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Introduction, Aims and Objectives

Source Signal > Channel » Observed Signal
e.g. Clean Speech e.g. Room Acoustics e.g. Reverberant Speech

Everything that needs to be said has already
been said. But since no one was listening,
everything must be said again.

André Gide

If you can’t explain it simply, you don’t
understand it well enough.

Albert Einsten

This handout also provides an introduction to signals and systems, and an overview of statistical
signal processing applications. This is relevant to provide context and motivation for studying this
branch of signal and information processing.

T9

1.1 Obtaining the Latest Version of these Handouts

New slide
* This research tutorial is intended to cover a wide range of aspects which cover the fundamentals

of statistical signal processing. It is written at a level which assumes knowledge of
undergraduate mathematics and signal processing nomenclature, but otherwise should be
accessible to most technical graduates. The course is based on MSc level materials.

4



1.1. Obtaining the Latest Version of these Handouts
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Figure 1.1: Source localisation and blind source separation (BSS). An example of topics using
statistical signal processing.

Walls
Sound
<€4— and other Source 3
obstacles
Observer

Source 1

Figure 1.2: Humans turn their head in the direction of interest in order to reduce inteference from

other directions; joint detection, localisation, and enhancement. An application of probability and
estimation theory, and statistical signal processing.
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6 Aims and Objectives

KEYPOINT! (Latest Slides). Please note the following:

* This tutorial is being continually updated, and feedback is welcomed. The hardcopy documents
published or online may differ slightly to the slides presented on the day. In particular, there
are likely to be a few typos in the document, so if there is something that isn’t clear, please feel
free to email me so I can correct it (or make it clearer).

* The latest version of this document can be obtained from the author, Dr James R. Hopgood, by
emailing him at:
mailto: james.hopgood@ed.ac.uk
(Update: The notes are no longer online due to the desire to maintain copyright control on the

document.)

» Extended thanks to the many MSc students over the past 16 years who have helped proof-read
and improve these documents.

1.2 Welcome

The Probability, Estimation Theory, And Random Signals module introduces the fundamental
statistical tools that are required to analyse and describe advanced signal processing algorithms within
this MSc programme.

It provides a unified mathematical framework which is the basis for describing random events and
signals, and how to describe key characteristics of random processes.

Probability, Estimation Theory, and Random
Signals (PETARS) (PGEEETI64)

http://media.ed.ac.uk/media/l_obwtlezl0

Video Summary: This video introduces the Course Lecturer, Dr James Hopgood, and
tells you a little about himself in a professional capacity and his research interests. This
video also discusses the Institute of Digital Communications, where Dr Hopgood is a
member. For more about Dr Hopgood’s research interests, please see https://www.
research.ed.ac.uk/portal/ Jhopgool.




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

mailto:james.hopgood@ed.ac.uk
http://media.ed.ac.uk/media/1_6wt1ez10
https://www.research.ed.ac.uk/portal/jhopgoo1
https://www.research.ed.ac.uk/portal/jhopgoo1

1.3. Introduction and Overview

RKS:
PETARS: Lecture Slideset 1:
Course Introduction

http://media.ed.ac.uk/media/1_1ly8dtumu

Video Summary: This video shows you how to navigate the LEARN virtual learning
environment. It shows how to navigate course content and the course guide.
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8 Aims and Objectives

1.3 Introduction and Overview

)

Topic Summary 1 Course aims and objectives, overview, key themes New slide

Topic Objectives:

* Awareness of the aims and objectives of the course.

Highlight the learning outcomes of the course.

List the mathematical prerequisites for the course.

Lists the main themes of the course.

Topic Activities:

Type Details Duration Progress

Watch video 12 : 12 minute video 3% video length
Read Handout | Read page to page ?? 8 mins/page

Introduction and Overview

Signal processing is concerned with the modification or
manipulation of a signal, defined as an
information-bearing representation of a real process, to
e T APV M O o

http://media.ed.ac.uk/media/1_qg42rrjjf

Video Summary: This video gives a very brief introduction to signal processing,
describes the course aims and objectives from a high-level, the learning outcomes, and
prerequisites needed to study the course. The video also discusses the key themes studied
in this course.

Signal processing is concerned with the modification or manipulation of a signal, defined
as an information-bearing representation of a real process, to the fulfillment of human
needs and aspirations.

Gone is the era where information in the form of electrical signals are processed through analogue
devices. For the foreseeable future, processing of digital, sampled, or discrete-time signals is the
definitive approach to analysing data and extracting information.

In this course, it is assumed that the reader already has a grounding in digital signal processing (DSP).
This module will take you to the next level; a tour of the exciting, fascinating, and active research area
of statistical signal processing.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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White noise signal

Transfer Function for Gramophone Horn x10° Correlated noise signal

I — Measured Response
—  AR(68) model

°
Gain (dB)
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(a) Input signal; uncorrelated (b) Frequency response of (¢c) Output signal: a coloured
white noise process. channel; the response of an (correlated) noise process.
acoustic gramophone horn.

Source Signal > Channel » Observed Signal
e.g. Clean Speech e.g. Room Acoustics e.g. Reverberant Speech

(d) Block diagram of system representing convolution.

Figure 1.3: Solutions to the so-called blind deconvolution problem require statistical signal processing
methods.

Sidebar 1 Signal Processing

The IEEE Signal Processing Society makes the following statement regarding signal processing.

The technology we use, and even rely on, in our everyday lives — computers, radios,
video, cell phones — is enabled by signal processing, a branch of electrical engineering
that models and analyzes data representations of physical events.

Signal processing is at the heart of our modern world, powering today’s entertainment
and tomorrow’s technology. It’s at the intersection of biotechnology and social
interactions. It enhances our ability to communicate and share information.

Signal processing is the science behind our digital lives.

Recently, machine learning techniques have been applied to aspects of signal processing, blurring the
lines between the sciences, and causing many shared applications between the two.
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Figure 1.4: Empirical Gaussian probability density function.

1.3.1 Module Abstract

The notion of random or stochastic quantities is an extremely powerful concept that can be
constructively used to model observations that result from real-world processes. These quantities
could be scalar measurements, such as an instantaneous measurement of distance, or they could be
vector-measurements such as a coordinate. They could be random signals either in one-dimension,
or in higher-dimensions, such as images. Stochastic quantities such as random signals, by their very
nature, are described using the mathematics of probability and statistics. By making assumptions
such as the availability of an infinite number of observations or data samples, time-invariant statistics,
and known signal or observation models, it is possible to estimate the properties of these random
quantities or signals and, consequently, use them in signal processing algorithms.

In practice, of course, these statistical properties must be estimated from finite-length data signals
observed in noise. In order to understand both the concept of stochastic processes and the inherent
uncertainty of signal estimates from finite-length sequences, it is first necessary to understand the
fundamentals of probability, random variables, and estimation theory.

1.3.2 Description and Learning Outcomes

Module Aims The aims of the two modules Probability, Random Variables, and Estimation Theory
(PET), and Statistical Signal Processing (SSP), are similar to those of the text book
[Manolakis:2000, page xvii]. The principle aim of the modules are:

to provide a unified introduction to the theory, implementation, and
applications of statistical signal processing.

Pre-requisites It is strongly recommended that the student has previously attended an undergraduate
level course in either signals and systems, digital signal processing, automatic control,
or an equivalent course.

Section [[.3.3] provides further details regarding the material a student should have
previously covered.

Short Description The Probability, Random Variables, and Estimation Theory module
introduces the fundamental statistical tools that are required to analyse and describe
advanced signal processing algorithms. It provides a unified mathematical framework
which is the basis for describing random events and signals, and how to describe key
characteristics of random processes.

The module covers probability theory, considers the notion of random variables and
vectors, how they can be manipulated, and provides an introduction to estimation
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theory. It is demonstrated that many estimation problems, and therefore signal
processing problems, can be reduced to an exercise in either optimisation or
integration. While these problems can be solved using deterministic numerical
methods, the module introduces Monte Carlo techniques which are the basis of
powerfull stochastic optimisation and integration algorithms. These methods rely on
being able to sample numbers, or variates, from arbitrary distributions. This module
will therefore discuss the various techniques which are necessary to understand
these methods and, if time permits, techniques for random number generation are
considered.

The Statistical Signal Processing module then consider representing real-world
signals by stochastic or random processes. The tools for analysing these random
signals are developed in the Probability, Random Variables, and Estimation
Theory module, and this module extends them to deal with time series. The notion
of statistical quantities such as autocorrelation and auto-covariance are extended from
random vectors to random processes, and a frequency-domain analysis framework is
developed. This module also investigates the affect of systems and transformations
on time-series, and how they can be used to help design powerful signal processing
algorithms to achieve a particular task.

The module introduces the notion of representing signals using parametric models;
it extends the broad topic of statistical estimation theory covered in the Probability,
Random Variables, and Estimation Theory module for determining optimal model
parameters. In particular, the Bayesian paradigm for statistical parameter estimation
is introduced. Emphasis is placed on relating these concepts to state-of-the-art
applications and signals.

Keywords Probability, scalar and multiple random variables, stochastic processes, power
spectral densities, linear systems theory, linear signal models, estimation theory, and
Monte Carlo methods.

Module Objectives At the end of these modules, a student should be able to have:

1. acquired sufficient expertise in this area to understand and implement spectral
estimation, signal modelling, parameter estimation, and adaptive filtering
techniques;

2. developed an understanding of the basic concepts and methodologies in
statistical signal processing that provides the foundation for further study,
research, and application to new problems.

PETARS Learning Outcomes There are five key learning outcomes for the full PETARS course.
On completion of this course, the student will be able to:
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* Define, understand and manipulate scalar and multiple random
variables, using the theory of probability; this should include
the basic tools of probability transformations and characteristic
functions, moments, the central limit theorem (CLT)) and its use in
estimation theory and the sum of random variables.

* Understand the principles of estimation theory, and estimation
techniques such as maximum-likelihood, least squares, minimum
variance unbiased estimator (MVUE) estimators, and Bayesian
estimation; be able to characterise the estimator using standard
metrics, including the Cramér-Rao lower-bound (CRLB).

* Explain, describe, and understand the notion of a random process
and statistical time series, and characterise them in terms of its
statistical properties.

* Define, describe, and understand the notion of the power spectral
density of stationary random processes, and be able to analyse and
manipulate them; analyse in both time and frequency the affect of
transformations and linear systems on random processes, both in
terms of the density functions, and statistical moments.

* Explain the notion of parametric signal models, and describe
common regression-based signal models in terms of its statistical
characteristics, and in terms of its affect on random signals; apply
least squares, maximum-likelihood, and Bayesian estimators to
model based signal processing problems.

These are broken down further in the expanded Learning Outcomes below.

Expanded Learning Outcomes At the end of the Probability, Random Variables, and Estimation
Theory module, a student should be able to:

1.

define, understand and manipulate scalar and multiple random variables,
using the theory of probability; this should include the tools of probability
transformations and characteristic functions;

explain the notion of characterising random variables and random vectors using
moments, and be able to manipulate them; understand the relationship between
random variables within a random vector;

. understand the and explain its use in estimation theory and the sum of

random variables;

understand the principles of estimation theory; understand and be apply to apply
estimation techniques such as maximum-likelihood, least squares, and Bayesian
estimation;

. be able to characterise the uncertainty in an estimator, as well as characterise

the performance of an estimator (bias, variance, and so forth); understand the
and estimators.

if time permits, explain and apply methods for generating random numbers,
or random variates, from an arbitrary distribution, using methods such as
accept-reject and Gibbs sampling; understand the notion of stochastic numerical
methods for solving integration and optimisation problems.

At the end of the Statistical Signal Processing module, a student should be able to:
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1. explain, describe, and understand the notion of a random process and statistical
time series;

2. characterise random processes in terms of its statistical properties, including the
notion of stationarity and ergodicity;

3. define, describe, and understand the notion of the power spectral density of
stationary random processes; analyse and manipulate power spectral densities;

4. analyse in both time and frequency the affect of transformations and linear
systems on random processes, both in terms of the density functions, and
statistical moments;

5. explain the notion of parametric signal models, and describe common
regression-based signal models in terms of its statistical characteristics, and in
terms of its affect on random signals;

6. apply least squares, maximum-likelihood, and Bayesian estimators to model
based signal processing problems.

1.3.3 Prerequisites

The mathematical treatment throughout this module is kept at a level that is within the grasp of
final-year undergraduate and graduate students, with a background in digital signal processing
(DSP), linear system and control theory, basic probability theory, calculus, linear algebra, and a
competence in Engineering mathematics.

In summary, it is assumed that the reader has knowledge of:

1. Engineering mathematics, including linear algebra, manipulation of vectors and matrices,
complex numbers, linear transforms including Fourier series and Fourier transforms,
z-transforms, and Laplace transforms;

2. basic probability and statistics, albeit with a solid understanding;

3. differential and integral calculus, including differentiating products and quotients, functions of
functions, integration by parts, integration by substitution;

4. basic digital signal processing (DSP)), including:

* the notions of deterministic continuous-time signals, discrete-time signals and digital
(quantised) signals;

» filtering and inverse filtering of signals; convolution;

* the response of linear systems to harmonic inputs; analysing the time and frequency
domain properties of signals and systems;

* sampling of continuous time processes, Nyquist’s sampling theorem and signal
reconstruction;

* and analysing discrete-time signals and systems.

Note that while the reader should have been exposed to the idea of a random variable, it is not
assumed that the reader has been introduced to random signals in any form. A list of recommended
texts covering these prerequisites is given in the section on Learning Resources later in this Handout.
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Probability, Estimation Theory and Random Signals (PETARS) (MSc)«

Course Organiser: Dr James Hopgood

T PGEE111642020-1SV1SEMI (2020/21) O Updatedanhourago & 5itemsin 1sections B8O Licensed under: CC BY-NC-SA 4.0 (Attribution-NonComm:

Reading Material s ls
sook Probability and randem processes for electrical and computer engineers
Therrien, Charles W., Tummala, Murali, CRC Press, 2012
E ded |
Available at Murray Library Murray Library, King's Buildings (RESERVE) : TKL53 The. and more locations

sook Statistical and adaptive signal processing : spectral estimation, signal modeling, adaptive filtering, and array processing
vg Dimitris G. Manolakis, Vinay K Ingle; Stephen M Kogon, 2005

Available atMurray Library Murray Library, King's Buildings [RESERVE) : Folio TK5102.9 Man. and more locations

sook Fund ls of istical signal pre

Kay, Steven M., Prentice-Hall PTR, Prentice-Hall signal processing series, ©1993-1998
-d)

Available atMurray Library Murray Library, King's Buildings (RESERVE) : TK5102.5 Kay. and more locations

Papoulis, Athanasios, Pillai, S. Unnikrishna, McGraw-Hill, 2002

"
. 200k Probability, random variables, and stochastic processes
4 <

Available atMurray Library Murray Library, King's Buildings (RESERVE) : QA273 Pap.

sook Digital signal processing: principles, algorithms, and applications

Proakis, John G., Manolakis, Dimitris G, Second edition.., New York : Toronte : New York, Macmillan Maxwell Macmillan Canada Maxwell Macmill:

ji gi

Available atMurray Library Murray Library, King's Buildings (STANDARD LOAN) : TK5102.5 Pro,

Figure 1.5: The Resource List page, accessible from LEARN, lists the course textbooks, and how to
find them in the University.

1.4 Recommended Texts and Learning Resources

The recommended text for this module is cited throughout this document as [Manolakis:2000]. The
full reference is:

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal
Processing:  Spectral Estimation, Signal Modeling, Adaptive Filtering and Array
Processing, McGraw Hill, Inc., 2000.

IDENTIFIERS - Paperback, ISBN10: 0070400512, ISBN13: 9780070400511

It is recommended that, if you wish to purchase a hard-copy of this book, you try and find this
paperback version; it should be possible to order a copy relatively cheaply through the US version
of Amazon (check shipping costs). However, please note that this book is now available, at great
expense, in hard-back from an alternative publisher. The full reference is:

Manolakis D. G., V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal
Processing:  Spectral Estimation, Signal Modeling, Adaptive Filtering and Array
Processing, Artech House, 2005.

IDENTIFIERS - Hardback, ISBN10: 1580536107, ISBN13: 9781580536103

Images of the book covers are shown in Figure 1.6 For further reading, or an alternative perspective
on the subject matter, other recommended text books for this module include:
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15

Statistical and Adaptive
CIGNAL PROCESSING

sig

SIGNAL MODELING,

SPECTRAL ESTIMATION,
ADAPTIVE FILTERING AND ARRAY PROCESSING

(a) Cover of paperback (b) Cover of hardback version.
version.

Figure 1.6: The main course text for this module: [Manolakis:2000].

S FUNDAMENTALS OF e

robability, Random Variables
TAT%ISE;I&I[ and Stochastic Processes
PROCESSING

ESTIMATION THEORY

STEVEN M. KAY

e

(a) Recommended text: (b) Recommended text:
[Kay:1993]. [Papoulis: 1991].

Figure 1.7: Additional recommended texts for the course.
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Tiird Eitior

DIGITAL
SIGNAL
PROCESSING

Principles, Algorithms, and Applications

v, -
- Pearson New International Edition

e Digital Signal Processing
_John G. Proakis John 6. Proakis Dimitris K. Manolakis
Dimitris G. Manolakis Fourth Edition

(a) Third Edition cover. (b) Fourth Edition cover.

Figure 1.8: Course text: further reading for digital signal processing and mathematics,
[Proakis:1996].

1. Therrien C. W., Discrete Random Signals and Statistical Signal Processing, Prentice-Hall, Inc.,
1992.

IDENTIFIERS - Paperback, ISBN10: 0130225452, ISBN13: 9780130225450
Hardback, ISBN10: 0138521123, ISBN13: 9780138521127

2. Kay S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall,
Inc., 1993.

IDENTIFIERS - Hardback, ISBN10: 0133457117, ISBN13: 9780133457117
Paperback, ISBN10: 0130422681, ISBN13: 9780130422682

3. Papoulis A. and S. Pillai, Probability, Random Variables, and Stochastic Processes, Fourth
edition, McGraw Hill, Inc., 2002.

IDENTIFIERS - Paperback, ISBN10: 0071226613, ISBN13: 9780071226615
Hardback, ISBN10: 0072817259, ISBN13: 9780072817256

These are referenced throughout as [Therrien:1992], [Kay:1993], and [Papoulis:1991], respectively.
Images of the book covers are shown in Figure[I.7] The material in [Kay:1993] is mainly covered
in Handout 6 on Estimation Theory of the [PET| module. The material in [Therrien:1992] and
[Papoulis:1991] is covered throughout the course, with the former primarily in the module.

KEYPOINT! (Proposed Recommended Text Book for Future Years). Finally, Therrien has also
published a recent book which covers much of this course extremely well, and therefore comes
thoroughly recommended. It has a number of excellent examples, and covers the material in good
detail.

Therrien C. W. and M. Tummala, Probability and Random Processes for Electrical and
Computer Engineers, Second edition, CRC Press, 2011.

IDENTIFIERS — Hardback, ISBN10: 1439826986, ISBN13: 978-1439826980
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PROBABILITY AND
RANDOM PROCESSES
FOR ELECTRICAL AND
COMPUTER ENGINEERS :

SECOND EDITIONH Y 1q

CHARLES W. THERRIEN
MURALI TUMMALA

Figure 1.9: Further reading for statistical signal processing, [Therrien:2011].

1.4.1 Recommended Texts: Prerequisite Material

As mentioned in the section on mathematic pre-requisites above, it is assumed that the reader has a
basic knowledge of digital signal processing. If not, or if the reader wishes to revise the topic, the
following book which is highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Third edition, Prentice-Hall, Inc., 1996.

IDENTIFIERS - Paperback, ISBN10: 0133942899, ISBN13: 9780133942897
Hardback, ISBN10: 0133737624, ISBN13: 9780133737622

This is cited throughout as [Proakis:1996] and is referred to in the second handout. This is the third
edition to the book, and a fourth edition has recently been released.:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Pearson New International Edition, Fourth edition, Pearson Education,
2013.

IDENTIFIERS — Paperback, ISBN10: 1292025735, ISBN13: 9781292025735
Although it is best to purchase the fourth edition, please bear in mind that the equation references
throughout the lecture notes correspond to the third edition. For an undergraduate level text book
covering an introduction to signals and systems theory, which it is assumed you have covered, the

following is recommended [Mulgrew:2002]:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing: Concepts and
Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS - Paperback, ISBN10: 0333963563, ISBN13: 9780333963562
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f Bernard Mulgrew, | |

Peter Grant and Signals a

John Thompson |, , Systems

An Introdu@i slgnal
Second Edition Pr oce55lng
First

James H, McClellan
Ronald W. Schafer
Mark A. Yoder

Leslie Balmer

(a) [Mulgrew:2002]. (b) [Balmer:1997]. (c¢) [McClennan:2003].

Figure 1.10: Undergraduate texts on Signals and Systems.

Seehttp://www.homepages.ed.ac.uk/pmg/SIGPRO/

The latest edition was printed in 2003, but any of the book edition will do. An alternative presentation
of roughly the same material is provided by the following book [Balmer:1997]:

Balmer L., Signals and Systems: An Introduction, Second edition, Prentice-Hall, Inc.,
1997.

IDENTIFIERS - Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

The Appendix on complex numbers may prove useful.

For an excellent and gentle introduction to signals and systems, with an elegant yet thorough overview
of the mathematical framework involved, have a look at the following book, if you can get hold of a
copy (but don’t go spending money on it):

McClellan J. H., R. W. Schafer, and M. A. Yoder, Signal Processing First, Pearson
Education, Inv, 2003.

IDENTIFIERS - Paperback, ISBN10: 0131202650, ISBN13: 9780131202658
Hardback, ISBN10: 0130909998, ISBN13: 9780130909992

1.4.2 Further Recommended Reading

For additional reading, and for guides to the implementation of numerical algorithms used for some
of the actual calculations in this lecture course, the following book is also strongly recommended:

Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receipes in
C: The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.


http://www.homepages.ed.ac.uk/pmg/SIGPRO/
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NUMERICAL
RECIPES in C++

The Art of Sciantific Computing
Second Edition

(a) Recommended text:
[Press:1992].

Figure 1.11: Further reading for numerical methods and mathematics.

IDENTIFIERS - Paperback, ISBN10: 0521437202, ISBN13: 9780521437202
Hardback, ISBN10: 0521431085, ISBN13: 9780521431088

Please note that there are many versions of the numerical recipes book, and that any version will do.
So it would be worth getting the latest version.

1.4.3 Additional Resources

Other useful resources include:

* The extremely comprehensive and interactive mathematics encyclopedia:
Weisstein E. W., MathWorld, From MathWorld - A Wolfram Web Resource, 2008.

Seehttp://mathworld.wolfram.com

» Connexions is an environment for collaboratively developing, freely sharing, and rapidly
publishing scholarly content on the Web. A wide variety of technical lectures can be found
at:

Connexions, The Connexions Project, 2008.

Seehttp://cnx.org

* The Wikipedia online encyclopedia is very useful, although beware that there is no guarantee
that the technical articles are either correct, or comprehensive. However, there are some
excellent articles available on the site, so it is worth taking a look.

Wikipedia, The Free EncyclopediaWikipedia, The Free Encyclopedia, 2001 —
present.
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(a) The MATLAB logo. MATLAB is a (b) Wikipedia, The Free
useful utility to experiment with. Encyclopedia.

Figure 1.12: Some useful resources.

Seehttp://en.wikipedia.org/
¢ The Mathworks website, the creators of MATLAB, contains much useful information:

MATLAB: The language of technical computing, The MathWorks, Inc., 2008.

Seehttp://www.mathworks.com/
¢ And, of course, the one website to rule them all:

Google Search Engine, Google, Inc., 1998 — present.

Seehttp://www.google.co.uk

— End-of-Topic 1: Learning resources —
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1.4.4 Convention for Equation Numbering

In this handout, the following labelling convention is used for numbering equations that are taken from
the various recommended texts. This labelling should be helpful for locating the relevant sections in
the books for further reading. Equations labelled as:

M:v.w.xyz are similar to those with the same equation reference in the core recommended text
book, namely [Manolakis:2001];

T:w.xyz are similar to those in [Therrien:1992] with the corresponding label;

K:w.xyz are similar to those in [Kay:1993] with the corresponding label;

P:v.w.xyz are used in chapters referring to basic [DSP, and are references made to

[Proakis:1996].

All other equation labeling refers to intra-cross-referencing for these handouts. Most equations are
numbered for ease of referencing the equations, should you wish to refer to them in tutorials or email
communications, and so forth.
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Applications of Signal Processing

We live in a society exquisitely dependent
on science and technology, in which hardly
anyone knows anything about science and
technology.

Carl Sagan

This handout begins by motivating the need for this course material by looking at key application
areas and concepts that will be studied in detail during the lectures.

22
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2.1 What is Signal Processing?

&

Newstide  TOpic Summary 2 What is Signal Processing?

Topic Objectives:
* Learn a high-level overview of signal processing.
* Identify signal processing in our daily lives.

* Understand why signal processing has become common-place.

Topic Activities:

| Type | Details | Duration Progress
Watch video 13 : 41 minute video 3xvideo length
Discussion Board | Your views of signal processing 15 minutes
Read Handout Read page [22[to page 8 mins/page

http://media.ed.ac.uk/media/1_t0grik06

Video Summary: This video explains the role of signal processing in powering
modern communications, entertainment, transportation, and healthcare systems, in
addition to numerous industrial and defence applications. It explains why signal
processing techniques have grown substantially over the past few decades in terms of
improvements in signal processing algorithms as well as other key enabling technologies,
such as low-power computing platforms, sensor technologies, and advances in battery
technology.

Signal processing is a branch of electrical engineering which pulls meaning from the
broad sources of data that are all around us.

Signal processing is at the heart of our modern world: signal processing powers
modern communications (including voice recognition), modern entertainment (including
motion sensing-gaming), tomorrow’s transportation (including autonomous vehicles),
and healthcare.

