xk and y[n]

DFT
⇌ Yk, then

α1x[n] + α2y[n]
DFT
⇌ α1Xk + α2Yk (P:5.2.6)

for any real or complex-valued constants α1 and α2.

Symmetry of real-valued sequences If the sequence x[n]
DFT
⇌ Xk is real, then

XN−k = X∗
k = X−k (P:5.2.24)

Complex-conjugate properties If x[n]
DFT
⇌ Xk then

x∗[n]
DFT
⇌ X∗

N−k (P:5.2.45)

PROOF. The DFT of the sequence x[n] is given by:

Xk =
N−1∑
n=0

x[n] e−j 2π
N

nk, k ∈ N (M:2.2.9)

and the DFT of y[n] = x∗[n] is given by:

Yk =
N−1∑
n=0

x∗[n] e−j 2π
N

nk (8.62)
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Taking complex conjugates, and noting that ej
2π
N

mk = e−j 2π
N

m(N−k), then:

Y ∗
k =

N−1∑
n=0

x[n] e−j 2π
N

m(N−k) = XN−k (8.63)
□

Hence, giving x∗[n]
DFT
⇌ X∗

N−k as required.

Time reversal of a sequence If x[n]
DFT
⇌ Xk then

x[N − n]
DFT
⇌ XN−k (P:5.2.42)

Hence, reversing the N -point sequence in time is equivalent to reversing the DFT
values in frequency.

PROOF. From the definition of the DFT, if y[n] = x[N − n], then:

Yk =
N−1∑
n=0

x[N − n] e−j 2π
N

nk =
N∑

m=1

x[m] e−j 2π
N

(N−m)k (8.64)

where the second summation comes from changing the index from n to m = N − n.
Noting then, that x[N ] = x[0],then this may be written as

Yk =
N−1∑
m=0

x[m] e−j 2π
N

(N−m)k =
N−1∑
m=0

x[m] ej
2π
N

mk (8.65)

=
N−1∑
m=0

x[m] e−j 2π
N

m(N−k) = XN−k (8.66)
□

as required.

Circular Convolution As with many linear transforms, convolution in the time-domain becomes
multiplication in the frequency domain, and vice-versa. Since the signals are periodic,
it is necessary to introduce the idea of circular convolution. Details of this are
discussed in depth in [Proakis:1996, Section 5.2.2, Page 415] and are currently
ommitted here. However, assuming that convolution is interpreted in the circular
sense (i.e. taking advantage of the periodicity of the time-domain signals), then if

x[n]
DFT
⇌ Xk and y[n]

DFT
⇌ Yk, then:

x[n] ∗ y[n]
DFT
⇌ Xk Yk (P:5.2.41)

– End-of-Topic 54: Revision of the Discrete-Time Fourier Analysis: the
DTFT and the DFT –
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n0

d[ ]n

(a) The unit sample
or unit impulse sequence
δ[n].

n0

u[ ]n

(b) The unit step sequence
u[n].

n0

x[ ]n

(c) The exponential decay sequence.

Figure 8.14: Basic discrete-time signals.

8.4 Review of discrete-time systems

New slideTopic Summary 55 Fourier Transform Theory

Topic Objectives:

• Understanding how to measure the size (or norm) of a signal.

• Motivation for Energy and Power.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 302 to page 311 8 mins/page
Try Example Try Examples 8.8 and 8.9 40 mins

The following aspects of discrete-time systems are reviewed:

• Basic discrete-time signals

• The z-transform

• Review of linear time-invariant systems

• Rational transfer functions

8.4.1 Basic discrete-time signals

New slide In general, the notation x[n] is used to denote a sequence of numbers that represent a discrete-time
signal. The nth sample refers to the value of this sequence for a specific value of n. In a strict
sense, this terminology is only correct if the discrete-time signal has been obtained by sampling a
continuous-time signal xc(t). In the case of periodic sampling with sampling period T , then x[n] =
xc(nT ) , n ∈ Z; that is, x[n] is the nth sample of xc(t).

There are some basic discrete-time signals that will be used repeatedly throughout the course, and
these are shown in Figure 8.14:
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1. The unit sample or unit impulse sequence δ[n] is defined as:

δ[n] =

{
1 n = 0

0 n ̸= 0
(M:2.1.1)

2. The unit step sequence, u[n] is defined as:

u[n] =

{
1 n ≥ 0

0 n < 0
(M:2.1.2)

3. The exponential sequence is of the form

x[n] = an, −∞ < n < ∞, n ∈ Z (M:2.1.3)

If a is a complex number, such that a = r ejω0 for r > 0, ω0 ̸= 0, π, then x[n] is complex
valued and given by:

x[n] = rn ejω0n = xR[n] + jxI [n] (M:2.1.4)
= rn cosω0n+ jrn sinω0n (8.67)

where xR[n] and xI [n] are real sequences given by:

xR[n] = rn cosω0n and xI [n] = rn sinω0n (M:2.1.5)

4. The critical decay sequence is of the form

x[n] = a n rn u[n] , n ∈ Z (8.68)

which is discussed further in Sidebar 21.

8.4.2 The z-transform
New slideThe z-transform of a sequence is a very powerful tool for the analysis of discrete linear and

time-invariant systems; it plays the same role in the analysis of discrete-time signals and linear
time-invariant (LTI) systems as the Laplace transform does in the analysis of continuous-time signals
and LTI systems. For example, as will be seen, in the z-domain, also known as the complex z-plane,
the convolution of two time-domain signals is equivalent to multiplication of their corresponding
z-transforms. This property greatly simplifies the analysis of the response of an LTI system to various
inputs.

Although the Fourier transform also satisfies the property that convolution in the time domain
becomes multiplication in the frequency domain, it is not always possible to calculate the Fourier
transform of a signal, x[n], even for some elementary signals that are important for the analysis of
systems. For example, if x[n] is a power signal (having finite power), rather than an energy signal,
the discrete-time Fourier transform (DTFT) does not exist.

One such signal, of practical importance, is the unit step function, u[t], as can be illustrated by
attempting to evaluate the DTFT:

U
(
ejωT

)
=

∞∑
n=−∞

u[n] e−jωn =
∞∑
n=0

e−jωn (8.72)
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Sidebar 21 The signal n rn

The discrete-time signal
x[n] = a n rn (8.69)

is equivalent to the continuous-time signal x[t] = t e−αt, and both are important, as they represent the
response of a critically damped system, as will be seen later. Note in both cases that:

lim
n→∞

n rn → 0 (8.70)

The shape of x[n] is shown below for r = 0.9, and note the relationship derived in Sidebar 22 that:

n rn
z+

⇌
r

(1− r)2
if |r| < 1 (8.71)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
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n

x[
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The simple signal nrn
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This is a geometric series, of the form
∞∑
n=0

rn where r = e−jω; however, this series diverges since

|r| = 1. Therefore, the DTFT does not exist; this could also have been deduced from the fact that
u[n] is not absolutely summable, which a necessary condition for a Fourier transform to exist:

∑
all n

|u[n]| =
∞∑
n=0

1 ̸< ∞ (8.73)

The solution is to multiply the signal by a convergence factor, which leads to the z-transform. Details
of the derivation can be found in some text books.

8.4.2.1 Bilateral z-transform

New slideThe bilateral z-transform is defined by the following pairs of equations:

X (z) ≜ Z[x[n]] =
∞∑

n=−∞

x[n] z−n (M:2.2.29)

x[n] =
1

2πj

∮
C

X (z) zn−1 dz (M:2.2.30)

where z is a complex variable. This is usually denoted as:

x[n]
z
⇌ X (z) or X (z) = Z[x[n]] (8.74)

The set of values of z for which the power series in the (direct) z-transform converges is called the
region of convergence (ROC) of X (z). A sufficient condition for convergence is:

∞∑
n=−∞

|x[n] ||z−n| < ∞ (M:2.2.31)

The unilateral or one-sided z-transform, which is more commonly encountered in undergraduate
Engineering courses, is discussed below in Section 8.4.2.3. For the moment, it suffices to mention that
the difference between them usually comes down to the initial conditions, and therefore a discussion
of the bilateral transform is not too restrictive at this point.

By evaluating the z-transform on the unit circle of the z-plane, such that z = ejω, then:

X (z)|z=ejω = X
(
ejωT

)
=

∞∑
n=−∞

x[n] e−jωn (M:2.2.32)

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω (M:2.2.33)

which are the DTFT and inverse-DTFT relating the signals x[n] and X
(
ejωT

)
. This relation holds

only if the unit circle is inside the ROC.

Example 8.8 ( [Proakis:1996, Example 3.1.3, Page 154]). Determine the z-transform of the signal:

x[n] = αn u[n] ≡

{
αn n ≥ 0

0 n < 0
(8.80)

June 28, 2021 – 08 : 40



308 Linear Systems Review

Sidebar 22 The Ubiquitous Geometric Progression

The geometric progresson occurs frequently in discrete-time analysis due to the existance of the
summation operator and the commonality of exponential decay functions. It is essentially the
discrete-time equivalent of integrating an exponential function. The geometric progression is given
by

N∑
n=0

a rn = a
1− rN+1

1− r
(8.75)

∞∑
n=0

a rn = a
1

1− r
if |r| < 1 (8.76)

More interesting are variants of the geometric progression that can be obtained by simple
manipulations, such as differentiating both sides of Equation 8.76 with respect to (w. r. t.) r:

d

dr

[
∞∑
n=0

a rn

]
=

d

dr

[
a

1

1− r

]
(8.77)

∞∑
n=0

a n rn−1 = a
1

(1− r)2
(8.78)

or, multiplying both sides by r, gives:

∞∑
n=0

a n rn = a
r

(1− r)2
if |r| < 1 (8.79)

which is also a useful identity. The signal x[n] = n rn is an important one and discussed further in
Sidebar 21. Differentiating repeated times gives a general expresion for

∑
np rn which can often be

useful.
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Figure 8.15: The region of convergence (ROC) for the transfer function in Equation P:3.1.7.

SOLUTION. From the definition of the z-transform, it follows that:

X (z) =
∞∑
k=0

αnz−n =
∞∑
n=0

(
α z−1

)n (8.81)

The summation on the right is a geometric progression, and converges to 1
1−α z−1 if, and only if, (iff)

|αz−1| < 1 or, equivalently, |z| > |α|. Further details on the geometric progression are given in
Sidebar 22. Thus, this gives the z-transform pair:

x[n] = αn u[n]
z
⇌ X (z) =

1

1− αz−1
ROC: |z| > |α| (P:3.1.7)

Note that, in general, α need not be real. The ROC is the exterior of a circle having radius |α|. The
ROC is shown in Figure 8.15. The z-transform in Equation P:3.1.7 may be written as:

X (z) =
z

z − α
ROC: |z| > |α| (8.82)

□
and therefore it has a pole at z = α and a zero at z = 0. The position of the pole is outside the ROC,
which is as expected since the z-transform does not converge at a pole; it tends to infinity instead.
However, simply because there is a zero at the origin does not mean the z-transform converges at that
point – it doesn’t, since it is outside of the ROC. However, the concept of the zero is still important
and is thus still drawn on the pole-zero diagram.

Example 8.9 (Two-sided exponential (Laplacian exponential)). What is the bilateral z-transform
of the sequence x[n] = a|n| for all n and some real constant a, where |a| < 1?

SOLUTION. The bilateral z-transform of a sequence x[n] = a|n|, shown in Figure 8.16, is given by:

X (z) =
∞∑

n=−∞

x[n] z−n =
∞∑

n=−∞

a|n| z−n (8.83)

=
−1∑

n=−∞

a−n z−n +
∞∑
n=0

an z−n (8.84)

Setting m = −n in the first summation, noting that when n = −∞ then m = ∞, and when n = 0
then m = 0, gives:

X (z) =
∞∑
n=1

(az)n +
∞∑
n=0

(a
z

)n
(8.85)

=
∞∑
n=0

(az)n − 1 +
∞∑
n=0

(a
z

)n
(8.86)
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n0

x a[ ]n =
| |n

Figure 8.16: The sequence x[n] = a|n|.

Im( )z

Re( )z

1

a

ROC

unit
circle

pole at z�=�a

and z�=�1/a

outside of ROC

zero
at origin

1/a

Figure 8.17: The region of convergence (ROC) for the transfer function in Equation 8.88.

giving:

X (z) =
1

1− az
− 1 +

1

1− a
z

(8.87)

where the expression for an infinite geometric progression has been used. Note, however, that each
summation has different convergence constraints. Thus, note that the first summation only exists for
|az| < 1, while the second summation only exists for

∣∣a
z

∣∣ < 1. This means that the ROC for this
transform is the ring |a| < z < 1

|a| . The ROC is thus shown in Figure 8.17.

Combining the various terms and a slight rearrangement gives the expression:

X (z) =
1− a2

(1− az) (1− az−1)
(8.88)

□

which has a zero at z = 0 and poles at z = a and z = 1
a
.

8.4.2.2 Properties of the z-transform

New slide The power of the z-transform is a consequence of some very important properties that the transform
possesses. Some of these properties are listed below, as a re-cap. Note that the proof of many of these
properties follows immediately from the definition of the property itself and the z-transform, and is
left as an exercise for the reader. Alternatively, cheat and look in, for example, [Proakis:1996].

Linearity If x1[n]
z
⇌ X1 (z) and x2[n]

z
⇌ X2 (z), then by linearity

x[n] = α1x1[n] + α2x2[n]
z
⇌ X (z) = α1X1 (z) + α2X2 (z) (P:3.2.1)

for any constants α1 and α2.
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Obviously, this property can be generalised for an arbitrary number of signals, and
therefore if xm[n]

z
⇌ Xm (z) for m = {1, . . . ,M}

x[n] =
M∑

m=1

αmxm[n]
z
⇌ X (z) =

M∑
m=1

αmXm (z) (8.89)

for any constants {αm}M1 .

Time shifting If x[n]
z
⇌ X (z) then:

x[n− k]
z
⇌ z−kX (z) (8.90)

The ROC of z−kX (z) is the same as that of X (z) except for z = 0 if k > 0 and
z = ∞ if k < 0.

Scaling in the z-domain If x[n]
z
⇌ X (z) with ROC r1 < |z| < r2, then

an x[n]
z
⇌ X(a−1 z) ROC: |a|r1 < |z| < |a|r2 (P:3.2.9)

for any constant a.

Time reversal If x[n]
z
⇌ X (z) with ROC r1 < |z| < r2, then

x[−n]
z
⇌ X(z−1) ROC:

1

r1
< |z| < 1

r2
(P:3.2.12)

Differentiation in the z-domain If x[n]
z
⇌ X (z) then

nx[n]
z
⇌ −z

dX (z)

dz
(P:3.2.14)

PROOF. Since

X (z) =
∞∑

n=−∞

x[n] z−n (8.91)

then differentiating both sides gives:

dX (z)

dz
= −z−1

∞∑
n=−∞

[nx[n]] z−n = −z−1Z[nx[n]] (8.92)
□

Both transforms have the same ROC.

Convolution If x1[n]
z
⇌ X1(z) and x2[n]

z
⇌ X2(z), then

x[n] = x1[n] ∗ x2[n]
z
⇌ X (z) = X1(z)X2(z) (3.2.17)

The ROC of X (z) is, at least, the intersection of that for X1(z) and X2(z).

PROOF. The convolution of x1[n] and x2[n] is defined as:

x[n] =
∞∑

k=−∞

x1[k]x2[n− k] (8.93)

The z-transform of x[n] is:

X (z) =
∞∑

n=−∞

x[n] z−n =
∞∑

n=−∞

[
∞∑

k=−∞

x1[k]x2[n− k]

]
z−n (8.94)
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Upon changing the order of the summations, then:

X (z) =
∞∑

k=−∞

x1[k]

[
∞∑

n=−∞

x2[n− k] z−n

]
︸ ︷︷ ︸

X2(z) z−k

= X2(z)
∞∑

k=−∞

x1[k] z
−k

︸ ︷︷ ︸
X1(z)

(8.95)
□

giving the desired result.

The Initial Value Theorem If x[n] = 0, n < 0 is a causal sequence, then

x[0] = lim
z→∞

X (z) (P:3.2.23)

PROOF. Since x[n] is causal, then:

X (z) = x[0] + x[1] z−1 + x[2] z−2 + · · · (8.96)
□

Hence, as z → ∞, z−n → 0 since n > 0, and thus the desired result is obtained.

8.4.2.3 The Unilateral z-transform

New slide The two-sided z-transform requires that the corresponding signals be specified for the entire time
range n ∈ Z. This requirement prevents its used for systems that are described by difference equations
with nonzero initial conditions. Since the input is applied at a finite time, say n0, both input and
output signals are specified for n ≥ n0, but are not necessarily zero for n < 0. Thus the two sided
z-transform cannot be used.

The one-sided unilateral z-transform of a signal x[n] is defined by:

X+(z) ≡
∞∑
n=0

x[n] z−n (P:3.5.1)

This is usually denoted as:

x[n]
z+

⇌ X+(z) or X+(z) = Z+[x[n]] (8.97)

The unilateral z-transform differs from the bilateral transform in the lower limit of the summation,
which is always zero, whether or not the signal x[n] is zero for n < 0 (i.e., causal). Therefore, the
unilateral z-transform contains no information about the signalx[n] for negative values of time, and is
thereforeunique only for causal signals. The unilateral and bilateral z-transforms are, consequentially,
identical for the signal x[n]u[n] where u[n] is the step function. Since x[n]u[n] is causal, the ROC of
its transform, and hence the ROC of X+ (z), is always the exterior of a circle. Thus, when discussing
the unilateral z-transform, it is not necessary to refer to their ROC - which perhaps explains why this
is the more commonly discussed transform in undergraduate courses.

Almost all the properties for the bilateral z-transform carry over to the unilateral transform with the
exception of the shifting property.

Shifting property: Time Delay If x[n]
z+

⇌ X+(z) then:

x[n− k]
z+

⇌ z−kX (z) +
−1∑

n=−k

x[n] z−(n+k)

︸ ︷︷ ︸
initial conditions

, k > 0 (8.98)
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PROOF. Since

X+(z) ≡
∞∑
n=0

x[n] z−n (P:3.5.1)

then it follows that

Z+[x[n− k]] =
∞∑
n=0

x[n− k] z−n =
∞∑

m=−k

x[m] z−(m+k) (8.99)

by the change of index m = n− k,

= z−k

−1∑
m=−k

x[m] z−m + z−k

∞∑
m=0

x[m] z−m

︸ ︷︷ ︸
X+(z)

(8.100)
□

This is the desired result.

Shifting property: Time Advance If x[n]
z+

⇌ X+(z) then:

x[n+ k]
z+

⇌ zkX (z)−
k−1∑
n=0

x[n] zk−n, k > 0 (8.101)

PROOF. From the definition of the unilateral transform, it follows

Z+[x[n+ k]] =
∞∑
n=0

x[n+ k] z−n =
∞∑

m=k

x[m] z−(m−k) (8.102)

by the change of index m = n+ k. Thus,

= zk
∞∑
0

x[m] z−m

︸ ︷︷ ︸
X+(z)

−zk
k−1∑
m=1

x[m] z−m (8.103)
□

This is the desired result.

Final Value Theorem If x[n]
z+

⇌ X+(z) then:

lim
n→∞

x[n] = lim
z→1

(z − 1)X+(z) (P:3.5.6)

The limit on the right hand side (RHS) exists if the ROC of (z − 1)X+(z) includes
the unit circle.

Further information can be found in books on discrete-time systems, for example [Proakis:1996,
Section 3.5, Page 197].

– End-of-Topic 55: Revision of Basic Discrete-Time Signals and the
z-transform –
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8.4.3 Review of linear time-invariant systems

New slideTopic Summary 56 Fourier Transform Theory

Topic Objectives:

• Understanding how to measure the size (or norm) of a signal.

• Motivation for Energy and Power.

Topic Activities:

Type Details Duration Progress
Read Handout Read page 312 to page 314 8 mins/page
Try Example Try Examples 8.8 and 8.9 40 mins

• Systems which are LTI can be elegantly analysed in both the time and frequency domain:
convolution in time, multiplication in frequency.

• For signals and sequences, it is common to write {y[n]}∞n=−∞, or even {y[n]}n∈Z rather than
simply y[n]: the latter is sufficient for these notes.

• Output, y[n], of a LTI system is the convolution of the input, x[n], and the impulse response
of the system, h[n]:

y[n] = x[n] ∗ h[n] ≜
∑
k∈Z

x[k] h[n− k] (M:2.3.2)

• By making the substitution k̂ = n− k, it follows:

y[n] =
∑
k∈Z

h[k] x[n− k] = h[n] ∗ x[n] (M:2.3.3)

8.4.3.1 Matrix-vector formulation for convolution

New slide If x[n] and h[n] are sequences of finite duration, the convolution operation can be written in
matrix-vector form. Let x[n] , 0 ≤ n ≤ N − 1 and h[n] , 0 ≤ n ≤ M − 1 be finite-duration
sequences, then y[n] , 0 ≤ n ≤ L− 1, where L = N +M − 1, can be written as:

y[0]
y[1]

...
y[M − 1]

...
y[N − 1]

...
y[L− 2]
y[L− 1]


=



x[0] 0 · · · 0

x[1] x[0]
. . . ...

... . . . 0
x[M − 1] · · · · · · x[0]

... . . . . . . ...
x[N − 1] · · · · · · x[N −M ]

0
. . . ...

... . . . x[N − 1] x[N − 2]
0 · · · 0 x[N − 1]




h[0]
h[1]

...
h[M − 1]

 (M:2.3.4)

or
y = Xh (M:2.3.5)

• Here, y ∈ RL, X ∈ RL×M , and h ∈ RM .
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• The matrix X is termed an input data matrix, and has the property that it is toeplitz. 1

• The observation or output vector y can also be written in a similar way as:

y = Hx (M:2.3.6)

in which H is also toeplitz.

• A system is causal if the present output sample depends only on past and/or present input
samples.

• Assume system is asymptotically stable.

8.4.3.2 Transform-domain analysis of LTI systems

New slideTime-domain convolution:
y[n] =

∑
k∈Z

x[k] h[n− k] (M:2.3.2)

or
y[n] =

∑
k∈Z

h[k] x[n− k] (M:2.3.3)

Taking z-transforms gives:
Y (z) = H (z) X (z) (M:2.3.8)

where X (z), Y (z) and H (z) are the z-transforms of the input, output, and impulse response
sequences respectively. H (z) = Z[h[n]] is the system function or transfer function.

8.4.3.3 Frequency response of LTI systems

New slideThe frequency response of the system is found by evaluating the z-transform on the unit circle, so
z = ejω:

Y
(
ejωT

)
= H

(
ejωT

)
X
(
ejωT

)
(M:2.3.9)

• |H(ejω)| is the magnitude response of the system, and argH(ejω) is the phase response.

• The group delay of the system is a measure of the average delay of the system as a function of
frequency:

τ(ejω) = − d

dω
argH(ejω) (M:2.3.11)

8.4.3.4 Frequency response to Periodic Inputs

New slideAlthough the convolution summation formula can be used to compute the response of a stable system
to any input, the frequency-domain input-output relationship for a LTI cannot be used with periodic
inputs, since periodic signals do not strictly possess a z-transform. However, it is possible to develop
an expression for the frequency response of LTI from first principles. Let x[n] be a periodic signal
with fundamental period N . This signal can be expanded using an IDFT as:

x[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N

kn, n ∈ {0, . . . , N − 1} (M:2.3.19)

1A Toeplitz matrix is one in which the elements along each diagonal, parallel to the main diagonal each descending
from left to right, are constant. Note that the anti-diagonals are not necessarily equal.
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where Xk are the Fourier components.

Hence, it follows that on substitution into the convolution equation:

y[n] =
∞∑

m=−∞

h[m] x[n−m] =
1

N

∞∑
m=−∞

h[m]
N−1∑
k=0

Xk e
j 2π
N

k(n−m) (M:2.3.20)

which, by interchanging the order of summation (noting that the limits are over a rectangular region
of summation), gives;

y[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N

kn

∞∑
m=−∞

h[m] e−j 2π
N

km

︸ ︷︷ ︸
H(ej

2π
N

k)

(8.104)

where H(ej
2π
N

k) are samples of H(ejω). Hence,

y[n] =
1

N

N−1∑
k=0

{
H(ej

2π
N

k)Xk

}
ej

2π
N

kn (8.105)

However, this is just the inverse-DFT expansion of y[n], and therefore:

Yk = H(ej
2π
N

k)Xk k ∈ {0, . . . , N − 1} (M:2.3.21)

Thus, the response of a LTI system to a periodic input is also periodic with the same period.
The magnitude of the input components is modified by |H(ej

2π
N

k)|, and the phase is modified by
argH(ej

2π
N

k).

8.4.4 Rational transfer functions
New slide Many systems can be expressed in the z-domain by a rational transfer function. They are described

in the time domain by:

y[n] = −
P∑

k=1

ak y[n− k] +

Q∑
k=0

dk x[n− k] (M:2.3.12)

Taking z-transforms gives:

H (z) =
Y (z)

X (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

≜
D (z)

A (z)
(M:2.3.13)

This can be described in the complex z-plane as:

H (z) =
D (z)

A (z)
= G

∏Q
k=1(1− zk z

−1)∏P
k=1(1− pk z−1)

(M:2.3.14)

where pk are the poles of the system, and zk are the zeros.

– End-of-Topic 56: Revision of analysing LTI systems –



9
Discrete-Time Stochastic Processes

Introduces the notion of time-series or random processes. Gives an interpretation using ensembles,
and covers second-order statistics including correlation sequences. Discusses types of stationary
processes, ergodicity, joint-signal statistics, and correlation matrices.

9.1 A Note on Notation

Note that, unfortunately, for this module, a slightly different (and abusive use of) notation for random
quantities is used than what was presented in the first four handouts of the Probability, Random
Variables, and Estimation Theory (PET) module. In the literature, most time series are described
using lower-case letters, primarily since once the notation for the representation of a random process
in the frequency domain is discussed, upper-case letters are exclusively reserved to denote spectral
representations. Moreover, lower-case letters for time-series are generally more recognisable and
readable, and helps with the clarity of the presentation. Hence, random variables and vectors in this
handout will not always be denoted using upper-case letters.

317
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9.2 Definition of a Stochastic Process
New slideTopic Summary 57 Introduction to Stochastic Processes

Topic Objectives:

• Definition of a Stochastic Process.

• Concept of an ensemble of realisations.

• Example of drawing an ensemble and the corresponding sample space.

• Interpretation of the random sequences.

Topic Activities:

Type Details Duration Progress
Watch video 13 : 22 min video 3× length
Read Handout Read page 316 to page 318 8 mins/page
Try Example Try Example 9.1 10 mins

http://media.ed.ac.uk/media/1_f7d1ldvi

Video Summary: In this first video of the Statistical Signal Processing part of the
PETARS course, the notion of random signals, or stochastic processes is introduced. It
is defined as a natural extension to the conceptual development of random variables and
random vectors, but where a deterministic signal is associated with each outcome of the
experiment. After a formal definition of the random process, the notion of an ensemble
of realisations is considered. The video then gives an example of plotting an ensemble
for a particular problem. The random process is also considered as a sequence of random
variables, where the random variables have dependences. Finally, this video discusses
the general concepts regarding analysing random processes that will be considered in the
remainder of the course.

After studying random variables and vectors, these concepts can now (easily) be extended to
discrete-time signals or sequences.

• Natural discrete-time signals can be characterised as random signals, since their values cannot
be determined precisely; that is, they are unpredictable. A natural mathematical framework
for the description of these discrete-time random signals is provided by discrete-time stochastic
processes.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton52'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_f7d1ldvi
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Figure 9.1: A graphical representation of a random process.

• To obtain a formal definition, consider an experiment with a finite or infinite number of
unpredictable outcomes from a sample space S = {ζk, k ∈ Z+}, each occurring with
probability Pr (ζk). Assign by some rule to each ζk ∈ S a deterministic sequence x[n, ζk] , n ∈
Z.

• The sample space S, probabilities Pr (ζk), and the sequences x[n, ζk] , n ∈ Z constitute a
discrete-time stochastic process, or random sequence.

• Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic process if, for a fixed value
n0 ∈ Z+ of n, x[n0, ζ] , n ∈ Z is a random variable.

• A random or stochastic process is also known as a time series in the statistics literature.

• It is an infinite sequence of random variables, so could be thought of as an infinite-dimensional
random vector. Indeed, finite-length random signals and sequences can specifically be
represented by the concept of a random vector.

9.2.1 Interpretation of Sequences

New slideExample 9.1. Consider a continuous-time random process, x(t, ζ), defined by a finite sized ensemble
consisting of four equally probable functions given by:

x(t, 1) = −3u(t) x(t, 2) = cos (5π t) u(t)

x(t, 3) = 10 t u(t) x(t, 4) = 2 sin (6π t+ 0.2)

1. Draw the ensemble.

2. For t = 0.2, determine the sample space.
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Figure 9.2: Ensemble of waveforms.

SOLUTION. 1. To plot the ensemble, draw all the realisations. The ensemble is therefore shown
in Figure 9.2.

2. The sample space is thus {−3,−1, 2,−1.4736}.

The set of all possible sequences {x[n, ζ]} is called an ensemble, and each individual sequence
x[n, ζk], corresponding to a specific value of ζ = ζk, is called a realisation or a sample sequence of
the ensemble. Hence, when a random process is observed through the outcome of a single experiment,
one member of the ensemble is selected randomly and presented. A graphical representation of a
random process is shown in Figure 9.7.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable
n Fixed Number Random variable

n Variable Sample sequence Stochastic process

Use simplified notation x[n] ≡ x[n, ζ] to denote both a stochastic process, and a single realisation.
The word stochastic is derived from the Greek word stochasticos, which means skillful in aiming or
guessing. Use the terms random process and stochastic process interchangeably throughout this
course.

Building on these intepretations of sequences, this course will therefore investigate:

• The statistical properties of random signals, the statistical dependence of samples at different
points in time.

• Interpreting stochastic signals in the frequency domain, the notion of a random spectrum, and
the concept of the power spectral density.

• What happens to a stochastic process and signals as it passes through systems?

• The notion of signal modelling for signal analysis and prediction.

– End-of-Topic 57: Introduction to the definition of stochastic processes
–
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9.2.2 Description using probability density functions (pdfs)

New slideTopic Summary 58 Statistical Description of Random Processes

Topic Objectives:

• Concept of second-order statistical descriptions.

• Calculating autocorrelation sequence (ACS) from a signal model.

• Calculating ACS of a linear function of random processes.

Topic Activities:

Type Details Duration Progress
Watch video 25 : 34 min video 3× length
Read Handout Read page 319 to page 323 8 mins/page
Try Example Try 9.2 and 9.3 10 mins

http://media.ed.ac.uk/media/1_fpiz8i47

Video Summary: As with random vectors, other than in certain special cases, it can
be difficult to describe and manipulate random processes through the use of joint-pdfs,
although the definitions for the joint-pdf is provided. Instead, the video discusses that
second-order statistics including the mean sequence, the ACS (second-moment), and the
autocovariance sequence (central moment) are often adequate for capturing key salient
features of the random processes. After extending the definitions for the mean and
correlations previously seen for random vectors to random processes, two examples
are given. The first example derives the ACS for a process which is based on an a
priori defined physics-based model (namely, an harmonic process). The second example
considers finding the ACS of a linear function of random processes (in this case, a
non-causal delay).

For fixed n = n0, it is clear from Figure 9.7 that x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables {x[nj] , j ∈ {1, . . . k}} is characterised by the
joint-cumulative distribution function (cdf) and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk) (9.1)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk

(9.2)
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In exactly the same way as with random variables and random vectors, it is:

• difficult to estimate these probability functions without considerable additional information or
assumptions;

• possible to frequently characterise stochastic processes usefully with much less information.