A nice introduction for the general public is presented in a YouTube video from the IEE Signal
Processing Society, as shown in Figure [2.1]
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http://youtu.be/R90cilUoxcJU

Figure 2.1: A video from the IEEE Signal Processing Society explaining What is Signal Processing?

2.1.1 Modern Signal Processing Applications

The last decade has seen a large number of domestic products which are heavily dependent on
sophisticated signal processing algorithms. Some of these products are actually worth getting excited
about in the sense they are extremely clever, and signal processing isn’t restricted to simple removal
of basic background noise (either in images or in audio). Some examples include:

Microsoft Kinect, as shown in Figure [2.3] which includes skeletal tracking, depth estimation,
acoustic noise cancellation, and speech identification and recognition; a demonstration of this
will be given in lectures;

Low-cost low-flying unmanned aerial vehicles (UAVK), which includes sophisticated algorithms
for self-geolocation using on-board cameras and other sensors, and simultaneous localisation
and mapping (SLAM), and on-board sensing of objects and targets; see Figure[2.2]

Video calling such as Skype and Facetime, which requires good audio, image, and video
compression for network communication and online streaming;

Computer-based music analysis, especially for game play, such as Guitar Hero and Rocksmith;

Room acoustic calibration (or correction) techniques in audio-visual setups (for example, most
major audio-visual AV receivers);

Far-field speech enhancement for voice assistance (Amazon Echo, Google Home);

Digital image manipulation and processing using desktop software (Photoshopping images).

These are domestic applications which have grown over recent years, and of course are in addition
to medical imaging, defence, meteorological, and geophysical applications, amongst many others
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http://yvoutu.be/Gj—5RNdUz31I

Figure 2.2: A research [UAV| from Ascending Technologies: http://www.asctec.de/en/
uav-uas—-drone-products/asctec—-firefly

as described below. It is important, however, to appreciate why digital techniques have grown
substantially over the past few decades. Reasons include:

1. the dramatic improvement in computational power available on low-power devices due to the
microelectronics revolution and advances in battery power;

2. the almost universal adoption of digital media, both audio and video, over the past two decades;

3. the vast improvements in sensor modalities including micro-electromechanical systems
(MEMS)) microphones and complementary metal-oxide-semiconductor (CMOS]) cameras, as
well as other MEMS| devices such as accelerometers on mobile devices;

4. advances in understanding and performance of optimisation algorithms, estimation theory, and
signal filters.

Signal processing is the technology that allows the manipulation, efficient storage, and analysis of
signals that are recorded using a variety of sensor technologies, on electronic hardware. It is vital
to appreciate that many of the electronic products, domestic, civilian, or military, are reliant on the
processing of measured signals, from RAdio Detection And Ranging (Radar) (see Figure [2.3)), to
magnetic resonance imaging (MRI), through to cameras and microphones, or temperature sensors. It
is vital to appreciate that most electronic products require some form of signal processing.
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XBOX 360

Figure 2.3: Hands-free human-computer interface (HCI).

S amazon
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Figure 2.4: [UAVk used for package deliveries.
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Figure 2.5: [Radad of the type used for detection of aircraft. It rotates steadily sweeping the airspace
with a narrow beam. |Air Force Museum, by Bukvoed /|[CC BY-SA 3.0.
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KEYPOINT! (Discussion Topic). Signal Processing as a subject has strong overlaps with other
disciplines, such as machine learning in Computer Science, applied statistics in Mathematics and
Econometrics, and remote sensing in the Geosciences. Using the discussion boards, think about and
try and answer the questions:

1. What is signal processing and communications?

2. What applications have signal processing, communications, and machine learning had an
impact on in society?

3. How do sensors play an important role in signal processing?

|
L
&

— End-of-Topic 2: What is Signal Processing? —
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2.1.2 The fields of Signal Processing, Automatic Control, and
Communications

Topic Summary 3 Applications of Signal Processing and Communications

Topic Objectives:
» Examples signal processing applications.
* Privacy aware signal processing.

* Example of a signal processing and communication system.

Topic Activities:

| Type Details | Duration | Progress

Watch video 9 : 25 minute video 3xvideo length
Read Handout | Read page [28|to page 8 mins/page

James R. Hopgood, @
James.Hopgood@ed.ac.uk

33

course, Handout 1: "Module
verview, Aim, and Objectives"

http://media.ed.ac.uk/media/l_cwkcy5dg

Video Summary: This video considers in more detail some applications of signal
processing, including biomedical, surveillance and homeland security, target tracking
and navigation, mobile communications, and speech enhancement and recognition. The
video then considers the application of delivering live music to a remote listener wearing
a wireless headset. The different signal processing and communication systems involved
in this application are discussed. This video provides background information for the
MSc in Signal Processing and Communications.

Although this course has been written with a bias towards electronic engineering, the mathematical
tools and techniques introduced are fundamental in many other areas of Engineering. They are not
limited to the examples given in this course by any stretch of the imagination. More significantly, this
course initially covers continuous-time analogue signals, and then moves onto discrete-time signals.
Discrete-time digital signals are the basis of modern digital and statistical signal processing, and is
used in a plethora of modern Engineering problems. Modern advances in statistical signal processing,
control, and communications include:

Biomedical = From medical imaging to analysis and diagnosis, signal processing is now dominant
in patient monitoring, preventive health care, and tele-medicine. From analysing
electroencephalogram (EEG) scans to [MRIl (or nuclear magnetic resonance imaging
(NMRI)), to classification and analysis of deoxyribonucleic acid (DNA) from
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micro-arrays, signal processing is required to make sense of the analogue signals
to then provide information to clinicians and doctors.

Surveillance and homeland security From fingerprint analysis, voice transcription and
communication monitoring, to the analysis of closed-circuit television (CCTV])
footage, digital signal processing is applied in many areas of homeland security. It is
an especially well-funded area at the moment.

Target tracking and navigation Although radar and sonar principally use analogue signals for
illuminating an object with either an electromagnetic or acoustic wave, discrete-time
signal processing is the primary method for analysing the received data. Typical
features for estimation include detecting targets, estimating the position, orientation,
and velocity of the object, target tracking and target identification.

Of recent interest is tracking groups of targets, such as a convey of vehicles, or a flock
of birds. Attempting to track each individual target is an overly complicated problem,
and by considering the group dynamics of a particular scenario, the multi-target
tracking problem is substantially simplified.

Mobile communications New challenges in mobile communications include next-generation
networks; users demand higher data-rates, which in-turn requires higher bandwidth.
Typically, higher-bandwidth communication systems have shorter ranges. Rather
than have more and more base stations for the mobile network, there is substantial
research into mobile ad-hoc networks.

A mobile ad-hoc network is a self-configuring network of mobile routers connected
by wireless links, forming an arbitrary topology. The routers are free to move
randomly and organize themselves arbitrarily; thus, the network’s wireless topology
may change rapidly and unpredictably. The challenge is to design a system that
can cope with this changing topology, and is a very active area of research in
communication theory.

A testament to the change in mobile communications is the availability of cheap
mobile broadband modems which provide broadband Internet access which is
comparable with fixed-line technologies that were available only a few years ago.

Speech enhancement and recognition Whether for the analysis of a black-box flight recording,
for enhancing speech recognition in noisy and reverberant environments, or for the
improved acoustic clarity of mobile phone conversations, the enhancement of acoustic
signals is still a major aspect of signal processing research.

To consider how signal processing plays a role in modern domestic products, Section [2.1.3| considers
how audio is streamed to your phone.

2.1.3 From Studio to the Ear

As an immediate application of signal and system theory, consider the Engineering processes that
have occurred in delivering down-loadable music to your phone, either high-definition formats such as
free lossless audio codec (FLAQ) files (much preferred and strongly encouraged) or lossy-compressed
files (if you really really must and don’t appreciate sonic quality). A very simplified diagram is shown

in Figure
A sound is generated in a room, which generates a sound pressure wave which propagates throughout

the room until reaching a microphone. This electo-mechanical device converts the sound pressure
wave into an analogue continuous-time signal which appears as a voltage waveform. This signal is
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Figure 2.6: From an instrument being played through to listening on Advanced Audio Distribution
Profile (A2ZDP) Bluetooth headphones via a portable media player.
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sampled by an analogue-to-digital converter , which quantises and samples the signal, thereby
producing a discrete-time digital signal that can be stored in finite-precision memory on a computer
or digital recording device. This digital representation can then be processed on a digital audio
workstation (DAW]) which will compose various audio tracks and add any special-effects. Once
the musical track is complete, this can then be delivered via the Internet to an online music server,
probably in a compressed format (using perceptual compression). This audio track can then be
delivered via a mobile network to a laptop or phone, which can then relay the signal to a set of
Bluetooth headphones using the bluetooth mode. |'| This process involves a number of signal
analysis and processing methods, such as sampling the analogue signal to produce a digital signal; it
also involves systems, such as the effect of the acoustics on the propagation of sound, or the circuitry
within the[ADC}, it also involves various communication systems, including wired baseband systems,
medium-range wireless systems, and short-range personal wireless systems. This course provides an
introduction to the understanding and analysis of these systems.

— End-of-Topic 3: Examples of Signal Processing —
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2.1.4 Case Study: Digital Audio Processing

Topic Summary 4 Topic Title TBC

Topic Objectives:

* Objectives TBC.

Topic Activities:

| Type | Details | Duration | Progress |
Watch video 13 : 41 minute video 3xvideo length
Discussion Board | Your views of signal processing 15 minutes
Read Handout Read page [32]to page 33| 8 mins/page

James R. Hop:
James.Hopgood(@
I

http://media.ed.ac.uk/media/1_t0grik06

Video Summary: To be completed. Video above is a temporary link

From an electronic Engineering perspective, signals and systems is the foundation for the revolution
in digital audio and video processing. Sophisticated digital electronic devices are common-place
in modern everyday life; games consoles, mobile telephones, digital audio recording and playback
devices, digital audio broadcasting (DABI), digital video broadcasting (DVB), digital versitile
disc (DVD) video, and audio and visual streams using Moving Picture Experts Group (MPEGI)
compression schemes, are all very familiar to us.

These devices are the direct result of over six decades of research and innovation in the areas of
information theory and signal processing.

It is common knowledge that, for example, a[MPEGLI 1 Audio Layer 3 (MP3) player encodes an audio
signal as a binary sequence of ones and zeros. However, such a statement isn’t saying very much
since, for example, word processing documents are also encoded as ones and zeros. So what makes
an audio file different to an arbitrary electronic document?

To understand thoroughly how [IMP3| works, more pertinent questions are:

* How is a continuous-time analogue signal turned into a discrete sequence of binary numbers,
and what are the properties of this binary sequence?

ISee http://en.wikipedia.org/wiki/Bluetooth_profile#Advanced_Audio_
Distribution_Profile_.28A2DP.29
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* How many ones and zeros are needed to represent the audio signal? If they are stored as
bytes, how many bytes are needed to represent each individual audio sample? How many audio
samples must be recorded to faithfully reproduce the real-world analogue signal?

* The standard uses a compression technique based on the characteristics of the
human-hearing mechanism; it incorporates a method known as perceptual masking which
removes (or masks) signal components that are not perceived by the human brain. What
tools are used to characterise the properties of human-hearing, and how are these acoustical
properties expressed in terms of an algorithm that runs on a digital signal processing (DSP)?

* How is an analogue signal recreated from a sequence of ones and zeros, and how can the
deficiencies of our electronic systems be overcome by clever schemes with how the data is
encoded in the first place?

The issue of using signals and systems theory to overcome the deficiencies of electronics is the
basis of two recent data-formats that are available for high-quality audio reproduction. The compact
disc (CD) player dominated the digital audio market from the mid-1980’s until the early 2000’s.
Although other web-driven formats now dominate, such as [MP3| and other proprietary formats, in
the 1990’s, the music industry initially pushed two new high-end audio formats: and [DVD-AlL
These formats store more data than the traditional despite the fact that already store just
enough data to accurately encode the audio stream. By storing much more information than needed,
and can use several tricks which mean that cheaper and less accurate electronics are
needed in the playback device. How exactly do these tricks work? This will be answered later in the
course.

The physical-media based and are essentially a failed format, primarily because of
their high-prices, the lack of interest in multi-channel audio formats at the time, and the fact that
there is sufficient download bandwidth to avoid physical-media for music. Nevertheless, stereo HD
audio files such as 24/96 formats are increasingly becoming available in a download format such as
and ALAC, amongst others. The insight gained from the and are the same
as for downloadable HD audio formats, and Sony is in now pushing the hi-res audio format with
considerable drive: http://www.sony.co.uk/electronics/hi—-res—audio.

OEA0)
— End-of-Topic 4: case studies of signal processing — Q%
O
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(a) The Blu-Ray Disc Logo (b) The digital versitile disc-audio
(DVYD-A)) logo.
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(e) Sony and Hi-Res Audio.

Figure 2.7: High-quality audio formats. Note that and [DVD-Al are essentially a failed format,
but HD audio files such as 24/96 formats are increasingly becoming available in a download format
such as
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2.1.5 Why Study Signals and Communications?

Topic Summary S Topic Title TBC

Topic Objectives:

* Objectives TBC.

Topic Activities:

| Type | Details | Duration Progress
Watch video 13 : 41 minute video 3xvideo length
Discussion Board | Your views of signal processing 15 minutes
Read Handout Read page [35[to page 8 mins/page

mation Theory,
ignals (PETARS)

are all arouna us.

http://media.ed.ac.uk/media/1_t0grik06

Video Summary: To be completed. Video above is a temporary link

The need for formal analysis of signals and systems stems from a number of viewpoints which will
become apparent as the course progresses. In the meantime, it perhaps is simplest to begin with, as an
example, the circuit shown in Figure[2.8] You might have analysed this linear system in other courses
in your degree; the most likely analysis you will have tried is evaluating the output of the circuit when
a sinusoidal signal is applied to the input. We will cover this again in this course, but could you
calculate the output of the system if a microphone were connected to the input of the circuit? In such
a scenario, the microphone converts a sound pressure wave into an electrical signal as the result of an
instrument being played or some arbitrary spoken speech.

KEYPOINT! (Analysing system output to an arbitrary input). Evaluating the output of a linear
system to an arbitrary signal is made possible by using signal analysis techniques such as the Fourier
series and Fourier transforms.

2.2 Fundamental Signal Processing Problems

Consider three fundamental signal processing problems:

1. Extracting desired signals from other signals.
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Figure 2.8: Second-order active high-pass filter.

Figure 2.9: Person undergoing an magnetoencephalography (MEG). National Institute of Mental
Health.

2. Correcting distortions in measured signals.

3. Extracting estimates of indirect quantities from observed signals.

We shall briefly consider each of these fundamental applications in turn, and then consider what tools
we need to solve these problems.

T

2.2.1 Extracting Signals from Other Signals N

The generic problem of extracting signals from a mixture of other signals covers a wide range of New slide
applications, from simple noise reduction or removal, through to signal separation problems. As an
example application, consider functional neuroimaging technique for mapping brain activity, called

seen in Figure 2.9 This technique records magnetic fields produced by electrical currents
naturally occurring in the brain using very sensitive magnetometers. These signals are extremely

small; moreover, due to the number of electrodes present, a number of signals are measured, and

there is a variety of interferences from other electromagnetic signals in the human body.

In the examples shown in Figure[2.10a] there are 148 signals of length 1695 samples over 10 seconds,
or a sampling frequency of 169.55 Hz. In order to extract the brain activity, it is necessary to remove
interference resulting from the heart. This interference overlaps with the desired frequencies in the
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brain activity, and therefore cannot be removed with a basic filter. This requires a technique called
blind source separation (BSS)), which requires models for the underlying interfering signals, as well
as a model for the system which mixes the signals. The extracted signals are shown in Figure 2.10b]
which show the signal resulting from the heart (can you calculate the patient’s heart-rate?).

2.2.2 Correcting Distortions in Measured Signals

While visible-spectrum camera images are usually very high quality, remote imaging or sensing
technologies are significantly less so. Techniques such as synthetic aperture RADAR (SAR]) produce
noisy images with much distortion. Signal processing techniques can be used to significantly improve
the quality of the image, as shown in Figure

2.2.3 Indirect Parameter Estimation

A further application of signal processing is the estimation of a quantity indirectly from measured
signals. Figure [2.12] shows a multi-static radar system that uses multiple transmit and receive
antenna’s to locate an aircraft. The underlying signals are pulse chirps transmitted and received,
but the quantity of interest is the actual position of the aircraft.

— End-of-Topic 5: fundamental signal processing problems —
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(b) Extracted heart interference. Data kindly supplied by Dr Javier Escudero (School of Engineering,
University of Edinburgh).

Figure 2.10: Signal processing of signals.
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Figure 2.11: SAR and clearer despeckled views of Titan — Ligeia Mare. NASA/JPL-Caltech/ASIL
Presented here are side-by-side comparisons of a traditional Cassini[SAR| view and one made using a
new technique for handling electronic noise that results in clearer views of Titan’s surface.

Figure 2.12: A multistatic RADAR Multistatic system, by Srdoughty /|CC BY-SA 3.0.


http://photojournal.jpl.nasa.gov/jpeg/PIA19052.jpg
https://commons.wikimedia.org/wiki/File:Multistatic_system.jpg#/media/File:Multistatic_system.jpg
http://creativecommons.org/licenses/by-sa/3.0
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Video Summary: To be completed. Video above is a temporary link

In each application scenario considered in this section, it is necessary to:

* Understand the nature and structure of the signal in the real world.

* Understand the nature of how the signal was acquired by our data processing system.

* Understand how the signals are effected by propagation through systems.

* Design systems that can modify or change the signals to our needs.

An example of the different signal processing chains is shown in Figure 2.13] and will be discussed

further in lectures (and expanded on here in due course).

— End-of-Topic 6: The Signal Processing Chain —

[Elale]
[EEEH
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Sensing domain
Radar, Sonar, acoustic,
Electro-optic
— -, -
Acquisition
Sampling, quantization,
waveform design

Signal Processing
Detection, localization,
classification, tracking

High level Inference
Context, behaviour, anomaly
detection

Transmitters

Figure 2.13: The signal processing chain.
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Video Summary: To be completed. Video above is a temporary link

Common usage and understanding of the word signal is actually correct from an Engineering
perspective within some rather broad definitions: a signal is thought of as something that carries
information. Usually, that something is a pattern of variations of a physical quantity that can be
manipulated, stored, or transmitted by a physical process. Examples include speech signals, general
audio signals, video or image signals, biomedical signals, radar signals, and seismic signals, to name
but a few.

So formally, a signal is defined as an information-bearing representation of a real physical process. It
1s important to recognise that signals can take many equivalent forms or representations. For example,
a speech signal is produced as an acoustic signal, but it can be converted to an electrical signal by a
microphone, or a pattern of magnetization on a magnetic tape, or even as a string of numbers as in
digital audio recording.

The term system is a little more ambiguous, and can be subject to interpretation. The word system can
correctly be understood as a process, but often the word system is used to refer to a large organisation
that administers or implements some process.

In Engineering terminology, a system is something that can manipulate, change, record, or transmit
signals. In general, systems operate on signals to produce new signals or new signal representations.
For example, an audio stores or represents a music signal as a sequence of numbers. A [CDlplayer
is a system for converting the numerical representation of the signal stored on the disk to an acoustic
signal that can be heard.
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Figure 2.14: Plot of part of a speech signal. This signal can be represented by the function s(t),
where ¢ is the independent variable representing time. The shaded region is shown in more detail in

Figure[2.15]

2.3.1 Mathematical Representation of Signals

A signal is defined as an information-bearing representation of a real process. It is a pattern of
variations, commonly referred to as a waveform, that encodes, represents, and carries information.

Many signals are naturally thought of as a pattern of variations with time. For example, a speech
signal arises as a pattern of changing air pressure in the vocal tract, creating a sound wave, which is
then converted into electrical energy using a microphone. This electrical signal can then be plotted as
a time-waveform, and an example is shown in Figure 2.14] The vertical axis denotes air pressure
or microphone voltage, and the horizontal axis represents time. This particular plot shows four
contiguous segments of the speech waveform. The second plot is a continuation of the first, and
so on, and each plot is vertically offset with the starting time of each segment shown on the left
vertical axis.

2.3.1.1 Continuous-time and discrete-time signals

The signal shown in Figure [2.14]is an example of a one-dimensional continuous-time signal. Such
signals can be represented mathematically as a function of a single independent variable, ¢, which
represents time and can take on any real-valued number. Hence, each segment of the speech waveform
can be associated with a function s(¢). In some cases, the function s(¢) might be a simple function,
such as a sinusoid, but for real signals, it will be a complicated function.

Generally, most real world signals are continuous in time and analogue: this means they exist for
all time-instances, and can assume any value, within a predefined range, at these time instances.
Although most signals originate as continuous-time signals, digital processors and devices can only
deal with discrete-time signals. A discrete-time representation of a signal can be obtained from a
continuous-time signal by a process known as sampling. There is an elegant theoretical foundation
to the process of sampling, although it suffices to say that the result of sampling a continuous-time
signal at isolated, equally spaced points in time is a sequence of numbers that can be represented as a
function of an index variable that can take on only discrete integer values.

The sampling points are spaced by the sampling period, denoted by 7. Hence, the continuous-time
signal, s(t), is sampled at times t = nT} resulting in the discrete-time waveform denoted by:

s[n] = s(nTs), ne{0,1,2, ...} (2.1)
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Samples of speech waveformsn| = s(n1 )
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Figure 2.15: Example of a discrete-time signal. This is a sampled version of the shaded region shown

in Figure[2.14

where 7 is the index variable. A discrete-time signal is sometimes referred to as a discrete-time
sequence, since the waveform s[n| is a sequence of numbers. Note, the convention that parenthesis
() are used to enclose the independent variable of a continuous-time function, and square brackets | |
enclose the index variable of a discrete-time signal. Unfortunately, this notation is not always adhered
too (and is not yet consistent in these notes either).

Figure [2.15] shows an example of a short segment of the speech waveform from Figure 2.14] with
a sampling period of T = m seconds, or a sampling frequency of f; = % = 44.1kHz. Itis
not possible to evaluate the continuous-time function s(¢) for every value of ¢, only at a finite-set of
points, which will take a finite time to evaluate. Intuitively, however, it is known that the closer the
spacing of the sampled points, the more the sequence retains the shape of the original continuous-time
signal. The question arises, then, regarding what is the largest sampling period that can be used to

retain all or most of the information about the original signal.

[E)

2.3.1.2 Other types of signals -

While many signals can be considered as evolving patterns in time, many other signals are not Vev slide
time-varying patterns at all. For example, an image formed by focusing light through a lens onto

an imaging array is a spatial pattern. Thus, an image is represented mathematically as a function of

two independent spatial variables, x and y; thus, a picture might be denoted as p(z, y). An example of

a gray-scale image is shown in Figure ; thus, the value p(xg, yo) represents the particular shade

of gray at position (zo, yo) in the image.

Although images such as that shown in Figure [2.16] represents a quantity from a physical
two-dimensional (2-D) spatial continuum, digital images are usually discrete-variable 2-D] signals
obtained by sampling a continuous-variable 2-Dlsignal. Such a[2-Dldiscrete-variable signal would be
represented by al2-Dlsequence or array of numbers, and is denoted by:

plm, n] = p(mA,, nA,), mne{0,1,... N—1} (2.2)

where m and n take on integer values, and A, and A, are the horizontal and vertical sampling spacing
or periods, respectively.

Two-dimensional functions are appropriate mathematical representations of still images that do not
change with time; on the other hand, a sequence of images that creates a video requires a third
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Figure 2.16: Example of a signal that can be represented by a function of two spatial variables.

independent variable for time. Thus, a video sequence is represented by the three-dimensional (3-D))
function v(x, y, t).

The purpose of this section is to introduce the idea that signals can:

* be represented by mathematical functions in one or more dimensions;

¢ be functions of continuous or discrete variables.

The connection between functions and signals is key to signal processing and, at this point, functions
serve as abstract symbols for signals. This is an important, but very simple, concept for using
mathematics to describe signals and systems in a systematic way.

2.3.2 Mathematical Representation of Systems

A system manipulates, changes, records, or transmits signals. To be more specific, a one-dimensional
continuous-time system takes an input signal z(¢) and produces a corresponding output signal y(t).
This can be represented mathematically by the expression

y(t) =T {a(t)} (2.3)

which means that the input signal, x(t), be it a waveform or an image, is operated on by the system,
which is symbolised by the operator 7 to produce the output y(t). So, for example, consider a signal
that is the square of the input signal; this is represented by the equation

y(t) = [z(t)]? (2.4)

Figure and Figure [2.19show how signals can be generated and observed in a real application. In
Figure 2.17] the sound source and the information received by the observer, or microphone, are the
signals; the room acoustics represent the system. Figure 2.18] shows the input signal to the system,
a characterisation of the system, and the resulting output signal. In Figure 2.19] the blurred images
are the result of the original image being passed through a linear system; the linear system represents
the physical process of a camera, for example, being out-of-focus, or in motion relative to the object
of interest.

The subject of signals and systems is the basis of a branch of Engineering known as signal processing;
this area is formally defined as follows:
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Figure 2.17: Observed signals in room acoustics.
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Figure 2.18: The result of passing a signal through a system.
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(@) An original unblurred (b) An image distorted by an (c) Image distorted by motion
noiseless image. out-of-focus blur. blur.

Figure 2.19: A blind image deconvolution problem; restoration of natural photographic images.

x10" Correlated noise signal

Figure 2.20: Amplitude-verses-time plot.

Signal processing is concerned with the modification or manipulation of a signal, defined
as an information-bearing representation of a real process, that has been passed through
a system, to the fulfillment of human needs and aspirations.

-..,. | 2.3.3 Deterministic Signals

Newslide  The deterministic signal model assumes that signals are explicitly known for all time from time ¢ =
—oo tot = +oo, where t € R, the set of all real numbers. There is absolutely no uncertainty
whatsoever regarding their past, present, or future signal values. The simplest description of such
signals is an amplitude-verses-time plot, such as that shown in Figure [2.20} this time history helps in
the identification of specific patterns, which can subsequently be used to extract information from the
signal. However, quite often, information present in a signal becomes more evident by transformation
of the signal into another domain, and one of the most nature examples is the frequency domain.

— End-of-Topic 7: What are Signals and Systems? —
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2.4 Motivation for Signal Modelling
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Many signal processing systems are designed to extract information for some purpose. They share
the common problem of needing to estimate the values of a group of parameters. Such algorithms
involve signal modelling and spectral estimation. Some typical applications and the desired parameter

include:

Radar

Sonar

Radar is primarily used in determining the position of an aircraft or other moving
object; for example, in airport surveillance. It is desirable to estimate the range of the
aircraft, as determined by the time for an electromagnetic pulse to be reflected by the
aircraft.

Sonar is also interested in the position of a target, such as a submarine. However,
whereas radar is, mostly, an active device in the sense that it transmits an
electromagnetic pulse to illuminate the target, sonar listens for noise radiated by the
target. This radiated noise includes sounds generated by machinery, or the propeller
action. Then, by using a sensor array where the relative positions of each sensor are
known, the time delay between the arrival of the pulse at each sensor can be measured
and this can be used to determine the bearing of the target.

Image analysis It might be desirable to estimate the position and orientation of an object from a

camera image. This would be useful, for example, in guiding a robot to pick up an
object. Alternatively, it might be desirable to remove various forms of blur from an
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Figure 2.21: The speech synthesis model.

image, as shown in Figure this blur might be characterised by a parametric
function.

Biomedicine A parameter of interest might be the heart rate of a fetus.

Communications Estimate the carrier frequency of a signal such that the signal can be demodulated
to baseband.

Control Estimate the position of a boat such that corrective navigational action can be taken.

Seismology  Estimate the underground distance of an oil deposit based on sound reflections due to
different densities of oil and rock layers.

And the list can go on, with a multitude of applications stemming from the analysis of data from
physical experiments through to economic analysis. To gain some motivation for looking at various
aspects of statistical signal processing, some specific applications will be considered that require the
tools this module will introduce. These applications include:

» Speech Modelling and Recognition

* Single Channel Blind System Identification

Blind Signal Separation
* Data Compression

* Enhancement of Signals in Noise

2.4.1 Speech Modelling and Recognition

Statistical parametric modelling can be used to characterise the speech production system, and
therefore can be applied in the analysis and synthesis of speech. In the analysis of speech, the
waveform is sampled at a rate of about 8 to 20 kHz, and broken up into short segments whose duration
is typically 10 to 20 ms; this results in consecutive segments containing about 80 to 400 time samples.

Most speech sounds, generally, are classified as either voiced or unvoiced speech:

* voiced speech is characteristic of vowels;
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Source Signal > Channel » Observed Signal
e.g. Clean Speech e.g. Room Acoustics e.g. Reverberant Speech

Figure 2.22: Solutions to the blind deconvolution problem requires advanced statistical signal
processing.

 unvoiced speech is characteristic of consonants at the beginning of syllables, fricatives (/f/, /s/
sounds), and a combination of these.

Thinking of the types of sound fields created by vowels, it is apparent that voiced speech has a
harmonic quality. In fact, it is sometimes known as frequency-modulated speech. A commonly used
model for voiced speech exploits this harmonic characteristic, and uses the so-called sum-of-sinusoids
decomposition. Unvoiced speech, on the other hand, does not exhibit such a harmonic structure,
although it does possesses a form that can be modelled using the statistical models introduced in later
lectures.

For both of these types of speech, the production is modelled by driving or exciting a linear system,
representing the vocal tract, with an excitation having a flat (or constant) spectrum.

The vocal tract, in turn, is modelled by using a pole-zero system, with the poles modelling the vocal
tract resonances and the zeros serving the purpose of dampening the spectral response between pole
frequencies. In the case of voiced speech, the input to the vocal tract model is a quasi-periodic
pulse waveform, whereas for unvoiced speech, the source is modelled as random noise. Thus, the
complete set of parameters for this model include an indicator variable as to whether the speech is
voiced or unvoiced, the pitch period for voiced sounds, the gain or variance parameter for unvoiced
sounds, and the coefficients for the all-pole filter modelling the vocal tract filter. The model is shown
in Figure This model is widely used for low-bit-rate (less than 2.4 kbits/s) speech coding,
synthetic speech generation, and extraction of features for speaker and speech recognition.

[E)

2.4.2 Single Channel Blind System Identification -

Consider the following abstract problem that is shown in Figure 2.22} New slide

* The output only of a system is observed, and it is desirable to estimate the source signal that
is applied to the input of the system without knowledge of the system itself. In other-words,
the output observation, x = {z[n], n € Z}|is modelled as a function of the unknown source
signal, s = {s[n], n € Z}, with an unknown, possibly nonlinear, distortion denoted by F; more
formally, x = F(s).

* When the function F is linear time-invariant (LCTI), and defined by the impulse response h[n],
then:
x[n] = hln] = s[n] = > hn — k] s[n] (2.5)

keZ

* Problem: Given only {z[n]}, estimate either the channel function, F, which in the [LTI case
will be represented by the impulse response h[n|, or a scaled shifted version of the source
signal, {s[n|}; i.e. §[n] = a s[n — ] for some .

The notation n € 7Z means that n belongs to, or is an element of, the set of integers:
{—0c0,...,—2,-1,0,1,2,...,00}. In otherwords, it may take on any integer value.

June 28, 2021 — 08 : 40




Ie

New slide

52 Signal Processing

5@ TH@ SR W, (z YT Ye .,
Source > H,(2) Observed » W, (z Estimated
Signals Coqvoluted S_ource
o H,,(2) Signals o W,(z Signals
0 [h ) ) W,z "t @ _,
Mixing System, H(z) Unmixing System, W(z)
A
Calculate
Cross
Correlation

Figure 2.23: Standard signal separation using the independent component assumption.

The distortion operator, F, could represent the:

* acoustical properties of a room (with applications in hands free telephones, hearing aids,
archive restoration, and automatic speech recognition);

* effect of multi-path radio propagation (with applications in communication channels);
* non-impulsive excitation in seismic applications (with applications in seismology);

e blurring functions in image processing; in this case, the signals are 2-Dl

This problem can only be solved by parametrically modelling the source signal and channel, and
using parameter estimation techniques to determine the appropriate parameter values.

2.4.3 Blind Signal Separation

An extremely broad and fundamental problem in signal processing is and an important special
case is the separation of a mixture of audio signals in an acoustic environment. Typical applications
include the separation of overlapping speech signals, the separation of musical instruments,
enhancement of speech recordings in the presence of background sounds, or any variation of the
three. In general, a number of sounds at discrete locations within a room are filtered due to room
acoustics and then mixed at the observation points; for example, a microphone will pick up a number
of reverberant sounds simultaneously (see Figure [2.17).

A very powerful paradigm within which signal separation can be achieved is the assumption that the
source signals are statistically independent of one another; this is known as independent component
analysis (ICA). Figure[2.23|demonstrates a separation algorithm based on[I[CA} an “unmixing” system
is chosen that has minimal statistical correlation (a sufficient but not necessary condition for statistical
independence, as will be seen later in this course) of the hypothesised separated signals, thereby
matching the statistical characteristics of the original signals. This algorithm then uses standard
convex optimisation algorithms to solve the minimisation problem.

It is clear, then, that this approach to [CAl requires good estimates of the correlation functions from a
limited amount of data.
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2.4.4 Data Compression

Three basis principles of data compression for communication systems include:

Mathematically Lossless Compression This principle looks for mathematical coding schemes that
reduce the bits required to represent a signal. For example, long runs of 0’s might be
replaced by a shorter representation. This method of compression is used in computer
file compression systems.

Lossy compression by removing redundant information This approach is often performed in a
transform domain, such as the frequency domain. There might be many Fourier
coefficients that are small, and do not significantly contribute to the representation
of the signal. If these small coefficients are not transmitted, then compression is
achieved.

Lossless compression by linear prediction If it is possible to predict the current data sample from
previous data samples, then it would not be necessary to transmit the current data
symbol. Typically, however, the prediction is not completely accurate. However, by
only transmitting the difference between the prediction and the actual value, which is
typically a lot smaller than the actual value, then it turns out a fewer number of bits
need to be transmitted, and thus compression achieved. The trick is to design a good
predictor, and this is where statistical signal processing comes in handy.

— End-of-Topic 8: Examples of Signal Processing Applications —
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Figure 2.24: High-quality audio formats.

2.4.5 Enhancement of Signals in Noise

High quality digital audio has in recent years dramatically raised expectations about sound quality.
For example, high quality media such as:

* compact disc
* digital audio tape

* digital versitile disc-audio and super-audio

Audio degradation is any undesirable modification to an audio signal occurring as the result of, or
subsequent to, the recording process. Disturbances or distortions such as

1. background noise,
2. echoes and reverberation,
3. and media noise.
must be reduced to adequately low levels. Ideal restoration reconstructs the original sound exactly as

would be received by transducers (microphone etc.,) in the absence of noise and acoustic distortion.
Interest in historical material led to restoration of degraded sources including

1. wax cylinders recordings,
2. disc recordings (78rpm, etc.),
3. and magnetic tape recordings.
Restoration is also required in contemporary digital recordings if distortion too intrusive. Note that

noise present in recording environment, such as audience noise at a musical performance, considered
part of performance. Statistical signal processing is required in such applications.
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Figure 2.25: Passive source localisation and [BSSL

2.5 Passive and Active Target Localisation

This section presents a standard application in signal processing, namely passive target localisation.
Active target localisation will be considered during the day as well, but this section will focus on
the passive scenario. The aim of this section is to present, briefly, solutions to this problem, without
restricting the notation used. If the mathematics is somewhat alien, then great, as the rest of this
tutorial will explain the terms and concepts used here. An expanded version of this section, with a
focus on acoustic source localisation, is included at the end of this handout.

A number of signal processing problems rely on knowledge of the desired source position, for
example:

1. Tracking methods and target intent inference.

2. Estimating mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in speech enhancement).
4. Camera steering for audio-visual (including Robot Audition).

5. Speech diarisation.

* Passive localisation is particularly challenging.
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Figure 2.26: Ideal free-field model.

2.6 Passive Target Localisation Methodology

I8

« In general, most passive target localisation (PTL) techniques rely on the fact that an impinging V¢ s/id¢
wavefront reaches one acoustic sensor before it reaches another (spatio-temporal diversity).

* Many [PTL] algorithms are designed assuming there is no multipath or reverberation present, the
free-field assumption.

&

-~ | 2.6.1 Source Localization Strategies

Newslide By isting source localisation methods can loosely be divided into three generic strategies:

1. those based on maximising the steered response power of a beamformer:

* location estimate derived directly from a filtered, weighted, and summed version of the
signal data received at the sensors;

2. techniques adopting high-resolution spectral estimation concepts:

* any localisation scheme relying upon an application of the signal correlation matrix;

3. approaches employing time-difference of arrival information:

e source locations calculated from a set of estimates measured across various
combinations of sensors.



e

New slide

2.6. Passive Target Localisation Methodology 57

; } Targets Sensors
@ (sound sources) C)I (microphones)

(1] @ m, x,[n] @ m,

Figure 2.27: Geometry assuming a free-field model.

2.6.2 Geometric Layout

Suppose there is a:

e sensor array consisting of N nodes located at positions m; € R?, fori € {0,..., N — 1}, and

M talkers (or targets) at positions x; € R3, for k € {0,..., M — 1}.

The between the sensor node at position m; and m; due to a source at x;, can be expressed as:

X — M| — |Xp — My
T (my, mj,xwéTij(xk):’ i 'C’ e = m, (2.6)

where c is the speed of the impinging wavefront.

re

2.6.3 Ideal Free-field Model |

* In an anechoic free-field environment, as depicted in Figure [2.26] the signal from source k, Ve s/id¢
denoted si(t), propagates to the i-th sensor at time ¢ as:

Tip(t) = aur sk(t — Tig) + bix(¢) (2.7)
where b;;,(t) denotes additive noise, and «;y, is the attenuation.
* Note that, in the frequency domain, this expression becomes:
X (W) = i, S (W) €777k + By (w) (2.8)

On the assumption of geometrical wave propagation, which assumes high frequencies, a point
source of single frequency w, at position x;, in free space, emits a pressure wave Px, m,),+(w)
at time ¢ and at position m;:

exp [jw(r/c = 1)]

P(xk,mi)(wy t>:PO ’

2.9

where ¢ € R is time, and 7 = |x; — m;|.
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¢ The additive noise source is assumed to be uncorrelated with the source and noise sources at
other sensors.

* The TDOA|between the i-th and j-th sensor is given by:

Tijk = Tik — Tj = 1 (my, m;, Xi) (2.10)

Ie

- 2.7 Indirect TDOAlbased Methods

Newslide  Thjg is typically a two-step procedure in which:

* Typically, are extracted using the generalised cross correlation (GCC) function, or an
adaptive eigenvalue decomposition algorithm.

* A hypothesised spatial position of the target can be used to predict the expected (or
corresponding range) at the sensor.

* The error between the measured and hypothesised is then minimised.

 Accurate and robust estimation is the key to the effectiveness of this class of [PTL]
methods.

* An alternative way of viewing these solutions is to consider what spatial positions of the target
could lead to the estimated

ie

-~ | 2.7.1 Hyperbolic Least Squares Error Function

New slide

KEYPOINT! (Underlying Concept). Suppose that for each pair of sensors, i and j, a
corresponding to source k is somehow estimated, and this is denoted by 7;;,. One approach to ASL is
to minimise the total error between the measured and the predicted by the geometry
given an assumed target position.

e Ifa is estimated between two sensor nodes ¢ and j, then the error between this and
modelled TDOAlis given by:

€ij(Xk) = Tijk — 1 (m;, my, Xy 2.11)
where the error is considered as a function of the source position x;,.

* The total error as a function of target position

N N N N
Txi) =Y ) ei(xi)=>_ > (riw — T (my, my, xi))° (2.12)
i=1 j#i=1 i=1 j#i=1
where
T(mlv m]axk)éj—;j< k): ’Xk_ml|_’Xk_m]‘ (213)
C

* Unfortunately, since 7" (m;, m;, X;,) is a nonlinear function of x;, the minimum least-squares
estimate (LSE]) does not possess a closed-form solution.
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ie

- 2.7.2 estimation methods

Newslide  Tywo key methods for [TDOA] estimation are using the [GCQ function and the adaptive eigenvalue
decomposition (AED) algorithm.

IGC(lalgorithm most popular approach assuming an ideal free-field movel. It has the advantages
that
» computationally efficient, and hence short decision delays;

* perform fairly well in moderately noisy and reverberant environments.
However, IGCClbased methods

e fail when multipath is high;
* focus of current research is on combating the effect of multipath.
Algorithm Approaches the estimation approach from a different point of view from the
traditional (GCCl method.
* adopts a multipath rather than free-field model;
 computationally more expensive than [GCC}

¢ can fail when there are common-zeros in the channel.

Note that both methods assume that the signals received at the sensors arise as the result of a single
source, and that if there are multiple sources, the signals will first need to be separated into different
contributions of the individual sources.

[E)

2.7.2.1 [GCCITDOA estimation -

The [GCC algorithm proposed by Knapp and Carter is the most widely used approach to [TDOA]*" s/ide
estimation.

* The[I'DOAlestimate between two microphones ¢ and j is obtained as the time lag that maximises
the cross-correlation between the filtered versions of the microphone outputs:

T;; = arg MAX T, 1] (2.14)

where the signal received at microphone i is given by x;[n], and where x; should not be confused
with the location of the source k, which is denoted by x; = |2, yx, z]T.

* The cross-correlation function is given by

Taja; [{] = F (\Ija;le (eijS)) (15)
= F(® () P, (979)) (210

where the cross-power spectral density is given by
Ppw, (€97) = E [ Xy (7)) X (e/47)] (2.17)

The cross-power spectral density can be estimated in a variety of means. The choice

of the filtering term or frequency domain weighting function, ¢ (ejWTS), leads to a variety of
different|GCC methods for estimation.
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¢ For the free-field model, it can be shown that:
Z‘Pxixj (W) = —jwT (my, mj;, x;) (2.18)

In otherwords, all the information is conveyed in the phrase rather than the amplitude
of the This therefore suggests that the weighting function can be chosen to remove the
amplitude information.

1€

““‘ 2.7.2.2 |GCC Processors

NewslideThe most common choices for the [GCCl weighting term are listed in the table below. In particular, the
phase transform (PHAT)) is considered in detail.

| Processor Name | Frequency Function |
Cross Correlation 1
PHAT] 1
| Pryy (€7975)
Roth Impulse Response ! or !
u . .
Pryay (e7975) 7 Pyyyy (€397%)
1
. .
V Pryay (€77) Py, (€7472)
Py, (7
Eckart = ( )

Pryny (€747%) Py, (eijs)

"Vxlwz (eijS> i

|P1:1x2 <ejWTS) (1 - |%c1$z (ejWTS)

Hannon-Thomson or MLJ

)

where 7., (€77%) is the normalised or coherence function is given by

lexQ (eijs )

JTs) = 2.19
Y122 (6 ) \/lexl (eijs) ngxg (eijs) ( )
The PHATHGC(] approach can be written as:

Taya, 0] = / U B () Py, (€947) 34T (2.20)

%
= [T L b, () [@4Pan () Gt g, (2.21)

—f Parae ()] 1

— /Ts ej(&uT—l—LlexQ (ej“’TS)) dw (222)

TLS
=06({Ts + £LPyya, (¢247)) (2.23)
=0({T, — T (m;, m;, x;)) (2.24)

« In the absence of reverberation, the[GCCHPHAT -PHAT) algorithm gives an impulse at a
lag given by the divided by the sampling period.
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Figure 2.28: Normal cross-correlation and [GCC-PHAT] functions for a frame of speech.

2.8 Direct Localisation Methods

* Direct localisation methods have the advantage that the relationship between the measurement
and the state is linear.

* However, extracting the position measurement requires a multi-dimensional search over the
state space and is usually computationally expensive.

2.8.1 Steered Response Power Function

)

KEYPOINT! (Underlying Concept). The steered beamformer (SBF) or function is a measure
of correlation across all pairs of microphone signals for a set of relative delays that arise from a
hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a spatial position x; such that
, using the notation in Equation [13.8] is given by:

5(&):/

Q

7A'pk = |§(—mp
2

dw (2.25)

N
Z Wp (eijs) Xp (eijs) ejW%pk

p=1

Expanding, rearranging the order of integration and summation, taking expectations of both sides and
setting ®,,, (e/475) = W, (e/T+) W (e/T7) gives

N N

E[SE)] =D ruw [fpa] (2.26)
p=1 ¢g=1
\ | - |
=20 o { e (2.27)
p=1 q=1 ¢

In other words, the[SRPlis the sum of all possible pairwise[GCC functions evaluated at the time delays
hypothesised by the target position.
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Figure 2.29: response from a frame of speech signal. The integration frequency range is 300 to
3500 Hz (see Equation [13.84). The true source position is at [2.0,2.5)m. The grid density is set to
40 mm.

Figure 2.30: An example video showing the changing as the source location moves.
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[E)

2.8.2 Conclusions -

To fully appreciate the algorithms in[PTL] we need: New slide

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.
4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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Part 11

Probability, Random Variables, and
Estimation Theory

65



Review of Basic Probability Theory

All knowledge degenerates into probability.

David Hume

This handout motivates the need for and gives a review of the fundamentals of probability theory. The
idea is to motivate the definitions of cumulative distribution functions (cdfls) and probability density
functions @]s) in the next handout, which form the foundation of statistical estimation theory and
signal processing.

66
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New slide
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3.1 Introduction

Topic Summary 9 Motivating Empirical Probability

Topic Objectives:
* Introduce uncertainty through a simple example.
* Discuss general applications of probability.

* Use law-of-large numbers to define empirical probability.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 10.54 mins video 3% video length
Read Handout Read page |@| to page |@| 8 mins/page
Discussion Board | Discuss Taxi-Cab Problem 20 mins

| Introduction

& The theory of probability deals with averages of mass
occurring seq it or ;

® e.g. signal/anomaly detection, parameter estimation, ...

® Starting from probability of individual events, can develop a
pr ilistic k ing signals.

g wave

ST,

http://media.ed.ac.uk/media/0_3jxfljjc

Video Summary: This video motivates probability by considering the simplest of
problems in the presence of uncertainty. It considers the tools we need to study problems,
and the notion of probability. This begins by discussing how the law-of-large numbers
leads to the definition of empirical probability through counting successes in a series of
Bernoulli trials. The definition of empirical probability, or relative frequency, which will
then lead onto classical probability in the next lecture.

To motivate the need for probability theory, consider the simplest of problems in the presence of
uncertainty. What tools are needed to study this problem?

* The notion of probability and random variables;
* The notion of probability density functions (pdfk);
* The notion of independence of observations;

* The notion of estimation theory and uncertainty quantification, some of which are highlighted
in Figure [3.1] which shows a method called Kernel Density Estimation.

These will be studies in turn throughout this course; we will start off looking at the basics of
probability.
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Histogram of Data with KDE (red) and Population Density

Density
00 05 10 15 20

T T T T 1 %
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Figure 3.1: Kernel density estimation for modelling observation data.

1 2 -
o./ o./ .

N

Figure 3.2: Is the infamous Monty-Hall problem counter-intuitive or not?

Students are exposed to probability at school from a relatively young age. It is not the intention of
this course to go over basic probability again. Instead, the purpose is to:

* enhance a fundamental understanding of probability that enable us develop more complex
concepts;

* identify limitations of classical definitions;

e reaffirm that human intuition with regards to probability is often wrong; and that careful and
systematic analysis is often needed.

KEYPOINT! (Probability). * The theory of probability deals with averages of mass phenomena
occurring sequentially or simultaneously;

— e.g. signal/anomaly detection, parameter estimation, ...

 Starting from probability of individual events, can develop a probabilistic framework for
analysing signals.

ie

3.2 The Notion of Probability

Newslide  The theory of probability deals with averages of mass phenomena occurring sequentially or
simultaneously. In signal processing and communications, this phenomena might include signal
returns in active radar or sonar detection (see Figure [3.3), detection of acoustic events in
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Sidebar 2 The Venice Water-Taxi Problem

Understanding probability and statistics helps understand simple, but important, questions related to
estimating the parameters of a sampling distribution from a small sample size.

On a trip to Venice (in July 2016), it was observed that the water taxis appeared to be numbered in
sequential order from number 1 up-wards (a water-taxi with the number 1 on the side was observed,
and only positive integer valued taxi designations).

Assuming that all taxis are in service, suppose we wanted to guess the number N of water taxis in
Venice, based purely on the taxi numbers observed. Let’s assume we observed a taxi with the number
304 on the side. What is our best guess of N?

The solution will be discussed in detail in Chapter 5, but now is a good time to think about it in
advance of learning the techniques that will help us answer the question. Moreover, suppose we
observe more taxis, perhaps with the numbers 157, 202, 11, 248; how will our estimate change?

n W 4
rj 1 I

n’

This problem might seem rather academic, but has actually in the past been far from it, as discussed
in Chapter 5. A well known example is called the German tank problem.
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‘ reflected wave
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Figure 3.3: Active radar system; Drawing by Georg Wiora (Dr. Schorsch) / CC BY-SA

environmental sound analysis, anomaly detection in communication systems, parameter estimation,
and so forth.

How does one start considering the notion and meaning of probability, and how can it be extended to
modelling signals and events? To address this, it is first important to consider fundamentals such as
the probability of individual events, from which a probabilistic framework for analysing signals can
be obtained. To motivate the definition of probability, it is first observed that in many fields certain
averages approach a constant value as the number of observations increases. This value remains
the same if the averages are evaluated over any subsequence (of observations) specified before the
experiment is performed. In a coin experiment, for example, the percentage of heads approaches 0.5
or some other constant, and the same average is obtained if every fourth, sixth, or arbitrary selection
of tosses is chosen. Note that the notion of an average is not in-itself a probabilistic term.

This is formalised through the principal of the law of large numbers. As an illustration of the law of
large numbers, consider a particular sequence of rolls of a single six-sided dice. As the number of
rolls in the sequence increases, the average of the values of all the results approaches the theoretical
mean value of é 22:1 k = 3.5, as shown in Figure While different sequences (or trials) would
show a different shape over a small number of throws (at the left of Figure [3.4)), over a large number
of rolls (to the right of Figure [3.4)) they would be extremely similar.

It follows from the law of large numbers that the empirical probability of success in a series of
Bernoulli trials will converge to the theoretical probability. In the theory of probability and statistics,
a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes,
“success” and “failure”, in which the probability of success is the same every time the experiment
is conducted. For a Bernoulli random variable, the expected value is the theoretical probability of
success, and the average of n such variables (assuming they are independent and identically distributed
(i.i.d.)) is precisely the relative frequency. Therefore, the law of large numbers justifies the empirical
probability, relative frequency, or experimental probability of an event is the ratio of the number
of outcomes in which a specified event occurs to the total number of trials, not in a theoretical
sample space but in an actual experiment. In a more general sense, empirical probability estimates
probabilities from experience and observation.

Therefore, the purpose of the theory of probability is to describe and predict these averages in terms
of probabilities of events. The probability of an event A is a number, Pr (A), assigned to this event.
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Average dice roll vs number of rolls
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Figure 3.4: Illustrating the law-of-large numbers through throwing of a 6-sided dice.

This number could be interpreted as follows:

If an experiment is performed n times, and the event A occurs n 4 times, then with a high
degree of certainty, the relative frequency "4/n is close to Pr (A), such that:

Pr(A) ~ 4 3.1)
n
provided that n is sufficiently large.
This is called the empirical probability, experimental probability, or relative
frequency, and is an estimator of probability.