Thus, the density and distribution functions are characterised using moments and, in particular,
second-order moments.

9.3 Second-order Statistical Description

New slide Random variables can be characterised, upto second-order statistics, using the mean and variance;
random vectors are characterised by the mean vector, auto-correlation and auto-covariance matrices.
Random processes, however, are characterised by sequences, where a particular sample, n0, of this
sequence characterises the random variable x[n0, ζ]. These sequences are the mean and variance
sequence, the autocorrelation and autocovariance sequences, as outlined below.

Mean and Variance Sequence At time n, the ensemble mean and variance are given by:

µx[n] = E [x[n]] (M:3.3.3)

σ2
x[n] = E

[
|x[n]− µx[n] |2

]
= E

[
|x[n] |2

]
− |µx[n] |2 (M:3.3.4)

Both µx[n] and σ2
x[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic rxx[n1, n2] provides a measure of the
dependence between values of the process at two different times; it can provide
information about the time variation of the process:

rxx[n1, n2] = E [x[n1] x
∗[n2]] (M:3.3.5)

Note this definition is not consistent across all text book, or indeed University courses!

Autocovariance sequence The autocovariance sequence provides a measure of how similar the
deviation from the mean of a process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]

(M:3.3.6)

To show how these deterministic sequences of a stochastic process can be calculated, several examples
are considered in detail below.

9.3.1 Example of Calculating Autocorrelations

New slide Example 9.2 ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process x[n] is defined by:

x[n] =
M∑
k=1

Ak cos(ωkn+ ϕk), ωk ̸= 0 (M:3.3.50)

where M , {Ak}M1 and {ωk}M1 are constants, and {ϕk}M1 are pairwise independent random variables
uniformly distributed in the interval [0, 2π].
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n

n

n

n

Abstract
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x n[ ], z1

x n[ ], z2

x n[ ], z3

x n[ ], z
k

r.v.

[ ]x n1, z

Ensemble of
realisations

r.v.

[ ]x n2, z

Statistics across
time samples

1. Determine the mean of x[n].

2. Show the autocorrelation sequence is given by

rxx[ℓ] =
1

2

M∑
k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞ (9.3)

where ℓ ≜ n1 − n2, and rxx[ℓ] ≜ rxx[n1, n1 + ℓ] for any n1.

SOLUTION. 1. The expected value of the process is straightforwardly given by:

E [x[n]] = E

[
M∑
k=1

Ak cos(ωkn+ ϕk)

]
=

M∑
k=1

Ak E [cos(ωkn+ ϕk)] (9.4)

Recall from results derived earlier in the course that if x[n, ζ] = g(n, ϕ(ζ)) is a random variable
obtained by transforming ϕ(ζ) through a known function, g, the expectation of x[n] = x[n, ζ]
is:

E [x[n]] =

∫
x[n] p (x[n]) dx[n] (9.5)

=

∫ ∞

−∞
g(n, ϕ) pΦ(ϕ) dϕ (9.6)

This property results from the invariance of the expectation operator, and helps for problems like
the present one; this invariance was covered back in the handout on Scalar random variables. It
is important to consider n as a constant.

Since a co-sinusoid is zero-mean, then:

E [cos(ωkn+ ϕk)] =

∫
cos(ωkn+ ϕk) fΦk

(ϕk) dϕk (9.7)

=

∫ 2π

0

cos(ωkn+ ϕk)×
1

2π
× dϕk = 0 (9.8)
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Hence, it follows:
E [x[n]] = 0, ∀n (9.9)

2. The autocorrelation rxx[n1, n2] = E [x[n1] x
∗[n2]] follows similarly:

rxx[n1, n2] = E

[
M∑
k=1

Ak cos(ωkn1 + ϕk)
M∑
j=1

A∗
j cos(ωjn2 + ϕj)

]
(9.10)

=
M∑
k=1

M∑
j=1

Ak A
∗
j E [cos(ωkn1 + ϕk) cos(ωjn2 + ϕj)]︸ ︷︷ ︸

r(ϕk,ϕj)

(9.11)

After some algebra, it can be shown that the term r(ϕk, ϕj):

E [cos(ωkn1 + ϕk) cos(ωjn2 + ϕj)] =

{
1
2
cosωk(n1 − n2) k = j

0 otherwise
(9.12)

The proof of this statement is obtained by considering the term

r(ϕk, ϕj) = E [cos(ωkn1 + ϕk) cos(ωjn2 + ϕj)] (9.13)

for the cases when k ̸= j, and when k = j. Considering the former case first, k ̸= j, then

r(ϕk, ϕj)

∫∫
cos(ωkn1 + ϕk) cos(ωjn2 + ϕj) fΦjΦk

(ϕj, ϕk) dϕj dϕk (9.14)

Using the fact that {ϕk}M1 come from the uniform density, then fΦjΦk
(ϕj, ϕk) =(

1
2π

)2 I[0,2π] (ϕj) I[0,2π] (ϕj), then:

r(ϕk, ϕj) =
1

4π2

∫ 2π

0

∫ 2π

0

cos (ωkn1 + ϕk) cos (ωjn2 + ϕj) dϕj dϕk (9.15)

=
1

4π2

∫ 2π

0

cos(ωkn1 + ϕk) dϕk

∫ 2π

0

cos(ωjn2 + ϕj) dϕj (9.16)

= 0 (9.17)

An alternative derivation for this case when k ̸= j, which might be considered more
straightforward, is to observe that Equation 9.13 might also be written as:

r(ϕk, ϕj) = E [g(ϕk)h(ϕj)] = E [g(ϕk)]E [h(ϕj)] (9.18)

where g(ϕk) = cos(ωkn1 + ϕk) and h(ϕk) = cos(ωjn2 + ϕj), and the fact that ϕk and ϕj are
independent implies the expectation function may be factorised.

For the case when k = j such that ϕ = ϕk = ϕj and ω = ωk = ωj , then:

r(ϕ, ϕ) =

∫
cos(ωn1 + ϕ) cos(ωn2 + ϕ) fΦ (ϕ) dϕ (9.19)

=
1

2π

∫ 2π

0

cos(ωn1 + ϕ) cos(ωn2 + ϕ) dϕ (9.20)

Using the trigonometric identity cosA cosB = 1
2
(cos(A+B) + cos(A−B)), then:

r(ϕk, ϕj) =
1

4π

∫ 2π

0

{cosω(n1 − n2) + cos(ω(n1 + n2) + 2ϕ)} dϕ (9.21)

=
1

2
cosω(n1 − n2) (9.22)
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giving the result above; namely:

E [cos(ωkn1 + ϕk) cos(ωjn2 + ϕj)] =
1

2
cosωk(n1 − n2) δ(k − j) (9.23)

Substituting this expression into

rxx[n1, n2] =
M∑
k=1

M∑
j=1

Ak A
∗
j E [cos(ωkn1 + ϕk) cos(ωjn2 + ϕj)] (9.24)

thus leads to the desired result, where ℓ = n1 − n2. It can be seen that the process x[n] must be
a stationary process, as it is only a function of the lag ℓ:

rxx[ℓ] =
1

2

M∑
k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞ (9.25)
□

Note finally that these are ensemble statistics, meaning that they are expected values across the
different realisations (i.e. across the ensemble).

Example 9.3 (Functions of Random Process). A random variable y[n] is defined to be:

y[n] = x[n] + x[n+m] (9.26)

where m is some integer, and x[n] is a stochastic process whose ACS is given by:

rxx[n1, n2] = e−(n1−n2)2 (9.27)

Derive an expression for the ACS of the stochastic process y[n], denoted ryy[n1, n2].

SOLUTION. In this example, it is simplest to form the product:

y[n1] y
∗[n2] = [x[n1] + x[n1 +m]] [x∗[n2] + x∗[n2 +m]] (9.28)

= x[n1]x
∗[n2] + x[n1]x

∗[n2 +m]

+ x[n1 +m]x∗[n2] + x[n1 +m]x∗[n2] (9.29)

Then, taking expectations, it follows:

ryy[n1, n2] = rxx[n1, n2] + rxx[n1, n2 +m] (9.30)
+ rxx[n1 +m, n2] + rxx[n1 +m, n2 +m] (9.31)

Using the result rxx[n1, n2] = e−(n1−n2)2 gives, in this particular case:

ryy[r1, r2] = 2 e−(n1−n2)2 + e−(n1−n2+m)2 + e−(n1−n2−m)2 (9.32)
□

– End-of-Topic 58: Statistical Description of a Stochastic Process –

June 28, 2021 – 08 : 40



326 Stochastic Processes

9.4 Types of Stochastic Processes

New slideTopic Summary 59 Important Types of Stochastic Processes

Topic Objectives:

• Concepts and definitions of fundamental types of stochastic processes.

• Understanding predictable and unpredictable processes and signal decompositions.

Topic Activities:

Type Details Duration Progress
Watch video 16 : 37 min video 3× length
Read Handout Read page 324 to page 327 8 mins/page
Try Code Use the MATLAB code 10 mins
Try Example Try Example 9.4 20 mins

http://media.ed.ac.uk/media/1_rnwrdpim

Video Summary: This video discusses some fundamental types of stochastic processes,
including predictable processes, unpredictable processes, independent and independent
and identically distributed processes, uncorrelated, and orthogonal processes, and an
introduction to stationary processes. These fundamental processes are introduced mainly
to define terminology for the rest of the course, but also to discuss the importance of
some of these processes in signal modelling, and processes that can be dealt with in a
mathematically convenient manner. There are no examples associated with this topic, but
there is a MATLAB example for generating a linear combination of a predictable and
unpredictable process (and Wold’s decomposition theorem is mentioned in passing).

Some useful types of stochastic properties, based on their statistical properties, are now introduced:

Predictable Processes A deterministic signal is by definition exactly predictable; it assumes there
exists a certain functional relationship that completely describes the signal, even
if that functional relationship is not available or is extremely difficult to describe.
The unpredictability of a random process is, in general, the combined result of the
following two characteristics:

1. The selection of a single realisation of a stochastic process is based on the
outcome of a random experiment; in other-words, it depends on ζ .
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2. No functional description is available for all realisations of the ensemble. In
other-words, even if a functional relationship is available for a subset of the
ensemble, it might not be available for all members of the ensemble.

In some special cases, however, a functional relationship is available. This means that
after the occurrence of all samples of a particular realisation up to a particular point,
n, all future values can be predicted exactly from the past ones.
If this is the case for a random process, then it is called predictable, otherwise it is
said to be unpredictable or a regular process.

KEYPOINT! (Predictable Process). As an example of a predictable process,
consider the signal:

x[n, ζ] = A sin (ω n+ ϕ) (9.33)
□

where A is a known amplitude, ω is a known normalised angular frequency, and ϕ is
a random phase, where ϕ ∼ fΦ (ϕ) is its pdf.

As an outline of this idea, suppose that all the samples of a stochastic process x[n, ζ]
upto sample n − 1 are known; thus, {x[k, ζ]}n−1

k=−∞ are known. Then the predicted
value of x[n] might, for example, be expressed as:

x̂[n] = −
∞∑
k=1

a∗k x[n− k] (T:7.189)

The error in this prediction is given by

ϵ[n] = x[n]− x̂[n] =
∞∑
k=0

a∗k x[n− k] (T:7.190)

where a0 = 1. The process is said to be predictable if the {ak}’s can be chosen such
that:

σ2
ϵ = E

[
|ϵ[n] |2

]
= 0 (T:7.191)

Otherwise the process is not predictable. The phrase not predictable is somewhat
misleading, since the linear prediction in Equation T:7.189 can be applied to any
process, whether predictable or not, with satisfactory results. If a process is not
predictable, it just means that the prediction error variance is not zero.
An example of predictable process is the process x[n, ζ] = c, where c is a random
variable, since every realisation of the discrete-time signal has a constant amplitude,
and once x[n0, ζk] is known for a particular realisation, all other samples of that
process have also been determined.
The notion of predictable and regular processes is formally presented through the
Wold decomposition, and further details of this very important theorem can be found
in [Therrien:1992, Section 7.6, Page 390] and [Papoulis:1991, Page 420].

Independence A stochastic process is independent if, and only if, (iff)

fX (x1, . . . , xN | n1, . . . , nN) =
N∏
k=1

fXk
(xk | nk) (M:3.3.10)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of independent random
variables.
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An independent and identically distributed (i. i. d.) process is one where all the random variables
{x[nk, ζ] , nk ∈ Z} have the same pdf, and x[n] will be called an i. i. d. random
process.

Example 9.4 (Independence: i. i. d. processes). I am selling my house, and have
decided to accept the first offer exceeding K pounds. Assuming that the offers
are i. i. d. random variables, with common cumulative distribution function FX (x),
where x is the offer price, find the expected number of offers received before I sell
the house.

SOLUTION. Suppose that I sell the house after N offers. Then there are N − 1 offers
that are less than K, which occur with probability FX (K). Thus, the probability of
selling the house after N offers is:

Pr (N = n) = FX (K)n−1 [1− FX (K)] n ≥ 1 (9.34)

This is a geometric distribution, and its mean can either be looked up in tables, or
calculated:

µN =
∞∑
n=1

n Pr (N = n) =
∞∑
n=1

nFX (K)n−1 [1− FX (K)] (9.35)

=

[
1− r

r

] ∞∑
n=0

n rn (9.36)

where r = FX (K). There is a general result which can be found in mathematical
tables that [Gradshteyn:1994]:

N−1∑
n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+

br(1− rN−1)

(1− r)2
, r ̸= 0, N > 1 (9.37)

Therefore, in the case when a = 0, r = 1, and N → ∞, and 0 < r < 1 then:

∞∑
n=0

n rn =
r

(1− r)2
, 0 < r < 1 (9.38)

Hence, this gives the mean of the geometric distribution as:

µN =

[
1− r

r

]
r

(1− r)2
=

1

1− r
= [1− FX (K)]−1 (9.39)

□

An uncorrelated processes is a sequence of uncorrelated random variables:

γxx[n1, n2] = σ2
x[n1] δ[n1 − n2] (M:3.3.11)

Alternatively, the ACS can be written as:

rxx[n1, n2] =

{
σ2
x[n1] + |µx[n1] |2 n1 = n2

µx[n1]µ
∗
x[n2] n1 ̸= n2

(M:3.3.12)



9.5. Stationary Processes 329

An orthogonal process is a sequence of orthogonal random variables, and is given by:

rxx[n1, n2] = E
[
|x[n1] |2

]
δ[n1 − n2] (M:3.3.13)

If a process is zero-mean, then it is both orthogonal and uncorrelated since
γxx[n1, n2] = rxx[n1, n2]. More often than not, in this course, we shall consider
zero-mean processes.

A stationary process is a random process where its statistical properties do not vary with time. Put
another way, it would be impossible to distinguish the statistical characteristics of
a process at time t from those at some other time, t′. Processes whose statistical
properties do change with time are referred to as nonstationary.

– End-of-Topic 59: Types of Random Signals –
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9.5 Stationary Processes

New slideTopic Summary 60 Stationary and wide-sense stationary (WSS) processes

Topic Objectives:

• Awareness of common types and definitions of stationary random processes.

• Understand order-N , strict-sense stationary, and wide-sense stationary processes.

• Examples of manupulating means and autocorrelation sequences for stationary processes.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 07 min video 3× length
Read Handout Read page 328 to page 334 8 mins/page
Try Example Try Examples 9.5, 9.6, and 9.7. 15 mins
Practice Exercises Exercise ?? 15 mins

http://media.ed.ac.uk/media/1_c2zl0igx

Video Summary: This video starts by considering the common types and definitions
of stationary processes used in time-series analysis. This topic then considers meanings
and relationships of order-N, strict-sense stationarity, and wide-sense stationarity. The
second half of the video focusses on an example of showing that the sum of a co-sinusoid
and sinusoid with independent random amplitudes but fixed phase and frequency is
a stationary process (and although not mentioned, will of course be a predictable
processes). Other examples are included in the handout associated with this video.

A random process x[n] has been called stationary if its statistics determined for x[n] are equal to
those for x[n+ k], for every k. There are various formal definitions of stationarity, along with
quasi-stationary processes, which are discussed below.

• Order-N and strict-sense stationarity

• Wide-sense stationarity

• Autocorrelation properties for WSS processes

• Wide-sense periodicity and cyclo-stationarity
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Figure 9.3: Demonstrating 2nd-order stationarity.

• Local- or quasi-stationary processes

After this, some examples of various stationary processes will be given.

9.5.1 Order-N and strict-sense stationarity

New slideDefinition 9.1 (Stationary of order-N ). A stochastic process x[n] is called stationary of order-N
if for any value of k then:

fX (x1, . . . , xN | n1, . . . , nN) = fX (x1, . . . , xN | n1 + k, . . . , nN + k) (M:3.3.21)
♢

Definition 9.2 (Strict-sense stationary). If x[n] is stationary for all orders N ∈ Z+, it is said to be
strict-sense stationary (SSS).

Clearly, any stochastic process that is stationary of order-N is also stationary of order-M , where
M ≤ N .

An independent and identically distributed process is SSS since, in this case, fXk
(xk | nk) = fX (xk)

is independent of n, and therefore also of n + k. However, SSS is more restrictive than necessary in
practical applications, and is a rarely required property.

9.5.2 Wide-sense stationarity

New slideA more relaxed form of stationarity, which is sufficient for practical problems, occurs when a random
process is stationary order-2; such a process is wide-sense stationary (WSS).

Definition 9.3 (Wide-sense stationarity). A random signal x[n] is called wide-sense stationary if:

June 28, 2021 – 08 : 40



332 Stochastic Processes

• the mean and variance is constant and independent of n:

E [x[n]] = µx (M:3.3.22)
var [x[n]] = σ2

x (M:3.3.23)

• the autocorrelation depends only on the time difference ℓ = n1 − n2, called the lag:

rxx[n1, n2] = r∗xx[n2, n1] = E [x[n1] x
∗[n2]]

= rxx[ℓ] = rxx[n1 − n2] = E [x[n1] x
∗[n1 − ℓ]]

= E [x[n2 + ℓ] x∗[n2]]

(M:3.3.24)
♢

KEYPOINT! (Inconsistency of definition of lag). The definition of the lag is not consistent across
textbooks, or indeed courses on this MSc! Elsewhere, the following definition is used for a stationary
process:

rxx[n1, n2] ≜ E
[
x[n1] x

∗
[
n1 + ℓ̂

]]
rxx

[
ℓ̂
]
≜ E

[
x
[
n− ℓ̂

]
x∗[n]

] (9.40)
□

Although a minor change in sign, this does have implications when considering results that are
functions of random processes, such as a signal passing through a linear system, or frequency-domain
analysis. It is simply something to become used to, and to understand the equations and use the
appropriate subsequent results carefully.

Additionally:

• The autocovariance sequence is given by:

γxx[ℓ] = rxx[ℓ]− |µx|2 (9.41)

• Since 2nd-order moments are defined in terms of 2nd-order pdf, then strict-sense stationary are
always WSS, but not necessarily vice-versa, except if the signal is Gaussian.

• In practice, however, it is very rare to encounter a signal that is stationary in the wide-sense, but
not stationary in the strict sense.

Example 9.5 ( [Manolakis:2000, Example 3.3.1, Page 102]). Let w[n] be a zero-mean,
uncorrelated Gaussian random sequence with variance σ2

w[n] = 1.

1. Characterise the random sequence w[n].

2. Define x[n] = w[n]+w[n− 1] , n ∈ Z. Determine the mean and autocorrelation of x[n]. Also,
characterise x[n].

SOLUTION. Note that the variance of w[n] is a constant.

1. Since uncorrelatedness implies independence for Gaussian random variables, then w[n] is an
independent random sequence. Since its mean and variance are constants, it is at least stationary
of first-order. Furthermore, from Equation M:3.3.12 or from Equation M:3.3.13, then:

rww[n1, n2] = σ2
w δ[n1 − n2] = δ[n1 − n2] (9.42)

Since the autocorrelation sequence depends only on the lag n1−n2, then by definition it is WSS
process.
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Figure 9.4: Ensemble of waveforms for the problem in Example 9.6.

2. The mean of x[n] is zero for all n since w[n] is a zero-mean process. Next, consider:

rxx[n1, n2] = E [x[n1] x
∗[n2]] (9.43)

= E [[w(n1) + w(n1 − 1)][w∗(n2) + w∗(n2 − 1)]] (9.44)
= rww(n1, n2) + rww(n1, n2 − 1) + rww(n1 − 1, n2) + rww(n1 − 1, n2 − 1)

(9.45)

= 2δ(n1 − n2) + δ(n1 − n2 + 1) + δ(n1 − n2 − 1) (9.46)
= 2δ(l) + δ(l + 1) + δ(l − 1), l = n1 − n2 (9.47)

□

Hence, since rxx(n1, n2) ≡ rxx(l) is a function of the difference between n1 and n2 only, then
x(n) is a WSS sequence. However, it is not an independent process since both x(n) and x(n+1)
both depend on w(n).

Example 9.6 (Sum of sinusoids). A discrete-time random process, g[n], is defined as

g[n] = A sin (ω0n) +B cos (ω0n)

where A and B are independent random variables each having zero mean and variance σ2, ω0 is a
fixed frequency, and n is the time-index. An example of realisations from this random process are
shown in Figure 9.4.

• Determine the mean and autocovariance function of g[n].

• Determine whether or not g[n] is a WSS process. Explain your answer.
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SOLUTION. • Noting that the expectation operator is linear:

µg[n] = E [g[n]] = E [A sinω0n] + E [B cosω0n] (9.48)

Since sinω0n and cosω0n are deterministic functions, and E [A] = E [B] = 0, the expectation
simplifies to:

µg[n] = E [A] sinω0n+ E [B] cosω0n = 0 (9.49)

The autocovariance function is given by:

γgg[n1, n2] = E [(g[n1]− µg[n1]) (g[n2]− µg[n2])] (9.50)

Hence, since µg[ni] = 0, it follows:

γgg[n1, n2] = E [(A sinω0n1 +B cosω0n1) (A sinω0n2 +B cosω0n2)] (9.51)

= E
[
A2
]
sinω0n1 sinω0n2 + E [AB] sinω0n1 cosω0n2

+ E [BA] cosω0n1 sinω0n2 + E
[
B2
]
cosω0n1 cosω0n2 (9.52)

SinceAandB are independent random variables (RVs), E [AB] = E [BA] = E [A]E [B] =
0× 0 = 0. Noting var [A] = var [B] = σ2 and that

var [A] = E
[
A2
]
− E2 [A] (9.53)

means that E [A2] = E [B2] = σ2. Thus,

γgg[n1, n2] = σ2 (sinω0n1 sinω0n2 + cosω0n1 cosω0n2) (9.54)

Using the supplied trigonometric identity, it follows that:

γgg [n1, n2] = σ2 cosω0 (n1 − n2) (9.55)

• For a process to be WSS, the mean and variance must be constant, and the ACS a function of
the time difference or lag ℓ = n1 − n2. The ACS is thus also given by:

rgg[n1, n2] = γgg[n1, n2] + µg[n1]µg[n2] (9.56)
= σ2 cosω0 (n1 − n2) (9.57)

□

Thus, it can be seen the mean is constant, and the ACS is a function of the time difference
n1 − n2 only. Therefore it is WSS.

Example 9.7 ( [Manolakis:2000, Example 3.3.2, Page 103]: Wiener Process). A coin is tossed at
each n ∈ Z. Let:

w[n] =

{
+S if heads is the outcome, with probability Pr (H) = p

−S if tails is the outcome, with probability Pr (T ) = 1− p
(9.58)

where S is some arbitrary increment or step size in the process w[n]. Since w[n], for a given n, is a
discrete-random variable taking on two possible values (either S or −S), then w[n] is an independent
random process with mean:

E [w[n]] = S Pr (H) + (−S) Pr (T ) (9.59)
µw = Sp+ (−S)(1− p) = S (2p− 1) (9.60)
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and second moment:

E
[
w2[n]

]
= σ2

w + µ2
w (9.61)

= S2 Pr (H) + (−S)2 Pr (T ) (9.62)
= S2p+ S2 (1− p) = S2 (9.63)

This in turn means that the autocorrelation function for w[n] is given by:

rww[n, m] =

{
S2 if n = m

µ2
w = S2 (2p− 1)2 if n ̸= n

(9.64)

Not only is the process w[n] an i. i. d. process, it is also SSS, and therefore, it is also WSS.

Now, define a new random process x[n] , n ≥ 1, as:

x[1] = w[1] (9.65)
x[2] = x[1] + w[2] = w[1] + w[2] (9.66)

... (9.67)
x[n] = x[n− 1] + w[n] (9.68)

=
n∑

k=1

w[n] (9.69)

Note that x[n] is a running or cummulative sum of independent increments; this is known as an
independent increment process. Such a sequence is called a discrete Wiener process or random
walk. It can easily be seen that the mean is given by:

µx[n] = E [x[n]] = E

[
n∑

k=1

w[n]

]
(9.70)

= nS (2p− 1) (9.71)

The variance of x[n] is given by:

σ2
x[n] = E

[
x2[n]

]
− µ2

x[n] = E

[
n∑

k=1

w[k]
n∑

ℓ=1

w[ℓ]

]
− µ2

x[n] (9.72)

= E

[
n∑

k=1

n∑
ℓ=1

w[k]w[ℓ]

]
− µ2

x[n] =
n∑

k=1

n∑
ℓ=1

rww[k − ℓ]− µ2
x[n] (9.73)

=
n∑

k=1

[
S2 + (n− 1)S2(2p− 1)2

]
− (nS (2p− 1))2 (9.74)

= nS2 +
(
n(n− 1)− n2

)
S2(2p− 1)2 =

[
1− (2p− 1)2

]
nS2 (9.75)

= 4p (1− p) nS2 (9.76)

Therefore, the random walk is a nonstationary (or evolutionary) process with a mean and variance
that grows linearly with n, the number of steps taken.

It is worth noting that finding the autocorrelation the process x[n] is somewhat more involved, as it
involves a calculation involving different limits in each summation:

E [x[n] x[m]] =
n∑

k=1

m∑
ℓ=1

E [w[k] w[ℓ]] (9.77)
⋊⋉

Substituting the expression for rww[k, ℓ], and rearranging will give the desired answer. This is left as
an exercise to the reader, but note that you will need to consider the cases when m < n and n ≥ m.
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– End-of-Topic 60: Overview of types of stationary processes, and
examples of WSS processes –
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9.5.3 Autocorrelation properties for WSS processes

New slide Topic Summary 61 Properties of autocorrelation sequences of WSS processes

Topic Objectives:

• Properties of autocorrelation sequence for wide-sense stationary processes.

• Testing the positive semi-definite property in the lag domain but also frequency domain.

• Examples of testing these properties on sequences and functions.

Topic Activities:

Type Details Duration Progress
Watch video 21 : 10 min video 3× length
Read Handout Read page 335 to page 339 8 mins/page
Try Example Try Examples 9.8 and Example 9.9. 15 mins
Practice Exercises Exercises ??, ??, and ?? 75 mins

http://media.ed.ac.uk/media/1_6n3mjxwo

Video Summary: Second-order statistics are fundamental to the definition of WSS
processes, and this video considers the properties that a WSS ACS must satisfy. Some
of properties primarily derive from the key property that the ACS must be positive
semi-definite, but other basic ones include the symmetrical property of the ACS, that
a random variable cannot be more correlated with another random variable than itself,
and that the second moment must always be positive. The video then considers a couple
of examples, which tests whether a particular sequence or function is indeed valid.

The average power of a WSS process x[n] satisfies:

rxx[0] = σ2
x + |µx|2 ≥ 0 (M:3.3.27)

rxx[0] ≥ |rxx[ℓ] |, for all ℓ (M:3.3.28)

The expression for power can be broken down as follows:

Average DC Power: |µx|2

Average AC Power: σ2
x

Total average power: rxx[0] ≥ 0
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In otherwords,

Total average power = Average DC power + Average AC power (M:3.3.27)

To prove rxx[0] ≥ |rxx[ℓ] |, observe that E [|x[n+ ℓ]± x[n] |2] ≥ 0. On expansion, this yields the
desired result; this is left as an exercise to the reader, see [Manolakis:2000, Exercise 3.21, Page 145].

Moreover, it follows that γxx[0] ≥ |γxx[ℓ] |.
It is also the intuitively obvious, since the autocorrelation of a function should be maximum when it
is “self-aligned” with itself. This property also it useful for template-matching time-series; i.e. to
find which of a particular set of realisations is most like a given separate realisation.

It is left as an exercise to show that the ACS rxx[ℓ] satisfies two more properties, namely it is:

• a conjugate symmetric function of the lag ℓ:

r∗xx[−ℓ] = rxx[ℓ] (M:3.3.29)

• a nonnegative-definite or positive semi-definite function, such that for any sequence α[n]:
M∑
n=1

M∑
m=1

α∗[n] rxx[n−m] α[m] ≥ 0 (M:3.3.30)

Note that, more generally, even a correlation function for a nonstationary random process is positive
semi-definite:

M∑
n=1

M∑
m=1

α∗[n] rxx[n,m]α[m] ≥ 0 for any sequence α[n] (9.78)

When dealing with stationary processes, this course will exclusively consider wide-sense stationary
(WSS) rather than strict-sense stationary (SSS) processes. Therefore, the term stationary will be used
to mean WSS form here onwards.

Example 9.8 (Cosinusoid). The function r[ℓ] = cosω0ℓ is claimed to be a valid ACS. Test the
properties of this function to determine if this is claim is true or not.

SOLUTION. The function r[ℓ] = cosω0ℓ satisfies: the symmetric property, r[ℓ] = r[−ℓ]; the equality
r[0] ≥ |r[ℓ] | for all ℓ; and r[0] ≥ 0.

The final property of positive semi-definiteness is a little more tedious to verify. Let:

I =
M∑
n=1

M∑
m=1

α∗[n] rxx[n−m] α[m] (9.79)

=
M∑
n=1

M∑
m=1

α[n]α[m] cosω0 (n−m) (9.80)

Using the trigonometric identity: cosω0 (n−m) = cosω0n cosω0m + sinω0n sinω0m, then
consider the resulting first term and using the fact r[ℓ] is real:

I1 =
M∑
n=1

M∑
m=1

α[n]α[m] cosω0n cosω0m (9.81)

=

(
M∑
n=1

α[n] cosω0n

)(
M∑

m=1

α[m] cosω0m

)
(9.82)

=

(
M∑
n=1

α[n] cosω0n

)2

≥ 0 (9.83)
□
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A similar argument can be made for the second term as well, showing that I ≥ 0. This proof is a little
tedious, and can often be more easily shown using the following equivalent result.

KEYPOINT! (Equivalent condition for positive semi-definiteness). The Fourier transform of an
autocorrelation sequence (ACS) or autocorrelation function (ACF) is an extremely important concept,
called the power spectral density (PSD) which will be discussed in the next handout. It will be proved
that the PSD should always be positive. It is easy to prove that an ACS or ACF has a positive Fourier
transform if, and only if, it is positive semi-definite.

To prove this result, then writing the inverse discrete-time Fourier transform (DTFT) for rxx[ℓ]:

rxx[ℓ] =
1

2π

∫ π

−π

S
(
ejω
)
ejωn dω (9.84)

Substituting into Equation M:3.3.30 (but not assuming the inequality) gives:

I =
M∑
n=1

M∑
m=1

α∗[n]

{
1

2π

∫ π

−π

S
(
ejω
)
ejω(n−m) dω

}
α[m] (9.85)

=
1

2π

∫ π

−π

S
(
ejω
){ M∑

n=1

M∑
m=1

α∗[n] ejωne−jωm α[m]

}
dω (9.86)

=
1

2π

∫ π

−π

S
(
ejω
) ∣∣∣∣∣

M∑
m=1

α[n] e−jωm

∣∣∣∣∣
2

dω (9.87)

=
1

2π

∫ π

−π

S
(
ejω
) ∣∣A (ejω)∣∣2 dω (9.88)

where α[n]
DTFT
⇌ A (ejω) are DTFT pairs. Since S (ejω) ≥ 0, then so is I ≥ 0.