Note that this frequentist interpretation and the language used is all very imprecise, and phrases such
as high degree of certainty, close to, and sufficiently large have no clear meaning. These terms will
be more precisely defined as concepts are introduced throughout this course.

* Moreover, another problem with this definition is that it implies an experiment needs to be
performed in order to define a probability. In the next section , we will move away from this

restriction.

— End-of-Topic 9: Introduction to Probability, The Law-of-Large %@E
Numbers, and Empirical Probability — 0 ﬁ
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3.3 Classical Definition of Probability

Topic Summary 10 Classical Probability

I8

New slide

Topic Objectives:
* Introduce the definition of classical probability.
» Show simple examples of use of definition.

* Try examples and exercises.

Topic Activities:

| Type | Details | Duration | Progress |
Watch video 9 : 52 minute video 3% video length
Read Handout Read page[70[to page[73| | 8 mins/page
Try Examples Work through Example—r33| D mins
Practice Exercises | Exercise ?? 15 mins

s % 3| Using the Classical Definition

5

Seand 4
de 3

1

v, =g

Example (Rolling two dice). Two dice are rolled; find the
probability, p, that the sum of the numbers shown equals 7.

Consider the possibilities:

1. The possible outcomes total 11 which {2, 3. ..., 12}. Of these,

qually probable,
numb guishing berweer the-first and
will give the correct probabilicy of /35 = 1/s.

http://media.ed.ac.uk/media/l_akng71llx

Video Summary: This video builds on empirical probability and defines the classical
definition by considering equally probable outcomes. The video discusses several
examples using that can be easily studied with the classical definition.

For several centuries, the theory of probability was based on the classical definition, which states that
the probability Pr (A) of an event A is determined a priori without actual experimentation. It is given
by the ratio:

Pr(A)=-2 3.2)

where:

¢ N is the total number of outcomes,

e and N, is the total number of outcomes that are favourable to the event A, provided that all
outcomes are equally probable.

Examples include:
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Figure 3.5: Two red dice: https://commons.wikimedia.org/wiki/File:Two_red_|
dice_01.svg

—_ N W R~ N O

O
°
°
°
°
°
1

Figure 3.6: Two dice statespace, and (highlighted) the event of rolling a sum of 7.

23456

1. Probability of a specific number being rolled on a six-sided die (1/s);

2. Probability of rolling an even number on a six-sided die (3/6 = 1/2).

This definition, however, has some difficulties when the number of possible outcomes is infinite, as
illustrated in the detailed example in Section [3.3.3]

3.3.1 Using the Classical Definition

The classical definition is reasonably powerful, and is able to deal with many simple problems.

However, there are difficulties with the classical definition in Equation [3.2] as will be seen in
Bertrand’s Paradox in Section[3.3.3] is determining N and Ny.

It is important to ensure that the different possible outcomes are, in fact, equally probable. In this
section, some examples are shown where the incorrect conclusion is obtained through the incorrect
determiniation of an equally probable sample space. Other examples are provided in simple scenarios
where the classical example does actually work.
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Figure 3.7: Arranging cups and saucers randomly. See Example

Example 3.1 (Rolling two dice). Two dice are rolled (see Figure[3.5)); find the probability, p, that the
sum of the numbers shown equals 7. Consider three possibilities:

1. The possible outcomes total 11 which are the sums {2, 3, ..., 12}. Of these, only one (the sum

7) is favourable. Hence, p = 1—11

This is, of course, wrong, and the reason is that each of the 11 possible outcomes are not equally
probable.

. Similarly, writing down the possible pairs of shown numbers, without distinguishing between

the first and second die. There are then 21 pairs, (1,1), (1,2), ..., (1,6), (2,1), ..., (6,6), of
which there are three favourable pairs (3,4), (5, 2) and (6, 1). However, again, the pairs (3, 4)
and (6, 6), for example, are not equally likely.

. Therefore, to count all possible outcomes which are equally probable, it is necessary to count

all pairs of numbers distinguishing between the first and second die, as shown in the statespace
in Figure [3.6] This will give the correct probability of 6/36 = 1/6.

Note that many important problems involve counting the number of equally probable events.

Example 3.2 (Cups and Saucers). Six cups and saucers come in pairs: there are two cups and
saucers which are red (R), two which are green (G), and two which are yellow (Y). If the cups are
placed randomly onto the saucers (one each), find the probability that no cup is upon a saucer of the
same colour.

This problem has parallels in template matching where, for example, the saucers
represent a target sequence of symbols, and the cups represent an input symbol sequence.
The problem is to calculate the probability that at random no input symbol is in the correct
place compared with the target sequence.

SOLUTION. * Lay the saucers in order, say as RRGGYY. The ordering of the saucers is

arbitrary in this instance.

* The cups may be arranged in 6! ways, but since each pair of a given colour may be switched

without changing the appearance, there are 6!/(2!)® = 90 distinct arrangements.

By assumption, each of these are equally likely.
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* The arrangements in which cups never match their saucers is determined simply by counting,
and perhaps by some insightful observation, and are:

GGYYRR, GYRYGR, YGRYGR, YYRRGG
GYRYRG, YGRYRG
GYYRGR, YGYRGR
GYYRRG, YGYRGR

(3.3)

Note that the underlinging and bold fonts are to emphasis the prdering more clearly.

* Hence, the required probability is 19/90 = 1/9.

Example 3.3 (Sampling). In sequences of £ binary digits, 1’s and 0’s are equally likely. What is the
probability of encountering a sequence with a single 1 in any position, and all other digits zero?

— End-of-Topic 10: Classical Definition of Probability and Examples of DD
How to Use It — &
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3.3.2 Difficulties with the Classical Definition

Topic Summary 11 Bertrand’s Paradox

[E)

New slide

Topic Objectives:
* Discuss limitations of the classical definition of probability.

e Show limitations using the infamous Bertrand’s Paradox.

Topic Activities:

| Type | Details | Duration Progress
Watch video 13 : 47 minute video 3% video length
Read Handout Read page [74]to page 8 mins/page
Self-study Read further on the paradox 20 mins
Discussion Board | Share what you have discovered 10 mins

Theory, |[— . .
@ Discussion: Bertrand’s Paradox

# Finally, in the fandom radius method, a)radius of the circle is
chosen at randon; adius is chosen at
random. The chord AR is constructed as a line perpendicular
to the chosen radius through the chosen point.

Cudo . Fann Rard,
m A1' cé ({Q’" =

Had,
[
D/ N

L A%
;\‘ ‘ ™ ‘ ‘ / \ \‘ l; / \ ‘
AN N AR

: "Revi
obability Theory"

http://media.ed.ac.uk/media/0_3jxfljjc

Video Summary: This video highlights key difficulties with the classical definition of
probability. It uses Bertrand’s paradox as a problem in which to study the problems
associated with classical probabilities.

The classical definition in Equation [3.2]can be questioned on several grounds, namely:

1. The term equally probable in the definition of probability is making use of a concept still to
be defined!

2. The definition can only be applied to a limited class of problems.

In the die experiment, for example, it is applicable only if the six faces have the same
probability. If the die is loaded and the probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio in Equation [3.2]

3. If the number of possible outcomes is infinite, then some other measure of infinity for
determining the classical probability ratio in Equation [3.2]is needed, such as length, or area.
This leads to difficulties, such as Bertrand’s paradox.
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(a) Basic problem: line placed (b) The problem definition

across circle at random, resulting in is setup so that the nice

the cord AB. geometrical properties of the
equilateral triangle can be
used.

Figure 3.8: Bertrand’s paradox, problem definition.

Ie

- 3.3.3 Discussion: Bertrand’s Paradox

Newslide  The Bertrand paradox is a problem within the classical interpretation of probability theory.

Consider a circle C of radius r; what is the probability p that the length ¢ of a randomly selected cord
A is greater than the length, /3, of the inscribed equilateral triangle? This problem is illustrated
in Figure 3.8

KEYPOINT! (Recalling Geometry!). To fully appreciate this problem, it is perhaps worth being
aware of the geometry of this problem. The idea of the geometry is to keep simple geometric
shapes so that the calculations are very straightforward, rather than to play on some obscure geometric
properties. Therefore, note that if three tangents to a circle of radius 7/2 are drawn at angular intervals
of 120 degs, then the resulting equilateral triangle fits inside a larger circle of radius r, as shown in
Figure The length of the sides of one of this equilateral triangle is /3. The fact the sizes of the
inscribed triangle are tangential to the circle of radius 7/2 is also an important simplifying property
that can be used.

Using the classical definition of probability, three reasonable solutions can be obtained:

* In the first method, the random midpoints method, a cord is selected by choosing a point M
anywhere in the full circle, and two end-points A and B on the circumference of the circle, such
that the resulting chord A B through these chosen points has M as its midpoint. There will only
be a single cord which satisfies this constraint, and this is shown graphically in Figure 3.9a

It is reasonable, therefore, to consider as favourable outcomes all points inside the inner-circle
of radius /2, and to consider all possible outcomes as points inside the outer-circle of radius r.
This is because any point M in the innter-circle must have a cord that is at least of length v/3r.

Therefore, using as a measure of these outcomes the corresponding areas, it follows that:

r? 4
'A cord is a line connecting two points on the circumference of the circle.

r\ 2

June 28, 2021 — 08 : 40




78 Probability Theory
A
IR B
(a) The midpoint method. (b) The endpoint method. (c) The radius method.

Figure 3.9: Different selection methods.

In the second method, the random endpoints method, consider selecting two random points
on the circumference of the (outer) circle, A and B, and drawing a chord between them. This is
shown in Figure [3.9b] where the point A has been drawn to coincide with the particular triangle
drawn. If B lies on the arc between the two other vertices, D and E, of the triangle whose first
vertex coincides with A, then AB will be longer than the length of the side of the triangle.

The favourable outcomes are now the points on this arc, and since the angle of the arc DFE is

%” radians, a measure of this outcome is the arc length 2’3”". Moreover, the total outcomes are

all the points on the circumference of the main circle, and therefore it follows:

e
_ 3 _ 1
p= 2mr 3 (3-5)

Finally, in the third method, the random radius method, a radius of the circle is chosen at
random, and a point on the radius is chosen at random. The chord AB is constructed as a line
perpendicular to the chosen radius through the chosen point. The construction of this chord is
shown in Figure (3.9¢

The favourable outcomes are the points on the radius that lie inside of the inner-circle, or a
measure of this outcome is given by the diameter of the inner-circle, . The total outcomes
are the points on the diameter of the outer-circle, and a measure of that respective length is 27.
Therefore, the probability is given by

(3.6)

There are thus three different but reasonable solutions to the same problem. Which one is valid?
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Example 3.4 (Multi-choice: Betrand’s Paradox). Consider a circle of radius r. What is the
probability that the length of a randomly selected cord is greater than the length, /3, of the inscribed

equilateral triangle?

L. 3.1

AN,

2. 4. Need more information.

W=

KEYPOINT! (Confused?). The solution to this paradox is indeed quite complicated, and has been
discussed in a number of research papers! A discussion will take place in the hybrid classes, but if

you are interested in finding out more, you are encouraged to look into this further.

One interesting solution by Jaynes exploits the fact that the position or size of the circule is not
specified, and argues that any objective solution must be scale and translation invariant.

— End-of-Topic 11: Awareness of the difficulties with the Classical [ElLEE
Definition of Probability — [
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3.4 Axiomatic Definition

Topic Summary 12 Axiomatic Definition of Probability

re

New slide

Topic Objectives:
* Review Kolmogorov’s Axioms.
* Derive results from these Axioms.
* Use addition law of probability.

» Examples of using these axioms.

Topic Activities:

] Type Details \ Duration Progress

Watch video 9 : 46 minute video 3x video length
Read Handout | Read page[78[to page |8q 8 mins/page
Try Example | Work through Example |3.5| 10 minutes

ARS| @ Properties of Axiomatic Probability

By Impossible Event The probability of the impossible event is 0:
Pr(®) =0
Complements Since AU A = S and AA = {0}, then

Pr(A) =1-Pr(4)

sum Rule The addition law of probability or the sum rule for
any o events A and B is:

Pr(AUB) =Pr(A) +Pr(B Pr(AnB)
PY(AUE)~PE4) + Bl <Pr(ATB

http://media.ed.ac.uk/media/1_5k714c8b

Video Summary: The Kolmogorov axioms are the foundations of probability theory
introduced by Andrey Kolmogorov in 1933. Using these axioms, this video shows how
many other familiar results can be derived from these axioms. These results are them
applied to several problems which highlights the importance for introducing set theory,
that is covered in Topic[I3]

The Kolmogorov axioms are the foundations of probability theory introduced by Andrey Kolmogorov
in 1933. These axioms remain central and have direct contributions to mathematics, the physical
sciences, and real-world probability cases. An alternative approach to formalising probability,
favoured by some Bayesians, is given by Cox’s theorem.

The axiomatic approach to probability is based on the following three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number assigned to this event:

Pr(A4) >0 (3.7)

2. Defining the certain event, S, as the event that occurs in every trial, then:

Pr(S) = 1 (3.8)
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/7

Certain Event
S ("Everything”)

Figure 3.10: A Venn diagram for two mutually exclusive events.

3. If the events A and B are mutually exclusive, then:

Pr(AUB)=Pr(A)+Pr(B) (3.9)

This result is apparent from the Venn diagram shown in Figure [3.10l More generally, if
A;, A,, ... is acollection of disjoint events, such that A; N A; = () for all pairs ¢, j satisfying

i # j, then:
Pr (U AZ-> => Pr(4) (3.10)
i=1 =1

Note that Equation [3.10] does not directly follow from Equation [3.9] even though it may
appear to. Dealing with infinitely many sets requires further insight, and here the result of
Equation [3.10]is actually an additional condition known as the axiom of infinite additivity.

These axioms can be formalised by defining measures and fields as appropriate, but the level of detail
is beyond this course.

These axioms, once formalised, are known as the Kolmogorov Axioms, named after the Russian
mathematician. Note that an alternative approach to deriving the laws of probability theory from a
certain set of postulates was developed by Cox. However, this won’t be considered in this course.

G

3.4.1 Properties of Axiomatic Probability |

Some simple consequences of the definition of probability defined in Section [3.4]follow immediately: New slide

Impossible Event The probability of the impossible event is 0, and therefore:
Pr(0) =0 (3.11)

Complements Since AU A = S and AA = {{)}, then :

Pr(A) =1—Pr(A) (3.12)
Sum Rule The addition law of probability or the sum rule for any two events A and B is:
Pr(AUB)=Pr(A)+Pr(B)—Pr(AnB) (3.13)
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Event4 n B

]

Certain Event
S

Figure 3.11: Venn diagram to prove the addition law of probability.

Example 3.5 (Sum Rule). Let A and B be events with probabilities Pr (A) = 3/4 and Pr (B) = /s.
Show that 1/12 < Pr (A B) < 1/3.

SOLUTION. Using the sum rule, that:

1
Pr(AB)=Pr(A)+Pr(B)—Pr(AUB)>Pr(A)+Pr(B)—1= G (3.14)
O
which is the case when the whole sample space is covered by the two events. The second bound

occurs since AN B C B and similarly A N B C A, where C denotes subset. Therefore, it can be
deduced Pr (A B) < min{Pr (A), Pr(B)} = 1/s.

— End-of-Topic 12: Properties of axiomatic probability theory, and an El [=I
interesting example — O]
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3.4.2 Set Theory

Topic Summary 13 Set theory and its use in Probability Theory

Topic Objectives:
* Basic Definitions in Set Theory.
* Venn diagrams and set manipulations.

¢ Proof of the Sum Rule.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 16.28 min video 3% video length
Study Handout | Read page|[81|to page[84] | 8 mins/page
Tutorial Exercise | Exercise ?? 20 minutes

AR @ Set Theory

De Morgan's Law Using Venn diagrams, it it can be shown
AUB=ANB=AB and ANB=AB=AUR
—
®
As an application of this, note that:
AUBC=A4ABC=A4(BUT)
= ([AB)u (AC)=AUBudUC
= AUBC=(AUB)(AUC) J
i e AN KL

eview

http://media.ed.ac.uk/media/1l_vlwzihow

Video Summary: This video gives the background to set theory which is fundamental
for dealing with probability more generally. The video discusses using Venn diagrams as
a simple way of proving a number of results, such as De Morgan’s law. However, we also
discuss how to prove this formally using set theory resuls. An example is using various
forms of De Morgan’s law to derive the sum rule, or the addition law of probability. A
tutorial exercise challenges you to derive the sum rule for three events.

Since the classical definition of probability details in total number of outcomes, as well as events, it
is necessary to utilise the mathematical language of sets to formulise precise definitions.

A set is a collection of objects called elements. For example, “car, apple, pencil” is a set with three
elements whose elements are a car, an apple, and a pencil. The set “heads, tails” has two elements,
while the set “1, 2, 3, 57, has four. It is assumed that most readers will have come across set theory
to some extent, and therefore, it will be used throughout the document as and when needed.

Some basic notation, however, includes the following:

Unions and Intersections are commutative, associative, and distributive, such that:

AUB=BUA, (AUB)UC=AU(BUCQC) (3.15)
AB = BA, (AB)C = A(BC), A(BUC)=ABUAC (3.16)
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d

Certain Event
S E\@nt

Figure 3.12: The complement A of A C S is the set of all elements of S not in A.

]

Certain Event
S

Figure 3.13: A partition of the certain event using mutually exclusive subsets A;, whose union equates
to S.

Complements The complement A of a set A C S is the set consisting of all elements of S not in A:
AUA=S and ANA=AA={0} (3.17)

This is shown graphically using a Venn diagram, as shown in Figure |3.12

Partitions A partition U of a set .S is a collection of mutually exclusive subsets A; of S whose
union equates to S,as shown in Figure[3.13] such that:

UAi=s And={0}, i#j = U=I[A, .. A) (3.18)
=1

De Morgan’s Law Using Venn diagrams, it is relatively straightforward to show as in Figure
that:

AUB=ANB=AB and ANB=AB=AUB (3.19)

As an application of this, note that:

AUBC =ABC=A(BUC) (3.20)
=(AB)U(AC)=AUBUAUC (3.21)
= AUBC=(AUB)(AUC) (3.22)

This result can easily be derived by using Venn diagrams, as shown in Figure [3.15]
and it is worth checking this result yourself. This latter identity will also be used later
in Section
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Event 4 U B

7

Certain Event
S

Figure 3.14: The event A U B.

Event 4 U BC

Certain Event “

’ A

Figure 3.15: The event A U BC.

Example 3.6 (Proof of the Sum Rule). Prove the result in Equation [3.13|regarding the addition law
of probability (or sum rule), namely:

Pr(AUB)=Pr(A)+Pr(B)—-Pr(AnB) (3.23)

SOLUTION. To prove this, separately write each of AU B and B as the union of two mutually
exclusive events (using Equation and the fact AUA = Sand S B = B).

* First, to write A U B in this way, use S:
AUB=S(AUB)=(AUA)(AUuB)=AU(AB) (3.24)

Since the intersection AN (AB) = (AA) B = {0}B = {0}, then A and A B are mutually
exclusive events, as required.

* Second, and using a similar approach, note that:
B=SB=(AUA)B=(AB)U (AB) (3.25)

Since the intersection (AB) N (AB) = AAB = {0} B = {0} and are therefore mutually
exclusive events.

Using these two disjoint unions, then:

Pr(AUB) =Pr(AU(AB)) =Pr(A) + Pr (AB) (3.26)
Pr(B) =Pr((AB)U(AB)) =Pr(AB) +Pr(AB) (3.27)
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Eliminating Pr (A B) by subtracting these equations gives the desired result:

Pr(AUB) — Pr(B) = Pr (AU (AB)) = Pr(A) — Pr(AB) (3.28)

— End-of-Topic 13: Set theory and its used in probability theory. —
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3.4.3 Countable Spaces and Principle of Total Probability

&

Newside  TOpic Summary 14 Total Probability

Topic Objectives:

* Introduce uncertainty through a simple example.

Topic Activities:

| Type | Details | Duration Progress
Watch video 9 : 46 min video 3x video length
Read Handout | Read page to page |88 8 mins/page
Try Example | Work through Examples3.7/and 20 minutes

t
aRS; @ Properties of Axiomatic Probability
E ] Impossible Event The probability of the impossible event is 0:
Pr(0)=0
Complements Since AU A = § and AA = {0}, then:
Pr(A) = 1-Pr(A4)

sum Rule The addition law of probability or the sum rule for
any two events A and B is:

Pr(AU B) =Pr(A) + Pc(B Pr(ANB
FrAUB)=Pell)+ BlB) - Fr(AnE)

T —

For full lecture notes, see PETARS
course, Part |, Handout 3: "Review
of Basic Probability Theory"

http://media.ed.ac.uk/media/1_5k714c8b

Video Summary:

Example 3.7 (Farmer and his Will). A farmer leaves a will saying that they wish for their first child
to get half of his property, the second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed because they don’t want to cut any horses

up.

However, a local statistician lends them a horse so that they have eighteen. The children then take
nine, six, and two horses, respectively. This adds up to seventeen, so they give the statistician the
horse back, and everyone is happy.

What is wrong with this story?

If the certain event, S, consists of N outcomes, and N is a finite number, then the probabilities of all
events can be expressed in terms of the probabilities Pr ((;) = p; of the elementary events {(;}.
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d

Certain Event
S

Figure 3.16: A Venn diagram clearly illustrates the principle of total probability.

From the basic axioms, it follows that p; > 0 and that
N
d pi=1 (3.29)
i=1

This can be used in obtaining the principle of total probability. Let A;, A5, A3, ... be a finite or
countably infinite set of mutually exclusive and collectively exhaustive events, then from the Venn
diagram in Figure|3.16]

> Pr(AinB)=Pr(B) (3.30)

Example 3.8 (Detection and Classification). An acoustic scene analysis algorithm is monitoring an
Edinburgh City park for animal sounds, and makes a large number of sound classifications on detected
acoustic events, either being labelled as bird, fox, or pet sounds. Each labelled acoustic event is either
a true detection of the corresponding animal sound, or is a false alarms. The false alarms can be
considered as bad detections. Based on previous statistical analysis, it has been determined that in
one (long) recording:

29% of the detected sounds are false alarms;

3% of labelled bird sounds are false alarm detections;

12% of detected bird sounds are correctly labelled;

5% of labelled fox sounds are false alarm detections;

» 32% are correct detections of domestic pet sounds.

The following events are defined: correctly classified — C'; mis-classified or false alarms — M; bird
sound — B; fox sound — F'; domestic pet sound — D.

Draw a Venn diagram of the problem, and determine the following:

1. What is the probability that a detection is classified as a bird sound, either correctly or
incorrectly?

2. What is the probability that a detection is a false alarm and/or a labelled bird sound?

3. What is the probability that a sound is correctly classified as a fox or domestic pet sound?
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< Correct Classifications False Alarms
"y

Certain Event, S

Domestic Pets (D)

Figure 3.17: The Venn diagram for this problem, although the size of the events are not to scale.

4. What is the probability of a false alarm for a domestic pet sound?

The Venn diagram for this problem is sketched in Figure where the three types of classification
are shown for birds (B), foxes (F'), and domestic pets (D). The cases where events are correctly
classified (C) or mis-classified (M) are also indicated.

Writing out the known probabilities in terms of the events, we have:
Table 3.1: Known events and probabilities

Event | Notation | Probability |
Detections are false alarms M 0.29
Birds are mis-classifications | BN M 0.03
Birds are correctly classified | BN C 0.12
Foxes are mis-classifications | FFN M 0.05
Pets are correctly classified | DN C 0.32

1. The probability that a detection is classified as a bird sound, either correctly or incorrectly, can
be expressed by using total probability:

Pr(B)=Pr(BNC)+Pr(BNM)=0.12+0.03 = 0.15 (3.31)

2. The probability that a detection is a false alarm and/or a labelled bird sound is obtained using
the probability sum rule:

Pr(BUM) =Pr(B)+Pr(M)—Pr(BNM)=015+029—0.03 =041  (3.32)

3. Considering the left hand side of the Venn diagram in Figure[3.17] the probability that a sound is
correctly classified as a fox or domestic pet sound can be written as the complement of the event
of being a false alarm or a bird. This is most easily seen from the Venn diagram in Figure [3.18]

Therefore:

Pr((FNC)U(DUM))=1-Pr(FUB)=1-0.41=0.59 (3.33)
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Figure 3.18: The Venn diagram with the event 1 — Pr (B U M) highlighted.

4. Finally, the probability of a false alarm for a domestic pet, Pr (D N M), can be obtained from
the Venn diagram and total probability:

Pr (M) = Pr (DN M)+ Pr(FNM)+Pr(Bn M) (3.34)
029 =Pr(DNM)+005+003 = Pr(DnM)=021 (3.35)

3.4.4 The Real Line

If the certain event, .S, consists of a non-countable infinity of elements, then its probabilities cannot
be determined in terms of the probabilities of elementary events. This is the case if S is the set of
points in an n-dimensional space.

Suppose that S is the set of all real numbers. Its subsets can be considered as sets of points on the real
line. To construct a probability space on the real line, consider events as intervals 1 < x < x5, and
their countable unions and intersections.

To complete the specification, it suffices to assign probabilities to the events {z < x;}.

This notion leads to cumulative distribution functions (cdfs) and probability density functions
(pdfs) in the next handout.

— End-of-Topic 14: Countable Spaces, Total Probabilities, and O[O

Uncountable Spaces on the Real line — Ok
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3.5 Conditional Probability

Topic Summary 15 Conditional Probability and Bayes Rule

Topic Objectives:
* Introduce conditional probability.
» Examples of applying conditional probability.

* Developing Bayes’s Theorem.

Bayes’s Theorem and Inverse Problems.

¢ Prisoner’s Problem and Monte Hall.