Example 9.9. Consider the functions shown in Figure 9.5. For each function, state whether it is a
valid autocorrelation function or autocorrelation sequence or not. Explain carefully the reasoning for
your answers, but no detailed calculations are required.

SOLUTION. Consider each function or sequence in turn. For each function or sequence, test the four
properties.

1. The first function violates the symmetry rule.

2. The second function violates for property that rxx[0] ≥ 0 in order to have positive power.

3. This function is valid, as it is symmetric, satisfies the positive power condition, that the largest
ACS value occurs at zero-lag. The final condition of testing the positive semi-definiteness is
most easily done by noting that the Fourier transform of the ACS is positive, but this is left as
an exercise to the reader.

4. This violates the property that rxx[0] ≥ |rxx[ℓ] | for all ℓ.

5. The Fourier transform of this function is not always positive.

6. This function satisfies all the properties and is therefore valid.
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Figure 9.5: Candidate autocorrelation functions.
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Thus, in summary, the claims are satisfied as follows: 1)-2) and 4)-5), No; 3) and 6) Yes!

– End-of-Topic 61: Properties of the ACS for WSS –
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9.5.4 Wide-sense periodicity and cyclo-stationarity

New slideTopic Summary 62 Wide-sense periodic, wide-sense cyclo-stationary, and quasi-stationary processes

Topic Objectives:

• Concept of nontationary process that have structured second-order statistics.

• Definition of wide-sense periodic (WSP) and wide-sense cyclo-stationary processes.

• Example of wide-sense cyclostationary process in a communications system.

• Notion of quasi-stationary processes.

Topic Activities:

Type Details Duration Progress
Watch video 17 : 33 min video 3× length
Read Handout Read page 340 to page 344 8 mins/page
Try Example Try Example 9.10 10 mins

http://media.ed.ac.uk/media/1_tql3v66m

Video Summary: This video considers a wider class of nonstationary processes that
share some similarities with WSS processes. Such nonstationary processes occur
in systems where, for example, there is some aspect of upsampling, or a random
process generates a new process that is a function of some deterministic signal that has
temporal extent. This video looks at wide-sense periodic and wide-sense cyclo-stationary
processes. An example of pulse-amplitude modulation is presented. Finally, globally
non-stationary but locally-stationary processes are discussed, called quasi-stationary
processes. The application of speech modelling is considered as an example of a
quasi-stationary process.

A signal whose statistical properties vary cyclically with time is called a cyclostationary process. A
cyclostationary process can be viewed as several interleaved stationary processes. For example, the
maximum daily temperature in Edinburgh can be modeled as a cyclostationary process: the maximum
temperature on July 21 is statistically different from the temperature on December 18; however,
the temperature on December 18 of different years has (arguably) identical statistics (although
unfortunately there seems to be a growing trend).

Two classes of cyclostationary signals that are actually nonstationary process which, in part, have


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton57'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_tql3v66m
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Figure 9.6: The periodicity of the ACS for a WSP signal.
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Figure 9.7: The periodicity of the ACS for a wide-sense cyclo-stationary process.

properties resembling stationary signals are:

1. A WSP process is classified as signals whose mean is periodic, and whose ACS is periodic in both
dimensions:

µx[n] = µx[n+N ] (M:3.3.14)

rxx[n1, n2] = rxx[n1 +N, n2] = rxx[n1, n2 +N ]

= rxx[n1 +N, n2 +N ]
(M:3.3.15)

for all n, n1 and n2. These are quite tight constraints for practical signals.

2. A wide-sense cyclo-stationary process has similar but less restrictive properties than a WSP
process, in that the mean is periodic, but the ACS is now just invariant to a shift
by N in both of its arguments:

µx[n] = µx[n+N ] (M:3.3.16)
rxx[n1, n2] = rxx[n1 +N, n2 +N ] (M:3.3.17)

for all n, n1 and n2.

Example 9.10 (Pulse-Amplitude Modulation). An important example of a cyclo-stationary process
is the random signal:

x[n] =
∞∑

m=−∞

cm h[n−mT ] (9.89)
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(a) An example of a pulse shape. (b) Typical transmitted signal.
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(c) Communications system that generates the transmitted signal.

Figure 9.8: An example pulse shape and typical transmit signal in a communications system.

for some period T , and where cm is a stationary sequence of RVs with ACS rcc[n1, n2] =
E
[
cn1 c

∗
n2

]
= rcc[n1 − n2], and h[n] is a given deterministic sequence, usually an impulse response.

An example of a particular pulse shape for h[n] and a typical sequence x[n] is shown in Figure 9.8.

Show that x[n] satisfies the properties of a wide-sense cyclo-stationary process.

SOLUTION. The stochastic processx[n] represents the signal for several different types of linear
modulation techniques used in digital communication systems. The sequence{cm} represents the
digital information (of symbols) that is transmitted over the communication channel, and 1

T
represents

the rate of transmission of the information symbols.

Note that this example demonstrates why notation can become an issue: how is it possible to
determine that cn is a RV, while h[n] is not?

To see that this is a wide-sense cyclo-stationary process, first begin by writing:

µx[n] = E [x[n]] =
∞∑

m=−∞

E [cm] h[n−mT ] = µc

∞∑
m=−∞

h[n−mT ] (9.90)

where µc[n] = µc since it is a stationary process. Thus, observe that:

µx[n+ kT ] = µc

∞∑
m=−∞

h[n+ kT − Tm] = µc

∞∑
r=−∞

h[n− Tr] = µx[n] (9.91)

by a change of variables r = m− k.

Next consider the autocorrelation function given by:

rxx[n1, n2] = E [x[n1] x
∗[n2]]

=
∞∑

m=−∞

∞∑
ℓ=−∞

h[n1 − Tm] h[n2 − Tℓ] rcc[m− ℓ]
(9.92)
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Figure 9.9: The speech synthesis model (repeated from Introduction handout).

where it has been noted that rcc[m, ℓ] = E [cm c∗ℓ ] = rcc[m− ℓ] since it is a stationary process. Similar
to the approach with the mean above, then set n1 → n1 + pT and n2 → n2 + qT .

Therefore, it follows:

rxx[n1 + pT, n2 + qT ]

=
∞∑

m=−∞

∞∑
ℓ=−∞

h[n1 − T (m− p)] h[n2 − T (l − q)] rcc[m− ℓ]
(9.93)

Again, by the change of variables r = m− p and s = ℓ− q, it can be seen that:

rxx[n1 + pT, n2 + qT ]

=
∞∑

r=−∞

∞∑
s=−∞

h[n1 − Tr] h[n2 − Ts] rcc[r − s+ p− q]
(9.94)

In the case that p = q, then comparing Equation 9.92 and Equation 9.94, it finally follows that:

rxx[n1 + pT, n2 + pT ] = rxx[n1, n2] (9.95)
□

By definition, x[n] is therefore a cyclo-stationary process.

9.5.5 Local- or quasi-stationary processes

New slideAt the introduction of this lecture course, it was noted that in the analysis of speech signals, the speech
waveform is broken up into short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary or quasi-stationary process. Such
processes possess statistical properties that change slowly over short periods of time. They are
globally nonstationary, but are approximately locally stationary, and are modelled as if the statistics
actually are stationary over a short segment of time.

Quasi-stationary models are, in fact, just a special case of nonstationary processes, but are
distinguished since their characterisation closely resemble stationary processes.
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– End-of-Topic 62: Wide-sense periodic and cyclostationary signals,
and other forms of nonstationary signals –
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9.6 Estimating statistical properties

New slide Topic Summary 63 Time-Averages and Ergodicity

Topic Objectives:

• Concept of estimating statistical averages from a single realisation of a stochastic process.

• Introduction to the notion of ergodicity and estimating ensemble averages from time-averages.

• Examples of testing if a process is ergodic or not.

Topic Activities:

Type Details Duration Progress
Watch video 26 : 59 min video 3× length
Read Handout Read page 345 to page 350 8 mins/page
Try Example Try Example 9.11. 15 mins

http://media.ed.ac.uk/media/1_1nebqv6a

Video Summary: This Topic introduces the notion of estimating statistical averages from
a single realisation of a stochastic process. This concept is most easily developed for
estimating first and second moments of stationary random processes using time-averages.
This requires the process to be Ergodic and WSS. The video first introduces ergodicity
from an intuitive perspective, and then further expands the definition in terms of using
the properties of a consistent estimator. This is expressed through the two definitions
of ergodic in the mean, or ergodic in correlation. Examples of non-ergodic and ergodic
processes are presented. One very detailed example proves a process is ergodic in the
mean through calculating the bias and variance of the time-average.

• A stochastic process consists of the ensemble, x[n, ζ], and a probability law, fX ({x} | {n}). If
this information is available ∀n, the statistical properties are easily determined.

• In practice, only a limited number of realisations of a process is available, and often only one:
i.e. {x[n, ζk] , k ∈ {1, . . . , K}} is known for some K, but fX (x | n) is unknown.

• Is is possible to infer the statistical characteristics of a process from a single realisation? Yes,
for the following class of signals:

– ergodic processes;

June 28, 2021 – 08 : 40
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Figure 9.10: The temporal-variability of the DC level does not capture the ensemble statistics.

– nonstationary processes where additional structure about the autocorrelation function is
known (beyond the scope of this course).

9.6.1 Ensemble and Time-Averages

New slide Ensemble averaging, as considered so far in the course, is not frequently used in practice since it is
impractical to obtain the number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single realisation of a process is a time-average,
defined by:

⟨g(x[n])⟩ ≜ lim
N→∞

1

2N + 1

N∑
n=−N

g(x[n]) (M:3.3.32)

For every ensemble average, a corresponding time-average can be defined; the time-average above
corresponds to: E [g(x[n])].

Time-averages are random variables since they implicitly depend on the particular realisation, given
by ζ . Averages of deterministic signals are fixed numbers or sequences, even though they are given
by the same expression.

It should be intuitive that ergodicity requires a single realisation of the random process to display the
behaviour of the entire ensemble of realisations. If not, ergodicity will not hold.

9.6.2 Ergodicity

New slide A stochastic process, x[n], is ergodic if its ensemble averages can be estimated from a
single realisation of a process using time averages.
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The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical expected values and sample-means:

⟨x[n]⟩ = E [x[n]] (M:3.3.34)

Covariance-Ergodic Processes (or ergodic in correlation) have the property that:

⟨x[n] x∗[n− l]⟩ = E [x[n] x∗[n− l]] (M:3.3.35)

Another form of ergodicity is a distribution-ergodic process, but this will not be discussed here.

• It should be intuitiveness obvious that ergodic processes must be stationary and, moreover, that
a process which is ergodic both in the mean and correlation is WSS.

• WSS processes are not necessarily ergodic.

• Ergodic is often used to mean both ergodic in the mean and correlation.

• In practice, only finite records of data are available, and therefore an estimate of the
time-average will be given by

⟨g(x[n])⟩ = 1

N

∑
n∈N

g(x[n]) (M:3.3.37)

where N is the number of data-points available.

9.6.3 More Details on Mean-Ergodicity

New slideReturning to the definition of mean-ergodicity, a little more detail of conditions on the random process
is given.

The time-average over 2N + 1 samples, {x[n]}N−N is given by:

µx|N = ⟨x[n]⟩ = 1

2N + 1

N∑
n=−N

x[n] (9.96)

Clearly, µX |N is a random variable with mean:

E [µx|N ] =
1

2N + 1

N∑
n=−N

E [x[n]] = µx (9.97)

since x[n] is a stationary stochastic process. As is seen elsewhere in these lectures, this is known as
an unbiased estimate since the sample mean is equal to the ensemble mean.

Since µx|N is a random variable, then it must have a variance as well:

var [µx|N ] = var

[
1

2N + 1

N∑
n=−N

x[n]

]
(9.98)
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Figure 9.11: Region of summation for deriving the variance of the time-average.

Theorem 9.1 (Variance of estimator). Suppose the sample mean of a sequence of a WSS process,
x[n], is given by:

µx|N =
1

2N + 1

N∑
n=−N

x[n] (9.99)

If the process x[n] has ACS γxx[ℓ], then the variance of the sample mean can be expressed as:

var [µx|N ] =
1

2N + 1

2N∑
ℓ=−2N

(
1− |ℓ|

2N + 1

)
γxx[ℓ] (9.100)

PROOF. Noting the mean of the expression in the square brackets on the right hand side (RHS) of
Equation 9.98 is equal to µx, then:

var [µx|N ] =
1

(2N + 1)2
E

[
N∑

n=−N

N∑
m=−N

x[n]x∗[m]

]
− µ2

x (9.101)

=
1

(2N + 1)2

{
N∑

n=−N

N∑
m=−N

rxx[n−m]

}
− µ2

x (9.102)

since x[n] is a stationary process, and therefore its ACS only depends on the time difference. With
a little manipulation, then noting that the autocovariance is given by γxx[ℓ] = rxx[ℓ] − µ2

x, it follows
that:

var [µx|N ] =
1

(2N + 1)2

N∑
n=−N

N∑
m=−N

γxx[n−m] (9.103)

A change of variable can now be performed by setting ℓ = n−m. Hence:

var [µx|N ] =
1

(2N + 1)2

N∑
n=−N

n+N∑
ℓ=n−N

γxx[ℓ] (9.104)

The region of summation is shown in Figure 9.11.

Thus, the next step is to change the order of summation (as this is the usual trick), and so considering
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the region of summation, then summing l first:

var [µx|N ] =
1

(2N + 1)2

2N∑
ℓ=−2N

min{N,ℓ+N}∑
n=max{−N,ℓ−N}

γxx[ℓ] (9.105)

=
1

(2N + 1)2

2N∑
ℓ=−2N

(2N + 1− |ℓ|)γxx[ℓ] (9.106)

=
1

2N + 1

2N∑
ℓ=−2N

(
1− |ℓ|

2N + 1

)
γxx[ℓ] (9.107)

□

as required.

KEYPOINT! (Mean-ergoic). If the variancelimN→∞ var [µx|N ] = 0, then µx|N → µx in the
mean-square sense. In this case, it is said that the time average µx|N computed from a single
realisation of x[n] is close to µx with probability close to 1. If this is true, then the technical definition
is that the process x[n] is mean-ergodic.

The result presented above leads to the following conclusion:

Theorem 9.2 (Mean-ergodic processes). A discrete-random process x[n] with autocovariance
γxx[ℓ] is mean-ergodic iff:

lim
N→∞

1

2N + 1

2N∑
ℓ=−2N

(
1− |ℓ|

2N + 1

)
γxx[ℓ] = 0 (9.108)

PROOF. See discussion above.

Example 9.11 ( [Papoulis:1991, Example 13.3, Page 429]). A stationary stochastic process x[n]
has an ACS given by γxx[ℓ] = q e−c |ℓ| for some constants q and c. Is the process x[n] ergodic in
the mean?

SOLUTION. Writing:

var [µx|N ] =
1

2N + 1

2N∑
ℓ=−2N

(
1− |ℓ|

2N + 1

)
γxx[ℓ] (9.109)

=
q

2N + 1

2N∑
ℓ=−2N

(
1− |ℓ|

2N + 1

)
e−c|ℓ| (9.110)

which can be rearranged to give as:

var [µx|N ] =
q

2N + 1

{
2

2N∑
ℓ=0

(
1− ℓ

2N + 1

)
e−c ℓ − 1

}
(9.111)

Now, noting the general result which can be found in mathematical tables [Gradshteyn:1994]:

N−1∑
n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+

br(1− rN−1)

(1− r)2
, r ̸= 0, N > 1 (9.112)
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then by setting a = 1, b = − 1
2N+1

and r = e−c, with n = ℓ and N → 2N + 1:

var [µx|N ] = 2q

[ 1
M

− 1
M2 e

−Mc

1− e−c
+

1
M2 e

−c − 1
M2 e

−Mc

(1− e−c)2
− 1

2M

]
(9.113)

where M = 2N + 1. Now, by setting N → ∞, which is equivalent to M → ∞, and noting the
relationship that:

lim
n→∞

ns xn → 0 if |x| < 1 for any real value of s (9.114)

it can easily be seen that
lim

N→∞
var [µx|N ] = 0 (9.115)

□
and therefore x[n] is mean-ergodic.

– End-of-Topic 63: Ergodicity and time-average estimates of statistics
of WSS processes –
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9.7 Joint Signal Statistics

New slide Topic Summary 64 Joint Signal Statistics and Correlation Matrices

Topic Objectives:

• Extending definitions presented previously to Joint signal statistics.

• Understanding notion of cross-correlation and cross-covariance.

• Application of these techniques to Blind Source Separation.

• Definition and use of Correlation Matrices.

Topic Activities:

Type Details Duration Progress
Watch video 19 : 21 min video 3× length
Read Handout Read page 351 to page 354 8 mins/page
Try Example Try Example 9.12. 15 mins
Practice Exercises Exercises ?? to ?? 75 mins

http://media.ed.ac.uk/media/1_smlhq601

Video Summary: This video starts to wrap up the Chapter on Stochastic processes
by looking at joint signal statistics, such as cross-correlation and cross-covariance,
uncorrelated pairs of random processes, and an extension of the various concepts
previously developed for analysing random processes. An example is presented of using
cross-covariance as a surrogate for measuring independence of signals in the classic
signal processing problem of blind source separation. Finally, the Topic introduces the
use of correlation matrices for analysing a finite-block or window of samples. Correlation
matrices are a convenient way of representing signal statistics when it comes to creating
real signal processing algorithms.

Next, it is important to consider the dependence between two different random processes, and these
follow similar definitions to those introduced for random vectors. In this section, consider the
interaction between two random processes x[n] and y[n].

Cross-correlation and cross-covariance A measure of the dependence between values of two
different stochastic processes is given by the cross-correlation and cross-covariance
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functions:

rxy[n1, n2] = E [x[n1] y
∗[n2]] (M:3.3.7)

γxy[n1, n2] = rxy[n1, n2]− µx[n1] µ
∗
y[n2] (M:3.3.8)

Normalised cross-correlation (or cross-covariance) The cross-covariance provides a measure of
similarity of the deviation from the respective means of two processes. It makes sense
to consider this deviation relative to their standard deviations; thus, normalised
cross-correlations:

ρxy[n1, n2] =
γxy[n1, n2]

σx[n1] σy[n2]
(M:3.3.9)

9.7.1 Types of Joint Stochastic Processes

New slide The definitions introduced earlier for a single stochastic process can be extended to the case of two
joint stochastic processes:

Statistically independence of two stochastic processes occurs when, for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny) (M:3.3.18)

Uncorrelated stochastic processes have, for all nx & ny ̸= nx:

γxy[nx, ny] = 0

rxy[nx, ny] = µx[nx] µy[ny]
(M:3.3.19)

Joint stochastic processes that are statistically independent are uncorrelated, but not necessarily
vice-versa, except for Gaussian processes. Nevertheless, a measure of uncorrelatedness is often used
as a measure of independence. More on this later.

Further definitions include:

Orthogonal joint processes have, for every n1 and n2 ̸= n1:

rxy[n1, n2] = 0 (M:3.3.20)

Joint WSS is a similar to WSS for a single stochastic process, and is useful since it facilitates a
spectral description, as discussed later in this course:

rxy[ℓ] = rxy[n1 − n2] = r∗yx[−ℓ] = E [x[n] y∗[n− l]] (9.116)

γxy[ℓ] = γxy[n1 − n2] = γ∗
yx[−ℓ] = rxy[ℓ]− µx µ

∗
y (9.117)

Joint-Ergodicity applies to two ergodic processes, x[n] and y[n], whose ensemble cross-correlation
can be estimated from a time-average:

⟨x[n] y∗[n− l]⟩ = E [x[n] y∗[n− l]] (M:3.3.36)
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9.8 Correlation Matrices for Random Processes
New slide A stochastic process can also be represented as a random vector, and its second-order statistics given

by the mean vector and the correlation matrix. Obviously these quantities are functions of the index
n.

Let an M -dimensional random vector X[n, ζ] ≡ X[n] be derived from the random process x[n] as
follows:

X[n] ≜
[
x[n] x[n− 1] · · · x[n−M + 1]

]T (M:3.4.56)

Then its mean is given by an M -vector

µX[n] ≜
[
µx[n] µx[n− 1] · · · µx[n−M + 1]

]T (M:3.4.57)

and the M ×M correlation matrix is given by:

RX[n] = E
[
X[n] XH [n]

]
(T:4.23)

which can explicitly be written as:

RX[n] ≜

 rxx[n, n] · · · rxx[n, n−M + 1]
... . . . ...

rxx[n−M + 1, n] · · · rxx[n−M + 1, n−M + 1]

 (M:3.4.58)

Clearly RX[n] is Hermitian, since rxx[n− i, n− j] = E [x[n− i]x∗[n− j]] =
r∗xx[n− j, n− i] , 0 ≤ i, j ≤ M − 1. This vector representation can be useful in discussion
of optimum filters.

For WSS processes, the correlation matrix has an interesting additional structure. Note that:

1. RX[n] is a constant matrix RX;

2. rxx[n− i, n− j] = rxx[j − i] = rxx[ℓ] , ℓ = j − i;

3. conjugate symmetry gives rxx[ℓ] = r∗xx[−ℓ].

Hence, the matrix Rxx is given by:

RX ≜


rxx[0] rxx[1] rxx[2] · · · rxx[M − 1]
r∗xx[1] rxx[0] rxx[1] · · · rxx[M − 2]
r∗xx[2] r∗xx[1] rxx[0] · · · rxx[M − 3]

...
...

... . . . ...
r∗xx[M − 1] r∗xx[M − 2] r∗xx[M − 3] · · · rxx[0]

 (M:3.4.60)

It can easily be seen that RX is Hermitian and Toeplitz; a Toeplitz matrix is one in which the elements
along each diagonal, parallel to the main diagonal, are equal. Note that the anti-diagonals are not
necessarily equal. Thus, the autocorrelation matrix of a stationary process is Hermitian, nonnegative
definite, and Toeplitz.

Example 9.12 (Correlation matrices). The correlation function for a certain random process x[n]
has the exponential form:

rxx[ℓ] = 4 (−0.5)|ℓ| (9.118)
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Hence, the correlation matrix for N = 3 is given by:

RX =

rxx[0] rxx[1] rxx[2]
r∗xx[1] rxx[0] rxx[1]
r∗xx[2] r∗xx[1] r∗xx[0]

 (9.119)

=

4(−0.5)0 4(−0.5)1 4(−0.5)2

4(−0.5)1 4(−0.5)0 4(−0.5)1

4(−0.5)2 4(−0.5)1 4(−0.5)0

 =

 4 −2 1
−2 4 −2
1 −2 4

 (9.120)
⋊⋉

which is clearly Toeplitz.

Note that the definition of a covariance matrix for a random process follows an almost identical form,
except with the elements of the autocorrelation functions replaced by the autocovariance functions.
Finally, note that is is possible to define a correlation or covariance matrix for a random vector that
consists of non-consecutive samples from a random process. Hence, if

X({n}) ≜
[
x(n1) x(n2) · · · x(nM)

]T (9.121)

where {nk}M1 are unique arbitrary indices to samples from the random process, then the correlation
matrix is still defined as:

RX({n}) = E
[
X({n})XH({n})

]
(T:4.23)

– End-of-Topic 64: Joint Statistics and Correlation Matrices –



9.9. Markov Processes 357

9.9 Markov Processes

New slide Topic Summary 65 Brief Introduction to Markov Processes

Topic Objectives:

• Introduction to advantages of the Markov model.

• Definitions of a Markov Process.

• Calculating the joint-pdf for first-order Markov process.

Topic Activities:

Type Details Duration Progress
Watch video 8 : 32 min video 3× length
Read Handout Read page 355 to page 356 8 mins/page
Try Example Try Example 9.13. 15 mins

http://media.ed.ac.uk/media/1_y9zrkrsk

Video Summary: This video gives a very brief introduction to the powerful Markov
model for random processes. It considers in detail the first-order Markov process,
deriving the joint-pdf for a Gaussian-excited process. This powerful model allows certain
problems to be analysed in a comprehensive manner. The video mentions higher-order
Markov processes, as well as Markov Chains.

Finally, in this handout, a powerful model for a stochastic process known as a Markov model is
introduced; such a process that satisfies this model is known as a Markov process. Quite simply,
a Markov process is one in which the probability of any particular value in a sequence is dependent
upon the preceding sample values. The simplest kind of dependence arises when the probability of
any sample depends only upon the value of the immediately preceding sample, and this is known as
a first-order Markov process. This simple process is a surprisingly good model for a number of
practical signal processing, communications and control problems.

As an example of a Markov process, consider the process generated by the difference equation

x[n] = −a x[n− 1] + w[n] (T:3.17)

where a is a known constant; and w[n] is a sequence of zero-mean i. i. d. Gaussian random variables
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with variance σ2
W density:

fW (w[n]) =
1√
2πσ2

W

exp

{
−w2[n]

2σ2
W

}
(T:3.18)

The conditional density of x[n] given x[n− 1] is also Gaussian, and using the probability
transformation rule for which the Jacobian evaluates to one, it can be shown that

fX (x[n] | x[n− 1]) =
1√
2πσ2

W

exp

{
−(x[n] + ax[n− 1])2

2σ2
W

}
(T:3.19)

In fact, if w[n] is independent with any density fW (w[n]), the conditional density of x[n] given
x[n− 1] is fW (x[n] + a x[n− 1]). Note that x[n− 1] completely determines the distribution for
x[n], and x[n] completely determines the distribution for x[n+ 1] and so forth. Thus, the value of the
sequence at any time n0 completely determines the distribution of x[n] for any n > n0. The following
serves as a formal definition of a Markov process.

Definition 9.4 (Markov Process). A random process is a P th-order Markov process if the
distribution of x[n], given the infinite past, depends only on the previous P samples
{x[n− 1] , . . . , x[n− P ]}; that is, if:

fX (x[n] | x[n− 1] , x[n− 2] , . . . ) = fX (x[n] | x[n− 1] , . . . , x[n− P ]) (T:3.20)
♢

Example 9.13 (First-order Markov). A first-order Markov process is where, given the infinite past,
the current sample of a random process x[n] depends only on the previous sample x[n− 1]; that is, if:

fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0]) = fX (x[n] | x[n− 1]) (9.122)

Note that using the probability chain rule, and defining x = {x[n] , x[n− 1] , . . . , x[0]}, the general
joint-pdf of all samples can be written as:

fX (x) = fX (x[n] | x[n− 1] , x[n− 2] , . . . , x[0])

× fX (x[n− 1] | x[n− 2] , x[n− 3] , . . . , x[0]) · · · fX (x[0])
(9.123)

This can be written in the form:

fX (x) = fX (x[0])
n∏

k=1

fX (x[k] | x[k − 1] , . . . , x[0]) (9.124)

Hence, using the first-order Markov property, this simplifies to:

fX (x) = fX (x[0])
n∏

k=1

fX (x[k] | x[k − 1]) (9.125)

This allows us to substitute, for example, the Gaussian expression in Equation T:3.19:

fX (x) = fX (x[0])
n∏

k=1

1√
2πσ2

W

exp

{
−(x[n] + ax[n− 1])2

2σ2
W

}
(9.126)

⋊⋉

Finally, it is noted that if x[n] takes on a countable (discrete) set of values, a Markov random process
is called a Markov chain. This will always be the case in digital signal processing since the values
of the random sequence are represented with a finite number of bits. There is a tremendous volume
of results on Markov chains, but they will not presently be covered in this course.

– End-of-Topic 65: Brief Introduction to Markov Processes –
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Frequency-Domain Description of Stationary

Processes

Introduces the notion of a frequency-domain description of stationary random processes, defining
the power spectral density (PSD) as the Fourier transform of the autocorrelation function. Considers
the properties of the PSD including the PSD of harmonic processes. Defines the cross-PSD and the
complex spectral density.
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10.1 Introduction to the power spectral density

New slideTopic Summary 66 Concept of the Power Spectral Definition and its Origins

Topic Objectives:

• Notion of representing a random process in the frequency domain.

• Development of the power spectral density.

• Introduction to the Wiener-Khinchin(-Einstein-Kolmogorov) theorem.

Topic Activities:

Type Details Duration Progress
Watch video 22 : 59 min video 3× length
Read Handout Read page 358 to page 363 8 mins/page

http://media.ed.ac.uk/media/1_zk01rnwd

Video Summary: This video introduces the frequency-domain description of stationary
processes, through the equivalent but conceptually different ideas of stochastic
decompositions and Fourier transforms of moments (such as the autocorrelation or
autocovariance). The video considers the conceptual equivalence of a random spectrum
and random time-series. The power spectral density is developed in an informal method
by calculating the second moment of the Fourier transforms of the realisations of the
random signals. This is then formalised as a limiting process, to develop the infamous
Wiener-Khinchin(-Einstein-Kolmogorov) theorem. The video considers the conceptual
traps that you should be aware of, although ultimately the theory all leads to the definition
that the power spectral density is the Fourier Transform of the autocorrelation sequence.

Frequency- and transform-domain methods including the Fourier-transform and z-transform are very
powerful tools for the analysis of deterministic sequences. It seems natural to extend these techniques
to analysis stationary random processes. In principle, it would make sense to extend the techniques
to non-stationary processes, but this requires futher insight and additional constaints to come up with
a general theory.

So far in this course, stationary stochastic processes have been considered in the time-domain
through the use of the autocorrelation sequence (ACS). Since the ACS for a stationary process
is a function of a single-discrete time process, then the question arises as to what the discrete-time
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Figure 10.1: A graphical respresentation of random spectra.

Fourier transform (DTFT)of the ACS corresponds to. It turns out to be known as the power spectral
density (PSD) of a stationary random process, and the PSD is an extremely powerful and conceptually
appealing tool in statistical signal processing. This handout will study the PSD in some detail.

In signal theory for deterministic signals, spectra are used to represent a function as a superposition
of exponential functions. For random signals, the notion of a spectrum has two interpretations:

Transform of averages The first involves transform of averages (or moments). As will be seen, this
will be the Fourier transform of the autocorrelation function.

Stochastic decomposition The second interpretation, and arguably more natural perspective,
represents a stochastic process as a superposition of exponentials, where the
coefficients are themselves random variables. Hence, a stochastic process x[n] can
be represented as:

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω, n ∈ R (10.1)

where X(ejω) is a random variable for a given value of ω. Alternatively, X(ejω) can
be considered as a continuous random-process, as a function of ω. This interpretation
is extremely powerful, and can in fact be extended to the superposition of any set
of basis functions; the Karhunen-Loeve (KL) transform is an example of such a
decomposition. Unfortunately, there is not time in this course to consider this spectral
representation in detail, extremely interesting as it is, although it will be used below
to motivate the PSD for stationary signals.
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10.2 Motivating the power spectral density

New slideIt is important to appreciate that most realisations of stationary random signals, x[n, ζ], do not have
finite energy, as they usually don’t decay away as n → ±∞. This is because the statistics as n → ±∞
are the same as the statistics at any other time. Therefore, technically, these realisations do not possess
a corresponding DTFT, and hence it is not possible simply to take the DTFT of the random signal
without further addressing these technicalities.

Moreover, noting that a random signal is actually an ensemble of realisations, each realisation
occuring with a different probability, it raises the question of what does it mean to take the DTFT
of a random process directly? It should also be remembered that the DTFT of a particular observed
realisation, even if it existed, is itself a realisation of a random process, albeit as a function of
frequency rather than time. Therefore, it is necessary to take an alternative perspective, as discussed in
Section 10.2.2. However, in order to motivate the PSD, first an informal and imprecise, yet insightful
analysis is given in the next section.

10.2.1 Informal Motivation
New slide This section contains an informal but insightful derivation of the PSD. Assume for the moment that

the DTFT of a realisation from a stationary random process does in fact exist, by ignoring any issues
with convergence of the sequence. If a particular realisation is denoted by x[n, ζ], then suppose the
corresponding DTFT is denoted by:

Xζ

(
ejωT

)
=

∞∑
n=−∞

x[n, ζ] e−jωn (10.2)

where |ω| < π is the normalised frequency (with respect to the sampling frequency). The collection
of different DTFTs forms an ensemble of frequency-domain realisations, as shown in Figure 10.1.

As this spectrum is continuous, the second-order autocorrelation function (ACF) is a seemingly
important statistic to consider, representing the correlation between two frequencies at ω1 and ω2,
say. Hence, consider forming:

RXX(ω1, ω2) = E
[
Xζ

(
ejω1

)
X∗

ζ

(
ejω2

)]
(10.3)

Substituting the DTFT expression from Equation 10.2 into this expression, and reorganising where
possible:

RXX(ω1, ω2) = E

[
∞∑

n=−∞

x[n, ζ] e−jω1n

∞∑
m=−∞

x∗[m, ζ] ejω2m

]
(10.4)

=
∞∑

n=−∞

∞∑
m=−∞

E [x[n, ζ] x∗[m, ζ]] e−j(ω1n−ω2m) (10.5)

=
∞∑

n=−∞

∞∑
m=−∞

rxx[n,m] e−j(ω1n−ω2m) (10.6)

At this stage, this is quite a generic expression; note further, that a very similar result can be obtained
if the random process in the time-domain were continuous, where the DTFT would be replaced by
the continuous-time Fourier transform (CTFT) which amounts to replacing summations by integrals.
However, it can be seen though that it is indicative of a frequency domain correlation being some kind
of Fourier transform of the corresponding time-domain correlation.
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Indeed, as it has been assumedx[n, ζ] is stationary, then let rxx[n,m] = rxx[n−m]. Consider finding
the second-moment or power at a given frequency, so setting ω = ω1 = ω2, and then undertaking a
change in variable of summation such thatℓ = n−m. Then, it follows that:

RXX(ω) =
∞∑

n=−∞

∞∑
ℓ=−∞

rxx[ℓ] e
−jωℓ =

∞∑
n=−∞

F (rxx[ℓ]) (10.7)

The additional summation results from the fact the realisations of the process do not have
finite-energy, and the mathematical treatment somewhat informal. However, it clearly indicates that
the power at each frequency can be found from the Fourier transform of the ACS, and is therefore the
PSD. This proof can be tidied up somewhat by using careful limiting operations, as described in the
next section. It can also easily be extended to the continuous-time case, by effectively just replacing
the summations by integrals.

10.2.2 Formal Statistical Derivation
New slideMotivated by the stochastic decomposition in Equation 10.1, and restricting the analsysis to

wide-sense stationary (WSS) processes, consider the random variable, X
(
ejωT

)
, resulting from the

DTFT of a random signal, x[n]:

X
(
ejωT

)
=

∞∑
n=−∞

x[n] e−jωn (10.8)

It is of interest to consider the total power in the rv, X
(
ejωT

)
, which is given by the second moment:

PXX

(
ejωT

)
= E

[∣∣X (ejωT )∣∣2] (10.9)

Since random signals are not finite energy, then this expression will diverge, so consider instead the
definition:

PXX

(
ejωT

)
= lim

N→∞

1

2N + 1
E
[∣∣XN

(
ejω
)∣∣2] (10.10)

where XN (ejω) is the truncated Fourier transform of x[n], or basically a windowed version of the
sequence x[n] between −N and N , as given by:

XN

(
ejωT

)
≜

N∑
n=−N

x[n] e−jωn =
∞∑

n=−∞

w[n]x[n] e−jωn (10.11)

where w[n] is the window function:

w[n] =

{
1 −N ≤ n ≤ N

0 otherwise
(10.12)

Then, substituting Equation 10.11 into Equation 10.10 and rearranging gives:

PXX

(
ejωT

)
= lim

N→∞

1

2N + 1
E

[
N∑

n=−N

x[n] e−jωn

N∑
m=−N

x∗[m] ejωm

]
(10.13)

= lim
N→∞

1

2N + 1

N∑
n=−N

N∑
m=−N

E [x[n]x∗[m]] e−jω(n−m) (10.14)
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Figure 10.2: Region of summation for deriving the variance of the time-average.

It can be shown, through the following manipulatings, that in the limit this expression does indeed
simplify to DTFT of the ACS.

To show this, first substitute the variable ℓ = n − m, such that when m = ±N , then ℓ = n ∓ N .
Since the summation is over integers, which means that

∑b
a(·) =

∑a
b (·), and noting that for WSS

processes, E [x[n]x∗[n− ℓ]] = rxx[ℓ] this means Equation 10.14 becomes:

PXX

(
ejω
)
= lim

N→∞

1

2N + 1

N∑
n=−N

n+N∑
ℓ=n−N

rxx[ℓ] e
−jωℓ (10.15)

The region of summation is shown in Figure 10.2. Changing the order of summation (as this is the
usual trick), to sum over ℓ first, then it can be seen that ℓ varies from −2N to 2N , while n will vary
from max{−N, ℓ−N} to min{N, ℓ+N}. Hence, Equation 10.15 becomes:

PXX

(
ejω
)
= lim

N→∞

1

2N + 1

2N∑
ℓ=−2N

min{N, ℓ+N}∑
n=max{−N, ℓ−N}

rxx[ℓ] e
−jωℓ (10.16)

PXX

(
ejω
)
= lim

N→∞

1

2N + 1

2N∑
ℓ=−2N

rxx[ℓ] e
−jωℓ

 min{N, ℓ+N}∑
n=max{−N, ℓ−N}

1

 (10.17)

The second summation in the square brackets can be shown by, simple counting, to simplify to 2N +
1− |ℓ|, and therefore:

PXX

(
ejω
)
= lim

N→∞

1

2N + 1

2N∑
ℓ=−2N

(2N + 1− |ℓ|) rxx[ℓ] e−jωℓ (10.18)

=
∞∑

ℓ=−∞

rxx[ℓ] e
−jωℓ − lim

N→∞

2N∑
ℓ=−2N

|ℓ|
2N + 1

rxx[ℓ] e
−jωℓ (10.19)

Assuming the mild assumption that the autocorrelation sequence rxx[ℓ] decays sufficiently rapidly
such that:

lim
N→∞

2N∑
ℓ=−2N

|ℓ| |rxx[ℓ] = 0 (10.20)

then Equation 10.19 simplifies to:

PXX

(
ejω
)
=

∞∑
ℓ=−∞

rxx[ℓ] e
−jωℓ (10.21)
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Hence, PXX

(
ejωT

)
can be viewed as the average power, or energy, of the Fourier transform of a

random process at frequency ω. Clearly, this gives an indication of whether, on average, there are
dominant frequencies present in the realisations of x[n].

– End-of-Topic 66: Introduction to the concept of the PSD –
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10.3 The power spectral density

New slideTopic Summary 67 Definition and Properties of the PSD

Topic Objectives:

• Definition and Properties of the PSD.

• Dealing with periodic and non-periodic components in an ACS.

• Examples of calculating PSDs.

Topic Activities:

Type Details Duration Progress
Watch video 20 : 15 min video 3× length
Read Handout Read page 364 to page 367 8 mins/page
Try Example Try Examples 10.1 and Example 10.2. 25 mins
Try Code Use the MATLAB code 10 mins
Practice Exercises Exercise ?? 20 mins

http://media.ed.ac.uk/media/1_yoe37jow

Video Summary: This video presents the formal definition of the PSD of a WSS process,
and its inverse relationship, both through DTFT pairs. The video presents the key
properties of the PSD, many of which are related to properties of the Fourier transform,
but also some key conceptual properties such as positivity, total power, and being a
real function. Several examples worked examples for calculating PSDs are presented,
including a detailed analysis of dealing with ACSs that have a periodic component, as
well as a non-periodic component.

The discrete-time Fourier transform of the autocorrelation sequence of a stationary stochastic process
x[n, ζ] is known as the power spectral density (PSD), is denoted by Pxx(e

jω), and is given by:

Pxx(e
jω) =

∑
ℓ∈Z

rxx[ℓ] e
−jωℓ (M:3.3.39)

where ω is frequency in radians per sample.

The autocorrelation sequence, rxx[ℓ], can be recovered from the PSD by using the inverse-DTFT:

rxx[ℓ] =
1

2π

∫ π

−π

Pxx(e
jω) ejωℓ dω, ℓ ∈ Z (M:3.3.41)
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Sometimes the PSD is called the auto-PSD to distinguish it from the cross-PSD introduced in
Section 10.4. In the case that rxx[ℓ] is periodic, corresponding to a wide-sense periodic stochastic
process, then the power spectral density is defined as the discrete Fourier transform of the
autocorrelation sequence. This natural extension is easily obtained once the aperiodic-case is
considered in depth.

10.3.1 Properties of the power spectral density

New slideThere are a number of properties of the power spectral density that follow from the corresponding
properties of the autocorrelation sequence, and the discrete-time Fourier transform.

• Pxx(e
jω) : ω → R+; in otherwords, the PSD is real valued, and nonnegative definite. i.e.

Pxx

(
ejωT

)
≥ 0 (M:3.3.44)

This property follows from the positive semi-definiteness of the autocorrelation sequence.

• Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic with period 2π.

• If x[n] is real-valued, then:

– rxx[ℓ] is real and even;

– Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.

• The area under Pxx(e
jω) is nonnegative and is equal to the average power of x[n]. Hence:

1

2π

∫ π

−π

Pxx(e
jω) dω = rxx[0] = E

[
|x[n] |2

]
≥ 0 (M:3.3.45)

Example 10.1 ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the PSD of a zero-mean
WSS process x[n] with autocorrelation sequence rxx[ℓ] = a|ℓ|, −1 < a < 1.

SOLUTION. Using the definition of the PSD directly, then:

Pxx(e
jω) =

∑
ℓ∈Z

rxx[ℓ] e
−jωℓ (10.22)

=
∑
ℓ∈Z

a|ℓ| e−jωℓ (10.23)

=
∞∑
ℓ=0

(
a e−jω

)ℓ
+

∞∑
ℓ=0

(
a ejω

)ℓ − 1 (10.24)

Hence, by using the expressions for geometric series, the PSD can be written as:

Pxx(e
jω) =

1

1− a e−jω
+

1

1− a ejω
− 1 (M:3.3.42)

=
1− a2

1− 2a cosω + a2
(10.25)

□

which is a real-valued, even, and nonnegative function of ω.
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10.3.2 General form of the PSD
New slideA process, x[n], and its corresponding autocorrelation sequence (ACS), rxx[ℓ], can be decomposed

into a zero-mean aperiodic component, r(a)xx [ℓ], and a non-zero-mean periodic component, r(p)xx [ℓ]:

rxx[ℓ] = r(a)xx [ℓ] + r(p)xx [ℓ] (10.26)

Theorem 10.1 (PSD of a non-zero-mean process with periodic component). The most general
definition of the PSD for a non-zero-mean stochastic process with a periodic component is given
by:

Pxx(e
jω) = P (a)

xx (e
jω) +

2π

K

∑
k∈K

P (p)
xx (k) δ (ω − ωk) (T:4.41)

The term P
(a)
xx (ejω) is the DTFT of the aperiodic component r(a)xx [ℓ], while P

(p)
xx (k) are the discrete

Fourier transform (DFT) coefficients for the periodic component r(p)xx [ℓ] assuming a periodicity of
length K, and where ωk =

2πk
K

.

Moreover, it can be seen that P (a)
xx (ejω) represents the continuous part of the spectrum, while the sum

of weighted impulses represent the discrete part or lines of the spectrum.

PROOF. The non-zero-mean periodic component, r(p)xx (l) can itself be decomposed using a discrete
Fourier transform:

r(p)xx (l) =
1

K

∑
k∈K

P (p)
xx (k) e

jωkl (10.27)

where K = {0, . . . , K − 1}, and ωk =
2π
K
k. Thus, the PSD of X(ζ), becomes:

Pxx(e
jω) = P (a)

xx (e
jω) +

1

K

∑
ℓ∈Z

∑
k∈K

P (p)
xx (k) e

jωkℓ e−jωℓ (10.28)

As usual, change the order of summation:

= P (a)
xx (e

jω) +
1

K

∑
k∈K

P (p)
xx (k)

∑
ℓ∈Z

e−jℓ(ω−ωk) (10.29)

= P (a)
xx (e

jω) +
2π

K

∑
k∈K

P (p)
xx (k) δ (ω − ωk) (10.30)

where Poisson’s formula, which can be derived by writing down the Fourier series for an impulse
train, is used:

∞∑
n=−∞

δ (t− nT ) =
1

T

∞∑
ℓ=−∞

e−jℓω0t (10.31)

where ω0 =
2π
T

. Thus, by letting T = 2π, and t = ω − ωk, then:

2π
∞∑

n=−∞

δ (ω − ωk − 2πn) =
∞∑

ℓ=−∞

e−jℓ(ω−ωk) (10.32)

Since −2π < ωk ≤ 2π, and Pxx(e
jω) is periodic in ω with period 2π, then it is sufficient to write for

|ω| ≤ 2π, that:

2πδ (ω − ωk) =
∞∑

l=−∞

e−jl(ω−ωk) (10.33)
□

which can be substituted to give the desired result.



10.4. The cross-power spectral density 369

Example 10.2 ( [Manolakis:2001, Harmonic Processes, Page 110-111]). Determine the PSD of
the harmonic process introduced in the previous handout and defined by:

x[n] =
M∑
k=1

Ak cos(ωkn+ ϕk), ωk ̸= 0 (M:3.3.50)

where M , {Ak}M1 and {ωk}M1 are constants, and {ϕk}M1 are pairwise independent and identically
distributed (i. i. d.) random variables (RVs) uniformly distributed in the interval [0, 2π].

SOLUTION. As shown in the previous handout, x[n] is a zero-mean stationary process, and ACS:

rxx[ℓ] =
1

2

M∑
k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞ (M:3.3.52)

Note that rxx[ℓ] consists of a sum of in-phase cosines with the same frequencies as in x[n]. By writing

cosωkℓ =
ejωkℓ + e−jωkℓ

2
(10.34)

then Equation M:3.3.52 may be written as:

rxx[ℓ] =
1

4

M∑
k=1

|Ak|2
(
ejωkℓ + e−jωkℓ

)
=

M∑
k=1

|Ak|2

4
ejωkℓ +

M∑
k=1

|Ak|2

4
e−jωkℓ

=
M∑
k=1

|Ak|2

4
ejωkℓ +

−M∑
k̂=−1

|A−k̂|2

4
e−jω−k̂ℓ

(10.35)

Hence, the ACS can be written as:

rxx[ℓ] =
M∑

k=−M

|Ak|2

4
ejωkℓ, −∞ < ℓ < ∞ (10.36)

where the following are defined: A0 = 0, Ak = A−k, and ω−k = −ωk.

Hence, it directly follows using the results above that:

Pxx(e
jω) = 2π

M∑
k=−M

|Ak|2

4
δ(ω − ωk) =

π

2

M∑
k=−M

|Ak|2δ(ω − ωk) (10.37)
□

The harmonic process is predictable because any given realisation is a sinusoidal sequence with fixed
amplitude, frequency and phase. The independence and uniform distribution of the phase, however,
is strictly required to ensure the stationarity of the process x[n].

– End-of-Topic 67: Definition and examples of the PSD for WSS
processes –
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10.4 The cross-power spectral density

New slideTopic Summary 68 Cross-Power and Complex Spectral Densities

Topic Objectives:

• Definition and Properties of the cross-power spectral density (CPSD).

• Introducing the Complex- and Cross-Spectral Density Functions and their properties.

• Examples of calculating the complex-spectral density of a challenging ACS.

• Using tables of z-transforms.

Topic Activities:

Type Details Duration Progress
Watch video 23 : 18 min video 3× length
Read Handout Read page 368 to page ?? 8 mins/page
Try Example Try Example 10.3 25 mins
Practice Exercises Exercise ?? to ?? 80 mins

http://media.ed.ac.uk/media/1_ocukvbyi

Video Summary: This Topic extends the definition of the PSD in two ways. First, it
considers the CPSD for considering the spectral characteristics of two-jointly stationary
processes. It takes the natural definition of being the DTFT of the cross-correlation
function. The video considers some relevant properties of the CPSD. The Topic then
considers that, due to technical limitations of the DTFT, taking the bilateral z-transform
of the auto- or cross-correlation sequences is a more powerful technique. This is
defined as the complex- and cross-complex spectral densities. An example of the
complex-spectral density is calculated. Finally, a discussion of using z-transform tables
for taking inverse transforms is provided.

The cross-power spectral density (CPSD) of two jointly stationary stochastic processes, x[n] and y[n],
provides a description of their statistical relations in the frequency domain. It is defined, naturally, as
the DTFT of the cross-correlation, rxy[ℓ] ≜ E [x[n] y∗[n− ℓ]]:

Pxy

(
ejωT

)
= F{rxy[ℓ]} =

∑
ℓ∈Z

rxy[ℓ] e
−jωℓ (M:3.3.56)
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The cross-correlation rxy[ℓ] can be recovered by using the inverse-DTFT:

rxy[ℓ] =
1

2π

∫ π

−π

Pxy

(
ejωT

)
ejωℓ dω, ℓ ∈ R (M:3.3.57)

Since this integral is essentially a summation, then an interpretation that can be given to the
cross-spectrum is that Pxy

(
ejωT

)
measures the correlation between two RVs at a given frequency

ω0.

The cross-spectrum Pxy

(
ejωT

)
is, in general, a complex function of ω.

Some properties of the CPSD and related definitions include:

1. Pxy

(
ejωT

)
is periodic in ω with period 2π.

2. Since rxy[ℓ] = r∗yx[−ℓ], then it follows:

Pxy

(
ejωT

)
= P ∗

yx

(
ejωT

)
(M:3.3.58)

Thus, Pxy(e
jω) and Pyx(e

jω) have the same magnitude, but opposite phase.

3. If the process x[n] is real, then rxy[ℓ] is real, and:

Pxy(e
jω) = P ∗

xy(e
−jω) (10.38)

4. The normalised cross-correlation, or coherence function, is given by:

Γxy(e
jω) ≜

Pxy(e
jω)√

Pxx(ejω)
√
Pyy(ejω)

(M:3.3.59)

Its squared magnitude is known as the magnitude square coherence (MSC) function.

∣∣Γxy(e
jω)
∣∣2 = |Pxy(e

jω)|2

Pxx(ejω)Pyy(ejω)
(10.39)

If y[n] = x[n], then Γxy(e
jω), corresponding to maximum correlation, whereas if x[n] and y[n]

are uncorrelated, then rxy[ℓ] = 0, and therefore Γxy(e
jω) = 0. Hence:

0 ≤ |Γxy(e
jω)|2 ≤ 1 (M:3.3.60)

10.5 Complex Spectral Density Functions

New slideThe analysis of discrete-deterministic signals is also performed through the the z-transform and,
therefore, in addition to using the Fourier transform, it is also very important to analyse stationary
random processes using this transform; it is a perfectly natural extension.

The second moment quantities that described a random process in the z-transform domain are known
as the complex spectral density and complex cross-spectral density functions. The PSD and CPSD
functions discussed previously can be considered as special cases of the complex spectral density
functions when the latter are evaluated on the unit circle.
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If the sequences rxx[ℓ] and rxy[ℓ] are absolutely summable within a certain ring of the complex
z-plane, then their z-transforms exist. Hence, rxx[ℓ]

z
⇌ Pxx(z) and rxy[ℓ]

z
⇌ Pxy(z), where:

Pxx (z) =
∑
ℓ∈Z

rxx[ℓ] z
−ℓ (M:3.3.61)

Pxy (z) =
∑
ℓ∈Z

rxy[ℓ] z
−ℓ (M:3.3.62)

Note that these are bilateral z-transforms. If the unit circle, defined by z = ejω is within the region of
convergence of these summations, then:

Pxx(e
jω) = Pxx(z)|z=ejω (M:3.3.63)

Pxy(e
jω) = Pxy(z)|z=ejω (M:3.3.64)

Example 10.3 (Interleaved Example). Find the complex spectral-density of the sequence:

r[n] =

{
a|

n
2 | n ∈ {0, even}

0 for n odd
(10.40)

SOLUTION. Writing the z-transform, noting that the all odd-values are zero:

P (z) =
∞∑

ℓ=−∞

r[ℓ] z−ℓ (10.41)

=
∞∑

ℓo=−∞

r[2ℓo + 1] z−(2ℓo+1)

︸ ︷︷ ︸
Odd terms

+
∞∑

ℓe=−∞

r[2ℓe] z
−2ℓe

︸ ︷︷ ︸
Even terms

(10.42)

=
∞∑

ℓe=−∞

a|
2ℓe
2 | z−2ℓe =

∞∑
ℓe=−∞

a|ℓe| z−2ℓe (10.43)

Splitting this into two further summations, as previous done with an earlier example:

P (z) =
0∑

ℓe=−∞

a−ℓe z−2ℓe +
∞∑

ℓe=0

aℓe z−2ℓe − 1 (10.44)

=
∞∑

ℓe=0

(
a z2
)ℓe

+
∞∑

ℓe=0

( a

z2

)ℓe
− 1 (10.45)

Finally, applying the geometric progression formula
∑∞

ℓ=0 r
ℓ = 1

1−r
gives the desired result:

P (z) =
1

1− a z2
+

1

1− a z−2
− 1 (10.46)

=
1

1− a z2
+

a z−2

1− a z−2
(10.47)

Note that this could have, equivalently, been written as:

P (z) =
az2

1− a z2
+

1

1− a z−2
(10.48)

□
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The inverse of the complex spectral and cross-spectral densities are given by the contour integral:

rxx[ℓ] =
1

2πj

∮
C

Pxx(z) z
ℓ−1 dz (10.49)

rxy[ℓ] =
1

2πj

∮
C

Pxy(z) z
ℓ−1 dz (10.50)

where the contour of integration C is to be taken counterclockwise and in the region of convergence.
In practice, these integrals are usually never performed, and tables, instead, are used.

Some properties of the complex spectral densities include:

1. Conjugate-symmetry:

Pxx(z) = P ∗
xx(1/z

∗) and Pxy(z) = P ∗
yx(1/z

∗) (10.51)

2. For the case when x(n) is real, then:

Pxx(z) = Pxx(z
−1) (10.52)

The possible existence of lines in the PSD function due to a periodic component of the random
process, as discussed in Section 10.3.2, poses some mathematical problems in defining the complex
spectral density function since the z-transform does not exist. A similar approach to that in
Equation T:4.41 is used here, and the complex spectral density function is written as:

Pxx(z) = P (a)
xx (z) + 2π

∑
k∈K

P (p)
xx (k) δ

(
z − ejωk

)
(10.53)

where P (a)
xx (z) corresponds to the aperiodic component of the autocorrelation function, and the second

summation term denotes the line spectra.

10.6 Table of bilateral z-transforms
New slideThe bilateral z-transform is defined by the following pairs of equations:

X (z) ≜ Z[x[n]] =
∞∑

n=−∞

x[n] z−n (M:2.2.29)

x[n] =
1

2πj

∮
C

X (z) zn−1 dz (M:2.2.30)

In the following table, it is assumed that |a| ≤ 1. It is important to note that this is a crucial condition,
as it will distinguish signals that exist only for n ≥ 0 and those for x < 0. To use these tables, it
is crucial to match an expression with an identity exactly, otherwise the incorrect inverse transform
might accidentally be used.

For the purposes of the table, recall that u[n] is the discrete-time step function given by:

u[n] =

{
1 n ≥ 0

0 n < 0
(10.54)

The region of convergence (ROC) is also shown for completeness, although it is usual to assume that
z is only considered within the ROC. Note that if the signal x[n] = 0 for n < 0, it is known as a
causal sequence, and if x[n] = 0 for n > 0, it is known as an anticausal sequence.
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Notes x[n] X (z) ROC

x[n] = 0, n < 0 u[n]
1

1− z−1
≡ z

z − 1
|z| > 1

x[n] = 0, n > 0 u[−n]
1

1− z
|z| < 1

x[n] = 0, n < 0 an u[n]
1

1− az−1
≡ z

z − a
|z| > |a|

x[n] = 0, n ≤ 0 an u[n− 1]
a

z − a
≡ az−1

1− az−1
|z| > |a|

x[n] = 0, n > 0 a−n u[−n]
1

1− az
≡ z−1

z−1 − a
|z| < 1

|a|

x[n] = 0, n ≥ 0 a−n u[−n− 1]
az

1− az
≡ a

z−1 − a
|z| < 1

|a|

x[n] = 0, n < 0 nan u[n]
az−1

(1− az−1)2
|z| > |a|

x[n] = 0, n ≥ 0 −na−n u[−n− 1]
az

(1− az)2
|z| < 1

|a|

See note 3
{
a|

n
2 | n ∈ {0, even}

0 for n odd

1

1− az2
+

az−2

1− az−2

or
1− a2

(1− az2) (1− az−2)

|a|
1
2 < |z| < 1

|a| 12

{
a|

n
2 |+ 1

2 for n odd
0 otherwise

az

1− az2
+

az−1

1− az−2

or
a (1− a) (z + z−1)

(1− az2) (1− az−2)

|a|
1
2 < |z| < 1

|a| 12

See notes 1, 3 a|n|

1

1− az−1
+

az

1− az

or
1− a2

(1− az) (1− az−1)

|a| < |z| < 1

|a|

See note 2 |n|a|n| az−1

(1− az−1)2
+

az

(1− az)2
|a| < |z| < 1

|a|

Notes: 1. This identity follows since a|n| ≡ an u[n] + a−n u[−n− 1].

2. Similarly, note that |n|a|n| = nan u[n]− na−n u[−n− 1].

3. Note other similar expressions result, as shown below.

A variety of equivalent expressions can result from some simple manipulations; thus, other tables of
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z-transforms may appear to list different results, but are actually equivalent. Some examples include:

x[n] =

{
a|

n
2 | n ∈ {0, even}

0 for n odd

z
⇌

1

1− az2
+

az−2

1− az−2
=

{
az2

1− az2
+ 1

}
+

{
1

1− az−2
− 1

}
=

az2

1− az2
+

1

1− az−2

and

x[n] = a|n|
z
⇌

1

1− az−1
+

az

1− az
=

{
1

1− az−1
− 1

}
+

{
az

1− az
+ 1

}
=

az−1

1− az−1
+

1

1− az

The fact that there are so many equivalent expressions means that sometimes it can be difficult to find
the exact transform relation in tables. The particular form of the z-transform that needs to be inverted
can vary depending on how it is calculated.
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11
Linear Systems with Stationary Random Inputs

Considers the concept of applying a stochastic signal to the input of a system and determining
the resulting output. Looks at the special case of linear time-invariant (LTI) systems with
stationary inputs. Analysis by looking at the input and output statistics, as well as the input-output
joint-statistics. Discusses system identification using cross-correlation. Provides examples for
systems with rationale transfer functions (using time domain analysis by solving difference equations
and frequency domain analysis).

376
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11.1 Systems with Stochastic Inputs

New slide Topic Summary 69 Introduction to System Response to Random Signals

Topic Objectives:

• Concept of the output of a system to stochastic input.

• Overview of methods for Calculating Input-Output Statistics.

• Introduction of Monte Carlo calculation for Input-Output Statistics.

Topic Activities:

Type Details Duration Progress
Watch video 18 : 19 min video 3× length
Read Handout Read page 375 to page 377 8 mins/page
Try Example Try Example 11.1 using MATLAB 25 mins

http://media.ed.ac.uk/media/1_dak8253r

Video Summary: This Topic introduces the concept of calculating the stochastic process
at the output of a known deterministic system, given a stochastic process at the input
of the system. This concept is approached by considering the operation of the system
on each realisation of the input stochastic process, and calculating the statistics over the
resulting ensemble at the output. The video discusses why it is necessary, in this course,
to restrict the analysis to known linear time-invariant (LTI) systems with wide-sense
stationary (WSS) inputs. An overview is provided for the four different methods for
calculating the input-output statistics, namely in the time-domain or frequency-domain,
and either using the system impulse-response or the system-difference equation. Finally,
an example of simulating the ensemble statistics through a Monte Carlo experiment is
shown.

Signal processing involves the transformation of signals to enhance certain characteristics; for
example, to suppress noise, or to extract meaningful information. This handout considers the
processing of random processes by systems, and in particular linear systems.

What does it mean to apply a stochastic signal to the input of a system? This question is an interesting
one since a stochastic process is not just a single sequence but an ensemble of sequences.

If the system is a general nonlinear possibly time-varying system, then one approach of expressing
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Figure 11.1: A graphical representation of a random process at the output of a system in relation to a
random process at the input of the system.

the relationship is as follows: Given a stochastic process x[n, ζ], assign according to some rule to
each of its realisations x[n, ζk] a function y[n, ζk]. Thus, another process has been created in which:

y[n] = T [x[n]] (11.1)

whose realisations are the functions {y[n, ζk]}. This process y[n] so formed can be considered as the
output of a system or transformation with, as its input, the process x[n]. The system is completely
specified in terms of the transformation function (or operator) T ; that is, the rule of correspondence
between the samples of the input x[n] and the output y[n].

In principle, the statistics of the output of any system can be expressed in terms of the statistics of the
input. However, in general this is a complicated problem except in special cases of particular types of
signals or particular types of systems. A special case is that of known-deterministic linear systems,
and this is considered in the next section. In particular, if the input is a stationary stochastic process,
and the system is linear time-invariant (LTI), then the statistics are even simpler. Moreover, it leads to
a slightly simpler and intuitive explanation for the response of the system to the input. There are other
systems that can be analysed, but due to time constraints, they are not considered in this course. For
more information see, for example, [Papoulis:1991, Chapter 10]. The case of random signals going
through random systems is of great interest, but also beyond the scope of this course.

11.2 Methods for Calculating Input-Output Statistics

New slide There are four different methods for calculating the input-output statistics for a WSS stochastic
process passing through a known deterministic linear system. The techniques build on the theory
that is already well understood in signals and systems theory, and therefore is should be familiar.
The techniques involve either a time-domain solution, or a frequency-domain solution. In the
time-domain, the problem can be solved either using convolution, if the system impulse response
is known, or by solving difference equations if that description of the linear system is available.

Similarly, in the frequency domain, the transfer function approach can be used in which either the
transfer function of the impulse response is known, or the rational transfer function of the difference
equation describing the system is available. These four different methods are summarised in the table
below.
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Time-domain Frequency or transform domain
LTI with stationary input

Impulse Manipulate convolution Take z-transform
response: y[n] = h[n] ⋆ x[n] ⇒ of new convolution:

ryx[ℓ] = h[ℓ] ⋆ rxx[ℓ]
Pyz (z) = H (z)Pxx (z)

Notes: Solve convolution summation; Invert z-transform;
Use graphical method. Use partial fractions, tables,...

Difference Manipulate system Take z-transform
equation: difference equation: of new equation:

Q∑
q=0

apryx[ℓ− q]

=
P∑

p=0

bprxx[ℓ− p]

Pyx (z) = Pxx (z)

P∑
p=0

bpz
−p

Q∑
q=0

apz−q

Notes: Guess, e.g. ryx[ℓ] = (α ℓ+ β) rℓ Invert z-transform;
Recursive substitution. Use partial fractions, tables, ...