Practical application of Bayes Theorem.

Topic Activities:

Type Details \ Duration Progress
Watch video 21 : 59 minute video 3x video length

Read Handout Read page [89|to page |9_4| 8 mins/page

Try Example Try Examples and—|§. 10| 20 minutes

Practice Exercises | Exercises ?? and ?? 30 mins

After this lecture, try the following example in the notes:

RS, @ Bayes’s Rule

For full lecture notes, s¢e PETARS
ourse, Part |, Handout 3: “Review

u
of Basic Probability Theory"

http://media.ed.ac.uk/media/1_7zsoflwm

Video Summary: This slightly longer than usual video covers conditional probability
and gives some examples that are initially counter-intuitive. Bayes theorem is then
developed from conditional probability, and the role of inverse problems in the context of
Bayes theorem is discussed. Bayes theorem is then applied to a puzzle-type problem to
demonstrate the counter-intuitive nature of probability. An example is then presented for
you to consider, which will be answered in the handout.

To introduce conditional probability, consider the discussion about proportions in Section 3.1} If an
experiment is repeated n times, and the occurrences or non-occurrences two events A and B are
observed. Suppose that only those outcomes for which B occurs are considered.
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In this collection of trials, the proportion of times that A occurs, given that B has occurred, is:

pe (4] ) » "2 _ " Pr(AB)

ng  ™/n  Pr(B) (3.36)

provided that 7 is sufficiently large.

The conditional probability of an event A assuming another event B, denoted by Pr (A | B), is

defined by the ratio:

Pr(AnN B)
Pr (B)

It can be shown that this definition satisfies the Kolmogorov Axioms.

Pr(A|B) = (3.37)

Example 3.9 (Two Children). A family has two children. What is the probability that both are boys,
given that at least one is a boy?

SOLUTION. The younger and older children may each be male or female, and it is assumed that each
is equally likely.

A simple method for solving this problem is to list all the possibilities:

Ch Cy Outcome
Gender | Gender | Relevant? \ Desired?
B B v v

G B v
B G v
G G
Count 3 1

Therefore, using classical probability, since the events are all equally probable, the answer is p =
Na/N =1/3.

A more formal solution is to consider the set of four possibilities for the gender of the children,
namely:
S ={GG, GB, BG, BB} (3.38)

where the four possibilities are equally probable:

Pr(GG) = Pr (GB) = Pr (BG) = Pr (BB) = 711 (3.39)

The subset of S which contains the possibilities of one child being a boy is at Sy = {GB, BG, BB},
and therefore the conditional probability:

Pr(BBN(GBUBG U BB))
Pr (SB)

Pr (BB |Sp) = (3.40)

Note that { BBN(GB U BG U BB)} = {BB}, and that Pr (Sg) = 1—Pr (Sg) = 1-Pr (GG) = 3.
Therefore: Pr(BB) y )
r 4
Pr(BB|Sp)=———F+F=-F+=12 341

t (BB 55) 1-Pr(GG) 31 3 ( D)
Note that the question is completely different if it were what is the probability that both are boys,
given that the youngest child is a boy, in which case the solution is /2. This is since information has
been provided about one of the children, thereby distinguishing between the children.
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Example 3.10 (Two Children (Variant)). A family has two children. One of the children is a boy
born in an even month, where even months are defined as Feburary, April, June, August, October, and
December, while odd months are defined as January, March, May, July, September, and November.
What is the probability that both are boys?

SOLUTION. The younger and older children may each be male or female, and it is assumed that
each is equally likely. Moreover, the month in which each child is born is assumed to be equally
likely. Denoting the first child as C, and the second by C5, there are 16 different but equally likely
possibilities, which are denoted given by:

Cy Cy Outcome
Gender | Month | Gender | Month | Relevant? | Desired?
B O B 0]
B O B E v v
B E B 0] v v
B E B E v v
G O B O
G O B E v
G E B @)
G E B E v U
B O G @)
B O G E
B E G O v
B E G E v
G O G 0]
G O G E
G E G 0]
G E G E
Count 7 3

Therefore, the number of favourable outcomes to the question in hand is 3/7 = 0.428, which is getting
closer to one half than a third.

The example in Unknown exmp.twoChildrew might seem a little abstract to signal processing,
but there are other ways of phrasing exactly the same problem. Using an example taken from
[Therrien:2011], it could be phrased as follows:

A compact disc (CD) selected from the bins at Simon’s Surplus are as likely to be good
as they are bad. Simon decides to sell these in packages of two, but guarantees that
in each package, at least one [CD|will be good. What is the probability that when you buy
a single package, you get two good [CDk?

It should be apparent that this is the same problem as in Unknown exmp.twoChildrew. One further
problem to consider is given below in Example [3.11]

A further example discussed in the lectures covers mobile phones; a company sells mobile phones in
boxes, and are equally likely to be broken (B) or working (W). You are given two boxes and told that
in one of the boxes there is a working phone. What is the probability that the other box also contains
a working phone? Suppose now that all phones are manufactured by four companies: A, £, N, and
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S. You are told that one of the boxes contains a working phone manufactured by company S. What
is the probability that the other box contains a working phone?

Finally, to extend the discussion further, suppose all the phones are made between the years 1997 and
2016, and by the four companies above. One of the boxes contains a working phone made in 2007
by manufacturer A. What is the probability the other box contains a working phone? It should be
apparent that by giving more information about one of the phones, the probability of the other box
containing a working phone approaches a half.

3.6 Bayes’s Rule

Conditional probability leads onto Bayes’s theorem. Returning to Equation then writing
Pr (AN B) = Pr(AB) as follows:

Pr(AB) =Pr (A|B) Pr(B) =Pr (B| A) Pr(A) (3.42)
giving
Pr(A|B) Pr(B)
Pr(A)
Bayes’s rule will be used throughout this course, and commonly arises in the analysis of signal
and communication systems, machine learning, and data science. Bayesian inference is typically

a computationally expensive problem, but can be solved efficiently using graphical models, sparsity,
and numerical Bayesian methods such as Monte Carlo and Message Passing techniques.

Pr(B|A) = (3.43)

Example 3.11 (Prisoner’s Problem). Three prisoners, A, B and C, are in separate cells and
sentenced to remain there for a long time. The governor has selected one of them at random to
be pardoned and therefore released. The warden knows which one is to be released, but is not allowed
to say. Prisoner A begs the warden to be told the identity of one of the others who will not be released.

Prisoner A says: If B is to be pardoned, give me C’s name, and vice-versa. And if I'm to
be pardoned, flip a coin to decide whether to name B or C.

The warden tells A that B will not be released.

Prisoner A is pleased because s/he believes that the probability of being released has gone up from
1/3 to 1/2, as it is now between A and C. Prisoner A secretly tells C' the news, who is also pleased,
because C' reasons that A still has a chance of 1/3 to be the pardoned one, but C"’s chance has gone up
to 2/3. What is the correct answer?

SOLUTION. This problem is mathematically equivalent to the Monty Hall problem with the main
prize and replaced with freedom. It can be solved using the principle of total probability and Bayes’s
theorem.

* Let A, B, and C be the events that the corresponding prisoner will be pardoned.
» Note that A, B, and C' are independent events, before the warden has provided any information.

 Let b be the event that the warden tells A that prisoner B is not to be released.

Using Bayes’s theorem, it follows that:

Pr(b|A) Pr(A)
Pr (b)

Pr(A|b) = (3.44)
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Figure 3.19: Regular (or normal) and irregular heartbeat rhythms.

Using the principal of total probability:

Pr(b)= Y Pr(bi) (3.45)
ic{A,B,C}
= Pr (b, A) + Pr (b, B) + Pr (b, C) (3.46)
=Pr (b| A) Pr(A) +Pr (b| B) Pr(B) + Pr (b| C) Pr(C) (3.47)
1 1 1

The crucial point here is that ifA is actually to be released, the warden can tell Athat either B or C'
will not be released through the toss of the coin, and thereforePr (b ] A) = 1. Whereas, ifC is to be
released, then the warden is now constraned to tell A thatB will not be released, so Pr (b | C) =1.

Finally, returning to Bayes rule,

Pr(A|b) = G L’fibfr @ _zx5_ (3.49)

X
Wl

N | —
Wl

Howeyver, the same calculation for C is different in the numerator:

Pr(b|C) Pr(C) 1x
Pr (C |b) = ( ’Pr)(b) 1 73 (3.50)

Wl
[\

KEYPOINT! (Why the paradox). The tendency of people to provide the answer !/2 neglects to take
into account that the warden may have tossed a coin before giving an answer. The warden may have
answered B because either:

* A is to be released and the wardan tossed a coin;

e or C is to be released.

The probabilities of these two events are not equal.

After this lecture, try the following example in the notes:
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Example 3.12 (Classification Accuracy). A statistical signal processing and machine learning
algorithm using electrocardiogram (ECG) data is used to test for a certain irregular heartbeat and
is 95% accurate. A person submits to the test and the results are positve. Suppose that the person
comes from a population of 10°, where 2000 people suffer from the irregularity.

What can we conclude about the probability that the person under test has that particular heartbeat
irregularity?

SOLUTION. The test is known to be 95% accurate, which means that 95% of all positive tests are
correct, and 95% of all negative tests are correct. Let the events 7', and 7" denote the test being
positive and negative respectively. Let the events R and / denote a regular and irregular heartbeat in
a patient. Hence, it is known:

Pr (T, |1) =095 Pr(Ty|R)=0.05 (3.51)
Pr(T_]1) =005 Pr(T_-|R)=0.95 (3.52)

The population space gives an empirical probability that a regular heartbeat occurs with probaility

Pr(R) = 19080’%0000 = 0.98 and Pr (I) = 0.02. Hence, using total probability and Bayes’s theorem, it

follows that:

Pr (T4 |I) Pr(I)

Pr(I|Ty) = Pr (1)) (3.53)
_ Pr (T, |I) Pr (1) (3.5

Pr (T, |I) Pr(I)+ Pr (T\ | R) Pr(R)
0.95 x 0.02 0978 (3.55)

= 0.95 x 0.02+ 0.05 % 0.98

The results states that if the test is taken by someone from this population without knowing whether
that person has the irregular heartbeat or not, then even a positive test would only suggest there is a
27.8% chance of having an irregularity. However, if the person knows that they have the irregularity,
then the test is 95% accurage.

KEYPOINT! (Influence of the prior). The resulting accuracy is due to a Baysian update involving
the prior on the population space, so Pr (R) and Pr (7). However, one key question is how are these
probabilities known?

The question assumed that for a given population, the percentage of the population who suffer from
this irregularity is known. But how is this known in practice if we don’t have a reliable test? Can
it be deduced in other ways? This is one of the key questions that influences the Bayesian posterior
inference.

— End-of-Topic 15: Conditional Probability, and a basic but important [SliE
Introduction to Bayes Rule — ol

2As an example of such an algorithm, see Figure [3.19] as described in: https://uk.mathworks.com/help/
signal/examples/classify—ecg-signals—-using—long—-short-term—-memory—-networks.html


https://uk.mathworks.com/help/signal/examples/classify-ecg-signals-using-long-short-term-memory-networks.html
https://uk.mathworks.com/help/signal/examples/classify-ecg-signals-using-long-short-term-memory-networks.html

Scalar Random Variables

Every line is the perfect length if you don’t
measure it.

Marty Rubin

This handout introduces the concept of a random variable, its probabilistic description in terms of
pdfs and cdfs, and characteristic features such as mean, variance, and other moments. It covers the
probability transformation rule and characteristic functions.

97




98 Scalar Random Variables

4.1 Abstract

Topic Summary 16 Introduction to Random Variables and Cummulative Distribution Functions

Topic Objectives:
¢ Notion of a random variable.

» Formal definition involving experimental outcomes, sample space, probability of events, and
assigned values.

* the concept of the cumulative distribution function (cdf).

Topic Activities:

| Type | Details | Duration Progress

Watch video 16 : 12 min video 3% video length
Read Handout | Read page [96|to page[100 | 8 mins/page

By | Definition 16
1 e S, L=lae

- xC) T
_ — x=4
Abstract
sample space, §
A graphical representation of a random variable for a more

fciexample.

real number line

dre  ventSPBh a5 small intervals on the real axis as
idesc - Sl previous lecture

urse, Pz
Random Variables”

http://media.ed.ac.uk/media/1_6m2jkjb8

Video Summary: This video introduces and defines scalar real random variables,
covering the sample/state space, probability of outcomes, and mapping to the real axis.
Some simple examples are presented. The video then motivates the probability set
function by considering the axiomatic interval of the random variable taking on a value
less than or equal to a specific value. It also demonstrates using the Kolmogorov’s axions
and set theory, it is possible to determine the probability of being within an interval. In
the limit, it is demonstrated that the gradient of the cummulative distribution function is
important, which leads to the probability density function. This video sets the foundations
for the rest of this Chapter and indeed course.

Ultimately, the purpose of this course is to move from probability theory through to random signals.
Therefore, before introducing random variables, lets take a step back and consider the bigger picture.

* Deterministic signals are interesting from an analytical perspective since their signal value or
amplitude are uniquely and completely specified by a functional form, albeit that function might
be very complicated. Thus, a deterministic signal is some function of time: = = z(t).

* In practice, this precise description cannot be obtained for real-world signals. Moreover, it
can be argued philosophically that real-world signals are not deterministic but, rather, they are
inherently random or stochastic in nature.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton19'){ocgs[i].state=false;}}
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* Although random signals evolve in time stochastically, their average properties are often
deterministic, and thus can be specified by an explicit functional form.

* The aim of statistical signal processing is to develop the properties of stochastic processes,
both in terms of an exact probabilistic description, but also characteristic features such as
mean, variance, and other moments. This course begins by looking at the simplest description
of random scalars, or random variables, on which the rest of statistical signal processing is
developed.

B

4.2 Definition Random Variables -

A random variable (RV) X () is a mapping that assigns a real number X € (—o0, c0) to every V" /ide

outcome, or elementary event, ¢ from an abstract probability space. This mapping from ¢ to X
should satisfy the following two conditions:

1. the interval { X (¢) < x} is an event in the abstract probability space for every = € R;

2. Pr(X(¢) =o00) =0and Pr(X(¢) = —o0) = 0.

The second condition states that, although X (¢) is allowed to take the values x = 00, the outcomes
form a set with zero probability.

KEYPOINT! (Nature of QOutcomes). Note that the outcomes of events are not necessarily numbers
themselves, although they should be distinct in nature. Hence, examples of outcomes might be:

* outcomes of tossing coins (head/tails); card drawn from a deck (King, Queen, 8-of-Hearts);

* characters or words (A-Z); symbols used in deoxyribonucleic acid (DNA)) sequencing (A, T, G,
O);

* a numerical result, such as the number rolled on a die, or a temperature measuement.

A more graphical representation of a discrete [RV]is shown in Figure .1} In this model, a physical
experiment can lead to a number of possible events representing the outcomes of the experiment.
These outcomes may be values, or they may be symbols, or some other representation of the event.
Each outcome (or event), (x, then has a probability Pr ({;) assigned to it. Additionally, each outcome
(i also has a real number assigned to that outcome, x;. The [RV]is then defined as the collection of
these three values; an outcome event, the probability of the outcome, and the real value assigned to
that outcome, thus X (¢) = {(x, Pr (k) , zx}-

A more specific example is shown in Figure in which the experiment is that of rolling a die, the
outcomes are the colors of the dies, each event is simply each outcome, and the specific user-defined
values assigned are the numbers shown.

Example 4.1 (Rolling die). Consider rolling a die, with six outcomes {(;, i € {1,...,6}}. In this
experiment, assign the number 1 to every even outcome, and the number 0 to every odd outcome.
Then the [RV] X (() is given by:

X(G1) = X(C3) = X(G5) =0 and X (G3) = X(Ca) = X(Gp) = 1 (4.1)
X
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Physical
Experiment
Outcome
o X ——e > R
1 ‘xl
Outcome
L XG g
x2
Outcome
g, —> X(C3)—+ > R
A 45
AN
Outcome
Abstract G X +—> R
sample space, S Xy

real number line

Figure 4.1: A graphical representation of a random variable.

Physical
Experiment

X}

x,=4

Abstract
sample space, S

real number line

Figure 4.2: A graphical representation of a random variable for a more specific example. Note that
for continuous random variables, the outcomes are events, such as small intervals on the real axis as
described in the previous lecture handout.
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4 Fi(x)

Pr(X<x))

Pr(X <x,) ~

»
»
X

X, X

Figure 4.3: The cumulative distribution function.

Pr(X < x,+dx) 1t Fux) 5
Pr(X<x) - Ty

dF (x)/dx| _-

=V

X, x,1t0x

Figure 4.4: The gradient of the [cdfl is very important, and leads to the probability density function

(pd).

Example 4.2 (Letters of the alphabet). Suppose the outcome of an experiment is a letter A to Z,
such that X (A) = 1, X(B) =2, ..., X(Z) = 26. Then the event X (¢) < 5 corresponds to the letters
A,B,C,D,orE.

4.2.1 Distribution functions

Random variables are fundamentally characterised by their distribution and density functions. These
concepts are considered in this and the next section.

The probability set function Pr (X ({) < x) is a function of the set { X ({) < x}, and therefore
of the point z € R.

This probability is the cumulative distribution function (cdf), Fx (z) of a X(¢), and is
defined by:

Fx (2) 2 Pr(X(¢) < ) (M:3.1.1)
It is graphically shown in Figure 4.3]
It hence follows that the probability of being within an interval (x;, ] is given by:

Pr(z, < X({) <z,) =Pr(X({) <z) — Pr(X(¢) <a) 4.2)

= FX (mr) — FX ($g) (43)

For small intervals, it is clearly apparent that gradients are important.

June 28, 2021 — 08 : 40
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This can be seen by setting z,, = x; + dx:

Pr (i < X(¢) < s + 62) = Pr (X(¢) <, + 62) — Pr (X(C) < ) (4.4)
~ Pr(X(0) <o)+ X P (x() < ) (4.5)
LB @] (4.6)

dx N

Shortly, it will be seen that dFjl‘—m(I) is indeed the [pdf]

4.2.2 Kolmogorov’s Axioms

The events {X(¢) < z1} and {77 < X({) < x5} are mutually exclusive events. Therefore, their
union equals { X ({) < x5}, and thus:

Pr(X(¢) <zy) +Pr(z; < X(¢) <x3) =Pr(X(¢) < a9) “4.7)
/ p(v) dv+Pr(r; < X(¢) < x) :/ p(v) dv (4.8)
= Pr(z; < X(¢) <ay) = /Izp(v) dv 4.9)

where p (v) is an probability density function (pdf]) that will be described in more detail in the next
section.

Moreover, it follows that Pr (—oo < X (¢) < co) = 1 and the probability of the impossible event,
Pr (X (¢) < —o0) = 0. Hence, the [cdfl satisfies the axiomatic definition of probability.

— End-of-Topic 16: Introduction to Random Variables and Dlldl)
Cummulative Distribution Functions — =]




Ie

New slide

4.3. Density functions 103

4.3 Density functions

Topic Summary 17 Introduction to probability density functions (pdfl) and their properties

Topic Objectives:
* The probability density function (pdf).
* Formal properties of probability density functions (pdfk).

* Discrete random variables (RVK), their probability mass function (pmf) the corresponding [pdfis
and [cdfk, as well as mixtures of continuous and discrete random variables.

* Examples of mixed density functions.

Topic Activities:

| Type | Details | Duration Progress
Watch video 14 : 19 minute video 3% video length
Read Handout Read page|101]to page|104]| 8 mins/page
Practice Exercises | Exercises ?? to ?? 30 mins

t
eory, [rany . .
® Density functions
41 AE )
== - I-p

—OSJ'X‘_“ \H" 5

W 5
=
Ll |
7Bl Bt Iy e —%
A probability densinf,_function and its corresponding
cumulative distribution functiof fof a RV which is a mixture

of i and discrete

The pdf for the distribution shown above can be wriuezn as;
8- \ b,: )

fx (#) = (1= p)é(x —a) + 21— (u(z —b) = u(z =)
re g R AT S i T

cours

Random Variables®

http://media.ed.ac.uk/media/l_legxxc2x

Video Summary: This video discusses the probability density function (pdf) and how
it is used, including how to deal with mixed discrete and continuous random variables.
The key properties of the [pdf] are then defined, and the viewer should then undertake the
exercises associated with this topic.

It was seen in the previous section that gradients of the [cdfl are important when determining the
probability of being within small intervals.

 The probability density function (pdf), fx (z) of a RVl X (({), is defined as a formal

derivative: e
X
fx (2) & —gx( )

Note the density fy (x) is not a probability on its own; it must be multiplied by a certain
interval Az to obtain a probability:

(M:3.1.2)

fx () Az~ AFx () 2 Fx (v + Az) — Fx () = Pr(z < X({) <2+ Az)  (4.10)
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Sidebar 3 Probability of X () taking on a specific value

The simplest way to consider why the probability of a X(¢), taking on a specific value, xg, is
zero for a continuous [RV] but not a discrete one, is to consider the limiting case:

Pr(X(¢) =x0) = lim Pr(zg— Azg < X(¢) < xo + 0x0) (4.13)

Ax0—>0

which can be expressed in terms of its probability density function (pdf), fx (), as:
zo+Axg
Pr(X(¢) =x0) = lim fx (u) du (4.14)

All?()—}O lFO—All?O

Suppose that around the region R = [zo — Az, zo + Az, thepdf] fx (x) can be expressed as:

fx () =pod (z — o) 4.15)

then using the sifting theorem, which states that

T) ifTeR
/gb(t) st—T) dt = | 0T HTER (4.16)
R 0 otherwise
then it becomes clear that
xo+Axo
Pr(X(¢) = xp) = lim Do 6 (x — x0) du = po 4.17)
A:Eo—)O IO_AIO

whereas for the continuous time case, the limit in Equation @ tends to zero. In otherwords, only in
the case when the[pdfjof X (¢), fx (z), contains a delta function at a specific value, will the probability
of that specific value be non-zero. A delta function in a[pdf] corresponds to a discrete-component of
the RVl An example of a mixture of discrete and continous random variables is shown in Figure {.6|
Note the step function in the cumulative distribution function (cdf).

This can be written, more formally, as:

fx () = lim s (4.11)
<
_ g Pr(z < X(¢) <z + Ax) @.12)
Az—0 Ax
e It directly follows that:
Fx(x) = fx(v)dv (M:3.1.4)

* For discrete-valued RV use the probability mass function (pmf), p;, defined as the probability
that X (¢) takes on a value equal to z3: p, = Pr (X (¢) = x4).

The for a discrete can be written as a[pdf] through:

fx ()= ppd(x — ) (4.18)
k
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Figure 4.5: Thelcdfl and [pdf] for a fair six-sided die.
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Figure 4.6: A probability density function and its corresponding cumulative distribution function for
a[RV]which is a mixture of continuous and discrete components.

where () is the Dirac-delta function, and is given by:
d(z)=0 ifx#0 (4.19a)
/ d(z) de =1 (4.19b)

Example 4.3 (6-sided die). Describe the [cdfl and [pdf] for a fair six-sided die.
SOLUTION. The probability mass function (pmf) is given by p; = Pr(X(¢) ==;) = 3, where
vi=i,i€{l,... 6.

The [cdfl can be drawn by noting that Pr (X (¢) < x1) = 0 whereas Pr(X(¢) <z1) = 6. In
otherwords, we need to carefully consider the probability of the events on an interval, not a discrete
event, and hence when the [cdf] actually transitions values.

The [pdf]is obtained by differentiating the lcdft

6

N
fx (@) =) pidlx—x) = é > oz —i) (4.20)
i=1 =1 O

Moreover, a mixture of continuous and discrete components will have a[pdf]that is composed of delta
functions as well as continous functions:

Fxam (@) = oz — @) + fxe(2) 421)
k
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An example of a mixture is shown in Figure[4.6] The [pdffor the distribution shown in Figure 4.6 can
be written as:

fx (@) = (1= p)dla —a) + —=

where u(z) is the unit step function, such that u(z) = 1 if z > 0 and zero otherwise.

(u(x —b) —u(z — ¢)) (4.22)

Integrating, it is can be shown that:

FX(oo)—/_OOfX(x)dx—(l—p)—l—c_bx(c—b)—l 4.23)

The result of a property of [pdfk.

KEYPOINT! (Discussion Topic). Can you think of examples of a mixture of discrete and continuous
random variables?

4.4 Properties of Distribution and Density Functions

The following properties are for continuous [RVk. Similar properties follow, mutatis mutandis, for
discrete [RVk.

* Properties of [cdft

0<Fx(zr)<1l, lim Fx(x)=0, lim Fy(z)=1 (M:3.1.6)

T—r—00 T—r00

Fx(z) is a monotonically increasing function of z:

Fy(a) < Fy(b) if a<b (4.24)
* Properties of [pdfs:
fx (z) >0, /OO fx (z) dx =1 (M:3.1.7)
* Probability of arbitrary events:
Pr (21 < X(C) < 1) = Fy () — Fy (1) = / Y e () da (M:3.1.8)
A0

— End-of-Topic 17: Introduction to pdf and their properties —
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e

4.5 Examples of Continuous random variables

Newsiide  Topic Summary 18 Common density functions and their properties

Topic Objectives:
* Look at common [pdfk used in signal processing algorithms.
* Consider [pdfs across different intervals.

* Resources for finding out other density functions.

Topic Activities:

| Type | Details | Duration | Progress |

Watch video 12 : 54 minute video 3x video length
Read Handout | Read page [105[to page[109 | 8 mins/page

Probabilty, Estimation Theory, | 5
and i ETAR ¢ | Common Continuous RVs

0 ffac(y @asom

‘ fx L:):{“,ﬂ“,_’_h\’ o ifrnp Verabes
@ nnnnnn -
pez —
Ve
" = ol
\ e 7
L oe)
X

http://media.ed.ac.uk/media/1l_tfmx5yn5

Video Summary: This video introduces a number of common probability density
functions (pdfs) that are used in signal processing algorithms. Examples are given over
finite-intervals, the entire real axis, and semi-infinite intervals. More significantly, this
video shows how to use Wikipedia to discover other important densities as and when they
arise in your work. Signal processing applications of the von-Mises and Voigt densities
are mentioned.