Example 11.1 (Typical Question). A real-valued discrete-time random process x[n] consists of
independent and identically distributed (i. i. d.) random variables each with uniform density on the
interval [0, 6].

The process x[n] is applied to a linear time-invariant (LTI) system with impulse response:

h[n] =

{(
2
3

)n
, n ≥ 0

0, n < 0

The output of this linear system is denoted as y[n].

1. Calculate the output autocorrelation function ryy[ℓ].

2. Suppose the i. i. d. process x[n] now has a Weibull distribution with unit mean and variance of
3. Explain how your previous result might change, justifying your answer.

SOLUTION. You can try and answer this question after studing the rest of the handout!

– End-of-Topic 68: Summary of methods for calculating input-output
statistics –
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11.3 LTI Systems with Stationary Inputs

New slideTopic Summary 70 Time-Domain Analysis of Response to Random Signals using the System
Impulse Response

Topic Objectives:

• Time-domain relationships for input-output statistics in terms of impulse response.

• Example of calculations for a typical problem.

• Observation of how WSS processes of arbitrary autocorrelation sequence (ACS) can be
obtained by driving a LTI system by white Gaussian noise (WGN).

Topic Activities:

Type Details Duration Progress
Watch video 32 : 23 min video 3× length
Read Handout Read page 378 to page 384 8 mins/page
Try Example Try Example 11.2 30 mins
Practice Exercises Exercises ?? and ?? 40 mins

http://media.ed.ac.uk/media/1_8i50x9zo

Video Summary: This video looks at the method for calculating the output statistics
for a LTI system in response to a WSS input using a time-domain method given
the system impulse response. The Topic begins by highlighting the conceptual idea
that the expectation of a linear operator or system is equivalent to the linear operator
applied to expectations. This leads to the general idea that the output statistics are the
convolution of the impulse response of the system with the input statistics. The specific
details are presented, including calculating the mean at the output, the output-input
cross-correlation, the output cross-correlation, and the equivalent covariance results.
A detailed and typical example is presented, demonstrating the different stages of the
calculations. Finally, the relationship of these results to the application of stochastic
signal modelling is mentioned, and this will be addressed in detail in a later topic.

The notation:

y[n] = L[x[n]] (P:10-76)
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will indicate that y[n] is the output of a linear system with input x[n]. This means that for K random
processes {xk[n]}Kk=1 and K scalar values {αk}Kk=1, then

y[n] = L

[
K∑
k=1

αk xk[n]

]
=

K∑
k=1

αk L[xk[n]] (P:10-77)

Since each sequence (realisation) of a stochastic process is a deterministic signal, there is a
well-defined input signal producing a well-defined output signal corresponding to a single realisation
of the output stochastic process:

y[n, ζ] =
∞∑

k=−∞

h[k] x[n− k, ζ] (M:3.4.1)

This is the familiar convolution integral for LTI systems, and the impulse response of this system is
given by:

h[n] = L[δ[n]] (P:10-78)

If the sum in the right hand side (RHS) of Equation M:3.4.1 exists for all ζ such that Pr (ζ) = 1, then
it is said that this sum has almost-everywhere convergence with probability of 1.

Theorem 11.1 (Input-output realisations for a LTI). If the process x[n, ζ] is stationary with
E [|x[n, ζ] |] < ∞ and if the system is bounded-input, bounded-output (BIBO) stable, such that∑∞

−∞ |h[k] | < ∞, then the output y[n, ζ] of the system in Equation M:3.4.1 converges absolutely
with probability 1, or:

y[n, ζ] =
∞∑

k=−∞

h[k] x[n− k, ζ] for all ζ ∈ A, Pr (A) = 1 (M:3.4.2)
♢

• A complete description of y[n, ζ] requires the computation of an infinite number of
convolutions, corresponding to each value of ζ .

• Thus, a better description would be to consider the statistical properties of y[n, ζ] in terms of
the statistical properties of the input and the characteristics of the system. For Gaussian signals,
which are used very often in practice, first- and second- order statistics are sufficient, since
higher-order statistics are completely specified by these first two moments.

To investigate the statistical input-output properties of a linear system, note the following fundamental
theorem:

Theorem 11.2 (Expectation in Linear Systems). For any linear system,

E [L[x[n]]] = L[E [x[n]]] (11.2)

In other words, for example, the mean µy[n] of the output y[n] equals the response of the system to
the mean µx[n] of the input:

µy[n] = L[µx[n]] (11.3)

However, the definition extends to other statistics as well.

PROOF. This is a simple extension of the linearity of expected values to arbitrary linear operators.

This result will be used throughout the next section, where possible. Note, however, that while this
result is very useful, it is often more practical to derive most equations from first principals.
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LTI System
Impulse Response

h n[ ]

Input Signal

x n x n[ ] [ ]�=� z,

Output Signal

y n y n[ ] [ ]�=� z,

Figure 11.2: A linear time-invariant (LTI) system.

11.3.1 Input-output Statistics of a LTI System

New slideIf a stationary stochastic process x[n] with mean value µx and correlation rxx[ℓ] is applied to the input
of a LTI system with impulse response h[n] and transfer function H (ejω), then the:

Output mean value is given by:

µy = µx

∞∑
k=−∞

h[k] = µx H(ej0) (M:3.4.4)

This is easily shown by using the linearity property of the expectation operator:

µy[n] = E

[
∞∑

k=−∞

h[k]x[n− k]

]
=

∞∑
k=−∞

h[k]E [x[n− k]] (M:3.4.4)

and since the process x[n] is stationary, then E [x[n− k]] = µx, giving the desired
result. Since µx and H(ej0) are constant, µy is also constant. Note that H(ej0) is the
“direct current” (DC) gain of the spectrum.

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞

h∗[−k] rxx[ℓ− k] (M:3.4.5)

This can be shown by writing:

rxy[ℓ] = E [x[n] y∗[n− ℓ]] = E [x[n+ ℓ] y∗[n]] (11.4)

= E

[
x[n+ ℓ]

∞∑
k=−∞

h∗[k] x∗[n− k]

]
(11.5)

=
∞∑

k=−∞

h∗[k]E [x[n+ ℓ] x∗[n− k]] (11.6)

=
∞∑

k=−∞

h∗[k] rxx[ℓ+ k] (11.7)

which by making the substitution m = −k, gives:

rxy[ℓ] =
∞∑

m=−∞

h∗[−m] rxx[ℓ−m] = h∗[−ℓ] ∗ rxx[ℓ] (11.8)
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Figure 11.3: An equivalent LTI system for autocorrelation filtration.

Similarly, it follows that ryx[ℓ] = h[ℓ] ∗ rxx[ℓ], and is arguably easier to prove:

ryx[ℓ] = E [y[n] x∗[n− ℓ]] (11.9)

= E

[
∞∑

k=−∞

h[k] x[n− k] x∗[n− ℓ]

]
(11.10)

=
∞∑

k=−∞

h[k]E [x[n− k] x∗[n− ℓ]] (11.11)

=
∞∑

k=−∞

h[k] rxx[ℓ− k] = h[ℓ] ∗ rxx[ℓ] (11.12)

Since rxy[ℓ] depends only on the lag ℓ, then the input and output processes of a BIBO
stable linear time-invariant system, when driven by a WSS input, are jointly WSS.

Output autocorrelation is obtained by post-multiplying the system-output by y∗[n− ℓ] and taking
expectations:

ryy[ℓ] = E [y[n] y∗[n− ℓ]] (11.13)

= E

[
∞∑

k=−∞

h[k] x[n− k] y∗[n− ℓ]

]
(11.14)

and applying the linearity of the expectation operator, it follows:

ryy[ℓ] =
∞∑

k=−∞

h[k] E [x[n− k] y∗[n− ℓ]] = h[ℓ] ∗ rxy[ℓ] (M:3.4.8)

Substituting the expression for rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] gives:

ryy[ℓ] = h[ℓ] ∗ h∗[−ℓ] ∗ rxx[ℓ] = rhh[ℓ] ∗ rxx[ℓ] (M:3.4.10)

where rhh[ℓ] = r∗hh[−ℓ] is the autocorrelation, for want of a better phrase, of the
system impulse response:

rhh[ℓ] ≜ h[ℓ] ∗ h∗[−ℓ] =
∞∑

n=−∞

h[n] h∗[n− ℓ] (M:3.4.11)

where ≜ means defined as. If the relationship in Equation M:3.4.11 is not apparent,
it can be proven by writing g[ℓ] = h∗[−ℓ], such that the standard convolution formula
gives:

rhh[ℓ] ≜ h[ℓ] ∗ g[ℓ] =
∞∑

n=−∞

h[n] g[ℓ− n] (11.15)
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and, since g[ℓ− n] = h∗[−(ℓ− n)] = h∗[n− ℓ], Equation M:3.4.11 follows.
However, this equation can also be written in an alternative form by making the
substitution m = n− l such that when n → ±∞, m → ±∞, and Equation M:3.4.11
becomes:

rhh[ℓ] ≜ h[ℓ] ∗ h∗[−ℓ] =
∞∑

m=−∞

h[m+ ℓ] h∗[m] (M:3.4.11)

Both of these forms of the convolution rhh[ℓ] ≜ h[ℓ] ∗ h∗[−ℓ] are equally valid. It is
straightforward to show that rhh[ℓ] = r∗hh[−ℓ] by writing:

r∗hh[−ℓ] = (h[−ℓ] ∗ h∗[+ℓ])∗ = h[−ℓ]∗ ∗ h[+ℓ] = rhh[ℓ] (11.16)

Since µy, as given by Equation M:3.4.4 is constant, and ryy[ℓ] depends only on the
lag ℓ, the response of a BIBO stable linear time-invariant to a stationary input is also
a stationary process. A careful examination of Equation M:3.4.10 shows that when a
signal x[n] is filtered by a LTI system with impulse response h[n], its autocorrelation
sequence is filtered by a system with impulse response equal to the autocorrelation
of its impulse response. This idea is illustrated in Figure 11.3.

Output-power of the process y[n] is given by ryy[0] = E [|y[n] |2], and therefore since ryy[ℓ] =
rhh[ℓ] ∗ rxx[ℓ],

Pyy = rhh[ℓ] ∗ rxx[ℓ]|ℓ=0 =
∞∑

k=−∞

rhh[k] rxx[−k] (11.17)

Noting power, Pyy, is real, then taking complex-conjugates using r∗xx[−ℓ] = rxx[ℓ]:

Pyy =
∞∑

k=−∞

r∗hh[k] rxx[k] =
∞∑

n=−∞

h∗[n]
∞∑

k=−∞

rxx[n+ k] h[k] (11.18)

This last step can be shown as follows:

Pyy =
∞∑

k=−∞

r∗hh(k) rxx(k) =
∞∑

k=−∞

{
∞∑

n=−∞

h∗(n)h(n− k)

}
rxx(n) (11.19)

Hence, by rearranging the order of summation, and bringing the h∗[n] forward, this
gives:

=
∞∑

n=−∞

h∗(n)
∞∑

k=−∞

h(n− k) rxx(n) (11.20)

Then, by letting m = n− k, the desired result is obtained.

Output probability density function (pdf) It, in general, it is very difficult to calculate the pdf of
the output of a LTI system, except in special cases, namely Gaussian processes.
If x[n] is a Gaussian process, then the output is also a Gaussian process with mean and
autocorrelation sequence given by Equation M:3.4.4 and Equation M:3.4.10 above.
Also, if x[n] is i. i. d., the pdf of the output is obtained by noting that y[n] is a weighted
sum of independent random variables (RVs). Indeed, as shown in earlier handouts,
the pdf of the sum of independent RVs is the convolution of their pdfs or the product
of their characteristic functions.
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Figure 11.4: A LTI system for [Therrien:1991, Example 5.1, Page 229].

Figure 11.5: The input-output cross-covariance sequences for [Therrien:1991, Example 5.1, Page
229].

Finally, before concluding this section, note that the covariance sequences (or functions) is just the
correlation sequences for the random process with the mean removed. As a result, the covariance
functions satisfy a set of equations analogous to those derived above.For completeness, they are listed
below:

γyx[ℓ] = h[ℓ] ∗ γxx[ℓ] (T:5.18)
γxy[ℓ] = h∗[−ℓ] ∗ γxx[ℓ] (T:5.19)
γyy[ℓ] = h[ℓ] ∗ γxy[ℓ] (T:5.20)

= h[ℓ] ∗ h∗[−ℓ] ∗ γxx[ℓ] (T:5.21)

The following example illustrates the application of these results.

Example 11.2 (Simple example [Therrien:1991, Example 5.1, Page 229]). The LTI system shown
in Figure 11.4 is driven by a process with mean µx and covariance sequence γxx[ℓ] = σ2

xδ[ℓ]; note that
this input process is white noise with an added nonzero mean.

Calculate the mean, autocorrelation and autocovariance sequences of the output, y[n], as well as the
cross-correlation and cross-covariance functions between the input and the output.

SOLUTION. Each of these functions may be calculated using the equations listed in this section.
Hence:

Output mean value First, calculate the mean. Using Equation M:3.4.4, then:

µy = µx

∞∑
k=−∞

h[k] = µx

∞∑
k=0

ρk =
µx

1− ρ
(11.21)

Input-output cross-covariance Since the input and the output both have nonzero mean, then it is
easiest to first calculate the auto- and cross-covariance functions, and then use these
to find the auto- and cross-correlation functions.
Thus, the output-input cross-covariance is given by Equation T:5.18:

γyx[ℓ] = h[ℓ] ∗ γxx[ℓ] =
(
ρℓu[ℓ]

)
∗
(
σ2
xδ[ℓ]

)
= σ2

xρ
ℓu[ℓ] (11.22)
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and therefore the input-output cross-covariance is

γxy[ℓ] = γ∗
yx[−ℓ] = σ2

x(ρ
∗)−ℓu[−ℓ] (11.23)

Output autocovariance Next, using Equation T:5.20, then:

γyy[ℓ] = h[ℓ] ∗ γxy[ℓ] =
∞∑

k=−∞

h[k] γxy[ℓ− k] (11.24)

The input-output cross-covariance sequence, γxy[ℓ], is plotted in Figure 11.5, along
with γxy[ℓ− k] as a function of k.
Hence, if ℓ > 0 it follows

γyy[ℓ] =
∞∑
k=ℓ

h[k] γxy[ℓ− k] =
∞∑
k=ℓ

ρk σ2
x(ρ

∗)−(ℓ−k) (11.25)

Substituting m = k − ℓ, such that when k = {ℓ, ∞}, then m = {0, ∞}, and so:

γyy[ℓ] = σ2
x

∞∑
m=0

ρℓ ρm (ρ∗)m (11.26)

= σ2
xρ

ℓ

∞∑
m=0

(
|ρ|2
)m

=
σ2
xρ

ℓ

1− |ρ|2
, ℓ > 0 (11.27)

If ℓ ≤ 0, then the summation is slightly different:

γyy[ℓ] =
∞∑
k=0

ρk σ2
x(ρ

∗)−(ℓ−k) (11.28)

= σ2
x(ρ

∗)−ℓ

∞∑
k=0

(
|ρ|2
)k

=
σ2
x(ρ

∗)−ℓ

1− |ρ|2
, ℓ ≤ 0 (11.29)

Input-output cross-correlation This can now be calculated using the relationship:

rxy[ℓ] = γxy[ℓ] + µx µ
∗
y (11.30)

= σ2
x(ρ

∗)−ℓu[−ℓ] + µx
µ∗
x

1− ρ∗
(11.31)

= σ2
x(ρ

∗)−ℓu[−ℓ] +
|µx|2

1− ρ∗
(11.32)

Output autocorrelation In a similar manner, the autocorrelation of the output is given by:

ryy[ℓ] = γyy[ℓ] + |µy|2 =


σ2
xρ

ℓ

1−|ρ|2 +
∣∣∣ µx

1−ρ

∣∣∣2 ℓ > 0

σ2
x(ρ

∗)−ℓ

1−|ρ|2 +
∣∣∣ µx

1−ρ

∣∣∣2 ℓ ≤ 0
(11.33)

□

Note that these results show that a process with the exponential correlation function can always be
generated by applying white noise to a stable first-order system. More generally, in the next handout,
it will be seen that wide-sense stationary of arbitrary autocorrelation sequence can be obtained by
driving a LTI system by WGN.

– End-of-Topic 69: Calculating input-output statistics in the
time-domain with the system impulse response –
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Unknown LTI
system, h[ ]n

Deterministic
input [ ]x n y n[ ]

Figure 11.6: What signals might be used for System Identification?

11.3.2 System identification by cross-correlation

New slideTopic Summary 71 Application of Cross-Correlation to System Identification

Topic Objectives:

• Concept of the output of a system to stochastic input.

• Overview of methods for Calculating Input-Output Statistics.

• Introduction of Monte Carlo calculation for Input-Output Statistics.

Topic Activities:

Type Details Duration Progress
Watch video 14 : 24 min video 3× length
Read Handout Read page 385 to page 387 8 mins/page
Try Example Try Example 11.3 using MATLAB 10 mins

http://media.ed.ac.uk/media/1_e6662yx1

Video Summary: This video introduces the important signal processing application
of system identification; identifying the system impulse response or transfer function
through measurements. The video highlights the advantages and disadvantages of the
three key deterministic approaches, using as the input an impulse, or step function, or
harmonic input. A fourth method which relies on a stochastic input is then presented,
namely driving a system with WGN. It is then shown, using the theory presented
earlier in the course, that the cross-correlation between the input and output is the
impulse response. The sample cross-correlation is highlighted as a way of estimating
the cross-correlation from a single realisation of the random process, where ergodicity of
the output has been assumed. Finally, as simple exam is implemented in MATLAB.

There are three key methods from our deterministic signal analysis for system identification:
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Unknown LTI
system, h[ ]n

White noise input

x n x n[ ] [ ]�=� z,

r l lxx[ ] [ ]=�d

y n y n[ ] [ ]�=� z,
Cross-

correlate

x n x n[ ] [ ]�=� z,

r l h lyx[ ] [ ]=

Figure 11.7: System identification by cross-correlation.

Impulse A simple input, but difficult to generate. The output is y[n] = h[n], the system
impulse response.

Step input A simple to generate signal, with the output y[n] =
∑n

k=0 h[k] being the step
response. The impulse response is obtained by taking the difference sequence at
the output (equivalent to differentiating).
This is problematic, as the difference signal can lead to errors when there is a small
amount of noise in the signals.

Harmonic input A simple to generate signal, x[n] = cosω0n, leading to the output:

y[n] =
∣∣H (ejω0

)∣∣ cos (ω0n+ argH
(
ejω0

))
(11.34)

By sweeping across frequencies, the magnitude and phase response of H (ejω) can be
calculated. The inverse-discrete-time Fourier transform (DTFT) can then be used to
reconstruct the impulse response, h[n].
This method is potentially very accurate, but equally it is very slow as a result.

The input-output cross-correlation of a LTI system is the basis for a classical method of identification
of an unknown linear system.

The system is excited with a WGN input with ACS:

rxx[ℓ] = δ[ℓ] (11.35)

Since the output-input cross-correlation can be written as:

ryx[ℓ] = h[ℓ] ∗ rxx[ℓ] (M:3.4.6)

then, with rxx[ℓ] = δ[ℓ], it follows:

ryx[ℓ] = h[ℓ] ∗ δ[ℓ] = h[ℓ] (11.36)

Hence, the impulse response of an unknown LTI system can be estimated by exciting the system with
WGN and evaluating the input-output cross-correlation.

If the discrete system represents a sampled continuous system, this method of estimating the impulse
response out-performs an estimation based on simply driving the system by an impulse since:

1. it is easier to generate an approximation to white noise than to generate an approximation to an
impulse, since the latter must have finite energy in an almost zero-width pulse;

2. application of an impulse to a physical system requires driving it very hard, albeit for a very
short time, and may cause damage. Driving a system with white noise is less traumatic. As an
example, consider estimating the acoustic impulse response (AIR) of a concert hall or office;
one method of generating an impulse is to fire a gun and, obviously, this will damage the concert
hall, which is less than desirable.
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Figure 11.8: The theoretical impulse response h[n] =
(
2
3

)n
u[n] and the time-averaged estimate of

the cross-correlation sequence R̂yx[ℓ].

As the input or excitation process is WGN, then the output is WSS, and in many cases will be ergodic.

Hence, the cross-correlation (and therefore system impulse response) can be estimated from a single
realisation using the sample cross-correlation function:

r̂yx[ℓ] =
1

N

N−1−|l|∑
n=0

y[n+ |ℓ|] x[n] , |ℓ| < N (11.37)

r̂′yx[ℓ] =
1

N − |l|

N−1−|ℓ|∑
n=0

y[n+ |ℓ|] x[n] , |ℓ| < N (11.38)

It is simple to generate an example in MATLAB.

Example 11.3 (Low-pass filter). A system is described by y[n] = 2
3
y[n− 1] + x[n], although this is

not known to the observer initially. By driving the system with WGN, calculate the impulse response
of the system through numerical simulation.

SOLUTION. See the MATLAB code on LEARN, to obtain the numerical result shown in Figure 11.8.

– End-of-Topic 70: Application of Cross-Correlation to System
Identification –
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Figure 11.9: General linear time-varying (LTV) system with nonstationary input; the impulse
response h[n, k] is the response at index n to an impulse occurring at time index k.

11.4 LTV Systems with Nonstationary Inputs

New slideTopic Summary 72 Analysis of linear time-varying (LTV) systems and other special cases

Topic Objectives:

• This topic is not currently examinable.

It is also possible to analyse a general linear system that is not necessarily time-invariant, as shown in
Figure 11.9; such a system is called linear time-varying (LTV).

The input and output are related by the generalised convolution:

y(n) =
∞∑

k=−∞

h(n, k)x(k) (T:5.1)

where h(n, k) is the response at time-index n to an impulse occurring at the system input at time-index
k. The mean, autocorrelation and autocovariance sequences of the output, y(n), as well as the
cross-correlation and cross-covariance functions between the input and the output, can be calculated
in a similar way as for LTI systems with stationary inputs. It is left as an exercise to the reader to
derive these, but the results are summarised in the next section.

11.4.1 Input-output Statistics of a LTV System

It is important to note that the input-output statistics of a LTI system with a stationary input are simply
special cases of the following results. Thus, it is perhaps preferable to remember these more general
results and simplify them as necessary.

Output mean value is given by

µy(n) =
∞∑

k=−∞

h(n, k)µx(k) (T:5.2)

This can be written as:
µy(n) = L[µx(n)] (P:10-80)

Output-input cross-correlation is given by

ryx(n,m) =
∞∑

k=−∞

h(n, k) rxx(k,m) (T:5.5)

and the input-output cross-correlation is:

rxy(n,m) = r∗yx(m,n) (T:5.4)
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Figure 11.10: Cross-correlation with respect to a third random process.

Output autocorrelation is a similar form, given by:

ryy(n,m) =
∞∑

k=−∞

h(n, k) rxy(k,m) (T:5.3)

Output-input cross-covariance has an identical form to that for the input-output cross-correlation
functions:

γyx(n,m) = ryx(n,m)− µy(n)µ
∗
x(m) (11.39)

=
∞∑

k=−∞

h(n, k) γxx(k,m) (T:5.9)

and
γyx(n,m) = γ∗

xy(m,n) (T:5.8)

Output autocovariance is given by:

γyy(n,m) = ryy(n,m)− µy(n)µ
∗
y(m) (T:5.6)

=
∞∑

k=−∞

h(n, k) γxy(k,m) (T:5.7)

Note that if the impulse response of the system has finite support, in the sense the region over which
it has non-zero values is a well-defined finite region, then it is possible to represent the correlation
functions and the impulse response function in matrix form:

Ryy = HRxxH
H (11.40)

Correlation matrices were introduced in an earlier handout.

11.4.2 Effect of Linear Transformations on Cross-correlation
New slideAnother situation worth considering is the cross-correlation with respect to a third random process,

as shown in Figure 11.10.

A random process x[n] is transformed by a LTV system to produce another signal y[n]. The process
x[n] is related to a third process z[n], and rxz[n1, n2] is known. It is desirable to find ryz[n1, n2]. The
response of the LTV system to x[n] is:

y[n] =
∑
k∈Z

h[n, k] x[k] (T:5.22)
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Hence, multiplying both sides by z∗[m] and taking expectations:

ryz[n,m] =
∑
k∈Z

h[n, k] rxz[k,m] = h[n, k] ∗ rxz[k,m] (T:5.24)

If the system is LTI, then this simplifies to:

ryz[ℓ] =
∑
k∈Z

h[k] rxz[ℓ− k] = h[ℓ] ∗ rxz[ℓ] (11.41)

– End-of-Topic 71: Analysis of LTV systems and other special cases –
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11.5 Time-Domain Analysis with Difference Equations

New slide Topic Summary 73 Difference Equation Analysis of Input-Output Time-Domain Statistics

Topic Objectives:

• Revising the difference-equation formluation of linear systems.

• Deriving the input-output statistics in terms of the difference equations.

• A worked example of solving the difference equations for a first-order system.

Topic Activities:

Type Details Duration Progress
Watch video 20 : 14 min video 3× length
Read Handout Read page 391 to page 394 8 mins/page
Try Example Try Example 11.4 25 mins
Practice Exercises Exercise ?? 60 mins

http://media.ed.ac.uk/media/1_wmwxloe1

Video Summary: This topic considers extending previous topics on calculating the
input-output statistics of a LTI system in response to a WSS process at the input,
when the LTI system is described by a difference equation. The video begins by
reviewing the difference-equations description of linear filters, and different possibilities
for manipulating the system. The video proposes a single approach by showing that
the input-output statistics satisfy the same difference equation that describes the system.
Therefore, through solving this difference equation, the desired statistics can be obtained.
A detailed example is then provided for a first-order linear system.

A mathematically elegant analysis of stochastic systems comes about when a LTI system can
be represented by difference equations. This will be particularly useful in the next handout on
linear signal models. Although the results of the preceding sections apply to these systems, the
difference equation approach offers an alternative representation of the results obtained with the
impulse response function, that can sometimes be quite useful and important. It is possible to use
a combination of methods, such as taking the transfer function of a difference to find the impulse
response, and then use convolution.The purpose of the difference equation approach is to do the
calculations in a single approach.
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Figure 11.11: Difference-equation description of a LTI system.

Consider a LTI system that can be represented by a difference equation:

y[n] = −
P∑

p=1

ap y[n− p] +

Q∑
q=0

bq x[n− q] (11.42)

which is often written in the more compact form:

P∑
p=0

ap y[n− p] =

Q∑
q=0

bq x[n− q] (11.43)

where a0 ≜ 1. Assuming that both x[n] and y[n] are stationary processes, such that E [x[n− p]] = µx

and E [y[n− q]] = µy, then taking expectations of both sides gives, after a little rearrangement:

µy =

∑Q
q=0 bq

1 +
∑P

p=1 ap
µx (11.44)

Without a priori assuming stationarity, then multiplying the system equation throughout by y∗[m] and
taking expectations gives:

P∑
p=0

ap ryy[n− p,m] =

Q∑
q=0

bq rxy[n− q,m] (11.45)

Assuming stationarity, and setting ℓ = n−m, this simplifies to:

P∑
p=0

ap ryy[ℓ− p] =

Q∑
q=0

bq rxy[ℓ− q] (11.46)

Similarly, rather than multiplying throughout the system equation by y∗[m], instead multiply though
by x∗[m] to give:

P∑
p=0

ap ryx[n− p,m] =

Q∑
q=0

bq rxx[n− q,m] (11.47)
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and again assuming stationarity, this simplifies to:

P∑
p=0

ap ryx[ℓ− p] =

Q∑
q=0

bq rxx[ℓ− q] (11.48)

These two sets of difference equations may be used to solve for ryy[n1, n2] and rxy[n1, n2] in the
nonstationary case, or in the stationary case. Note the statistics auto- and cross-correlation statistics
satisfy the original difference equations. Similar expressions can be obtained for the covariance
sequences. They are given by:

P∑
p=0

ap γyy[n− p,m] =

Q∑
q=0

bq γxy[n− q,m] (11.49)

and
P∑

p=0

ap γyx[n− p,m] =

Q∑
q=0

bq γxx[n− q,m] (11.50)

or, if the signals are stationary, then:

P∑
p=0

ap γyy[ℓ− p] =

Q∑
q=0

bq γxy[ℓ− q] (11.51)

and
P∑

p=0

ap γyx[ℓ− p] =

Q∑
q=0

bq γxx[ℓ− q] (11.52)

Example 11.4 ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x[n] be a random process
generated by the first order difference equation given by:

x[n] = αx[n− 1] + w[n] , |α| ≤ 1, n ∈ Z (11.53)

where w[n] ∼ N (µw, σ
2
w) is an i. i. d. WGN process.

• Demonstrate that the process x[n] is stationary, and calculate the mean µx.

• Determine the autocovariance and autocorrelation sequences, γxx[ℓ] and rxx[ℓ].

SOLUTION. Note that this is a first-order autoregressive (AR) process, which will be discussed in
more detail later in the lecture course. The case written above is, in fact, the stationary case, and
[Manolakis, Exercise 3.23, Page 145] poses the case where there is an initial transient, resulting
in a nonstationary autocorrelation function. This exercise is left for those interested, although be
forewarned that this is not an easy exercise. This example uses the theory described above.

• The output of a LTI system with a stationary input is always stationary, although this can also
be proved explicitly. It follows directly from the results above that:

µx =
µw

1− α
(11.54)
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• Using the results for the input-output covariance of a LTI system represented by difference
equation:

γxx[n,m]− α γxx[n− 1,m] = γwx[n,m] (11.55)
γxw[n,m]− α γxw[n− 1,m] = γww[n,m] (11.56)

which, since the system is stationary, can be written as:

γxx[ℓ]− α γxx[ℓ− 1] = γwx[ℓ] (11.57)
γxw[ℓ]− α γxw[ℓ− 1] = γww[ℓ] (11.58)

Noting x[n] cannot depend on future values of w[n], then γxw[n+ ℓ, n] = γxw[ℓ] = 0, ℓ <
0. This can be demonstrated by explicitly evaluating rxw[n,m] , m < n or rxw[ℓ] =
E [x[n] w∗[n− ℓ]], and noting that x[n] and w[n] are independent. If ℓ < 0, then w[n− ℓ]
is a sample with time-index greater than that of x[n], or in otherwords a future value.

Since γww[ℓ] = σ2
w δ[ℓ], the second of the difference equations above becomes:

γxw[ℓ] =


α γxw[ℓ− 1] ℓ > 0

σ2
w ℓ = 0

0 ℓ < 0

(11.59)

Solving for ℓ ≥ 0 gives by repeated substitution, γxw[ℓ] = αℓ σ2
w, and zero for ℓ < 0.

Since γwx[ℓ] = γ∗
xw[−ℓ], then the difference equation for the autocovariance function of x[n]

simplifies to:

γxx[ℓ]− α γxx[ℓ− 1] =

{
0 ℓ > 0

α−ℓ σ2
w ℓ ≤ 0

(11.60)

Note the solution for ℓ > 0 is the solution of the homogeneous equation. Hence, since γxx[ℓ] =
γxx[−ℓ] for a real process, then this equation is solved by assuming the solution:

Assuming the solution:
γxx[ℓ] = aα|ℓ| + b (11.61)

The values of a and b can be found by directly substituting the proposed solution for ℓ ≤ 0 into
the difference equation:

aα−ℓ + b− α
(
aα−(ℓ−1) + b

)
= α−ℓ σ2

w (11.62)

α−ℓ
(
1− α2

)
a+ (1− α) b = α−ℓ σ2

w (11.63)

from which it directly follows that b = 0 and a = σ2
x = σ2

w

1−α2 , corresponding to the case when
ℓ = 0.

Hence, in conclusion

γxx[ℓ] =
σ2
w

1− α2
α|ℓ| (11.64)

Using the relationship that rxx[ℓ] = γxx[ℓ] + µ2
x, it follows that the output auto-correlation is

given by:

rxx[ℓ] =
σ2
w

1− α2
α|ℓ| +

µ2
w

(1− α)2
(11.65)

□
As usual, if µw = 0, then rxx[ℓ] = γxx[ℓ].

– End-of-Topic 72: Analysis of input-output statistics using difference
equation approach –
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11.6 Frequency-Domain Analysis of LTI systems

New slideTopic Summary 74 Frequency-domain analysis of input-output statistics

Topic Objectives:

• Introduction to frequency and transform domain analysis for input-output statistics.

• Derivation and property of the complex spectral relationships between the system input and
system output.

• Several worked examples of calculations in the transform domain.

Topic Activities:

Type Details Duration Progress
Watch video 28 : 04 min video 3× length
Read Handout Read page 395 to page 400 8 mins/page
Try Example Try Examples 11.5 and 11.6 25 mins
Practice Exercises Exercises ?? to ?? 40 mins

http://media.ed.ac.uk/media/1_xzqslijf

Video Summary: This Topic gives a comprehensive overview of using a
frequency-domain analysis technique for evaluating the input-output statistics of a LTI
system with a WSS input. By taking the DTFT or z-transforms of the time-domain
relationships introduced in earlier topics, the transform domain relationships are obtained.
The video then covers two detailed examples showing the various steps in the analysis
technique; namely, first, find the system transfer function and complex-spectral density
of the input statistics; second, simplify the transform domain using, for example, partial
fraction expansion; and third, take inverse-transforms using, for example, z-transform
tables. The video briefly discusses the trade-off between using the transform vs
time-domain analysis techniques.

Now consider how a LTI transformation affects the power spectra and complex power density spectra
of a stationary random process. Recall that the power spectral density (PSD) is the Fourier transform
of the autocorrelation functions. Alternatively, it is possible to note that the frequency response of a
system is the z-transform evaluated on the unit circle.

Taking the DTFT of the time-domain relationships for the input-output statistics in terms of the system
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Figure 11.12: The PSD at the input and output of a LTI system with WSS input.

impulse response leads to the following spectral densities:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] ⇒ Pxy(e
jω) = H∗(ejω)Pxx(e

jω) (M:3.4.19)

ryx[ℓ] = h[ℓ] ∗ rxx[ℓ] ⇒ Pyx(e
jω) = H(ejω)Pxx(e

jω) (M:3.4.20)

ryy[ℓ] = h∗[−ℓ] ∗ h[ℓ] ∗ rxx[ℓ] ⇒ Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω) (M:3.4.21)

These results are derived very easily from the results in Section 11.3.1 and the properties of the
Fourier transform, especially that convolution becomes multiplication. It is important to stress the
similarity of these results with those for the frequency analysis of linear time-invariant systems with
deterministic signal inputs. The system is depicted in Figure 11.12.

• If the input and output autocorrelations or autospectral densities are known, the magnitude
response of a system |H(ejω)| can be determined, but not the phase response.

• Only cross-correlation or cross-spectral information can help determine the phase response.

A set of similar relations to Equation M:3.4.19, Equation M:3.4.20 and Equation M:3.4.21 can also
be derived for the complex spectral density function. Specifically, if: h[ℓ]

z
⇌ H (z), then:

h∗[−ℓ]
z
⇌ H∗ (1/z∗) (11.66)

Therefore, the input output relationships:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] (11.67)
ryx[ℓ] = h[ℓ] ∗ rxx[ℓ] (11.68)
ryy[ℓ] = h[ℓ] ∗ rxy[ℓ] (11.69)

= h[ℓ] ∗ h∗[−ℓ] ∗ rxx[ℓ] (11.70)

transform to the spectral relationships:

Pxy(z) = H∗ (1/z∗) Pxx(z) (T:5.41)
Pyx(z) = H(z)Pxx(z) (T:5.40)
Pyy(z) = H(z)Pxy(z) (T:5.42)
Pyy(z) = H(z)H∗ (1/z∗) Pxx(z) (T:5.44)

Note that Pyy(z) satisfies the required property for a complex spectral density function, namely that
Pyy(z) = P ∗

yy (1/z∗). Also, note the following result for real filters that make the above equations
simplify accordingly.
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Figure 11.13: Equivalent figure to Figure 11.13: a LTI system for [Therrien:1991, Example 5.1, Page
229].

Theorem 11.3 (Transfer function for a real filter). For a real filter:

h[−ℓ]
z
⇌ H∗

(
1

z∗

)
= H(z−1) (11.71)

PROOF. Writing:

H (z) =
∞∑

n=−∞

h[n] z−n (11.72)

then setting z → 1
z∗

gives:

H

(
1

z∗

)
=

∞∑
n=−∞

h[n]

[
1

z∗

]−n

(11.73)

Now, taking complex-conjugates, using the following facts:

• the conjugate of a sum/product of complex numbers is the sum/product of the conjugates of the
complex numbers, or in otherwords (a+ b)∗ = a∗ + b∗ and (ab)∗ = a∗b∗,

• the filter coefficients are real, such that h∗[n] = h[n],

then

H∗
(

1

z∗

)
=

∞∑
n=−∞

h(n) zn ≡
∞∑

m=−∞

h(−m) z−m (11.74)
□

where in the last step, the substitution m = −n has been made. Hence, this gives the desired result.
It is straightfoward to adapt the final stage of this proof to show that h∗[−ℓ]

z
⇌ H∗ ( 1

z∗

)
in general.

Consider again the earlier example based on [Therrien:1991, Example 5.1, Page 229].

Example 11.5 (Simple Example: [Therrien:1991, Example 5.3, Page 237]). Again, the LTI
system shown in Figure 11.4 is driven by a process with mean µx and covariance sequence
γxx[ℓ] = σ2

x δ[ℓ]. Calculate the PSD, cross-power spectral density (CPSD) and the complex spectral
densities.

SOLUTION. The first-order system with impulse response h[n] = ρnu[n] has system transfer
function:

H (z) =
1

1− ρ z−1
(11.75)

The complex spectral density function for the white noise with added mean is given by the z-transform
of the autocorrelation sequence. Since γxx[ℓ] = σ2

xδ[ℓ], then:

rxx[ℓ] = γxx[ℓ] + µ2
x = σ2

xδ[ℓ] + |µx|2 (11.76)
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Taking z-transforms gives:

Pxx (z) = σ2
x + 2π|µx|2δ(z − ej0) (11.77)

= σ2
x + 2π|µx|2δ(z − 1) (11.78)

where the complex spectral density result in Equation (T:4.59) at the end of the previous handout has
been used. Hence, the complex cross-spectral density is given by:

Pxy(z) = H∗ (1/z∗) Pxx(z) (11.79)

=

(
1

1− ρ
[

1
z∗

]−1

)∗ [
σ2
x + 2π|µx|2δ(z − 1)

]
(11.80)

=
σ2
x

1− ρ∗z
+

2π|µx|2

1− ρ∗z
δ(z − 1) (11.81)

Moreover, the complex spectral density is given by:

Pyy (z) = H (z) Pxy (z) (11.82)

=

(
1

1− ρz−1

)(
1

1− ρ∗z

)[
σ2
x + 2π|µx|2δ(z − 1)

]
(11.83)

=
σ2
x

1− |ρ|2
1− |ρ|2

(1− ρz−1) (1− ρ∗z)
+

2π|µx|2

|1− ρ|2
δ(z − 1) (11.84)

=
σ2
x

1 + |ρ|2 − ρ∗z − ρz−1
+

2π|µx|2

|1− ρ|2
δ(z − 1) (11.85)

The CPSD and the PSD are found by setting z = ejω to obtain:

Pxy(e
jω) =

σ2
x

1− ρ∗ejω
+

2π|µx|2

1− ρ∗ejω
δ(ejω − 1) (11.86)

Moreover, the PSD is given by:

Pyy(e
jω) =

σ2
x

1− |ρ|2
1− |ρ|2

1 + |ρ|2 − 2|ρ| cos(ω − arg ρ)
+

2π|µx|2

|1− ρ|2
δ(ejω − 1) (11.87)

where the simplification that:

ρ∗ejω + ρe−jω = |ρ|
[
e−j arg ρ ejω + ej arg ρe−jω

]
= |ρ|

[
ej(ω−arg ρ) + e−j(ω−arg ρ)

]
(11.88)

= 2|ρ| cos(ω − arg ρ) (11.89)

has been used.

Taking inverse z-transforms of Equation 11.84 gives the output ACS:

ryy[ℓ] =
σ2
x

1− |ρ|2
ρ|ℓ| +

|µx|2

|1− ρ|2
(11.90)

□

This matches the solutions found using: the impulse response approach, or the difference equation
approach.

Example 11.6 (Partial Fractions Example). The signal y[n] from Example 11.5 is applied to the
input of a causal LTI system with output s[n] which is characterised by the difference equation:

s[n] = ρ s[n− 1] + y[n] + y[n− 1] (11.91)
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• Show that the cross-power spectral density is given by:

Psy(z) =
σ2
x

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}
(11.92)

• Hence, find the cross-covariance sequence, γsy[ℓ], between the output, s[n], and the input y[n].

The following bilateral z-transform from the sample-domain, ℓ, to the z-domain might be useful:

ℓ aℓ u[ℓ]
z
⇌

a z−1

(1− a z−1)2
, |a| < 1 (11.93)

where u[ℓ] = 1 if ℓ ≥ 0 and zero otherwise.

SOLUTION. • The cross-complex spectral density at the output of the filter is given by:

Psy (z) = G (z) Pyy (z) (11.94)

where G (z) is the transfer function of the system.

By taking z-transforms:

G (z) =
1 + z−1

1− ρz−1
(11.95)

and therefore using the expression for Pyy (z) from the previous example:

Psy(z) = G(z)Pyy(z) =
1 + z−1

1− ρz−1

σ2
x

(1− ρ z−1) (1− ρ z)
(11.96)

=
σ2
w

1− ρz−1

{
1 + z−1

(1− ρ z−1) (1− ρ z)

}
(11.97)

• The term in the curly brackets can be simplified as:

1 + z−1

(1− ρ z−1) (1− ρ z)
=

z + 1

(z − ρ) (1− ρ z)
=

A

z − ρ
+

B

1− ρ z
(11.98)

Using the cover-up rule to find:

A: × by z − ρ & set z − ρ = 0; =
z + 1

(1− ρ z)
= A+ (z − ρ)

B

1− ρ z︸ ︷︷ ︸
=0

B: × by 1− ρ z & set 1− ρ z = 0; =
z + 1

(z − ρ)
= (1− ρ z)

A

z − ρ︸ ︷︷ ︸
=0

+B

which may be rewritten as:

A =
z + 1

1− ρ z

∣∣∣∣
z=ρ

=
1 + ρ

1− ρ2
=

1

1− ρ
(11.99)

B =
z + 1

z − ρ

∣∣∣∣
z= 1

ρ

=
1 + ρ

1− ρ2
=

1

1− ρ
= A (11.100)

June 28, 2021 – 08 : 40



402 Linear Systems Theory

Hence, the cross-complex spectral density is given by:

Psy (z) =
σ2
w

1− ρz−1

1

1− ρ

{
1

z − ρ
+

1

1− ρ z

}
(11.101)

=
σ2
w

1− ρ

{
1

1− ρz−1

}{
z−1

1− ρ z−1
+

1

1− ρ z

}
(11.102)

=
σ2
w

1− ρ

{
1

ρ

ρz−1

(1− ρ z−1)2
+

1

1− ρ2
1− ρ2

(1− ρ z) (1− ρ z−1)

}
(11.103)

Hence, taking inverse-z-transforms gives the cross-covariance:

γsy[ℓ] =
σ2
w

1− ρ

{
ℓ

ρ
ρℓ u[ℓ] +

1

1− ρ2
ρ|ℓ|
}

(11.104)
□

To find the cross-correlation requires the addition of the mean components as before. To find
the output auto-correlation requires substantially more work, and this is left as an exercise to
the reader!

– End-of-Topic 73: Frequency-domain analysis of input-output
statistics –
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Linear Signal Models

This handout looks at the special class of stationary signals that are obtained by driving a linear
time-invariant (LTI) system with white noise. A particular focus is placed on system functions that
are rational; that is, they can be expressed at the ratio of two polynomials. Thus, the time-domain
and frequency domain characteristics of pole-zero, all-pole, and all-zero models are investigated,
including their time-series equivalents.

12.1 Abstract
New slide• In the last lecture, the response of a linear-system when a stochastic process is applied at

the input was considered. General linear systems were considered, and no focus on their
interpretation or their practical applications was discussed.

• This lecture looks at the special class of stationary signals that are obtained by driving a linear
time-invariant (LTI) system with white noise. A particular focus is placed on rational system
functions; that is, they can be expressed at the ratio of two polynomials. The power spectral
density (PSD) of the resulting process is also rational, and its shape is completely determined by
the filter coefficients. As a result, linear signal models provide a method for modelling the PSD
of a process, and thus leads to parametric PSD estimation, also known as modern spectral
estimation.

• The following models are considered in detail:

– All-pole systems and autoregressive (AR) processes;

– All-zero systems and moving average (MA) processes;

– and pole-zero systems and autoregressive moving average (ARMA) processes.

• Pole-zero models are widely used for modelling stationary signals with short memory; the
concepts will be extended, in overview at least, to nonstationary processes.
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Figure 12.1: White noise PSD.

Linear signal models are developed first by assuming that the second order moments of the random
process are known, and equations are developed whose solution provides the model parameters. In
most practical applications of the theory, however, the fixed quantities in the equations, namely the
correlation functions and the model orders, are not known a priori but need to be estimated from the
data. This, as a result, introduces the issue of estimation of the model parameters and leads to the
notion of, for example, maximum likelihood estimation and least squares estimates as discussed in
the next handout.

12.2 The Ubiquitous WGN Sequence

New slide The simplest random signal model is the wide-sense stationary (WSS) white Gaussian noise (WGN)
sequence:

w[n] ∼ N
(
0, σ2

w

)
(12.1)

The sequence is independent and identically distributed (i. i. d.), and has a flat PSD: Pww

(
ejωT

)
=

σ2
w, −π < ω ≤ π. The PSD is shown below in Figure 12.1. It is also easy (as shown below) to

generate samples using simple algorithms.

12.2.1 Generating WGN samples

Recall that the probability transformation rule takes random variables from one distribution as
inputs and outputs random variables in a new distribution function:

Theorem 12.1 (Probability transformation rule (revised)). If {x1, . . . xn} are random variables
with a joint-probability density function (pdf) fX (x1, . . . , xn), and if {y1, . . . yn} are random
variables obtained from functions of {xk}, such that yk = gk(x1, x2 . . . xn), then the joint-pdf,
fY (y1, . . . , yn), is given by:

fY (y1, . . . , yn) =
1

|J(x1, . . . , xn)|
fX (x1, . . . , xn) (12.2)

where J(x1, . . . , xn) is the Jacobian of the transformation given by:

J(x1, . . . , xn) =
∂(y1, . . . yn)

∂(x1, . . . xn)
(12.3)

♢

One particular well-known example is the Box-Muller (1958) transformation that takes two uniformly
distributed random variables, and transforms them to a bivariate Gaussian distribution. Consider the
transformation between two uniform random variables given by,

fXk
(xk) = I0,1 (xk) , k = 1, 2 (12.4)
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Figure 12.2: Signal models with continuous and discrete (line) power spectrum densities.

where IA (x) = 1 if x ∈ A, and zero otherwise, and the two random variables y1, y2 given by:

y1 =
√
−2 lnx1 cos 2πx2 (12.5)

y2 =
√
−2 lnx1 sin 2πx2 (12.6)

It follows, by rearranging these equations, that:

x1 = exp

[
−1

2
(y21 + y22)

]
(12.7)

x2 =
1

2π
arctan

y2
y1

(12.8)

The Jacobian determinant can be calculated as:

J(x1, x2) =

∣∣∣∣∣ ∂y1∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣ =
∣∣∣∣∣ −1
x1

√
−2 lnx1

cos 2πx2 −2π
√
−2 lnx1 sin 2πx2

−1
x1

√
−2 lnx1

sin 2πx2 2π
√
−2 lnx1 cos 2πx2

∣∣∣∣∣ = 2π

x1

(12.9)

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y21/2

] [
1√
2π

e−y22/2

]
(12.10)

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus covering the range of real numbers.
This is the product of y1 alone and y2 alone, and therefore each y is i. i. d. according to the normal
distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution in order to obtain
samples that have the same pdf as a Gaussian random variable.

12.2.2 Filtration of WGN
New slideBy filtering a WGN through a stable LTI system, it is possible to obtain a stochastic signal at the

output with almost any arbitrary aperiodic correlation function or continuous PSD. The PSD of the
output is given by:

Pxx(e
jω) = σ2

w|H(ejω)|2 = G2

∏Q
k=1 |1− zk e

−jω|2∏P
k=1 |1− pk e−jω|2

(12.11)
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Figure 12.3: The speech synthesis model.

Note that the shape of the power spectrum depends only upon the magnitude of the filter’s frequency
response.

Random signals with line PSDs can be generated by using the harmonic process model, which is
a linear combination of sinusoidal sequences with statistically independent random phases. Signal
models with mixed PSDs can be obtained by combining these two models; a process justified by
the Wold decomposition. This is highlighted in Figure 12.2; contrast this with the speech synthesis
model shown in Figure 12.3, which was also shown in the introductory handout.

12.3 Nonparametric and parametric signal models

New slide Nonparametric models have no restriction on its form, or the number of parameters characterising
the model. For example, specifying a LTI filter by its impulse response is a
nonparametric model.
If the input w(n) is a zero-mean white noise process with variance σ2

w, autocorrelation
rww(l) = σ2

wδ(l) and Pww(e
jω) = σ2

w, −π < ω ≤ π, then the autocorrelation,
complex spectral density, and PSD of the output x(n) are given by, respectively:

rxx(l) = σ2
w

∞∑
k=−∞

h(k)h∗(k − l) = σ2
wrhh(l) (M:4.1.2)

Pxx(z) = σ2
wH(z)H∗

(
1

z∗

)
(M:4.1.3)

Pxx(e
jω) = σ2

w|H(ejω)|2 (M:4.1.4)

Notice that the shape of the autocorrelation and the power spectrum of the output
signal are completely characterised by the system. This is known as a system based
signal model, and in the case of linear systems, is also known as the linear random
signal model, or the general linear process model.

Parametric models, on the other hand, describe a system with a finite number of parameters. For
example, if a LTI filter is specified by a finite-order rational system function, it is a
parametric model.
Two important analysis tools present themselves for parametric modelling:
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Figure 12.4: Filter block diagram for ARMA model.

1. given the parameters of the model, analyse the characteristics of that model (in
terms of moments etc.);

2. design of a parametric system model to produce a random signal with a specified
autocorrelation function or PSD. This problem is known as signal modelling.

12.4 Parametric Pole-Zero Signal Models

New slideParametric models describe a system with a finite number of parameters. Consider a system described
by the following linear constant-coefficient difference equation:

x[n] = −
P∑

k=1

ak x[n− k] +

Q∑
k=0

dk w[n− k] (M:4.1.21)

This rational transfer function was introduced in the first lecture, and the filter block diagram is shown
in Figure 12.4. Taking z-transforms gives the system function:

H(z) =
X(z)

W (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

(M:4.1.22)

≜
D(z)

A(z)
= G

∏Q
k=1(1− zk z

−1)∏P
k=1(1− pk z−1)

(M:4.1.23)

This system has Q zeros, {zk, k ∈ Q} where Q = {1, . . . , Q}, and P poles, {pk, k ∈ P}. Note that
poles and zeros at z = 0 are not considered here. The term G is the system gain. It is assumed that
the polynomials A(z) and D(z) do not have any common roots.

12.4.1 Types of pole-zero models

New slideThere are three cases of interest as shown in Figure 12.5:
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Figure 12.5: Types of linear model; top to bottom, these are the AR, MA and ARMA models.

All-pole model when Q = 0. The input-output difference equation is given by:

x[n] = −
P∑

k=1

ak x[n− k] + d0w[n] (M:4.1.26)

This is commonly denoted as the AP (P ) model.

All-zero model when P = 0. The input-output relation is given by:

x[n] =

Q∑
k=0

dk w[n− k] (M:4.1.25)

This is commonly denoted as the AZ(Q) model.

Pole-zero model when P > 0 and Q > 0.
This is commonly denoted as the PZ(P,Q) model, and if it is assumed to be causal,
is given by Equation M:4.1.21.

If a parametric model is excited with WGN, the resulting output signal has second-order moments
determined by the parameters of the model. These stochastic processes have special names in the
literature, and are known as:

a moving average (MA) process when it is the output of an all-zero model;

an autoregressive (AR) process when it is the output of an all-pole model;

an autoregressive moving average (ARMA) process when it is the output of an pole-zero model;

each subject to a WGN process at the input.

The parametric signal model is usually specified by normalising d0 = 1 and setting the variance of
the input to σ2

w. The alternative is to specify σ2
w = 1 and leave d0 arbitrary, but this isn’t quite as

elegant when it comes to deriving pdfs. It is also important to stress that these models assume the
resulting processes are stationary, which is ensured if the corresponding systems are bounded-input,
bounded-output (BIBO) stable.
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12.4.2 All-pole Models

New slide Assume an all-pole model of the form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0∏P

k=1(1− pk z−1)
(M:4.2.1)

where d0 is the system gain, and P is the order of the model.

All-pole models are frequently used in signal processing applications since they are:

• mathematically convenient since model parameters can be estimated by solving a set of linear
equations, and

• they widely parsimoniously approximate rational transfer functions, especially resonant
systems.

There are various model properties of the all-pole model that are useful; these include:

1. the systems impulse response;

2. the somewhat inappropriate term called the autocorrelation of the impulse response;

3. and minimum-phase conditions.

Although the autocorrelation of the impulse response is useful to gain additional insight into aspects
of the all-pole filter, it is better to consider the autocorrelation function of an AR process (i.e. the
autocorrelation function of the output of an all-pole filter). However, for completeness, the details of
the autocorrelation of the impulse response is included in these notes.

12.4.2.1 Frequency Response of an All-Pole Filter

New slideThe all-pole model has form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0∏P

k=1(1− pk z−1)
(M:4.2.1)

Therefore, its frequency response is given by:

H(ejω) =
d0

1 +
∑P

k=1 ak e
−jkω

=
d0∏P

k=1(1− pk e−jω)
(12.12)

When the poles are written in the form pk = rke
jωk , the frequency response can be written as:

H(ejω) =
d0∏P

k=1(1− rk e−j(ω−ωk))
(12.13)

Hence, it can be deduced that resonances occur near the frequencies corresponding to the phase
position of the poles. When the system is real, the complex-poles occur in conjugate-pairs.

Hence, the PSD of the output of an all-pole filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 = G2∏P

k=1 |1− rk e−j(ω−ωk)|2
(12.14)
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Figure 12.6: The frequency response and position of the poles in an all-pole system.

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

ω / π

10
 lo

g 10
 |P

xx
(e

jω
)|

All−Pole Power Spectrum
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where G = σw d0 is the overall gain of the system.

Consider the all-pole model with poles at positions:

{pk} = {rk ejωk} where

{
{rk} = {0.985, 0.951, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(12.15)

The pole positions and magnitude frequency response of this system is plotted in Figure 12.6. For
comparison, the PSD of the output of the system is shown in Figure 12.7.

12.4.2.2 Impulse Response of an All-Pole Filter

New slide Recalling that the input-output difference equation for an all-pole filter is given by:

x[n] = −
P∑

k=1

ak x[n− k] + d0w[n] (M:4.1.26)

then the impulse response, h[n], is the output when the input is a delta function, w[n] = δ[n].
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The impulse response of the all-pole filter satisfies the equation:

h[n] = −
P∑

k=1

ak h[n− k] + d0 δ[n] (M:4.2.3)

The derivation in [Manolakis:2000, page 157] is somewhat verbose; nevertheless, their approach is to
re-write the system function of the all-pole filter as:

H (z) +
P∑

k=1

ak H (z) z−k = d0 (12.16)

and thus by taking the inverse z-transform gives the same result as above. If H (z) has its poles inside
the unit circle, then h[n] is a causal, stable sequence, and the system is minimum-phase.

Assuming causality, such that h[n] = 0, n < 0 then it follows h[−k] = 0, k > 0, and therefore:

h[n] =


0 if n < 0

d0 if n = 0

−
∑P

k=1 ak h[n− k] if n > 0

(M:4.2.5)

Thus, except for the value at n = 0, h[n] can be obtained recursively as a linearly weighted summation
of its previous values, {h[n− p] , p = {1, . . . , P}}. Thus, in this sense, h[n] can be predicted, for
n ̸= 0, with zero error from the past P past values. Thus, the coefficients {ak} are often referred to
as predictor coefficients.

Finally, note that a causal H (z) can be written as a one-sided z-transform, or infinite polynomial,
H (z) =

∑∞
n=0 h[n] z

−n. This representation implies that any finite-order, all-pole model can
be represented equivalently by an infinite number of zeros, and conversely a single zero can be
represented by an infinite number of poles. If the poles are inside the unit circle, then so are the
corresponding zeros, and vice-versa.

12.4.2.3 Autocorrelation of the Impulse Response

The autocorrelation of the system impulse response is given by:

rhh(l) ≜ h(l) ∗ h∗(−l) =
∞∑

n=−∞

h(n)h∗(n− l) (12.17)

Multiplying both side of Equation M:4.2.3 by h∗[n− ℓ] gives and summing over all n:

∞∑
n=−∞

P∑
k=0

ak h(n− k)h∗(n− l) = d0

∞∑
n=−∞

h∗(n− l)δ(n) (M:4.2.14)

where a0 = 1. Interchanging the order of summations (as usual) in the left hand side (LHS), and
setting n̂ = n− k gives:

P∑
k=0

ak

∞∑
n̂=−∞

h(n̂)h∗(n̂− (l − k)) = d0 h
∗(−l) (12.18)
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which can also be written as

P∑
k=0

ak rhh(l − k) = d0 h
∗(−l) (M:4.2.15)

Since h(n) = 0, n < 0, then h(−l) = 0, l > 0, and h(0) = d0, then:

rhh(l) =


d0 h

∗(−l)−
∑P

k=1 ak rhh(l − k) l < 0

|d0|2 −
∑P

k=1 ak rhh(−k) l = 0

−
∑P

k=1 ak rhh(l − k) l > 0

(12.19)

These are recursive relationships for rhh[ℓ] in terms of past values of the autocorrelation function.

It is also possible to write the autocorrelation in terms of the poles of the model, and to also investigate
the response of the model to an impulse train (harmonic) excitation. These are not considered in this
handout, but are detailed in [Manolakis:2000, Section 4.2].

12.4.2.4 All-Pole Modelling and Linear Prediction

New slide A linear predictor forms an estimate, or prediction, x̂[n], of the present value of a stochastic process
x[n] from a linear combination of the past P samples; that is:

x̂[n] = −
P∑

k=1

ak x[n− k] (M:1.4.1)

The coefficients {ak} of the linear predictor are determined by attempting to minimise some function
of the prediction error given by:

e(n) = x(n)− x̂(n) (M:1.4.2)

Usually the objective function is equivalent to mean-squared error (MSE), given by E =
∑

n e
2(n).

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P∑

k=1

ak x(n− k) (M:4.2.50)

• Thus, the prediction error is equal to the excitation of the all-pole model; e(n) = w(n). Clearly,
finite impulse response (FIR) linear prediction and all-pole modelling are closely related.

• Many of the properties and algorithms developed for either linear prediction or all-pole
modelling can be applied to the other.

• To all intents and purposes, linear prediction, all-pole modelling, and AR processes (discussed
next) are equivalent terms for the same concept.

12.4.2.5 Autoregressive Processes

New slide While all-pole models refer to the properties of a rational system containing only poles, AR processes
refer to the resulting stochastic process that occurs as the result of WGN being applied to the input of
an all-pole filter.
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As such, the same input-output equations for all-pole models still apply although, in this case, the AR
process refers to x[n], whereas all-pole modelling would refer to the system itself, as defined by the
linear difference equation and the parameters {ak}.

Thus:

x[n] = −
P∑

k=1

ak x[n− k] + w[n] , w[n] ∼ N
(
0, σ2

w

)
(M:4.2.52)

The AR process is valid only if the corresponding all-pole system is stable. The autoregressive
output, x[n], is a stationary sequence with a mean value of zero, µx = 0.

The autocorrelation sequence (ACS) can be calculated in a similar approach to finding the output
autocorrelation and cross-correlation for linear systems.

Multiply the difference Equation M:4.2.52 through by x∗(n− l) and take expectations to obtain:

rxx(l) +
P∑

k=1

ak rxx(l − k) = rwx(l) (M:4.2.54)

Observing that x[n] cannot depend on future values of w[n] since the system is causal, then rwx[ℓ] =
E [w[n] x∗[n− ℓ]] is zero if l > 0, and σ2

w if ℓ = 0.

Thus, for l = {0, 1, . . . , P} gives:

rxx(0) + a1 rxx(−1) + · · ·+ aP rxx(−P ) = σ2
w (12.20)

rxx(1) + a1 rxx(0) + · · ·+ aP rxx(−P + 1) = 0 (12.21)
... (12.22)

rxx(P ) + a1 rxx(P − 1) + · · ·+ aP rxx(0) = 0 (12.23)

This can be written in matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the parameters {ak}
are real) as: 

rxx[0] r∗xx[1] · · · r∗xx[P ]
rxx[1] rxx[0] · · · r∗xx[P − 1]

...
... . . . ...

rxx[P ] rxx[P − 1] · · · r∗xx[0]



1
a1
...
aP

 =


σ2
w

0
...
0

 (M:4.2.56)

These Yule-Walker equations have an identical form to the normal equations which are a result of
analysing linear prediction. The differences are minor, but the interested reader can find out more in
[Therrien:1992, Chapter 8]. It is important to note that the Yule-Walker equations are linear in the
parameters ak, and there are several different efficient methods for solving them. Details, again, can
be found in [Therrien:1992, Chapters 8 and 9].

12.4.2.6 Autocorrelation Function from AR parameters

In the previous section, an expression for calculating the AR coefficients given the autocorrelation
values was given. But what if the AR coefficients are known, and it is desirable to calculate the
autocorrelation function given these parameters. A formulation is given here. Assume that an AR
process is real, such that the Yule-Walker equations become:

rxx(0) rxx(1) · · · rxx(P )
rxx(1) rxx(0) · · · rxx(P − 1)

...
... . . . ...

rxx(P ) rxx(P − 1) · · · rxx(0)

 â = b where â =


1
a1
...
aP

 and b =


σ2
w

0
...
0


(12.24)
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To generate the autocorrelation values from the AR parameters, it is desirable to obtain an equation
of the form Ar = b, where

[
rxx(0) · · · rxx(P )

]T , and the matrix A and vector b are functions of
the parameters {ak} and the input variance σ2

w. Write the Yule-Walker equations as:

rxx(0)


1 0 · · · 0

0
. . . . . . ...

... . . . . . . 0
0 · · · 0 1

 â+ rxx(1)


0 1 · · · 0

1
. . . . . . ...

... . . . . . . 1
0 · · · 1 0

 â+ · · ·+ rxx(P )


0 0 · · · 1

0
. . . . . . ...