Uniform distribution TheRV] X (¢) is uniform on [a, b] if it has [pdf}

L ifa <z <,
Fxlo)={Jpa HOST= (M:3.1.33)
0 otherwise
The[pdf]is plotted in Figure 4.7
Consequently, the lcdflis given by:
0 ifz <a,
Fy(x)={ 2= ifa<az<b, (M:3.1.34)
1 ifx > b.

Thelcdflis also shown in Figure[d.7] Roughly speaking, X takes on any value between
a and b with equal probability.
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Figure 4.7: The uniform probability density function and cumulative distribution function.

Exponential pdf Exponential cdf
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(a) The Exponential [pdi] (b) The Exponential [cdil

Figure 4.8: The exponential density and distribution functions, for various different values of the
parameter \.

The mean and variance of this random variable are given by, respectively:

b b—a)?
i =% and 6% = % (M:3.1.35)
Exponential distribution TheRV] X (() is exponential with parameter A > 0 if it has [pdf}
0 if v <0,
= 4.25
Jx (@) {)\e” if x>0, (*:25)

Consequently, the lcdflis given by:

0 ifx <0
Fy (2) = : 426
x () {1—6_’\1 ifz >0, (4.26)

The exponential distribution occurs very often in practice as a description of the
time elapsing between random events.

The exponential [pdf] and [cdfl are shown in Figure for various different values of
the parameter .

The mean and variance of this random variable are given by, respectively:

1 1
nx =% and 0% = % = Vi (4.27)

Hence, for an exponential distribution, the mean and standard deviation are
identical.
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Normal pdf Normal cdf
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Figure 4.9: The Gaussian density and distribution functions; these plots are for a zero mean normal
[pdi] and are plotted for various different variances, o'%.

Normal distribution Arguably the most important continuous distribution is the normal or Gaussian
distribution; these terms will be used interchangeably.

The [pdf] of a Gaussian distributed RV], X' (¢), with mean px and standard deviation

0%, is given by:

1 1 (x— 2
fx (z) = exp | —= (x “X> . z€eR (M:3.1.37)
\2mo% 2 ox
It is common to denote this by:
fx (x) =N (x| px, o%) (4.28)

Note, however, that if = is a sample of a Gaussian random variable, then it is written:

&~ N (px, o%) (4.29)

The Gaussian [pdfjand lcdflare shown in Figure[4.9]for a zero-mean[RV], and for various
variances, 0%.

Gamma distribution The [RV] X (¢) has the Gamma distribution with parameters o > 0, 5 > 0 if

it has [pdf}

fx (@) 0 ifx <0, (4.30)
X = .
X ﬁaﬁ 2P le o ifx >0,
where ['(3) is the gamma function given by:
IB) = / 2?7 e da (4.31)
0

This distribution is often written as fx (z) = Ga (z|a, 8). If 8 = 1, then X is
exponentially distributed with parameter o.

The Gamma [pdf] and [cdf] are shown in Figure {4.10] for the case when a = 1 and for
various values of the parameter /5.
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Gamma pdf Gamma cdf
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Figure 4.10: The Gamma density and distribution functions, for the case when o = 1 and for various
values of [3.

Inverse-Gamma distribution The RV] X ({) has the inverse-Gamma distribution with parameters
a > 0,8 > 0 is related to a Gamma-distributed RV] say U, through the

transformation X = % It can be shown using the probability transformation rule

that the [pdfof X is thus given by:

fx (@) 0 ifx <0, 432)
x) = o . .
X ﬁaﬁ Bt =% ifx >0,
It is common to denote this by:
fx (@) =2G (z|a, B) (4.33)

Note, however, that if £ is a sample of a inverse-gamma distributed variable, then it is

written:
T ~ZG (a, P) (4.34)

Cauchy distribution The RV] X ({) has the Cauchy distribution with parameters ;1x and 5 if it has
[pdf;
15} 1

fx (@) =~ TR (M:3.1.41)

The Cauchy random variable is symmetric around the value x = px, but its mean
and variance (or other moments) do not exist. The corresponding [cdflis given by:

1 1 —
Fx(x) ==+ ~ arctan — ¥

5t 5 (4.35)

The Cauchy distribution is an appropriate model in which a random variable takes
large values with significant probability, and is thus a heavy-tailed distribution.

Beta distribution The RV] X ({) is beta, parameters a, b > 0, if it has density function:

fy (o) = Bt (=) 0w (4.36)
0 otherwise.
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Weilbull pdf Weilbull cdf
1.4 . : 1 ,
— a=0.5
1.2+ — a=0.75 4
— o=1 0.8
1r — a=13
— a=15
08l a 0.6
< x
v>< x
0.6 -
0.4f
— a=05
0.4 1 — a=0.75
0.2¢f —a=1
0.2f q — 0=13
— a=15
0 : 0 : : ;
0 1 2 3 4 0 1 2 3 4
X X
(a) The Weibull [pdi] (b) The Weibull [cdfl

Figure 4.11: The Weibull density and distribution functions, for the case when o« = 1, and for various
values of the parameter /3.

where the beta function is given by
1
Bla,b) = / N1 - 2)" de 4.37)
0

If a = b =1, then X is uniform on [0, 1].

Erlang-£ distribution The RV] X ({) has an Erlang-% distribution, with parameters v > 0 and
k € 77 is a positive integer, if it has density function:

Yk(ykz)E ! —vkx >0
— (k—1)! ¢ T = (4 38)
x) = .
fx (@) {0 otherwise.
The mean and variance of this random variable are given by, respectively:
1 1
=— and 0% =-— 4.39
X N and oy i (4.39)

Weibull distribution TheRV] X ({) is Weibull, parameters «, 3 > 0, if it has density function:

0 x <0
X = 4.40
fX( ) {Oéﬂ.ﬁ[’g_le_azﬁ >0 ( )
The corresponding the [cdflis given by:
0 x <0
Fx (z) = 441
X() {1—6_‘”55 >0 ( )

Setting 5 = 1 gives the exponential distribution.

The Weibull [pdf] and [cdf] are shown in Figure 4.T1] for the case when a = 1, and for
various values of the parameter /5.

— End-of-Topic 18: Introduction to common density functions —

June 28, 2021 — 08 : 40




112 Scalar Random Variables

1€

New slide

4.6 Probability transformation rule

Topic Summary 19 Probability Transformation Rule and Its Applications

Topic Objectives:
* Need for the Probability Transformation Rule.
* Conceptual Proof.

* Examples and applications.

Topic Activities:

| Type Details | Duration | Progress
Watch video 12 : 25 min video 3x length
Read Handout Read page |1 IOJtipage 113| 8 mins/page
Try Examples Try Examples M and 4.5 15 minutes
Practice Exercises | Exercise ?? to ?? (4 questions) 60 mins

aRs, @ Probability transformation rule

Suppose a random variable ¥ (¢) is a function, g, of a random
variable X (¢), which has pdf given by / (z). What is fy (4)?

'\l“- G0 ’I'—

) ———> L)

The mapping y = g(z).

Ouefﬁ i

st 1 {5

=g

For full lecture notes, se

course, Part |, Handout 4 "Scalar |

Random Variables"

http://media.ed.ac.uk/media/1_asatl2ps

Video Summary: This video introduces the probability transformation rule, for finding
the [pdf] of the mapping of another random variable. A derivation of the transformation
rule is presented, by considering mutually exclusive small intervals, such that the rule is
effectively an application of the axiomatic probability sum rule. An example with a single
root is provided, leading to the log-normal distribution. The viewer is recommended to
work through the example at the end of the inverse transformation of a random variable
that is Cauchy distributed.

Suppose a random variable Y (¢) is a scalar function, g, of a random variable X ({), which has [pdf]
given by fx (z). Whatis fy (y)?

This functional relationship is shown diagrammatically in Figure {.12] and an arbitrary function
between X (¢) and Y ({) is shown in Figure

This general question is discussed in detail in, for example, [Papoulis:1991, Chapter 5]. It can be
concluded that for Y () = ¢(X(()) to be a valid random variable, the function g(x) must have the
following properties:

1. Tts domain must include the range of the RV X ().
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X(©) )
1 M YO=eX©) >

! !

) ——— £O)

Figure 4.12: The mapping y = g(x).

2. It must be a so-called Baire function: that is, for every y, the set R, = {z : g(z) <y, x € R}
must consist of the union and intersection of a countable number of intervals. Only then the set
{Y'(¢) <y} is an event.

3. The events {g(X(¢)) = *oo} must have probability zero.

These properties are usually satisfied, but they are defined in order to avoid difficult cases, where the
function g(x) behaves in a way that mathematical technicalities arise.

Consider the set R C R of the y-axis that is not in the range of the function g(z); thatis, g : R - R.
In this case, Pr (g(X(¢)) € R) = 0. Hence, fy (y) = 0, y € R. It suffices, therefore, to consider
values of y such that, for some z, g(x) = y.

Theorem 4.1 (Probability Transformation Rule). Denote the real roots of y = g(x) by {z,, n €
N}, such that:

y=g(@) =" =g(rn) (4.42)
Then, if the Y ({) = ¢g(X(€)), the [pdfjof Y'(¢) in terms of the [pdf of X (¢) is given by:

h@zgﬁgﬁ (443)

where ¢'(x) is the derivative with respect to x of g(z).

PROOF. First consider the output [pdf| which, by definition, is given by:

fy(y) dy=Pr(y <Y () <y+dy) (4.44)

KEYPOINT! (Informal proof). It would be more precise to use dx and dy instead of dz and dy, and
then undertake a formal limiting operation as per the fundamental operations of calculus. However,
this is a slightly more informal proof that is adequate for the scope of this course.

The set of values = such that y < g(x) < y + dy consists of the intervals:
T, <x <x,+dr, (4.45)

It is easier to understand these proofs if you consider these intervals to be mutually exclusive (which
is why the function g(x) must satisfy the Baire property). This is shown in Figure for the case
when there are three mutually exclusive solutions to the equation y = g(z).

The probability that x lies in this set is, of course:

fx (z,) dz, = Pr(z, < X(() <z, + dz,) (4.46)
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A
Y
y=g(x)
v
y
+
ox, ox, ox,
< >« >«
X, X, X5 ;

Figure 4.13: The mapping y = g(x), and the effect of the mapping on intervals.

and, from the transformation from z to y, then

(4.47)

where ¢'(x) is the derivative W. .t « of g(z).

Finally, since these are N mutually exclusive sets corresponding to the NV different roots to y = g(x),
then

Pr(y<Y(() <y+dy) =Y Pr(z, <X() <z + day) (4.48)
N

~ fy (y) dy = Z fx (wn) day, (4.49)

y) dy = Z fx () —)I (4.50)

Z fx (n) (4.51)

dw r=2n |w,=g=1(y) O

where as a reminder z,, = ¢~ '(y) is the roots of the equation y = g[z], and thus the desired result is
obtained after minor rearrangement.

Example 4.4 (Log-normal distribution). Let Y = e*, where X ~ N (0, 1). Find the [pdf] for the
Y.

SOLUTION. Since X ~ N (0, 1), then:

Ix (z) = e T (4.52)

Considering the transformation y = g(z) = e, there is one root, given by x = In y. Therefore, the
derivative of this expression is ¢’(z) = 2<- = ¢ = y. Hence, it follows:

dx
_fx(@)  fx(ny) 1
fr(y) = 0y (4.53D)

This distribution is known as the log-normal distribution. It is important for cases where the random
variable X might describe the amplitude of a signal in decibels, and where Y is the actual amplitude.
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Example 4.5 (Inverse of a random variable). Let Y = +. Find the [pdf] for the Y, given by
fy (), in terms of the [pdf] for the RV] X, given by fx (x). Further, consider the special case when X

has a Cauchy density with parameter «, such that:

Q 1

T a2+ o2

fx () =

SOLUTION. There is a single solution to the equation y = 1, given by z = i Hence, |¢'(z)| = & =

y?, and:
1 1
=)

In the special case of a Cauchy density,

a 1
Ix (@) T2+ a2
such that:
1 1 1« 1
ro=gi () e
1o 1
= — y2+(%

which is also a Cauchy density with parameter é

(4.56)

(4.57)

(4.58)

— End-of-Topic 19: Derivation of the Probability Transformation Rule,
and some examples —
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4.7 Expectations

)

Topic Summary 20 Expectations and their Properties New slide

Topic Objectives:
* Summary of key aspects of a[pdf}
* Properties of the mean value of a random variable.
* Invariance of the Expectation Operator.

* Examples of finding expected value.

Topic Activities:

| Type | Details | Duration | Progress

Watch video 18 : 08 min video 3% length
Read Handout | Read page|1 14| to page|1 16| | 8 mins/page
Try Example | Work through Example 4.6( | 10 minutes

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by

ARS) @ Expectations

using a few parameters rather than having to specify the entire

density funetion. _L
5 /M s

- 2nd order statistic
“spread of the pdP”

http://media.ed.ac.uk/media/0_jl96xtbds

Video Summary: This video discusses why it is useful to characterise a [pdf] in terms
of salient features which measure the location, spread, asymmetry, and the tails of the
density. Other key statistics are also mentioned in relation to this characterisation. The
expected value is then formally introduced both for continuous random variables, but also
for discrete random variables. The properties of the mean value is then considered for
even and symmetric densities. Next, the video looks at the invariance of the expectation
operator for finding the expected value of a nonlinear function of another random
variable, including a proof. The video finishes with an example showing the expected
value of a trigonometric transformation of a uniform random variable.

To completely characterise a the @ must be known. However, it is desirable to summarise key
aspects of the [pdf| by using a few parameters rather than having to specify the entire density function.
The four salient or key features are shown in Figure d.14] These can be characteristed by looking at
the notion of expectation, which in turn defines moments.
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Skewness Jx(x) 4
- 3rd order statistic

- Measure of asymmetry
- Difference in tails

Mean
- 1st order statistic
- Centre of mass

Kurtosis Variance

- 4th order statistic - 2nd order statistic

- Measure of siz - “spread of the pdf”
of tails

L X

Figure 4.14: The four saliant or key features or statistics of the [pdf,

* The expected or mean value of a function of a[RV] X ({) is given by:

EX(O) = [ o fx () ds (4.59)

R

* Recall: if X () is discrete then, as shown earlier in this handout, its corresponding [pdfl may be
written in terms of its [pmf] as:

fx (z) = Zpk Sz — ) (4.60)
k

where the Dirac-delta, j(z — xy), is unity if x = x4, and zero otherwise.

* Hence, for a discrete [RV] the expected value is given by:

H’x:/$fX () di’?:/fprkfs(l“—ﬂik) d$:zl“kpk 4.61)
R R 7 -

where the order of integration and summation have been interchanged because they do not
depend on each other, and the sifting-property is applied such that:

/ xd(x —xp) de = xy, (4.62)
R

®—

4.7.1 Properties of expectation operator -

The expectation operator computes a statistical average by using the density fx (z) as a weighting New slide
function. Hence, the mean i, can be regarded as the center of gravity of the density.

 If fx (z) is an even function, then p1x = 0. Note that since fx () > 0, then fx () cannot be
an odd function.

o If fx (z) is symmetrical about x = a, such that fy (a —x) = fx (z+a), then ux = a
provided that the mean is finite (and therefore exists).
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* The expectation operator is linear:

ElaX(¢)+ 8] = apx + (M:3.1.10)

s IfY(¢) = g{X(Q)}isa obtained by transforming X (¢) through a suitable function, the
expectation of Y'({) is:

o0

E[Y(Q)] £ E[g{X(Q)}] = / o) fx (x) do (M:3.111)

—0o0

This property is known as the invariance of the expectation operator.

KEYPOINT! (Invariance of the Expectation Operator). This property means that you don’t
need to keep track of which [pdf] the expectation is taken with respect to. Rather, you simply
need to consider the RV] inside the expectation, and the expectation is takenw. . tJ the [pdf] of
that[RV1

As an outline sketch, or simple proof, to prove this result, consider a monotonic one-to-one
function y = g(x), such that using the probability transformation rule fy (y) = Ix@) Then, it

dy
follows that: -

B V= [utr = [o0 5= [ rcwar @ed

dx

Note that cancelling the dy’s is not a formal mathematical process, but it gives an overview
of the proposed approach. A more detailed proof for many-to-one functions with negative
gradients is discussed in much more detail in Sidebar 4]

Example 4.6 (Trigonometric Transformation). The continuous random variable (RV), ©((), is
uniformally distributed between —7 and 7.

1. Calculate the expected value of ©(().

2. Now consider the RV] Y'(¢) = A cos? ©((), where A is assumed to be a constant value. What
is the expected value of Y ({)?

SOLUTION. 1. The expected value of O(() is:

oo T 1
E[0(0)] = / 0 fo (0) di — / 0o o (4.68)
62 "
- 5| =0 (4.69)

2. Using the invariance of the expectation operator gives:

E[Y(()] = E [Acos?0(C)] = / " [Acos? (0)] fo (6) df 4.70)
= % _: cos® (0) df = ﬁ _: (14 cos20) do = g 4.71)

(=] g3 =]
— End-of-Topic 20: Expectations, their properties, and some examples — ﬁ%
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Sidebar 4 Invariance of Expectation

The invariance of the expectation operator is an extremely important property, and makes statistical
analysis of transformed random variables much simpler. It can be explained using similar techniques
to those used in deriving the probability transformation rule in Theorem 4.1}

A
y

y=gx)
v
y
A
ox, ox, ox,
<« > <« >«

Consider again Figure on page|112} which is reproduced above. Let Y (¢) = ¢g (X ({)). Consider
first the approximation for the expectation of Y'({):

E[Y] = / 0 fy @) dy~ Sk fr () 8y (4.64)
=9 Vk

where fy (y) 0y = Pr(yx < Y(C) < yr + dy) is the probability that Y'({) is in the small interval
yr < Y(C) < yr + 0y. This probability, as in Theorem can be written as the sum of the
probabilities that X (¢) is each of the corresponding small intervals shown in Figure above, such
that:

N N
fr W) 6y =D Pr(zpn < X(Q) < Tpn + 02kn) = Y fx (Thn) 02m (4.65)
n=1 n=1

Substituting Equation [4.65]into Equation gives:

N N
E[Y] = Z Yk Z fx (Trn) 02pn = Z Z 9 (@n) Fx (Tem) 0Zkm (4.60)
vk =1

Vk n=1

Since the double summation merely covers all possible regions of x, this can be reindexed as

EY]~ Zg (ze) fx (z¢) 60 (4.67)
Ve
which in the limit gives the integral Equation [M:3.1.11] page[I16l So, in summary, to compute the

expectation of Y (¢) = ¢ (X (()), it is not necessary to transform and find the [pdf|of fy (y), but simply
use this invariance of expectation property.
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4.8 Moments

Topic Summary 21 Moments and Definitions

Topic Objectives:
* General definition of moments.
* Examples of calculating moments.

* Central moments and relationship with moments.

Topic Activities:

| Type | Details | Duration | Progress |
Watch video 17 : 52 min video 3% length
Read Handout | Read page [118|to page[122] 8 mins/page
Try Example | Work through Examples|4.7/and |4.8| | 20 minutes

Example (Exponential Random Variable). Caleulate the moments of
the exponential random variable with parameter A. We can use:

f wedu=n! ne{0,1,2...}
o

SoLuTioN. The pdf for an exponential RV is:

0 ifz <0,
f_\-mz{ =y

cory, [S—
® Moments

Ae ife >0,

The m-th moment is given by:

http://media.ed.ac.uk/media/1l_8kwpp2js

Video Summary: This video builds on Topic 20| by explicitly defining variance in terms
of expectations, and the more general definition of moments. The video then considers
calculating moments for a couple of simple examples, namely the exponential random
variable, but also a property of moments for non-negative random variables. The second
half of the video then considers central moments, and the relationship between moments
and central moments (with an opportunity to mention Pascal’s triangle!).

Recall that mean and variance can be defined as:

BLY(Q)) = px = [ o fx(a)da (472)
var [X ()] = 0% = /R 2? fx(z)de — pi =E [X*(()] — E* [X(¢)] (4.73)

Thus, key characteristics of the [pdf] of a can be calculated if the expressions E [X™({)], m €
{1,2} are known.

Further aspects of the [pdf|can be described by defining various moments of X ({): the m-th moment
of X (() is given by:

¢ 2 [X™(C)] =/Rxmfx(:c)dx (M:3.1.12)
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A A
y Liﬂe Y Line
= Ly
, Y3y w dy
! Yol A
>
0 X, X, +0x ; 0 X, ;
(a) Integration W.T.t]x (b) Integration W.T. €] y
first, and then 1. first, and then x.

Figure 4.15: The region of integration for the integral in Equation W

Note, of course, that in general: E [X™({)] # E™ [X({)].

Example 4.7 (Exponential Random Variable). Calculate the moments of the exponential random
variable with parameter A. We can make use of the formula (proof left as an exercise for the reader!):

/ u" e " du=n! ned0,1,2 ...} (4.74)
0

SOLUTION. The [pdf]for an exponential RV]is (see Section §.5| for full details):

0 ifz <0
= ’ 4.75
fx (@) {)\e_)“ ifx >0, (72

The m-th moment is given by:
E[X™(Q)] = / ™ fx (z) dz = A / ™ e dy (4.76)
0 0

Using the provided formula by setting u = A x such that when z = {0, oo} then u = {0, oo}, and
du = Adz, it follows:

1 [~ !
E[X™(C)] = — / u" e du = —— (4.77)
xm A
U
In particular, by setting m = 1, the mean is given by pux = E [X({)] = 1/
Setting m = 2, the second-moment is E [X?(¢)] = 2/»?, which means the variance is given by

0% = var [X(Q)] = 2 — (3} = & = i3

Example 4.8 (Expectations of non-negative RV5). Let X () be a non-negative RV]with[pdf] fx (z).
Show that

E[X™()] = /0 N ma™ ' Pr(X(¢) > ) dv (4.78)

for any m > 1 for which the expectation is finite.
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SOLUTION. In this case, since the question says to show that, it is sufficient to manipulate the right

hand side (RHSJ). This proceeds as follows: notice
(4.79)

/Oomxm_lPr(X(C) > 7) d:p:/ooomxm_l{/y:xfx dy} d

0
and rearrange the order of integration, noting the region of integration as shown in Figure 4.15] and
(4.80)

(4.81)

thus the change in the limits
/ fx (y {/ max™” 1daz} dy

=E[X™()]
U

/fx dy—/o y"fx (y) d

4.8.1 Central Moments
Central moments of X ({) can also be defined: the m-th central moment of X (() is given by
(M:3.1.14)

— [ 0" fx(o)da

2 E[(X(C) — px)™]

Some obvious properties that follow from these definitions are
(4.82)

* The variance of X (¢) can be defined as
var [X(()] £ 0% 29 =B [(X(Q) = px)’]

var [ X (¢)]-

» Standard deviation is given by: ox =

¢ Trivial moments: rﬁ?) = land r§§) = [LX.
O = =1, 7(1) 0, and 7&2) =0%.

* Trivial central moments: v

The polynomial term in Equation can be expanded as
( ) Bk gmek (4.83)

(r—px)" = 2™ —px w4 = px 2™
k=0

where the polynomial coefficients (?) can be found using Pascal’s Triangle, as shown in Sldebarl
This leads onto the relationship between moments and central moments as discussed in the next

section.
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Sidebar 5 Combinatorial terms and Pascal’s Triangle

A reminder of high-school maths that "¢, = (7;;) can be obtained via Pascal’s triangle. These
combinatorial terms are the coefficients of the polynomial expansion:

(a+b)m:am+mclam—1b+m02am—2b2+

which can be calculated from Pascal’s triangle, as shown below.

ey
VAYAS
VAYAYAN
ININININ
ININININ SN
ININININ NN
INININININ NN

4.8.2 Relationship between Moments and Central Moments

Moments and central moments are related by the expressions:

m = m m—
=3 ()t (3116
k=0
m “ m m—k
= (k)u'§< 7w (4.84)

B
Il

0

where the general combinatorial term "C,. = (") is given by

e 4.85
"ol (n—r)! (4.85)
In particular, second-order moments are related as follows:
0% =@ — 3 = E [X*(0)] — E* [X(0) (M:3.1.17)

PROOF. These results are proved by expanding the term (x — p,)™ in the expression for
central-moments using the binomial expansion.

Thus, recalling that

Y =E[(X () — px)™] (4.86)
= /(1’ — px)" fx(x) dx (M:3.1.14)
R
then using the binomial:
(x+a)" = (Z) 2ok = (Z) a* " (4.87)
k=0 k=0
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it follows:

A = /R > (C’:) 2™ (—px)F fx(2) de (4.88)

k=0
_ — (m C1\k K m—k
=> L (=" ux [ 2™ fx(z)dx (4.89)
R
k:(] N - 7
(m—k)
X
as required. Similarly, note that
) z/[(a:—ux)+ux]m fx(2) dz (M:3.1.12)
R
_ — (m k(.. m—k
_ / Z(k)ﬂx (2 — )™ fx (@) dz (4.90)
R
k=0
—i ") i [ @ = )™ fx(@) d 4.91
= i ) Hx (= pux)"™™" fx(z) dx (4.91)
k=0 R -— . O
AR

giving the desired result. These expressions can also be obtained by using the linearity property of
the expectation operator, rather than using the integral expressions above.

— End-of-Topic 21: Moments —
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4.8.3 Higher-Order Statistics

Topic Summary 22 Higher-Order Statistics

Topic Objectives:
» Skewness and its intepretation.
» Kurtosis and its intepretation.

» Examples of calculating skewness and kurtosis.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 11 : 44 min video 3x length

Read Handout Read page|123[to page|125] | 8 mins/page
Try Examples Try Examples IAQ' and 4. 10| 15 minutes
Practice Exercise | Exercise ?? 20 minutes

RS, ® Higher-Order Statistics

Two important and commonly used higher-order statisties that
are useful for characterising a random variable are:

James R. Hop
James.Hopgood|

|

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:
S o oS

=
H‘LTH.\m-,‘\-}‘] e
pag SRl 6
ox 7T
LT
and is a dimensionless quantity. o |, &aé’d’\_
Sl L
o KP<o £y (
- \ RN

http://media.ed.ac.uk/media/1l_8kwpp2js

Video Summary: This video looks at two important and commonly used higher-order
statistics that are useful for characterising a random variable, namely skewness and
kurtosis. The video gives a physical meaning to each statistic and a mathematical
definition. The video shows an example of calculating skewness for the exponential
distribution, and kurtosis for the standard Laplacian distribution. The video then finishes
with examples of using these higher-order statistics in signal processing applications.

Two important and commonly used higher-order statistics that are useful for characterising a random
variable are:

Skewness characterises the degree of asymmetry of a distribution about its mean. It is defined
as a normalised third-order central moment:

X)) = px)? 1
0 L E {%} = (M:3.1.18)
X
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1)

>
X
Negative Skew Positive Skew

Figure 4.16: A graphical representation of the skewness of a[pdf]

and is a dimensionless quantity. The skewness is:

< 0 1if the density leans or stretches out towards the left

= _ ),

Ky if the density is symmetric about px (4.92)

> (0 if the density leans or stretches out towards the right

In otherwords, if the left side or left tail of the distribution is more stretched out than
the right tail, the function is said to have negative skewness (and is sometimes said to
lean to the left). If the reverse is true, it has positive skewness (and leans to the right).
If the two are equal, it has zero skewness.

Kurtosis measures relative flatness or peakedness of a distribution about its mean value. It is
defined based on a normalised fourth-central moment:

X(¢0) = px 1
A2 {%} ] ~3= 5 -3 (M:3.1.19)
X

This measure is relative with respect to a normal distribution, which has the property
7&?) = 30_%(, therefore having zero kurtosis. For this reason, this measure is some
times known as kurtosis excess, with kurtosis proper having the same definition but

without the offset of 3.

Example 4.9 (Exponential distribution). Calculate the skewness of an exponential random variable
with parameter \.

SOLUTION. From earlier calculations in Example it was was shown that the m-th moment was

given by r;’") = m!/xm,

It can also be shown, by expanding the expression for skewness (see Unknown exer:skewness), that:

(3) (1) .(2) (1)y3
N ry —3ry Ty +2(r
/&’) _'x X Ué( (rx’) (4.93)
X

Hence, since it was also shown that 0% = 1/»2, then:

@ _ a5 =33 425

=2 (4.94)

Positive skewness indicates leaning to the right, which it does!
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Example 4.10 (Laplace distribution). Calculate the Kurtosis of the standard Laplace
distribution, fy (z) = fe 1, z € R.

SOLUTION. Note that as the density is symmetric, the skewness is zero! Moreover, you can show
that the odd moments are also equal to zero through symmetry (left as an exercise to the reader).

The even moments are given by:

m 1[0 L[~ -
rg(): —/ ™ e” dx—i—E/ e " dx—/ 2" e dr =m! (4.95)
0 0

—00

Hence, using the formula for Kurtosis (noting rﬁ? =0):

_ 4 4)
{X<C) ux}]_gz X 33— 4‘!2_3:3 (4.96)
ox <Tg>> (2) 0

Ry =E

Skewness and kurtosis are used in signal processing in the following applications:

Signal Separation is only possible if the signals are statistically distinctive and this requires
non-Gaussianity; maximising kurtosis means that separated signals are ensured to
be as non-Gaussian as possible.

Outlier detection As kurtosis is a measure of heaviness of the tails, it also provides a metric for the
number of outliers. Outliers, for example positive values, can also lead to asymmetric
densities, measured by skewness.

Features Skewness and kurtosis can be used in feature-based classification and machine
learning algorithms.

— End-of-Topic 22: Skewness, Kurtosis, and their Applications —
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4.9 Characteristic Functions

Topic Summary 23 Characteristic, Moment, Probability, and Cumulant Generating Functions

Topic Objectives:
* General definition of moments.
* Examples of calculating moments.

* Central moments and relationship with moments.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 23 : 20 min video 3% length
Read Handout Read page |126| to page |133| 8 mins/page
Try Examples Try Examples4.11, 4.11] and [4.13| | 30 minutes
Practice Exercise | Exercises ?? to ?? 100 minutes

t
@ Characteristic Functions

The characteristic function of a rv X (() is defined by:

Ix(€) 2 E {ui “H] [\ fx () e/ da

When ;¢ is replaced by a complex variable s, the moment

generating function is obtained:

«T)\h:;Z[f'““J = [\ fx () e da

Using a series expansion for X< gives: (34 [7‘('”/
SER B U
| . | 4o’ am chw

For full lecture notes, see PETARS
course, Part |, Handout 4: "Scalar
Random Variables"

http://media.ed.ac.uk/media/1_go43cjlqg

Video Summary: To readers familiar with Signal and System analysis in Engineering, it
will be second nature to apply the Fourier and Laplace transforms as a powerful tool for
mapping functions from one domain to another in order to simplify subsequent analysis.
This video looks at using this trick for mapping the [pdf] into a characteristic or moment
generating function (MGE), which can then easily be used for a number of probability
analysis problems. The key application here is for calculating moments for continuous
random variables. The probability generating function (PGE), which is the z-transform
of the [pdf] is used in the same way for dealing with discrete-random variables. Finally,
cumulants are also mentioned. An example of calculating the for a geometric
distribution is presented.

The Fourier and Laplace transforms find many uses in probability theory through the concepts of
characteristic functions and[MGFs. They have similiar useful applications in probabilistic analysis,
where these transforms can be used to simplify manipulations of [pdfs, and evaluating properties such
as finding moments. Ultimately, as with all transform methods, the usefulness of these techniques
depends very much on the availability of transform pairs, or whether numerical calculations of the
transform is efficient.
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The characteristic function of a rv X (() is defined by the integral:
Dy (&) £ E [£X9] = / fx (z) &% dx (M:3.1.21)

This can be interpreted as the Fourier transform of fx (z) with a sign reversal in the complex
exponent. To avoid confusion with the [pdf] F'x(z) is not used to denote this Fourier transform.

When j¢ is replaced by a complex variable s, the moment generating function is obtained, as defined
by:

Dx(s) 2 E [eXO] = / h fx (z) e dx (M:3.1.22)

which can be interpreted as the Laplace transform of fx (z) with a sign reversal in the complex
exponent.

KEYPOINT! (Relationship to Moments). The[MGHcan be directly related to the momements by an
expansion of the exponential term, and use of the three R’s, namely: replace, reorder, and recognise.
This will give us a relationship between the and the moments, such that the moments can easily
be obtained (or generated).

One of the most useful applications for the is, as the name suggests, a technique for finding
moments quickly and efficiently. To demonstrate this, consider the following analysis.

Using a series expansion for e*X(©) gives an alternative expression for the moment generating function

(MGE): [T

> —<3X(,C))n] (4.98)
n!
n=0
= > S EX™() (4.99)
Noting that E [X"(¢)] = ", it follows that:
Ox(s) =) s r) (M:3.1.23)

provided that every moment rg(m) exists. A physical intepretation of this result is that the is the
Laplace transform of the |pdflis a weighted summation of all the moments of the

Thus, if all moments of X ({) are known and exist, then o x(s) can be assembled, and upon inverse
Laplace transformation, the [pdf] fx () can be determined. This is described in more detail in
Sidebar [l

Differentiating ® x (s) m-times s, provides the mth-order moment of the RVIX ({):

) _ d"Px(s)|  _ (—j)™ d"®x (£)

. mezt (M:3.1.24)
ds™ |, dém |,

't is better if you can work through some of these results for yourself without always having to check every minor
step, but just in case you’ve forgotten, the power series expansion for the exponential function is given by:

% = i x—' (4.97)
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Sidebar 6 Estimating [pdfs from moments

k=1{1,2, 3}

{z[n], ne€ {0, ..., N —1},as:

The relationship between the and the moments of a[RV]in Equation lead to a method
for estimating probability density functions. Suppose, for example, that the first three moments of
a [RV] have been estimated (using the techniques later in the estimation theory handout) as fgf) for

For example, it will be seen that the first and second moments can be estimated from /V data points,

and the proof continues for all moments.

. 1 . 1
rgp THX =N ;0 z[n] and XM = N2 HZZO a?[n] (4.103)
The can then be estimated by the approximation:
2
x(s) m 1457 + = “+% 7 (4.104)
The [pdf] can then be estimated by taking the inverse-Laplace transform to give:
Fx(2) = £ (éx(s)) (4.105)
This is shown by differentiating Equation term by term:
7 M, 5 @, 5 o
Ox(s)=1+sry +2TX—|—ETX—|—--- (4.100)
AP (s) y 2 (s dPx (s) 1
- =P 4@ 42 g > — SO:TEQ (4.101)
Similarly, differentiating again:
d*®Px (s d*dx (s
d;( ) @0 d;_( ) . r® (4.102)

Characteristic functions and [MGEs have applications to:

Manipulations of distributions, and specifically linear functions of independent variables; the

characteristic function helps obtain complex results in a simplified manner.

Used in proofs such as the central limit theorem in Section(5.10

Calculating moments in a much faster way than finding the expectations directly.

Theorem 4.2 (Characteristic Functions). The characteristic function ®x () satisfies:

1. |Px(&)] < Px(0) =1forall €.

2. &y (&) is uniformly continuous on the real axis: R.




4.9. Characteristic Functions 131

3. ®x () is nonnegative definite, which is to say that:

Z Z Dy (& — &) 22 >0 (4.106)
for all real &; and complex z;.
PROOF. 1. Clearly, ®x(0) = E [1] = 1. Furthermore, using the Schwartz inequality:
¢l < /fx ) |e?*| do = /fx (4.107)

as required.

2. This is quite a technical property, but for completeness is proved here. Consider:

[Py (E+ 08 —Dx(8)] = |E [ej(§+5§)X(C) _ leX(C)] ’ (4.108)
using the linearity property of the expectation operator. Using Schwartz’s inequality again,
where it can be deduced that |[E [-]| < E[| - |], then:

(D (€ + 66) — By (€)] < E [|SEFOXQ) _ pitXQ)] (4.109)

<E [[eM9 (e7X9 —1)] (4.110)
<E [|e%N9) —1]] (4.111)

Clearly, the quantity |e*(©) — 1| — 0 as 6¢ — 0, and thus
|Px(§+08) — Px(&)] -0  asd — 0 (4.112)
and therefore ® y () is uniformally continuous.

3. Finally,

> Z Dx(&p — &) 22y = Z > 2 / fy (z) & 807 g (4.113)
p q
/ fx (z { Z 2T e Jfﬂ} dx (4.114)
2
/fX Zzpejspw

dr =E
p
Example 4.11 ( [Manolakis:2000, Exercise 3.6, Page 144]). Using the moment generating
function, show that the linear transformation of a Gaussian is also Gaussian.

2
e]fzﬂ

>0 (4.115)
U

SOLUTION. To answer this question, proceed as follows:

1. Find the moment generating function of a Gaussian [RV},
2. Write down Y (¢) = aX({) + b, such that:
Dy (s) £ E [ O] = E [e@XOH)] = ¢V [e2XO] = PPy (s0a) (4.116)

where the linearity of the expectation operator has been used.
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3. Check to see what distribution this new moment generating function corresponds to.

Thus, start by noting that a Gaussian random variable has [pdf] given by:

1 1 /2~ 2
fx(a) = N [—5 (x UX“X) ] . z€R (M:3.1.37)

and the moment generating function is given by:

Dx(s) £ E [eM9] = / N fx (z) e dw (M:3.1.22)

Substituting one into the other gives

2
= T — Kx
Dy (s ex e dx 4.117)
x(s) = TWX p[ (5 )]
_9 2 2
_ 7 exp {—x (px + ;'Xs)x i ”X] d (4.118)
\/27r<7§< —o0 20%

which, by completing the square, can be written as:

2 2 2 2 12
- — —(2
(bX(s) eXp SU {/'LX +UXS}) 2( /’LXUX8+ {UXS} ) dax (4119)
Vi 27TO’X 20%
_ 1 _ 2 61)?
Oy (s) =exp |:qu + O'XS } / exp (z = {px —2’_ ox5}) dx (4.120)
\/27TUX 20%
=1
Thus gives the moment generating function for a Gaussian as:
- 1
dx(s) = exp [,uxs + 503092} (4.121)

Hence, the moment generating function for the RV Y (¢) = a X ({) + b is given by:

_ - 1
Dy (s) = PPy (sa) = e exp [a,uxs + 50—%(@232} (4.122)
1 1
= exp {(aux +b)s+ §(a§a2)s2] = exp |fty8 + 20}2/32] (4.123)
U

where py = apx + b and oy = aox. Thus, the form of the moment generating function for Y'(¢) is
the same as that for a Gaussian[RV], and therefore is a Gaussian [RV]

4.9.1 The probability generating function

* The characteristic function and [MGEF can be extended to deal with discrete random variables
by replacing the Laplace and Fourier transforms with the z-transform and [DTFT], respectively.

* Itis, however, necessary to modify how moments are calculated from the as the following
example shows.
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Example 4.12 (PGF)). Let X (({) be a discrete random variable taking non-negative integers, k, with
[pmf] given by p, = Pr (X (¢) = k) if £ > 0, and zero otherwise. Its[PGHis defined as

Gy (2) = X(C) Zpkz

1. Show that the expected value, 1y, of X (() can be written as:

dGX (Z)

px =E[X(Q)] = =5

stating clearly the value of z, required for this to be true.
2. Find an expression for the variance 0% of X (¢) in terms of Gx (2).

SOLUTION. 1. Differentiating G'x (2) z term by term gives:

dGx () _ < k-1
o pk Z ek z (4.124)

and setting z = 2y = 1 gives (by definition):

dGX (Z)
dz

= pek = px (4.125)
k=

2. To find an expression for the variance 0% of X(¢) in terms of Gx (z), then differentiating
Equation 4.124]again gives:

d2G
4 Cx 7) Zpk Zpk k(k—1)z (4.126)
Setting z = 1 gives
dQGX (Z)
= Zpk =K [kﬂ (4.127)

Since 0% =E [X(¢)*] — 1% = E [k?] — pi%, it follows that

_ dQGX (Z)

2
o
X dz?

4 dGX (Z)

2
4.128
dZ z:1‘| ( )

z=1

It is also acceptable to leave the first two terms as a combined derivative, so an equally valid

answer would be:
0_2 _ i ZdGX (Z) B dGX (Z)
X dz dz 1 dz

Example 4.13 (Applying[PGF). The geometric distribution is used for modelling the number of
consecutive independent successes before a failure, and its is given by

B p(1—p) " k>1
Pr = 0 otherwise

2
} (4.129)
z=1 ]

where 0 < p < 1 is an individual probability of failure.
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1. Find the probability generating function (PGE) for this distribution, and write down conditions

on z for when the exists.

2. Using the probability generating function, or otherwise, find the mean of this distribution, and

SOLUTION.

show that the variance is 1p;2p'

z-transform’:

Gx(2)=> pl—p" 2t

setting n = k — 1, so that when £ = 1 then n = 0, so that:

Gx (2) =pz Z [z(1—p)]"
pz
Gx (2) = T=:(1=p)

This series converges for |z (1 —p)| < 1or |z| < l%p.

. The mean is given by differentiating the which gives:

dGx (z) pl—z(-p|-[=0=-p]pz _ p
dz [1—z(1-p) [1—=z(1-p)
and by setting z = 1, this gives the mean of yx = z% = ;1).
Differentiating for a second time, then
PGx () —2x—(1-p)
2 =)
Setting z = 1 gives
d*Gx (2) _2(1—-p)
=2 | _, P
Using the result:
o PGx ()| dGx ()| [dGx ()] T
X =2 |._, dz | ., dz |,._;
and using Equation {.128] gives the desired answer:
2(1—p) 1 1 2-2p+p-—1
2
KETE TR T p

1. To find the of the Geometric density, then noting that py = 0, and taking the*

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)
U
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4.9.2 Cumulants

Cumulants are statistical descriptors that are similar to moments, but provide better information
for higher-order moment analysis. Cumulants are derived by considering the moment generating
function’s natural logarithm. This logarithm is commonly referred to as the cumulant generating
function. This is given by:

Ux(s) £Indx(s) = InE [eN9] (M:3.1.26)

When s is replaced by j&, the resulting function is known as the second characteristic function, and
is denoted by U (£).

The cumulants, /ig?l), of a X((), are defined as the derivatives of the cumulant generating
function; that is:

(m) é dm\I/X (S)

m A"V x(€)
X ds™

= (=J) TdEn |y

meZt (M:3.1.27)
s=0

The logarithmic function in the definition of the cumulant generating function is useful for dealing
with products of characteristic functions, which occurs when dealing with sums of independent RVEk.

— End-of-Topic 23: Characteristic, Moment, Probability, and Cumulant (B2 ]
Generating Functions — R
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Random Vectors and Multiple Random
Variables

This handout extends the concept of a random variable to groups of random variables known as
a random vector. The notion of joint, marginal, and conditional probability density functions is
introduced. Statistical descriptors of joint random variables is discussed including the notion of
correlation. The probability transformation rule and characteristic function is extended to random
vectors, and the multivariate Gaussian distribution studied.

136
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5.1 Abstract

Topic Summary 24 Introduction to Random Vectors

Topic Objectives:
* Introduction to the concept of random vectors.
* Formal definition of random vectors.

¢ Definition of the joint-cumulative distribution function (cdfl) and joint-probability density

function (pdf).

Topic Activities:

| Type | Details | Duration | Progress

Watch video 10 : 20 min video 3% length
Read Handout | Read page 135|to page|137| | 8 mins/page

Py ry 5
A [m‘jw v N
- . XL . e
e :‘.‘//‘ >

resentation of a random vector.

LA (S0 korm evens

http://media.ed.ac.uk/media/l_asatl2ps

Video Summary: A short introduction to random vectors, why multiple random
variables occur as a group, and some example applications of random vectors. A
graphical representation of a random vector which builds on the same concept from scalar
random variables is presented. A formal definition of the random vector is discussed,
followed by the definition of the joint{cdfl and joint{pdi]

A group of signal observations can be modelled as a collection of random variables (RVE) that can be
grouped to form a random vector, or vector

* This is an extension of the concept of a[RV] and generalises many of the results presented for

scalar [RVk.

* Note that each element of a random vector is not necessarily generated independently from
a separate experiment. In other words, the output of a single experiment might be a series of
related random variables; for example, biomedical signal analysis, where multiple readings are
taken simultaneously.

* Random vectors also lead to the notion of the relationship between the random elements.
For example, an experiment might yield multiple outputs that are related somehow. In
biomedical Engineering, it might be that electroencephalogram (EEG) signals obtained by
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Physical

Experiment Outcome| _ x G) ,

Cl = xl:yl:zl]

QOutcome N X)) T
& [z

Outcome
N (SN
- [xz’y »Z 3] \\\\\\ < //

Outcome

Abs‘[}act G
sample space, S

Figure 5.1: A graphical representation of a random vector.

taking measurements from various different positions on the human body are related due to
electrical conductance through the body between sensors.

e This course mainly deals with real-valued random vectors, although the concept can be
extended to complex-valued random vectors. Details of how to deal with complex-valued
random vectors will be discussed in these lecture-notes where they are appropriate and useful,
but not specifically as a separate topic. Note that the case of a complex-valued RV] X ({) =
Xr(€) + 7 X;(¢) can be considered as a group of Xz(¢) and X;((), where these are both
real-valued [RVk.

5.2 Definition of Random Vectors

A real-valued random vector X () containing N real-valued [RVk, each denoted by X,,(¢) for n €
N ={1,..., N}, is denoted by the column-vector:

X(0) = [X1(Q) X2(¢) -+ Xn(Q)]" (M:3.2.1)

Hence, the elements or components of X(() are real-valued RVk. The complex-valued RV] X (¢) =
Xr(C) + 7 X;(¢) where Xr(¢) and X;(C) are real-valued RVk can be expressed as the following

complex-valued random vector:
X
X(¢) = { R(O] (5.1)

X1(¢)

A real-valued random vector can be thought as a mapping from an abstract probability space to a
vector-valued, real space R”. Thus, the range of this mapping is an /N-dimensional space, as shown
in the graphical representation in Figure

Denote a specific value for a random vector as:
T
X = [1’1 Tog - xN} (5.2)

Then the notation X ({) < x is equivalent to the event {X,,(¢) < z,, n € N'}.
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5.2.1 Distribution and Density Functions

)

New slide

As with random variables, a random vector is completely characterised by its [cdfland [pdf] These are
direct generalisations of the case for a[RV] and most of the time involve converting a single integral
or summation to a multiple integral or summation.

The joint [cdfl completely characterises a random vector:

Fx (x) £ Pr({X,(¢) <2, n € N}) =Pr(X(¢) <x) (M:3.2.2)

A random vector can also be characterised by its joint [pdf}

Pr({z, < X,.(¢) < xp, + Az, n € N'})

o0 0 0
N al’l 81'2 o 8IN FX (X) (53)

where Ax = Az Azy---Azxy, and Ax — 0 =2 {A, = 0,n € N}. The joint [pdf] must be
multiplied by a certain N-dimensional region Ax to obtain a probability.

Hence, it follows:

Fx (x) = /wl /xN fx (v)doy -+ dvy = /x fx (v)dv (M:3.2.6)

— End-of-Topic 24: Introduction to Random Vectors, its definition, and
joint distribution and density functions —

(= ]
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Topic Summary 25 Joint Distributions and Densities

Topic Objectives:
* Familiarise with properies of joint{cdfl and joint{pdf]
* Example of finding joint{cdfl from joint{pdf]

* Consider probability of arbitrary events.

Topic Activities:

| Type | Details | Duration | Progress |
Watch video 17 : 49 min video 3% length
Read Handout Read page |13ﬂ£) page |140| 8 mins/page
Try Example Try Example |5 .1| 15 minutes
Practice Exercises | Exercises ?? and ?? 40 mins

o o £Xf’f§é P 1 %< )_((S){g,]

Interms “elementd re 5\om"

EIR ) v onCo] AL
[x;(s) & V‘l ¥ 2? ﬁ

7
= 2

e e e '?Cﬁllq// {2({%’}
i " On<l]

p
Z
I

http://media.ed.ac.uk/media/1_10k89%edo

Video Summary: This video looks at the properties of jointdcdfl and joint{pdf] It
also looks at the probability of arbitrary events, and shows that the relationship to the
axiomatic events that define the [cdfl is slightly more involved than the scalar case. The
video then considers the example of finding the jointdcdfl from a joint{pdf] Following the
video, the viewer should consider the problems in the tutorial exercise sheet.

As with scalar [RVE, the distribution and density functions satisfy the following conditions:
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* Properties of joint{cdft

0<Fx(x)<1l, lim Fx(x)=0, lim Fx(x)=1 (5.4)

X——00 X—00

Fx (x) is a monotonically increasing function of x:
Fx(a) < Fx(b) if a<b (5.5)

Finally, a valid joint{cdfl must have a valid corresponding joint{pdf} it is possible to find a
function of multiple parameters which satisfies the properties required of a jointicdfl but the
partial differentials of the lcdfldo not form a valid joint{pdfl An example is given in the tutorial
questions.

* Properties of joint{pdfs:
Jx (x) =0, / fx(x)dx=1 (5.6)

Similarly, a valid [pdf] must have a corresponding valid [cdfl — although this is virtually always
the case for functions that satisfy the properties in Equation

* Probability of arbitrary events; note that in general the following relationship is not true!
Pr(x; <X (() <x3) = / fx (v)dv # Fx (x2) — Fx (x1) (5.7
X1

There is an exercise in the tutorial questions that will show you the true relationship for two

[RVk.

Example 5.1 ([Therrien:1992, Example 2.1, Page 20]). The joint{pdf] of a random vector Z(()
which has two elements and therefore two random variables given by X (¢) and Y ({) is given by:

(5.8)

b (2) Hez+3y) 0<{z,y} <1
Z =
z 0 otherwise

Calculate the joint-cumulative distribution function, F7 (z).

SOLUTION. First note that the [pdf]integrates to unity since:

oo 1ol 11711
/ fz (z) dz:/ / §(x+3y) dmdy:/ 5 {§x2+3xy] dy (5.9)
—00 0 0 0 0
1 3 y  3y? b
—/0 1Ty = {ﬁﬂo—z

The [pdf| and the region over which it is non-zero is shown in Figure[5.2]

3
-=1 1
+4 (5.10)

The cumulative distribution function is obtained by integrating over both = and y, observing the limits
of integration.

Forz < 0ory <0, fz(z) =0, and thus Fz (z) = 0 also.
If0 <2z <1land 0 <y <1, thelcdflis given by:

z Yy zq
Fz(z):/ fz (z) dz = ), 5(;i+3g) dz dy (5.11)
V1 (22 1 [ 2? 312 xy
() di= = ([ L 5.12
/02(2+wy)y 2<2y+2) 4 (@ +3y) (5.12)
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PDF

Non-zero
region
1 'x
(a) A plot of the [pdf] (b) Region of
integration.

Figure 5.2: A plot of the probability density function, fz (z), for the problem in [Therrien:1992,
Example 2.1, Page 20], and a figure showing the region over which the [pdf] is non-zero, which is the
region of integration for calculating the [cdfl

Finally, if z > 1 or y > 1, the upper limit of integration for the corresponding variable becomes equal
to 1.