... . . . . . . 0
1 · · · 0 0

 â = b

(12.25)
By defining the P ×P matrix IP,k with ones on the kth diagonal away from the leading diagonal, and
zero elsewhere, then it follows:

P∑
k=0

(IP+1,k â) rxx(k) = b (12.26)

Next defining the vector âk = IP+1,k â and the matrix
[
â0 · · · âP

]
, then the matrix-vector equation

Ar = b (12.27)

has been obtained. In low-order cases, it might be more straightforward to explicitly compute the
autocorrelation functions by writing out the Yule-Walker equations.

All-pole models therefore have the unique property that the model parameters are completely
specified by the first P + 1 autocorrelation coefficients via a set of linear equations, as given by
the equation Ar = b. An alternative way of writing this is:

σ2
w

a1
...
aP

↔

 rxx(0)...
rxx(P )

 (12.28)

Thus, the mapping of the model parameters to the autocorrelation coefficients is reversible and unique.
This correlation matching of all-pole models is quite remarkable, and is not shared by all-zero
models, and is true for pole-zero models only under certain conditions.

Example 12.1 (Calculating Autocorrelation Functions of All-Pole Model). Given the parameters
σ2
w, a1, and a2, of a second-order all-pole model, compute the autocorrelation values rxx(k) for {k =

0, 1, 2}.

SOLUTION. Using the results above, it follows that:

rxx(0)

1 0 0
0 1 0
0 0 1

 1
a1
a2

+ rxx(1)

0 1 0
1 0 1
0 1 0

 1
a1
a2

+ rxx(2)

0 0 1
0 0 0
1 0 0

 1
a1
a2

 =

σ2
w

0
0

 (12.29)

or,  1 a1 a2
a1 1 + a2 0
a2 a1 1

rxx(0)rxx(1)
rxx(2)

 =

σ2
w

0
0

 (12.30)

Although you could try a direct version to solve this, a slightly more ad-hoc approach quickly yields
a solution in this case, and is related to Gaussian elimination. Multiplying the second row by a1 and
the last row by a2, and then subtracting them both from the first row gives:1− a21 − a22 −2a1a2 0

a21 a1(1 + a2) 0
a22 a1 a2 a2

rxx(0)rxx(1)
rxx(2)

 =

σ2
w

0
0

 (12.31)
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It can thus be seen that the first two equations for rxx(0) and rxx(1) do not depend on rxx(2) and
therefore, by inverting the 2 by 2 matrix, this gives:[

rxx(0)
rxx(1)

]
=

1

a1(1 + a2)(1− a21 − a22) + 2a31 a2

[
a1(1 + a2) 2a1 a2

−a21 1− a21 − a22

] [
σ2
w

0

]
(12.32)

=
σ2
w

(1− a21 − a22) +
2a21 a2
1+a2

[
1

− a1
1+a2

]
(12.33)

Moreover,

rxx(2) = − 1

a2

[
a22 a1 a2

] [rxx(0)
rxx(1)

]
=

σ2
w

(1− a21 − a22) +
2a21 a2
1+a2

(
a21

1 + a2
− a2

)
(12.34)

In summary, rxx(0)rxx(1)
rxx(2)

 =
σ2
w

(1− a21 − a22) +
2a21 a2
1+a2

 1
− a1

1+a2
a21

1+a2
− a2

 (12.35)
□

12.4.3 All-Zero models
New slideWhereas all-pole models can capture resonant features of a particular PSD, it cannot capture nulls in

the frequency response. These can only be modelled using a pole-zero or all-zero model.

The output of an all-zero model is the weighted average of delayed versions of the input signal. Thus,
assume an all-zero model of the form:

x[n] =

Q∑
k=0

dk w[n− k] (M:4.3.1)

where Q is the order of the model, and the corresponding system function is given by:

H (z) = D (z) =

Q∑
k=0

dk z
−k (M:4.3.2)

Similar to the relationship between all-pole models and AR processes, all-zero models refer to
the properties of a rational system containing only zeros, while MA processes refer to the resulting
stochastic process that occurs as the result of WGN being applied to the input of an all-zero filter.

All-zero models are difficult to deal with since, unlike the Yule-Walker equations for the all-pole
model, the solution for model parameters given the autocorrelation functions involves solving
nonlinear equations, which becomes quite a complicated task.

12.4.3.1 Frequency Response of an All-Zero Filter

New slideThe all-zero model has form:

H(z) = D(z) =

Q∑
k=0

dk z
−k = d0

Q∏
k=1

(
1− zk z

−1
)

(12.36)
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Figure 12.8: The frequency response and position of the zeros in an all-zero system.

where {zk} are the zeros of the all-zero model. Therefore, its frequency response is given by:

H(ejω) =

Q∑
k=0

dk e
−jkω = d0

Q∏
k=1

(
1− zk e

−jω
)

(12.37)

When the zeros are written in the form zk = rke
jωk , then the frequency response can be written as:

H(ejω) = d0

Q∏
k=1

(
1− rk e

−j(ω−ωk)
)

(12.38)

Hence, it can be deduced that troughs or nulls occur near frequencies corresponding to the phase
position of the zeros. When the system is real, the complex-zeros occur in conjugate-pairs.

Hence, the PSD of the output of an all-zero filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 = G2

Q∏
k=1

∣∣1− rk e
−j(ω−ωk)

∣∣2 (12.39)

where G = σw d0 is the overall gain of the system. Consider the all-zero model with zeros at positions:

{zk} = {rk ejωk} where

{
{rk} = {0.985, 1, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(12.40)

The zero positions and magnitude frequency response of this system is plotted in Figure 12.8. For
comparison, the power spectral density of the output of the system is shown in Figure 12.9. Note that
one of the zeros is on the unit circle, and that the frequency response at this point is zero.

12.4.3.2 Impulse Response

The impulse response of an all-zero model is an FIR system with impulse response:

h(n) =

{
dn 0 ≤ n ≤ Q

0 elsewhere
(12.41)
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Figure 12.9: Power spectral response of an all-zero model.

12.4.3.3 Autocorrelation of the Impulse Response

Following a similar line to that shown for all-pole models, the autocorrelation of the impulse response
of an all-zero system can be found.

Theorem 12.2. The autocorrelation sequence of the impulse response of an all-zero system is:

rhh[ℓ] =
∞∑

n=−∞

h[n] h∗[n− ℓ] =


Q−ℓ∑
k=0

dk+ℓ d
∗
k 0 ≤ ℓ ≤ Q

0 ℓ > Q

(M:4.3.4)

and r∗hh[−ℓ] = rhh[ℓ] for all ℓ.

PROOF. The autocorrelation sequence of the impulse response of an all-zero system is given by the
discrete-time convolution:

rhh[ℓ] =
∞∑

n=−∞

h[n] h∗[n− ℓ] (12.42)

Considering the term h[n],

h[n] =

{
dn 0 ≤ n ≤ Q

0 otherwise
(12.43)

or, in otherwords, h(n) = 0 when n < 0 and n > Q. Hence Equation 12.42 becomes:

rhh[ℓ] =

Q∑
n=0

dn h
∗[n− ℓ] (12.44)

Moreover, the lower-limit is constrained since

h∗[n− l] =

{
d∗n−ℓ 0 ≤ n− ℓ ≤ Q

0 otherwise
(12.45)

or, in otherwords, h∗[n− l] = 0 if n < ℓ and when n > Q + ℓ. Assuming that ℓ ≥ 0, the second
condition is already met by the upper-limit in Equation 12.44. Therefore, Equation 12.44 becomes:

rhh[ℓ] =

Q∑
n=ℓ

dn d
∗
n−ℓ (12.46)
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By substituting k = n− ℓ, such that when n = {ℓ, Q}, k = {0, Q− ℓ}, then:

rhh[ℓ] =

Q−ℓ∑
k=0

dk+ℓ d
∗
k, for ℓ ≥ 0 (12.47)

Clearly this expression is equal to zero if ℓ > Q. Therefore, using the result from the previous handout
that rhh[ℓ] = r∗hh[−ℓ], it follows:

rhh[ℓ] =
∞∑

n=−∞

h[n] h∗[n− ℓ] =


Q−ℓ∑
k=0

dk+ℓ d
∗
k 0 ≤ ℓ ≤ Q

0 ℓ > Q

(M:4.3.4)
□

and r∗hh[−ℓ] = rhh[ℓ] for all ℓ.

12.4.3.4 Moving-average processes

New slide As an analogy with Section 12.4.2.5, a MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied to the input.

Thus, a MA process is an AZ(Q) model with d0 = 1 driven by WGN. That is,

x[n] = w[n] +

Q∑
k=1

dk w[n− k] , w[n] ∼ N
(
0, σ2

w

)
(M:4.3.9)

The output x[n] has zero-mean, and variance of

σ2
x = σ2

w

[
1 +

Q∑
k=1

|dk|2
]

(12.48)

The autocorrelation sequence and PSD are given by:

rxx[ℓ] = σ2
wrhh[ℓ] = σ2

w

Q−ℓ∑
k=0

dk+l d
∗
k, for 0 ≤ ℓ ≤ Q (12.49)

and is zero for ℓ > Q, with rxx[ℓ] = r∗xx[−ℓ], where d0 = 1, and also where Pxx(e
jω) = σ2

w |D(ejω)|2.
The fact that rxx[ℓ] = 0 if the samples are more than Q samples apart, means that they are therefore
uncorrelated. An alternative derivation for the autocorrelation sequence for an MA process is given
in the following section, Section 12.4.3.5.

12.4.3.5 Autocorrelation Function for MA Process

As stated in the previous section, using the results for the statistics of a stationary signal passed
through a linear system, then the autocorrelation sequence for a MA process is given by rxx[ℓ] =
σ2
wrhh[ℓ], where rhh[ℓ] is given by Equation M:4.3.4. For completeness, this section gives an

alternative derivation from first principles.

Multiplying the difference equation, Equation M:4.3.1, through by x∗[n− ℓ] and taking expectations
gives:

rxx[ℓ] =

Q∑
k=0

dk rwx[ℓ− k] (12.50)
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Similarly, post-multiplying by w∗[n− ℓ] gives:

rxw[ℓ] =

Q∑
k=0

dk rww[ℓ− k] =

{
σ2
w dℓ 0 ≤ ℓ ≤ Q

0 otherwise
(12.51)

since rww[ℓ] = σ2
w δ(ℓ). Recalling that rwx[ℓ] = r∗xw[−ℓ], then:

rwx[ℓ] =

{
σ2
w d∗−ℓ 0 ≤ −ℓ ≤ Q

0 otherwise
(12.52)

with the limit 0 ≤ −ℓ ≤ Q being equivalent to −Q ≤ ℓ ≤ 0. Consequently,

rwx[ℓ− k] =

{
σ2
w d∗k−ℓ 0 ≤ k − ℓ ≤ Q

0 otherwise
(12.53)

Considering ℓ > 0, the autocorrelation sequence for an MA process is thus:

rxx[ℓ] = σ2
w

Q∑
k=ℓ

dk d
∗
k−ℓ = σ2

w

Q−ℓ∑
k=0

dk+ℓ d
∗
k (12.54)

for 0 ≤ ℓ ≤ Q, and zero for ℓ > Q. Using the relationship rxx[−ℓ] = r∗xx[ℓ] gives the ACS for all
values of ℓ.

Unlike AR models, is is not possible to solve for the model parameters using linear algebra techniques.
It requires the solution of highly nonlinear equations, and is therefore more difficult than dealing with
AR process. This, hence, is one reason why many algorithms in statistical signal processing prefer to
use all-pole models over all-zero models.

12.4.4 Pole-Zero Models
New slideFinally, the most general of LTI parametric signal models is the pole-zero model which, as the

name suggests, is a combination of the all-pole and all-zero models, and can therefore model both
resonances as well as nulls in a frequency response.

The output of a causal pole-zero model is given by the recursive input-output relationship:

x[n] = −
P∑

k=1

ak x[n− k] +

Q∑
k=0

dk w[n− k] (M:4.4.1)

where it is assumed that the model orders P > 0 and Q ≥ 1. The corresponding system function is
given by:

H (z) =
D (z)

A (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

(12.55)

12.4.4.1 Frequency Response of an Pole-Zero Model

New slideThe pole-zero model can be written as

H(z) =
D(z)

A(z)
= d0

∏Q
k=1 (1− zk z

−1)∏P
k=1 (1− pk z−1)

(12.56)
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Figure 12.10: The frequency response and position of the poles and zeros in an pole-zero system.

where {pk} and {zk} are the poles and zeros of the model. Therefore, its frequency response is:

H(ejω) = d0

∏Q
k=1 (1− zk e

−jω)∏P
k=1 (1− pk e−jω)

(12.57)

As before, it can be deduced that troughs or nulls occur at frequencies corresponding to the phase
position of the zeros, while resonances occur at frequencies corresponding to the phase of the poles.
When the system is real, the complex-poles and complex-zeros occur in conjugate-pairs.

The PSD of the output of a pole-zero filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 = G2

∏Q
k=1 |1− zk e

−jω|2∏P
k=1 |1− pk e−jω|2

(12.58)

where G = σw d0 is the overall gain of the system.

Consider the pole-zero model with poles at positions:

{pk} = {rk ejωk} where

{
{rk} = {0.925, 0.951, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(12.59)

and zeros at:

{zk} = {rk ejωk} where

{
{rk} = {1, 0.855}
{ωk} = 2π × {700, 1000}/2450;

(12.60)

The pole and zero positions, and the magnitude frequency response of this system is plotted in
Figure 12.10, while the PSD of the output of the system is shown in Figure 12.11. Note again that
one of the zeros lies on the unit-circle, and therefore at the corresponding frequency, the frequency
response is zero.

12.4.4.2 Impulse Response

The impulse response of a causal pole-zero filter can be obtained from Equation M:4.4.1 by
substituting w(n) = δ(n) and x(n) = h(n), such that:

h(n) = −
P∑

k=1

ak h(n− k) + dn, n ≥ 0 (M:4.4.2)
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Figure 12.11: Power spectral response of an pole-zero model.

where dn = 0 for n > Q and n < 0, and h(n) = 0 for n < 0. Hence, writing this explicitly as:

h(n) =


0 n < 0

−
∑P

k=1 ak h(n− k) + dn 0 ≤ n ≤ Q

−
∑P

k=1 ak h(n− k) n > 0

(12.61)

it can be seen that the impulse response obeys a linear prediction equation for n > Q. Thus, given
h(n) for 0 ≤ n ≤ P + Q, the all-pole parameters {ak} can be calculated by using the P equations
specified by Q + 1 ≤ n ≤ P + Q. Given the {ak}’s, it is then possible to compute the all-zero
parameters from Equation M:4.4.2 using the equations for 0 ≤ n ≤ Q. Thus, it is clear that the first
P +Q+ 1 values of the impulse response completely specify the pole-zero model.

12.4.4.3 Autocorrelation of the Impulse Response

Multiplying both sides of Equation M:4.4.2 by h∗(n− l) and summing over all n gives:

∞∑
n=−∞

h(n)h∗(n− l) = −
P∑

k=1

ak

∞∑
n=−∞

h(n− k)h∗(n− l) +
∞∑

n=−∞

dn h
∗(n− l) (12.62)

Using the definition for rhh[ℓ] and noting that h∗[n− ℓ] = 0 for n− l < 0 then:

rhh[ℓ] = −
P∑

k=1

ak rhh[ℓ− k] +

Q∑
n=0

dn h
∗[n− ℓ] (M:4.4.6)

Since the impulse response h[n] is a function of the parameters {ak}’s and {dk}’s, then this set of
equations is nonlinear in terms of these parameters. However, noting that the right hand side (RHS)
of this equation is zero for l > Q, then:

P∑
k=1

ak rhh[ℓ− k] = −rhh[ℓ] , ℓ > Q (12.63)

This equation, unlike Equation M:4.4.6, is linear in the all-pole parameters {ak}’s. Therefore, given
the autocorrelation of the impulse response, the all-pole parameters can be calculated by solving
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Equation 12.63 for l ∈ {Q+ 1, . . . , Q+ P} to give:
rhh(Q) rhh(Q− 1) · · · rhh(Q+ 1− P )

rhh(Q+ 1) rhh(Q) · · · rhh(Q+ 2− P )
...

... . . . ...
rhh(Q+ P − 1) rh(Q+ P − 2) · · · rhh(Q)



a1
a2
...
aP

 = −


rhh(Q+ 1)
rhh(Q+ 2)

...
rhh(Q+ P )

 (M:4.4.8)

or, alternatively,
Rhh a = −rhh (M:4.4.9)

The matrix Rhh in Equation M:4.4.9 is a non-Hermitian Toeplitz matrix; it can be solved using a
variety of linear algebra techniques.

Given the all-pole parameters, it then falls to solve Equation M:4.4.6 for the all-zero parameters
{dk}’s. This is somewhat involved, but they can be found using spectral factorisation. The details
are omitted from this handout, but can be found in [Therrien:1992, Section 9.1, page 509] or
[Manolakis:2000, Page 178].

12.4.4.4 Autoregressive Moving-Average Processes

As with the all-pole and all-zero models, the corresponding random process associated with a
pole-zero model is the ARMA process. This is the output of a pole-zero model, when the input
of the system is driven by WGN. Hence, a causal ARMA model with model orders P and Q is
defined by:

x[n] = −
P∑

k=1

ak x[n− k] + w[n] +

Q∑
k=1

dk w[n− k] (M:4.4.15)

where w(n) ∼ N (0, σ2
w), the model-orders are P and Q, and the full set of model parameters are

{σ2
w, a1, . . . , aP , d1, . . . , dQ}. The output has zero-mean and variance that can be shown to equal:

σ2
x = −

P∑
k=1

ak rxx(k) + σ2
w

[
1 +

Q∑
k=1

dk h(k)

]
(M:4.4.16)

where h[n] is the impulse response of the pole-zero filter.

Finally, the autocorrelation function for the output is given by:

rxx(l) = −
P∑

k=1

ak rxx(l − k) + σ2
w

[
1 +

Q∑
n=l

dn h
∗(n− l)

]
(12.64)

where it has been noted that d0 = 1.

12.5 Estimation of AR Model Parameters from Data

The Yule-Walker equations introduced earlier in this handout provide an approach for finding the
model parameters for an AR process. Although a valid technique, there are two implicit assumptions
that limit its use for practical problems. These assumptions are:

• That the order, P , of the model is known.

• That the correlation function, rxx[ℓ], is known.



12.5. Estimation of AR Model Parameters from Data 423

If these two conditions are met then, using the Yule-Walker equations, the model parameters, ak, can
be found exactly. Unfortunately, in most practical situations, neither of these conditions is met.

From a theoretical perspective, the first assumption that the model order is known is less of an issue
than the second assumption. This is since if a larger model order than the true model order is chosen,
then the excess parameters will theoretically be zero. In practice, choosing the models order is not that
straightforward, and there are numerous methods for model order estimation. Model order selection
criteria include names such as final prediction error (FPE), Akaike’s information criterion (AIC),
minimum description length (MDL), Parzen’s criterion autoregressive transfer function (CAT) and
B-Information criterion (BIC). There is not time in this course to discuss these techniques, although
there are plenty of tutorial papers in the literature, as well as being covered by many text books.

The second assumption leads to both theoretical and practical problems since, if the correlation
function is not known, it must be estimated from the data. This brings up the following questions:

1. If the correlation function is estimated, how good is the resulting estimate for the model
parameters, in a statistical sense?

2. Why estimate the correlation function at all when it is the model parameters that need to be
estimated?

3. What is the best procedure for this problem?

12.5.1 LS AR parameter estimation

Suppose that a particular realisation of a process that is to be modelled as an AR process is given. It
is possible to estimate the correlation function as a time-average from the realisation, assuming that
the process is time-ergodic, and then use these estimates in the Yule-Walker equations. The method
described in this chapter effectively estimates the AR parameters in this way, although the problem is
not formulated as such. Two common data-oriented methods, known as the autocorrelation method
and the covariance method, are presented in this section and the next section. A description of these
methods begins with the autocorrelation method.

Suppose linear prediction is used to model a particular realisation of a random process as accurately
as possible. Thus, suppose a linear predictor forms an estimate, or prediction, x̂[n], of the present
value of a stochastic process x[n] from a linear combination of the past P samples; that is:

x̂[n] = −
P∑

k=1

ak x[n− k] (M:1.4.1)

Then the prediction error is given by:

e[n] = x[n]− x̂[n] = x[n] +
P∑

k=1

ak x[n− k] (M:4.2.50)

Note that this is different to the WGN sequence that drives a linear system to generate an
autoregressive random process; the difference is that here, the prediction error is the difference
between the actual value and the predicted value of a particular realisation of a random process.

Writing Equation M:4.2.50 for n ∈ {nI , . . . , nF}, in matrix-vector form:
e[nI ]

e[nI + 1]
...

e[nF ]


︸ ︷︷ ︸

e

=


x[nI ]

x[nI + 1]
...

x[nF ]


︸ ︷︷ ︸

x

+


x[nI − 1] x[nI − 2] · · · x[nI − P ]
x[nI ] x[nI − 1] · · · x[nI − P + 1]

...
... · · · ...

x[nF − 1] x[nF − 2] · · · x[nF − P ]


︸ ︷︷ ︸

X


a1
a2
...
aP


︸ ︷︷ ︸

a

(12.65)
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which can hence be written as:

e = x+Xa (12.66)

The parameters a can now be estimated using any of the parameter estimation techniques discussed
above. Here, the least-squares estimate (LSE) is used. Thus, noting that:

J(a) =

nF∑
n=nI

e2[n] = eTe (12.67)

= (x+Xa)T (x+Xa) (12.68)

= xTx+ 2xTXa+ aTXTXa (12.69)

where it has been noted that aTXTx = xTXa. Hence, differentiating with respect to (w. r. t.) a and
setting to zero gives the LSE, â,

∂

∂a

(
bT a

)
= b and

∂

∂a

(
aT Ba

)
=
(
B+BT

)
a (12.70)

The reader is invited to derive these results. Hence,

∂J(a)

∂a
= 2XT x+ 2XT Xa (12.71)

where it has been noted that the matrix XTX is symmetric. Setting this to zero, and rearranging
noting that XTX is of full rank, gives the LSE:

aLSE = −
(
XTX

)−1
XT x (12.72)

Defining Np = nF − nI + 1, the least-squares (LS) error is then given by:

J (aLSE) = xT
(
INp −X

(
XTX

)−1
XT
)
x (12.73)

= xT (x+XaLSE) (12.74)

Observe the similarity of these results with those of the linear LS formulation. In fact, this derivation
is identical to the LS formulation with the matrix H replaced by X! There are two different methods
which result from different choices of nI and nF . These are called the autocorrelation method
and the covariance method. However, as mentioned in [Therrien:1991], these terms do not bear
any relation to the statistical meanings of these terms, and so they should not be confused with the
statistical definitions. The names for these methods are unfortunate, but have found a niche in signal
processing, and are unlikely to be changed.

12.5.2 Autocorrelation Method

In the autocorrelation method, the end points are chosen as nI = 0 and nF = N + P − 1. Thus,
the AR filter model runs over the entire length of the data, predicting some of the early points from
zero valued samples, and predicting P additional zero values at the end. Since this method uses zeros
for the data outside of the given interval, it can be thought of as applying a rectangular window to the
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data. For this method, the (N + P )× P data matrix X has the specific structure:

X =



0 0 · · · 0
x[0] 0 · · · 0
x[1] x[0] · · · 0

...
... . . . ...

x[P − 1] x[P − 2] · · · x[0]
x[P ] x[P − 1] · · · x[1]

...
...

...
x[N − 1] x[N − 2] · · · x[N − P ]

0 x[N − 1] · · · x[N − P + 1]
...

... . . . ...
0 0 · · · x[N − 1]



(T:9.112)

When formed into the product XT X, this data matrix produces a Toeplitz correlation matrix;
consequently, the normal equations may be solved very efficiently, for example using the Levinson
recursion. Moreover, the matrix XT X is strictly positive definite, and thus a valid correlation matrix.

12.5.3 Covariance Method

An alternative method is to choose nI = P and nF = N − 1. With this method, no zeros are either
predicted, or used in the prediction. In other words, the limits are chosen so that the data that the AR
filter operates on always remain within the measured data; no window is applied. For this method,
the (N − P )× P data matrix has the specific form:

X =


x[P − 1] x[P − 2] · · · x[0]
x[P ] x[P − 1] · · · x[1]

...
... . . . ...

x[N − 2] x[N − 3] · · · x[N − P − 1]

 (T:9.113)

A variation of this method called the prewindowed covariance method chooses nI = 0 and nF =
N−1, and results in a data matrix that consists of the first N rows of Equation T:9.112. Moreover, the
postwindowed covariance method chooses nI = P and nF = N + P − 1. In the autocorrelation
method, the data is said to be both prewindowed and postwindowed.

With the covariance method, or the prewindowed covariance method, the resulting correlation matrix
is positive semidefinite, but it is not Toeplitz. Thus, the Yule-Walker equations are more difficult to
solve. Moreover, the resulting AR model may not be stable, since the poles corresponding to the
estimated parameters may not lie within the unit circle. Nevertheless, unstable cases rarely seem
to occur in practice, and the covariance method is often preferred because it makes use of only the
measured data. This avoids any bias in the estimation of the AR filter coefficients.

Example 12.2 ( [Therrien:1991, Example 9.6, Page 539]). It is desired to estimate the parameters
of a second-order AR model for the sequence {x[n]}40 = {1, −2, 3, −4, 5} by using both the
autocorrelation and covariance methods.

SOLUTION. Applying both methods as requested:
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Autocorrelation Method The data matrix can be obtained from Equation T:9.112, and is given by:

X =



0 0
x[0] 0
x[1] x[0]
x[2] x[1]
x[3] x[2]
x[4] x[3]
0 x[4]


=



0 0
1 0
−2 1
3 −2
−4 3
5 −4
0 5


(12.75)

Hence, it can be shown that:

XTX =

[
0 1 −2 3 −4 5 0
0 0 1 −2 3 −4 5

]


0 0
1 0
−2 1
3 −2
−4 3
5 −4
0 5


(12.76)

=

[
55 −40
−40 55

]
(12.77)

Note that the matrix is Toeplitz. The least squares Yule-Walker equations can then be
found by solving:

aLSE = −
(
XTX

)−1
XT x (12.78)

= −
[
55 −40
−40 55

]−1 [
0 1 −2 3 −4 5 0
0 0 1 −2 3 −4 5

]


1
−2
3
−4
5
0
0


(12.79)

Solving these equations gives:

aLSE =

[
232
285
34
285

]
≈
[
0.8140
0.1193

]
(12.80)

The LS error is then given by:

J (aLSE) = xT (x+XaLSE) = 25.54 (12.81)

Hence, the prediction error variance is estimated as:

σ2
e =

J (aLSE)

N
=

25.54

7
= 3.64 (12.82)

Covariance Method Next, apply the covariance method to the same problem. Since the AR filter
stays entirely within the data, the error is evaluated from n = 2 to n = 4. The data
matrix is therefore:

X =

x[1] x[0]
x[2] x[1]
x[3] x[2]

 =

−2 1
3 −2
−4 3

 (12.83)
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Notice that, in this data matrix, not all the the data has been used, since x[4] does not
appear. Hence, the correlation matrix is given by:

XT X =

[
−2 3 −4
1 −2 3

]−2 1
3 −2
−4 3

 =

[
29 −20
−20 14

]
(12.84)

This matrix is not Toeplitz. The LSE estimate is therefore:

aLSE = −
(
XTX

)−1
XT x (12.85)

= −
[
29 −20
−20 14

]−1 [−2 3 −4
1 −2 3

] 3
−4
5

 =

[
2
1

]
(12.86)

Moreover, the LS error is then given by:

J (aLSE) = xT (x+XaLSE) = 0 (12.87)

Hence, the prediction error variance is estimated as:

σ2
e =

J (aLSE)

N
=

0

3
= 0 (12.88)

Evidently, this filter predicts the data perfectly. Indeed, if the prediction error, e[n], is
computed over the chosen range n = 2 to n = 4, it is found to be zero at every point.
The price to be paid for this perfect prediction, however, is an unstable AR model.
The transfer function for this AR model can be written as:

H(z) =
1

1 + 2z−1 + z−2
=

1

(1 + z−1)2
(12.89)

□

which has a double pole at z = −1. Therefore, a bounded-input into this filter can
potentially produce an unbounded-output. Further, any errors in computation of the
model coefficients can easily put a pole outside of the unit circle.
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13
Application: Passive Target Localisation

This handout discusses a general problem of passive target localisation. Using the techniques
described throughout this tutorial, it should now be possible to appreciate many of the techniques
used in this problem.

13.1 Introduction
New slide

• This research tutorial is intended to cover a wide range of aspects which link acoustic source
localisation (ASL) and blind source separation (BSS). It is written at a level which assumes
knowledge of undergraduate mathematics and signal processing nomenclature, but otherwise
should be accessible to most technical graduates.

KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The documents published
on the USB stick may differ to the slides presented on the day. In particular, there are likely to
be a few typos in the document, so if there is something that isn’t clear, please feel free to email
me so I can correct it (or make it clearer).

• The latest version of this document can be found online and downloaded at:

http://mod-udrc.org/events/2016-summer-school

• Thanks to Xionghu Zhong and Ashley Hughes for borrowing some of their diagrams from their
dissertations.

13.1.1 Structure of the Tutorial
New slide • Recommended Texts

430
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Figure 13.1: Source localisation and blind source separation (BSS).
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and other
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Sound

Source 2

Sound

Source 3

Figure 13.2: Humans turn their head in the direction of interest in order to reduce interference from
other directions; joint detection, localisation, and enhancement.
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(a) [Huang:2008] (b) [DiBiase:2001] (c) [Wolfel:2009]

Figure 13.3: Recommended book chapters and the references therein.

• Conceptual link between ASL and BSS.

• Geometry of source localisation.

• Spherical and hyperboloidal localisation.

• Estimating time-difference of arrivals (TDOAs).

• Steered beamformer response function.

• Multiple target localisation using BSS.

• Conclusions.

13.2 Recommended Texts
New slide • Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and Source Localization,” in

Springer Handbook of Speech Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp.
1043–1063, , Springer, 2008.

• Chapter 8: DiBiase J. H., H. F. Silverman, and M. S. Brandstein, “Robust Localization in
Reverberant Rooms,” in Microphone Arrays by M. Brandstein and D. Ward, pp. 157–180, ,
Springer Berlin Heidelberg, 2001.

• Chapter 10 of Wolfel M. and J. McDonough, Distant Speech Recognition, Wiley, 2009.

IDENTIFIERS – Hardback, ISBN13: 978-0-470-51704-8

Some recent PhD thesis on the topic include:
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• Zhong X., “Bayesian framework for multiple acoustic source tracking,” Ph.D. thesis, University
of Edinburgh, 2010.

• Pertila P., “Acoustic Source Localization in a Room Environment and at Moderate Distances,”
Ph.D. thesis, Tampere University of Technology, 2009.

• Fallon M., “Acoustic Source Tracking using Sequential Monte Carlo,” Ph.D. thesis, University
of Cambridge, 2008.

13.3 Why Source Localisation?

New slideA number of blind source separation (BSS) techniques rely on knowledge of the desired source
position, for example:

1. Look-direction in beamforming techniques.

2. Camera steering for audio-visual BSS (including Robot Audition).

3. Parametric modelling of the mixing matrix.

Equally, a number of multi-target acoustic source localisation (ASL) techniques rely on BSS. This
tutorial will look at the connections and dependencies between ASL and BSS, and discuss how they
can be used together. The tutorial will cover some classical well known techniques, as well as some
recent advances towards the end.

In particular, the following topics will be considered in detail:

• hyperboloidal (TDOA) based localisation methods;

• TDOA estimation methods;

• steered response power (SRP) based localisation methods;

• computationally efficient SRP methods such as stochastic region contraction (SRC);

• multi-target detection and localisation using BSS algorithms such as degenerate unmixing
estimation technique (DUET);

13.4 ASL Methodology

New slide• In general, most ASL techniques rely on the fact that an impinging wavefront reaches one
acoustic sensor before it reaches another.

• Most ASL algorithms are designed assuming there is no reverberation present, the free-field
assumption; the performance of each method in the presence of reverberation will be considered
after the techniques have been introduced.

• Typically, this acoustic sensor is a microphone; this tutorial will primarily consider
omni-directional pressure sensors, and therefore many of the techniques discussed will rely
on the fact there is a TDOA between the signals at different microphones.
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Figure 13.4: Ideal free-field model.

Figure 13.5: An uniform linear array (ULA) of microphones.
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Figure 13.6: An acoustic vector sensor.

• Other measurement types include:

– range difference measurements;

– interaural level difference;

– joint TDOA and vision techniques.

• Another sensor modality might include acoustic vector sensors (AVSs) which measure both air
pressure and air velocity. Useful for applications such as sniper localisation.

13.4.1 Source Localization Strategies

New slideThis section is based on

DiBiase J. H., H. F. Silverman, and M. S. Brandstein, “Robust Localization in
Reverberant Rooms,” in Microphone Arrays by M. Brandstein and D. Ward, pp. 157–180,
, Springer Berlin Heidelberg, 2001.

Existing source localisation methods can loosely be divided into three generic strategies:

1. those based on maximising the SRP of a beamformer;

• location estimate derived directly from a filtered, weighted, and sum version of the signal
data received at the sensors.

2. techniques adopting high-resolution spectral estimation concepts (see Stephan Weiss’s talk);

• any localisation scheme relying upon an application of the signal correlation matrix.

3. approaches employing TDOA information.
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Figure 13.7: Geometry assuming a free-field model.

• source locations calculated from a set of TDOA estimates measured across various
combinations of microphones.

Spectral-estimation approaches See Stephan Weiss’s talk :-)

TDOA-based estimators Computationally cheap, but suffers in the presence of noise and
reverberation.

SBF approaches Computationally intensive, superior performance to TDOA-based methods.
However, possible to dramatically reduce computational load.

13.4.2 Geometric Layout

New slide Suppose there is a:

• sensor array consisting of N microphones located at positions mi ∈ R3, for i ∈ {0, . . . , N−1},
and

• M talkers (or targets) at positions xk ∈ R3, for k ∈ {0, . . . ,M − 1}.

The TDOA between the microphones at position mi and mj due to a source at xk can be expressed
as:

T (mi, mj, xk) ≜ Tij (xk) =
|xk −mi| − |xk −mj|

c
(13.1)

where c is the speed of sound, which is approximately 344 m/s. More precisely, in air, the speed of
sound is given by:

c = 331.4 + 0.6Θ m/s (13.2)

where Θ is the temperature in Centigrade or Celsius. Hence, for instance, at a temperature of 21
Celsius, then c = 344 m/s.

The distance from the target at xk to the sensor located at mi will be defined by Dik, and is called the
range. It is given by the expression

Dik = |xk −mi| (13.3)

Hence, it follows that

Tij (xk) =
1

c
(Dik −Djk) (13.4)
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13.4.3 Ideal Free-field Model

New slide• In an anechoic free-field acoustic environment, as depicted in Figure 13.4, the signal from
source k, denoted by sk(t), propagates to the i-th sensor at time t according to the expression:

xik(t) = αik sk(t− τik) + bik(t) (13.5)

where bik(t) denotes additive noise. Note that, in the frequency domain, this expression is given
by:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω) (13.6)

On the assumption of geometrical room acoustics, which assumes high frequencies, a point
sound source of single frequency ω, at position xk in free space, emits a pressure wave
P(xk,mi), t(ω) at time t and at position mi:

P(xk,mi)(ω, t) = P0
exp [jω(r/c− t)]

r
(13.7)

where c is the speed of sound, t ∈ R is time, and r = |xk −mi|, which can be seen to equate
to Dik.

• The additive noise source is assumed to be uncorrelated with the source signal, as well as the
noise signals at the other microphones.

• The TDOA between the i-th and j-th microphone is given by:

τijk = τik − τjk = T (mi, mj, xk) (13.8)

13.4.4 TDOA and Hyperboloids

New slideIt is important to be aware of the geometrical properties that arise from the TDOA relationship given
in Equation 13.1:

T (mi, mj, xk) =
|xk −mi| − |xk −mj|

c
(13.9)

• This defines one half of a hyperboloid of two sheets, centered on the midpoint of the
microphones, vij =

mi+mj

2
. A generic diagram for the hyperboloid of twosheets is shown

in Figure 13.8 and Equation 13.13. Equivalently, as shown in Sidebar 23:

(xk − vij)
T Vij (xk − vij) = 1 (13.10)

where

τ = c T (mi, mj, xk) , Vij =
I3 − 4

τ2
µijµ

T
ij

τ 2 − |µij|2
and µij =

mi −mj

2
(13.11)

• For source with a large source-range to microphone-separation ratio, the hyperboloid may be
well-approximated by a cone with a constant direction angle relative to the axis of symmetry.
The corresponding estimated direction angle, ϕij for the microphone pair (i, j) is given by

ϕij = cos−1

(
c T (mi, mj, xk)

|mi −mj|

)
(13.12)
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Figure 13.8: Hyperboloid of two sheets

KEYPOINT! (Hyperboloid of two sheets). General expression for a Hyperboloid of two sheets is
given by:

x2

a2
+

y2

b2
+

z2

c2
= −1 (13.13)

□

An example of the resulting hyperboloid for a typical case is shown in Figure 13.9, where the
two-dimensional (2-D) equation is simplified in Sidebar 24. This case is for a microphone separation
of d = 0.1, and a time-delay of τij = d

4c
.

13.5 Indirect TDOA-based Methods
New slide

KEYPOINT! (Executive Summary). This section considers techniques which employ TDOA
information directly. The section is broadly split into two sections; localising the source given
TDOAs, followed by techniques for estimating TDOAs.

This is typically a two-step procedure in which:

• Typically, TDOAs are extracted using the generalised cross correlation (GCC) function, or an
adaptive eigenvalue decomposition (AED) algorithm.

• A hypothesised spatial position of the target can be used to predict the expected TDOAs (or
corresponding range) at the microphone.

• The error between the measured and hypothesised TDOAs is then minimised.
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Sidebar 23 Hyperboloids

Consider again Equation 13.1, but change the coordinate system to the center of the microphone pairs,
such that:

xk = x+
mi +mj

2
(13.14)

such that:
xk −mi = x− mi −mj

2︸ ︷︷ ︸
µ

and xk −mj = x+
mi −mj

2︸ ︷︷ ︸
µ

(13.15)

The normalised-TDOA, which α = c τijkis the actual TDOA multiplied by the speed of sound
(equivalent to a range) across these two microphones can then be expressed as

α = |x− µ| − |x+ µ| (13.16)

To show this is a hyperboloid, consider multiplying both sides by |x− µ|+ |x+ µ| and dividing by
τ such that:

|x− µ|+ |x+ µ| = 1

α
(|x− µ|+ |x+ µ|) (|x− µ| − |x+ µ|) (13.17)

=
1

α

(
|x− µ|2 − |x+ µ|2

)
(13.18)

|x− µ|+ |x+ µ| = −4µTx

α
(13.19)

Adding Equation 13.16 and Equation 13.19 gives:

2 |x− µ| = α− 4µTx

α
(13.20)

Squaring both sides again gives:

4xTx− 8µTx+ 4µTµ = α2 − 8µTx+
16

α2
xTµTµTx (13.21)

xTx+ µTµ =
α2

4
+

4

α2
xTµµTx (13.22)

xT

(
I3 −

4

α2
µµT

)
x =

α2

4
− |µ|2 (13.23)

finally giving:

xTVx = 1 where V =
I3 − 4

α2µµ
T

α2

4
− |µ|2

(13.24)

which is the equation of an arbitrary orientated hyperboloid. The principal directions of the
hyperboloid are the eigenvectors of the matrix V. Since V is rank-one, it is straightforward to show
that the axis of symmetry is µ =

mi−mj

2
.
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Sidebar 24 Hyperboloids Example

Continuing from the derivation in Sidebar 23, suppose the microphones are at positions mi =[
d
2

0 0
]T and mj =

[
−d

2
0 0

]T such that µ =
[
d
2

0 0
]T . Hence, Equation 13.24 becomes:

V =
I3 − 4

α2µµ
T

α2

4
− |µ|2

(13.25)

=
1

α2

4
− d2

4

I3 −
4

α2

d2

4
0 0

0 0 0
0 0 0

 (13.26)

=
4

α2 − d2

1− d2

α2 0 0
0 1 0
0 0 1

 (13.27)

This then gives the equation of the hyperboloid as:

xTVx = 1 (13.28)

xT

1− d2

α2 0 0
0 1 0
0 0 1

x =
α2 − d2

4
(13.29)

(
1− d2

α2

)
x2 + y2 + z2 =

α2 − d2

4
(13.30)

x2(
α
2

)2 − y2 + z2

1
4
(d2 − α2)

= 1 (13.31)

Note that the maximum TDOA will occur when the source is on the line through the two microphones,
and outside of the microphones. In this case, the maximum observed delay will be τij =

d
c

or α = d.
Hence, d2 − α2 ≥ 0.

Writing r2 = y2 + z2, which are points in the x− y plane on circles of radius r, this can alternatively
be written as:

r =
1

2

√
d2 − α2

√(
2x

α

)2

− 1 (13.32)

There is no solution for x < α
2

.
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Figure 13.9: Hyperboloid, for a microphone separation of d = 0.1, and a time-delay of τij = d
4c

.

• Accurate and robust TDOA estimation is the key to the effectiveness of this class of ASL
methods.

• An alternative way of viewing these solutions is to consider what spatial positions of the target
could lead to the estimated TDOA.

In the following subsections, two key error functions are considered which can be optimised in a
variety of methods.

13.5.1 Spherical Least Squares Error Function

New slide
KEYPOINT! (Underlying Idea). Methods using the least squares error (LSE) function relate the
distance or range to a target, relative to each microphone, in terms of the range to a coordinate origin
and the time-difference of arrival (TDOA) estimates at each microphone.

• Suppose the first microphone is located at the origin of the coordinate system, such that m0 =[
0 0 0

]T .

• The range from target k to sensor i can be expressed as the range from the target to the first
sensor plus a correction term:

Dik = D0k +Dik −D0k (13.33)
= Rs + c Ti0 (xk) (13.34)

where Rsk = |xk| is the range to the first microphone which is at the origin. This is shown in
Figure 13.10.
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D
1

D
2

D c
1 2 12
-D �=� t

Figure 13.10: Range and TDOA relationship.

• In practice, the observations are the TDOAs and therefore, given Rsk, these ranges can be
considered the measurement ranges.

Of course, knowing Rsk is half the solution, but it is just one unknown at this stage. The
measurements can be as

D̂ik ≡ R̂s + c T̂ij (13.35)

• The source-sensor geometry states that the target lies on a sphere centered on the corresponding
sensor. Hence,

D2
ik = |xk −mi|2 (13.36)

= xT
k xk − 2mT

i xk +mT
i mi (13.37)

= R2
s − 2mT

i xk +R2
i (13.38)

where Ri = |mi| is the distance of the i-th microphone to the origin.

• Define the spherical error function for the ith-order-microphone as the difference between
the squared measured range and the squared spherical modelled range values. Using
Equation 13.34 and Equation 13.38, this spherical error function can be written as:

ϵik ≜
1

2

(
D̂2

ik −D2
ik

)
(13.39)

=
1

2

{(
Rs + c T̂i0

)2
−
(
R2

s − 2mT
i xk +R2

i

)}
(13.40)

= mT
i xk + cRs T̂i0 +

1

2

(
c2T̂ 2

i0 −R2
i

)
(13.41)
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• Concatenating the error functions for each microphone gives the expression:

ϵik = Axk − (bk −Rskdk)︸ ︷︷ ︸
vk

(13.42)

≡
[
A dk

]︸ ︷︷ ︸
Sk

[
xk

Rsk

]
︸ ︷︷ ︸

θk

−bk (13.43)

where

A =

 mT
0

...
mT

N−1

 , d = c

 T̂00
...

T̂(N−1)0

 , bk =
1

2

 c2T̂ 2
00 −R2

0
...

c2T̂ 2
(N−1)0 −R2

N−1

 (13.44)

• The least-squares estimate (LSE) can then be obtained by forming the sum-of-squared errors
term using J = ϵTi ϵi which simplifies to:

J(xk) = (Axk − (bk −Rsk dk))
T (Axk − (bk −Rsk dk)) (13.45a)

J (xk, θk) = (Skθk − bk)
T (Skθk − bk) (13.45b)

• Note that as Rsk = |xk|, these parameters aren’t in fact independent. Therefore, the problem to
be solved can either be formulated as:

– a nonlinear least-squares problem in xk as described by Equation 13.45a;

– a linear minimisation subject to quadratic constraints:

θ̂k = argmin
θk

(Skθk − bk)
T (Skθk − bk) (13.46)

subject to the constraint

θk ∆θk = 0 where ∆ = diag [1, 1, 1, −1] (13.47)

The constraint θk ∆θk = 0 is equivalent to

x2
sk + y2sk + z2sk = R2

sk (13.48)

where (xsk, ysk, zsk) are the Cartesian coordinates of the source position.

13.5.1.1 Two-step Spherical LSE Approaches

New slide
KEYPOINT! (Constrained least-squares). To avoid solving either a nonlinear or a constrained
least-squares problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in xk assuming the range to the target, Rsk, is known;

2. and then solving for Rsk given an estimate of xk in terms of (i. t. o.) Rsk.

This approach is followed in the spherical intersection (SX) and spherical interpolation (SI)
estimators as shown below.
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• In both approaches, the range estimate is assumed known, so that the LSE can be expressed as:

J (xk) = ϵTi ϵi = (Axk − vk)
T (Axk − vk) (13.49)

Assuming an estimate of Rsk, denoted by R̂sk, this can be solved as

x̂k = A† vk = A†
(
bk − R̂skdk

)
where A† =

[
ATA

]−1
AT (13.50)

Note that A† is the pseudo-inverse of A.

Again, recall that the only observations are the TDOAs, {T̂i0, i ∈ {0, N − 1}}, and that while Rsk is
assumed known, clearly it is an unknown parameter. The differences between the following spherical
estimation techniques essentially reduce to how the unknown range is dealt with. These are covered
in the following subsections.

13.5.1.2 Spherical Intersection Estimator

New slide This method uses the physical constraint that the range Rsk is the Euclidean distance to the target.

• Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(
bk − R̂skdk

)T
A†TA†

(
bk − R̂skdk

)
(13.51)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0 (13.52)

where the individual terms follow through expanding Equation 13.51. These terms are given
by:

a = 1−
∥∥A†dk

∥∥2 , b = 2bkA
†TA†dk, and c = −

∣∣A†bk

∥∥2 (13.53)

• The unique, real, positive root of Equation 13.52 is taken as the SX estimator of the source
range. Hence, the estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.

13.5.1.3 Spherical Interpolation Estimator

New slide The SI estimator again uses the spherical LSE function, but rather than using the physically intuitive
solution of constraining the target range relative to the origin to be the actual distance so that Rsk ≡
|xk|, it is estimated in the least-squares sense.

Consider again the spherical error function:

ϵik = Axk − (bk −Rsk dk) (13.54)

Substituting the LSE from Equation 13.50 into this expression gives:

ϵik = A
[
ATA

]−1
AT
(
bk − R̂skdk

)
− (bk −Rsk dk) (13.55)
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Defining the projection matrix as PA = IN −A
[
ATA

]−1
AT , then this may be written as:

ϵik = Rsk PAdk −PAbk (13.56)

Minimising the LSE using the normal equations gives:

Rsk =
(
dT
k PT

A PAdk

)−1
dT
kP

T
APAbk (13.57)

However, the projection matrix is symmetric and idempotent, such that PA = PT
A and PAPA =

PA. This means that the sum-of-squared errors simplifies to:

Rsk =
(
dT
k PAdk

)−1
dT
kPAbk (13.58)

or alternatively, since the quantity in the inverse is a scaler,

Rsk =
dT
kPAbk

dT
k PAdk

(13.59)

Substituting back into the LSE for the target position given in Equation 13.50 gives the final estimator:

x̂k = A†
(
IN − dk

dT
kPA

dT
k PAdk

)
bk (13.60)

This approach is said to perform better, but is computationally slightly more complex than the SX
estimator.

13.5.1.4 Other Approaches

New slideThere are several other approaches to minimising the spherical LSE function defined in
Equation 13.45.

• In particular, the linear-correction LSE solves the constrained minimization problem using
Lagrange multipliers in a two stage process.

• For further information, see: Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and
Source Localization,” in Springer Handbook of Speech Processing by J. Benesty, M. M. Sondhi,
and Y. Huang, pp. 1043–1063, , Springer, 2008.

13.5.2 Hyperbolic Least Squares Error Function

New slide
KEYPOINT! (Underlying Concept). Suppose that for each pair of microphones i and j, a TDOA
corresponding to source k is somehow estimated, and this is denoted by τijk. One approach to ASL is
to minimise the total error between the measured TDOAs and the TDOAs predicted by the geometry
given an assumed target position.

• If a TDOA is estimated between two microphones i and j, then the error between this and
modelled TDOA is given by Equation 13.1:

ϵij(xk) = τijk − T (mi, mj, xk) (13.61)

where the error is considered as a function of the source position xk.
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Figure 13.11: Quadruple sensor arrangement and local Cartesian coordinate system.

• The total error as a function of target position

J(xk) =
N∑
i=1

N∑
j ̸=i=1

(τijk − T (mi, mj, xk))
2 (13.62)

• Unfortunately, since T (mi, mj, xk) is a nonlinear function of xk, the minimum LSE does not
possess a closed-form solution.

13.5.2.1 Linear Intersection Method

New slide

KEYPOINT! (Underlying Concept). The linear intersection (LI) algorithm works by utilising a
sensor quadruple with a common midpoint, which allows a bearing line to be deduced from the
intersection of two cones which approximate the hyperboloid. The spatial position that minimises
the distance between these bearing lines a the point of nearest intersection is considered the target
position.

• Given the bearing lines, it is possible to calculate the points sij and sji on two bearing lines
which give the closest intersection as illustrated in Figure 13.12. This is basic gemoentry, and
for a detailed analysis, see [Brandstein:1997].

• The trick is to note that given these points sij and sji, the theoretical TDOA, T (m1i, m2i, sij),
can be compared with the observed TDOA.

This will then lead to a weighted location estimate, where the weights are related to the
likelihood of the target position given the observed TDOA.
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Figure 13.12: Calculating the points of closest intersection.

13.5.3 TDOA estimation methods
New slide Two key methods for TDOA estimation are using the GCC function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal free-field movel. It has the advantages
that

• computationally efficient, and hence short decision delays;

• perform fairly well in moderately noisy and reverberant environments.

However, GCC-based methods

• fail when room reverberation is high;

• focus of current research is on combating the effect of room reverberation.

AED Algorithm Approaches the TDOA estimation approach from a different point of view from the
traditional GCC method.

• adopts a reverberant rather than free-field model;

• computationally more expensive than GCC;

• can fail when there are common-zeros in the room impulse response (RIR).

Note that both methods assume that the signals received at the microphones arise as the result of a
single source, and that if there are multiple sources, the signals will first need to be separated into
different contributions of the individual sources.

13.5.3.1 GCC TDOA estimation

New slideThe GCC algorithm proposed by Knapp and Carter is the most widely used approach to TDOA
estimation.
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• The TDOA estimate between two microphones i and j is obtained as the time lag that maximises
the cross-correlation between the filtered versions of the microphone outputs:

τ̂ij = argmax
ℓ

rxi xj
[ℓ] (13.63)

where the signal received at microphone i is given by xi[n], and where xi should not be confused
with the location of the source k, which is denoted by xk = [xk, yk, zk]

T .

• The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Ψx1x2

(
ejωTs

))
(13.64)

= F−1
(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))
(13.65)

=

∫ π
Ts

− π
Ts

Ψx1x2

(
ejωTs

)
ejℓωT dω (13.66)

=

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω (13.67)

where the cross-power spectral density (CPSD) is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
(13.68)

The CPSD can be estimated in a variety of means. The choice of the filtering term or frequency
domain weighting function, Φ

(
ejωTs

)
, leads to a variety of different GCC methods for TDOA

estimation. In Section 13.5.3.3 , some of the popular approaches are listed, but only one is
covered in detail, namely the phase transform (PHAT).

13.5.3.2 CPSD for Free-Field Model

New slide For the free-field model in Equation 13.5 and Equation 13.6, it follows that for i ̸= j the CPSD in
Equation 13.68 is given by:

Pxixj
(ω) = E [Xj (ω)Xj (ω)] (13.69)

= E
[(
αik Sk (ω) e

−jω τik +Bik (ω)
) (

αjk Sk (ω) e
−jω τkk +Bjk (ω)

)]
(13.70)

= αikαjke
−jω T (mi,mj ,xk)E

[
|Sk (ω)|2

]
(13.71)

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0 due to the noise being uncorrelated with
the source signal and noise signals.

• In particular, note that it follows:

∠Pxixj
(ω) = −jω T (mi, mj, xk) (13.72)

In otherwords, all the TDOA information is conveyed in the phrase rather than the amplitude
of the CPSD. This therefore suggests that the weighting function can be chosen to remove the
amplitude information.

These equations can be converted to discrete time as appropriate.
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13.5.3.3 GCC Processors

New slide The most common choices for the GCC weighting term are listed in the table below. In particular, the
PHAT is considered in detail.

Processor Name Frequency Function
Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)
Pn1n1 (e

jωTs)Pn2n2 (e
jωTs)

Hannon-Thomson or ML

∣∣γx1x2

(
ejωTs

)∣∣2
|Px1x2 (e

jωTs)|
(
1− |γx1x2 (e

jωTs)|2
)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence function is given by

γx1x2

(
ejωTs

)
=

Px1x2

(
ejωTs

)√
Px1x1 (e

jωTs)Px2x2 (e
jωTs)

(13.73)

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω (13.74)

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)|

|Px1x2

(
ejωTs

)
|ej∠Px1x2(ejωTs) ejℓωT dω (13.75)

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(ejωTs)) dω (13.76)

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))
(13.77)

= δ(ℓ Ts − T (mi, mj, xk)) (13.78)

• In the absence of reverberation, the GCC-PHAT (GCC-PHAT) algorithm gives an impulse at a
lag given by the TDOA divided by the sampling period.

13.5.3.4 Adaptive Eigenvalue Decomposition

New slide
KEYPOINT! (Underlying Concept). The AED algorithm adopts the real reverberant rather than
free-field model. The AED algorithm actually amounts to a blind channel identification problem,
which then seeks to identify the channel coefficients corresponding to the direct path elements.
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Figure 13.13: Normal cross-correlation and GCC-PHAT functions for a frame of speech.
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(a) GCC-PHAT in a reverberant
environment, ρ = 08. The ground
truth of TDOA is 0.64 ms.
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(b) GCC-PHAT in a noisy environment,
SNR = 0 dB.

Figure 13.14: The effect of reverberation and noise on the GCC-PHAT can lead to poor TDOA
estimates.
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Figure 13.15: A typical room acoustic impulse response.

Figure 13.16: Early and late reflections in an AIR.

• Suppose that the acoustic impulse response (AIR) between source k and i is given by hik[n]
such that

xik[n] =
∞∑

m=−∞

hik[n−m] sk[m] + bik[n] (13.79)

then the TDOA between microphones i and j is:

τijk =
{
argmax

ℓ
|hik[ℓ]|

}
−
{
argmax

ℓ
|hjk[ℓ]|

}
(13.80)

This assumes a minimum-phase system, but can easily be made robust to a non-minimum-phase
system.

• Reverberation plays a major role in ASL and BSS.

• Consider reverberation as the sum total of all sound reflections arriving at a certain point in a
room after room has been excited by impulse.

Trivia: Perceive early reflections to reinforce direct sound, and can help with speech intelligibility. It
can be easier to hold a conversation in a closed room than outdoors
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Figure 13.17: In an infinitely long cylindrical tube, the reverberant energy is greater than the energy
contained in the sound travelling along a direct path, thus demonstrating the nonminimum-phase
properties of room acoustics.

• Room transfer functions are often nonminimum-phase since there is more energy in the
reverberant component of the RIR than in the component corresponding to sound travelling
along a direct path.

• Therefore AED will need to consider multiple peaks in the estimated AIR.

13.6 Direct Localisation Methods
New slide • Direct localisation methods have the advantage that the relationship between the measurement

and the state is linear.

• However, extracting the position measurement requires a multi-dimensional search over the
state space and is usually computationally expensive.

13.6.1 Steered Response Power Function

New slide
KEYPOINT! (Underlying Concept). The steered beamformer (SBF) or SRP function is a measure
of correlation across all pairs of microphone signals for a set of relative delays that arise from a
hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a spatial position x̂k such that
τ̂pk = |x̂−mp|, using the notation in Equation 13.8, is given by:

S (x̂) =

∫
Ω

∣∣∣∣∣
N∑
p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣∣∣∣∣
2

dω (13.81)

Expanding and rearranging the order of integration and summation gives:

S (x̂) =

∫
Ω

N∑
p=1

N∑
q=1

Wp

(
ejωTs

)
W ∗

q

(
ejωTs

)
Xp

(
ejωTs

)
X∗

q

(
ejωTs

)
ejω(τ̂pk−τ̂qk) dω (13.82)
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Figure 13.18: SBF response from a frame of speech signal. The integration frequency range is 300
to 3500 Hz (see Equation 13.84). The true source position is at [2.0, 2.5]m. The grid density is set to
40 mm.

Figure 13.19: An example video showing the SBF changing as the source location moves.

Taking expectations of both sides and setting Φpq

(
ejωTs

)
= Wp

(
ejωTs

)
W ∗

q

(
ejωTs

)
gives

E [S (x̂)] =
N∑
p=1

N∑
q=1

∫
Ω

Φpq

(
ejωTs

)
Pxpxq

(
ejωTs

)
ejωτ̂pqk dω (13.83)

=
N∑
p=1

N∑
q=1

rxi xj
[τ̂pqk] ≡

N∑
p=1

N∑
q=1

rxi xj

[
|xk −mi| − |xk −mj|

c

]
(13.84)

In other words, the SRP is the sum of all possible pairwise GCC functions evaluated at the time delays
hypothesised by the target position. This is discussed in Section 13.6.2.

13.6.2 Conceptual Intepretation of SRP

New slideEquation 13.84 gives an elegant conceptual intepretation of the SBF function. Given a candidate
spatial position x̂k, the corresponding TDOA at microphones i and j can be calculated using
Equation 13.9:

June 28, 2021 – 08 : 40



454 Passive Target Localisation

t0

r
x1x2

(t)

True TDOA

Incorrect TDOA

t0

t0

r
x1x3

(t)

r
x2x3

(t)

Figure 13.20: GCC-PHAT for different microphone pairs.

T (mi, mj, x̂k) =
|x̂k −mi| − |x̂k −mj|

c
(13.85)

Since the SBF function in Equation 13.84 is a linear combination of the GCC-PHAT functions, then
if x̂k is correct, then the GCC-PHAT functions should return a large peak. If x̂k is incorrect, then
the GCC-PHAT functions return smaller values, and therefore the SBF function in Equation 13.84 is
smaller.

13.7 DUET Algorithm

New slide
KEYPOINT! (Summary). The DUET algorithm is an approach to BSS that ties in neatly to ASL.
Under certain assumptions and circumstances, it is possible to separate more than two sources using
only two microphones.

• DUET is based on the assumption that for a set of signals xk[t], their time-frequency
representations (TFRs) are predominately non-overlapping. This condition is referred to as
W-disjoint orthogonality (WDO), and can be stated as follows:

Sp (ω, t) Sq (ω, t) = 0∀p ̸= q, ∀t, ω (13.86)

The WDO property is clearly shown in Figure 13.21, where the spectrograms of clean speech mixtures
are sparse and disjoint. For two speech signals, the product of the corresponding spectrograms is zero
at the most area on the time-frequency (TF) domain.
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Figure 13.21: W-disjoint orthogonality of two speech signals. Original speech signal (a) s1[t] and
(b) s2[t]; corresponding STFTs (c) |S1 (ω, t)| and (d) |S2 (ω, t)|; (e) product of the two spectrogram
|S1 (ω, t)S2 (ω, t)|.
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Figure 13.22: Illustration of the underlying idea in DUET.

Consider taking then, a particular TF-bin, (ω, t), where source p is known to be active. The two
received signals at microphones i and j in that TF-bin can be written in the TF-domain as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

(13.87)

Taking the ratio of these expressions and ignoring the noise terms gives:

Hikp (ω, t) ≜
Xip (ω, t)

Xjp (ω, t)
=

αip

αjp

e−jωτijp (13.88)

where, again, τijp is the TDOA of the signal contribution due to source p between microphones i and
j.

KEYPOINT! (Which TF-bins belong to which source?). Of course, which TF-bins belong to
which source is unknown, as the source signal and spectrum is unknown. However, if the magnitude
and phase terms of the ratio in Equation 13.88 are histogrammed over all TF-bins, peaks will occur a
distinct magnitude-phase positions, each peak corresponding to a different source.

Hence,

τijp = − 1

ω
argHikp (ω, t) , and

αip

αjp

= |Hikp (ω, t)| (13.89)

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing parameter estimates.

3. Combine the set of local mixing parameter estimates into N pairings corresponding to the true
mixing parameter pairings.
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Figure 13.23: DUET for multiple sources.

4. Generate one binary mask for each determined mixing parameter pair corresponding to the
TF-bins which yield that particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the mixtures.

6. Return each demixed TFR to the time domain.

13.7.1 Effect of Reverberation and Noise
New slideA number of papers have analysed the validity of the WDO property, and anechoic speech often

satisfies this. However, while the TFR of speech is very clear in this case, the TFR becomes smeared
due to revebereration and noise.

13.7.2 Estimating multiple targets

New slideThe underlying idea is shown in Figure 13.25 and Figure 13.26.

13.8 Further Topics

New slide• Reduction in complexity of calculating SRP. This includes SRC and hierarchical searches.

• Multiple-target tracking (see Daniel Clark’s Notes)

• Simultaneous (self-)localisation and tracking; estimating sensor and target positions from a
moving source.
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(c) A noisey environment.

Figure 13.24: The TFR is very clear in the anechoic environment but smeared around by the
reverberation and noise.
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Figure 13.25: Flow diagram of the DUET-GCC approach. Basically, the speech mixtures are
separated by using the DUET in the TF domain, and the PHAT-GCC is then employed for the
spectrogram of each source to estimate the TDOAs.
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Figure 13.26: GCC function from DUET approach and traditional PHAT weighting. Two sources
are located at (1.4, 1.2)m and (1.4, 2.8)m respectively. The GCC function is estimated from the first
microphone pair (microphone 1 and microphone 2). The ground truth TDOAs are 0.95 ms.



13.8. Further Topics 459

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time step

T
D

O
A

/s

ground truth
multiple TDOAs
largest peak

(a)

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time step

T
D

O
A

/s

ground truth
multiple TDOAs
largest peak

(b)

Figure 13.27: Acoustic source tracking and localisation.

• Joint ASL and BSS.

• Explicit signal and channel modelling! (None of the material so forth cares whether the signal
is speech or music!)

• Application areas such as gunshot localisation; other sensor modalities; diarisation.
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