Hence, in summary, it follows:

0 r<0 or y<O0
Pr+3y) O0<z,y<1

Fz(z) =4 %(z +3) 0<zx<1l, 1<y (5.13)
Y(1+3y) O<y<l,l<u O
1 1<z, y<oo

Thelcdflis plotted in Figure[5.3]

— End-of-Topic 25: Properties and Examples of Joint Distributions and
Densities — Gj2!
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Figure 5.3: A plot of the cumulative distribution function, F7 (z), for the problem in [Therrien:1992,
Example 2.1, Page 20].

5.2.2 Complex-valued and vectors

Please note that this section on complex-valued random variables and vectors will not be examined.
It is purely for completeness of the notes.

In applications such as (radio) channel equalisation, array processing, and so on, complex signal and
noise models are encountered. To help formulate these models, it is necessary to extend the results
introduced above to describe complex-valued random variables and vectors. A complex random
variable is defined as X (¢) = Xgr(¢) + jX1(¢), where Xr(¢) and X;({) are both real-valued RVk.
Thus, either X ({) can be considered as a mapping from an abstract probability space S to a complex
space C, or perhaps more simply, as a real-valued random vector, [X(¢), X;(¢)]”, with a jointlcdfl
Fx, x, (x;, z;), and joint[pdf] fx, x, (x,, z;), that can thus lead to a full statistical description.

Thus, the mean of X ({) is defined as:
E [X(Q)] = px =E [Xr(() + jX1(Q)] = pxn + jpx, (M:3.2.8)
and the variance is defined as:
var [X(Q)] = 0% = E [|X(¢) — px|”] (M:3.2.9)
which can be shown to equal
var [X ()] = E [|X (O] — |ux]’ (M:3.2.10)

PROOF (EQUIVALENCE OF VARIANCE EXPRESSIONS FOR A COMPLEX-VALUED RV). Beginning
with the natural definition of the variance, then:

ox =E[IX(0) — px/’] (M:3.2.9)

=E [(X(¢) — px)" (X(¢) — px)] (5.14)

=E [|X(¢) P = u3 X (¢) = X*(Q)px + |px|’] (5.15)

=E [|X(¢) ] —y}E[VX(C)l—QE[X*@] px + x| (5.16D)
Eflpx]?] E[lpx|?]

giving the desired result.
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Similarly, a complex-valued random vector is given by:

Xri(Q) X1 (¢)
X (¢) = Xg(() +jX1(¢) = : +3J : (M:3.2.11)
Xrn(Q) Xin(¢)

Again, a complex-valued vector can be considered as a mapping from an abstract probability space to
a vector-valued complex space CV. However, some prefer to consider it a mapping to R?", although
this viewpoint does not always provide an elegant derivation of many results. The joint[cdfl for X ({)
is defined as:

Fx (x) £ Pr(X (¢) <x) £ Pr(Xz(¢) < x,, X;(¢) <x) (M:3.2.12)

while its joint [pdf] is defined by

Pr(x, < Xg(() < x, + Ax,, x; < X7(¢) < x; + Ax;)

X (X) ﬁ,lc 0 Axypy - Arp Ay - Axin (M:3.2.13)
f m x :3.2.

= . F
0z, Oz Ox,n 0N X <X)

where Ax = Ax,1Ax;; - - - Azv,.yAx;n. Moreover, it follows:

Fx (X):/ ' / / ' / fx (v)dvrldvﬂ---dedvm:/ fx (v)dv (M:3.2.14)

Note that the single integral in the last expression is used as a compact notation for a multidimensional
integral over all real and imaginary parts, and should not be confused with a complex-contour integral.

These probability functions for a complex-valued random vector or variable possess properties similar
to those for real-valued random vectors, and will not be reproduced here. Note, in particular, however,
that:

/ " fx(v)dv =1 (M:3.2.14)
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5.2.3 Marginal Density Function

Topic Summary 26 Marginal Distributions and Densities

Topic Objectives:
* Introduce notion of marginal density and distribution.
* Example of finding marginal{pdfiand marginal{cdf] from joint{pdi}

* Consider applications of marginals.

Topic Activities:
| Type Details | Duration | Progress
Watch video 11 : 38 min video 3% length
Read Handout Read page |14ﬂ£) page |145| 8 mins/page
Try Example Try Example @l 15 minutes
Practice Exercises | Exercise ?? 20 mins

Probabilty, Estimation Theory,

nals (PETARS) Marginal Density Function

Example (Marginalisation).
la+3y) 0<{z. y}<1
/z(Z)—{~( Y <H{e,y} <

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.

Soin ‘,, F‘Z /

| 26 e r

http://media.ed.ac.uk/media/1_abevu23qg

Video Summary: This video discusses the marginal{pdf] which describes the [pdf] of a
subset of elements from the random vector. Examples of applications in which this is
useful are described. A worked example of finding marginal{pdfs and marginal{cdfs from
a joint{pdf] is provided, along with plots of the functions. The viewer should verify the
results presented in this video for themselves.

Random vectors lead to the notion of dependence between their components. This notion will be
discussed in abstract here, although such dependence between random variables will be emphasised
more vividly when the notion of stochastic processes are introduced later in the course.

The joint [pdi] characterises the random vector; the so-called marginal [pdf] describes a subset of RVk
from the random vector.

Let k be an M-dimensional vector containing unique indices to elements in the N-dimensional
random vector X ((), such that, for example, if N = 20 and M = 3,

k=[1 5 12]" (5.17)

Now define a M -dimensional random vector, Xy ({), that contains the M random variables which are
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components of X ({) and indexed by the elements of k. In other-words, if

k1 Xkl(C)
k= kf then Xy(C) = X’“";@ (5.18)
K XkM(C)

Hence, for example, using the vector k above, then:

X1(¢)
Xp512(C) = | X5(C) (5.19)
X12(¢)
The marginal [pdf]is then given by:
fx, (%) = / / fx (%) dx_x (5.20)

N M integrals

where x_ is the vector x with the elements indexed by the vector k removed.

A special case is the marginal [pdf] describing the individual RV] X ;:

fXj (ZEJ> = / cee / fX (X) dl‘l cee dl]j_lde+1 cee dZEN (M325)

————
N — 1 integrals

In the case of a scalar [RV] since it is not characterised by a joint [pdf] then its [pdfl might be called a
marginal [pdf] This technical detail, which seems somewhat unnecessary, is ignored here.

Marginal [pdff will become particular useful when dealing with Bayesian parameter estimation later
in the course.

Example 5.2 (Marginalisation). This example is again based on [Therrien:1992, Example 2.1, Page
20].

The joint{pdf] of a random vector Z(¢) which has two elements and therefore two random variables
given by X (¢) and Y'(() is given by:

(5.21)

fa(2) Hez+3y) 0<{z,y} <1
Z =
z 0 otherwise

Calculate the marginal{pdfs, fx (=) and fy (y), and their corresponding marginal{cdfs, F'y (=) and
Fy (y).

SOLUTION. By definition:

T) = /R fz(z) dy (5.22)
0= [ o i (5.23)

3y)dy 0<z<1
fx(a:)—{ofo Tydy 0<e (5.24)

Taking fx (z), then:

otherwise
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Marginal PDF, f, (x) Marginal CDF, F, (x)
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X X

(a) The joint{pdf] of X (¢) and (b) A plot of the marginal{pdf] (c) A plot of the marginal{cdil
Y (Q). X(¢). X(0).

Figure 5.4: The marginal{pdf] fx (z), andlcdfl Fx (z), for the RVl X (().

which after a simple integration gives:

T(z+3) 0<z<1
={2 2 - 5.25
Jx () {O otherwise ( )

Theledfl Fx (), is thus given by:

. 0 <0
FX(:U):/ fx ) du= 43 [T (u+3)du 0<z<1 (5.26)
—00 1
3o (ut3)du 1
Which after, again, a straightforward integration gives:
0 T <
Fy(r)=¢%2(x+3) 0<z<1 (5.27)
1 x>1
Note that lim, ., Fx () = 1, as expected.
Similarly, it can be shown that:
1(1
5 5 +3 0<y<l1
fr (y) = 2 (2439) v (5.28)
0 otherwise
and
0 y <0
Fy(y)=q4(1+3y) 0<y<1 (5.29)
1 y>1

The marginal{pdfs and [cdfs are shown in Figure [5.4] and Figure[5.3|respectively.

KEYPOINT! (Intepretation). Note that the marginal{pdf]is not a slice of the joint{pdf] Rather it is
the integral of the joint{pdf] over the other variable along a given line whose position corresponds to
the value of the variable of interest.

]
2.
ol

— End-of-Topic 26: Marginal Densities and Distributions and their
Applications —

[=]
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Marginal PDF, f, (y) Marginal CDF, Fy(y)
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(a) A plot of the marginal{pdf]for Y (¢). (b) A plot of the marginaldcdfl for Y ().

Figure 5.5: The marginal{pdi] fy (y), andkcdfl Fy (y), for the RVL Y'(¢).
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5.2.4 Independence

Newsiide  Topic Summary 27 Independence, Conditional, and Bayes’s Theorem

Topic Objectives:
* The notion of independence and its applications.
* Conditional densities and Bayes Thereom.
* Examples of testing independence.

* Examples of using Bayes rule.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 18 : 59 min video 3% length
Read Handout Read page |147Jt£page|1 ﬂ 8 mins/page
Try Example Try Examples |5_4|, Iﬁl, |§| 30 minutes
Practice Exercises | Exercises ?? and ?? 40 mins

@ Blind Signal Separation

Q/,‘,J

e
Y xe Ly & ¥4z
| S [ e 1 .
® Mg System, Hiz) ) Uning Systom, W)

Standard signal separation using the independent
component assumption.

A pe pover rful assumption is tha ¢ the source signals are statistically
d of one another; ind
cny

http://media.ed.ac.uk/media/1_gg8ef3ep

Video Summary: This video introduces the notions of independence, conditional
densities, and Bayes’s theorem. The use of independence in signal processing
applications such as Blind Source Separation is introduced, although this will be
expanded in future videos on Statistical Signal Processing. Analytical tests for
independence given the[pdf]is considered for a couple of examples, including deriving the
joint density for independent Gaussian random variables. Conditional densities are then
introduced, and Bayes theorem for solving inverse problems is developed from this. The
final section of the video then considers in detail the problem of estimating a parameter
from a noisy observation.

The notion of joint RV leads to the idea of how they relate to one another. Two random variables,
X1(¢) and X,(¢) are independent if the events {X;(¢) < x1} and {X2(¢) < 9} are jointly
independent; that is, the events do not influence one another, and

Pr (X1(¢) < 71, Xo(¢) < x2) = Pr(X1(¢) < 1) Pr(Xa(C) < 72) (5.30)

June 28, 2021 — 08 : 40




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton30'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_gg8ef3ep

ie

New slide

150 Multiple Random Variables

This then implies that

Fx, x, (71, 72) = Fx, (1) Fx, (72)

Ix,.x, (1, 22) = fx, (21) fx, (22) (M:3.2.7)

Independence will be discussed again later when stochastic processes are introduced.

KEYPOINT! (Region of support). If the regions of support of the [pdfs of X (¢) and Y'({) are
bounded, then X ({) and Y ({) cannot be independent if their ranges are dependent. Therefore,
independence of X (¢) and Y'({) requires the support of the joint{pdfl fxy (z, y) to be just the
Cartesian product of the support of fx (x) and the support of fy (y).

Example 5.3 (Testing independence). Suppose the joint{pdf]of twoRVk X (¢) and Y ({) is given by
fxy(x,y)=14+2zyfor0 <z <land0 <y < 1. Are X(¢) and Y (¢) independent?

SOLUTION. The joint{pdf|] cannot be written in the form g(z)h(z) for any functions g and h.
Therefore, these RVk are not independent.

Example 5.4 (Testing independence). Let fxy (x, y) = 6x for 0 < z < y < 1. Plot the region of
support and determine if X (¢) and Y ({) are independent.

As a side-up question, check that this is a valid [pdf]in the first place!

As an example that will be used many times in estimation theory, suppose that NMRVk, X,,(¢) for
n € {0, ..., N — 1}, are independent, and each have [pdf] given by fx, (z,). Then the joint{pdf] of

the random vector X(¢) = [Xo(¢), - -, Xn(¢)]" is given by:
N-1
fx (x) =] fx. (@) (5.31)
n=0
For example, suppose that X, ({) is Gaussian distributed with zero-mean and unit variance, such that:
]- w%
T,) = e 2 5.32
then: N
-+ 1 22 1 1 N-1_2
fx (x) = e 3 = e”2 Xn=0 Tn (5.33)
alo V2T (QW)%

This form will be used extensively in developing likelihood functions.

5.2.5 Conditional Densities and Bayes’s Theorem

The notion of joint probabilities and [pdf] also leads to the notion of conditional probabilities; what is
the probability of a random vector Y (¢), given the random vector X ().

The conditional probability of two events Y given X is defined as

Pr(X,Y)

Pr(Y|X) = Br (X)

(T:2.35)
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Defining the event X as:

X :x<X(()<x+dx (T:2.36)
and the event Y as:
Viy<Y()<y+dy (T:2.37)
then
CPr(x<X(Q) <x+dx,y <Y(() <y +dy)
Pr(Y|X) = Py (x <X (0) < x5 ) (5.34)
- Ixy (X7 y) [Tdxdy o fXY X,y
B ol e DV C -39
£ fyx (v %) [[ dy (5.36)
hence, the conditional [pdf]of Y ({) given X (¢) is defined as:
fxy (%, y)
= T:2.39
fY\X(Y| ) fX (X) ( )
Note that Fex ) ()
dy = [ XY gy XXy T:2.40
/RleX(Y| x)dy R fx(x) Y fx (%) ( )

This emphasises that fy|x (y | x) is the density for Y (¢) that depends on X ({) almost as if it were a
parameter. Note that the integral of fyx (y | x) with respect to (W. ) x is meaningless.

If the random vectors X (¢) and Y (¢) are independent, then the conditional [pdf] must be identical to
the unconditional [pdf} fvx (y| x) = fy (y). Hence, it follows that:

fxy (x,y) = fx (%) fy (y) (T:2.41)

as previously defined.

Bayes’s rule or Bayes’s theorem is based on the fact that the joint[pdf] of two events can be expressed
in terms of either the conditional probability for the first event, or the conditional probability for the
second event. Hence, Bayes’s theorem for events follows by noting:

Pr(X,Y)=Pr(X|Y)Pr(Y)=Pr(Y|X)Pr(X)="Pr(¥, X) (5.37)

and therefore
Pr (Y | X)Pr(X)

Pr(X|Y) = P (Y) (T:2.42)
An analogous expression can be written for density functions. Since
fxy (x,y) = fyx (v %) fx (x) = fxy (x]y) fy (¥) = fyx (v, x) (T:2.43)
it follows
Fxiy (x| y) = fyix (}fyl (Xy))fx (x) (T:2.44)

This result can also be derived by considering an events based approach as used above in the derivation
of conditional probabilities.

Since fy (y) can be expressed as:

W=Akﬂ&ww=éhﬂwﬁkﬁwx (5.38)
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then it follows

el v) = Frix (v ] x) fx (%) .
fxy (x]y) = T e (v | ) fo () & (T:2.45)

Bayes’s Theorem arises frequently in problems of statistical decision and estimation, the latter of
which will be considered later in the course. Suppose that Y (¢) is an observation of an experiment
which depends on some unknown random vector X (¢); for example, Y (¢) is X (¢) observed in
additive noise. Then given X (¢), it is easy to find the likelihood of Y ((), which is represented by
the density fyx (y | x); this is the likelihood function, and will again be introduced later in this
course. The prior density, fx (x), represents the density of the unknown random vector before it is
observed. Hence, given the likelihood and the prior, it is possible to calculate the posterior density,
fxy (x| y), which is the density of the unseen random vector X ({) given the observations Y ().

Example 5.5 (Bayes’s Theorem (Papoulis, Example 6-42)). An unknown random phase O(() is a

priori assumed to be uniformally distributed in the interval [0, 27). The phase is observed through a

noisy sensor, such that R(() = O(¢) + N(¢), where N () is Gaussian distributed with zero mean and
: 2

variance oy;.

What is the posterior [pdf] fo|z (¢ | ), which gives the distribution of ©(() given an observation?

SOLUTION. In practical situations, it is reasonable to assume that ©(¢) and N(() are independent.
Using the probability transformation rule for scalar random variables, from N (¢) to R(¢) = 0+ N ()
where O(¢) = 6 is considered fixed, it follows there is one inverse solution n = r — 6, and the
Jacobian of the transformation is unity. Therefore:

1 1 e
rl @) == r—0) = e 2N 5.39
frie (1] 0) 1fN ( ) =) (5.39)

Using Bayes theorem, it directly follows that:

fR\@(T’ 9) fe (9)

for (0| 1) = - - - (5.40)
2 frie <7”| 9) fo (9) dé
which, since fg (0) = % for 0 < 6 < 27, can be written as:
_(r=0)?
e N
for (0] r) = —5 o 0<6<2rm (5.41)
/ e >N df O
0

1

A/ 271'(7]2\,

and zero otherwise, where it is noted that the factors % and have cancelled each other in the
numerator and denominator.

Note the knowledge about the observation, r, is reflected in the posterior @] of ©((), as shown in
Figure and it shows higher probability density in the neighbourhood of ©({) = r.

Example 5.6 (Chapman-Kolmogorov Equation). Consider a state-space model with an unknown
state x,, and measurement vector y,,.

Assume the Markov property that p (X, | X,—1, Y1n-1) = P (Xn | Xn—1) and p(y, | Xpn, Yim-1) =
P (yn| Xn).
Show that:

p(Xn’ Y1:n71) = /p<Xn| anl)p<xnfl| Y1:n71) dx,_; (5.42)

p (yn ‘ Xn)p (Xn ‘ Y1:n71)
p(Yn| Y1:n—1)

P(Xn| Yim) = (5.43)
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0 271 (f 0 elzr 5

(a) The prior [pdf]of ©((). (b) The posterior [pdf] of ©(()
given an observation R(¢) = r.

Figure 5.6: The knowledge about the observation 7 is reflected in the posterior [pdf]

SOLUTION. The first equation is a direct application of marginalisation of a joint{pdf}

p(Xn’ Y1:n—1) = /p(Xm Xp—1 | Y1;n—1) dx,_q (5.44)
= /p(xn‘ Xn—1, y1:n—1) p(xn—l | y1:n—1) an—l (545)
= /p(xn‘ Xn—l) p(xn—l ’ yl:n—l) dxn—l (546)

using the Markov property.

The second equation is a direct application of Bayes’s theorem keeping y;.,_; a conditional in each
term:

p (Xn | y1:n) =p (Xn | Yn, y1:n—1) (547)
_ p (Yn | Xns y1:n—1)p(xn | y1:n—1) (548)
p (yn | YI:n—l) D

and then using p (¥, | Xn, Y1:n—1) = P (¥n | Xn).

— End-of-Topic 27: Independence, Conditionals, and Bayes’s Theorem O
Revisited — Ot
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Topic Summary 28 Gull’s Lighthouse Problem

Topic Objectives:
* Use all the techniques discussed in the course so far to address a simple inverse problem.
» Appreciate application of this techniques to localisation or tomography.

* Be aware of the importance of optimisation and integration in signal processing.

Topic Activities:

| Type | Details | Duration | Progress |
Watch video 22 : 29 min video 3% length
Read Handout Read page |15§E) page |155| 8 mins/page
Try Example Try Example |5.7| 40 minutes
Try Code Use the MATLAB code 10 minutes
Further Reading | Search for more on this problem 30 mins

http://media.ed.ac.uk/media/1_yuj5gold

Video Summary: Gull’s lighthouse problem is a famous problem in tomography
or localisation problem, that is an example of an inverse problem. This exercise
uses all the knowledge gained so far in the course, including using probability
transformations, conditional probabilities, independence, Bayes theorem, marginalisation
and optimisation. This relatively simple problem is analysed systematically, with the
various assumptions discussed. The video then finishes by discussing two key problems
in signal processing: the problems of integration (for marginalisation of nuisance
parameters), and optimisation (for finding estimators). Some example techniques for
addressing these problems are then discussed.
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Lighthouse

Sea > x

Shore « X,
(a) Gull’s lighthouse problem. (b) Related problems.

Figure 5.7: The geometry of the lighthouse problem, and related problems.

Example 5.7 (Gull’s lighthouse problem). A lighthouse is somewhere off a piece of straight
coastline at a position « along the shore and a distance /3 out at sea. It emits a series of short highly
collimated flashes (i.e. essentially a single ray of light) at random intervals and hence at random
azimuths (i.e. the angle at which the light ray is emitted). These pulses are intercepted on the coast
by photo-detectors that record only the fact that a flash has occurred, but not the angle of arrival from
which it came. NV flashes have so far been recorded at positions{x; }. Where is the lighthouse?

KEYPOINT! (Other Forms). This problem can be phrased in a number of other ways, such as
throwing darts randomly at a wall and so forth. It is essentially a tomography problem, and is a
classic inverse problem.

It can also be phrased as a geolocation problem, and there are a number of articles on this topic if you
search the web!

SOLUTION. The aim of the problem is to estimate the values of o and 3 from the observations.
Estimating both of these parameters from the data is somewhat complicated for this example, and so
it will be assumed that the distance out-to-sea, (3, is known. The geometry of the lighthouse problem
is shown in Figure

Given the characteristics of the lighthouse emissions, it seems reasonable to assign a uniform [pdf] to
the azimuth of the observation, or if referring to a single observation, the datum, which is given by 6.
Hence,

0 otherwise

1 _r s
f@(e):{? ;<0< (5.49)

The angle must lie between +7 radians to have been detected. Since the photo-detectors are only
sensitive to position along the coast rather than direction, it is necessary to relate ¢ to x. An inspection
of Figure|5.7|shows that:

ftanf = — « (5.50)

Using the probability transformation rule, it is possible to show that:

_ B
[P+ (v — o)l

I[x (x| a) (5.51)
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Log-posterior f(a, B | x), max. at (13.32, 40.50)

Log posterior as function of o and 8 50 ‘ ‘
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B
(a) Surface plot of the log-posterior. (b) Contour plot of the log-posterior.

Figure 5.8: Visualising the log-posterior function described in Equation when both « and [ are
unknown. In this case, the number of data-points used is /N = 500. The actual lighthouse location is
at (o, ) = (15,45). Note the error in the estimate of the maximum value.

where, as a reminder, it is assumed that 5 is known. This transformation is left as an exercise to the
reader. Assuming that the observations are independent, then the joint{pdf] of all the data points is
given by:

N
fx (x| @)= fx (21, o an|a) = [T fx (2] @)
k=1

(5.52)
Iy
ooy 752+ (2 — )]
The position of the lighthouse is then expressed by:
fala] x) = L) Jalo) (5.53)

fx (%)

It is reasonable, also, to assign a simple uniform [pdf] for the prior density for the distance along the
shore:

fa () = ¢ max=Gmin (5.54)

—L1 Omin S (07 S Omax
0 otherwise

Hence, it follows that:

fx (x] a) fa(a)
(%) x fx (x| @) fa(@) (5.55)

1 il B
X ) for Q'min S «@ S Qmax (556)
Qmax — Omin k=1 m [52 + (xk - 04)2] 0

and zero otherwise. Hence, this posterior density can be maximised to find the best estimate of the
distance along the shore, . Unfortunately, in this case, this maximisation is not easy.

falalx)=

The result in Equation can easily be generalised when both « and  are unknown, and the
logarithm of the posterior can be plotted as a function of o and 3. The resulting two-dimensional (2-DJ)
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Log-posterior f(a, B | x), max. at (15.08, 44.92) % 10°
Log posterior as function of o and 50 ‘ ; \

5
x 10

40 -3.2

30 -3.25

o

20

-3.3

Posterior f(a, B | X)

100

-3.35
40 6[30 80 100
(a) Surface plot of the log-posterior. (b) Contour plot of the log-posterior.

Figure 5.9: Visualising the log-posterior function described in Equation when both « and (3 are
unknown. In this case, the number of data-points used is N = 50000. The actual lighthouse location

is at (c, B) = (15,45). Note the error in the estimate of the maximum value is much less than for
N = 500.

function is shown in Figure[5.8|and Figure[5.9|for when the lightouse is actually at (v, 8) = (15, 45).
Note that for NV = 500 data-points, there is a relatively large error in the estimate, especially when
compared with N = 50000. This will be discussed in later handouts. Moreover, note that when you
run the corresponding MATLAB code, in which the data is generated synthetically, a new estimate is

obtained each time. Can you explain why? Finally, if /V is small, a typical estimate might be far from
the true solution.

KEYPOINT! (Key Problems). This example highlights two key problems in Signal Processing:

Integration = Marginalising out nuisance parameters:

falal )= [ fa(a 51 %) dp 557

Optimisation Finding the maximum marginal a posteriori (MMAP) estimate:
& = arg, max fa (a| x) (5.58)
U

— End-of-Topic 28: Tomography: An Inverse Problem using Probability
Transformations, Conditional Probability, Independence, Bayes ?
Theorem, Marginalisation, and Optimisation. — (=l
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5.3 Probability Transformation Rule

Topic Summary 29 Probability Transformation Rule for Random Vectors

[E)

New slide

Topic Objectives:
» Extend probability transformation rule to random vectors.
* Understand what a Jacobian is and how to calculate it.

» Application to the Cartesian to Polar transformation.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 18 : 18 min video 3x length
Read Handout Read page |156| to page |160| 8 mins/page
Practice Exercises | Exercises ?? and ?? 20 mins

P, Probability Transformation Rule

Y1 osa s dudy

- 84, = bu b
v
(\—‘ () = geey) &;/
Te—
DR 4
x ]

B

#® This elementa
the relationst

a is mapped into the (u, v) domain through
i = gy (2,y) and v = go(z, ).
# The Jacobian indicates the ratio of these two areas:

dudv

0Auw = Jryuv 04y Jry—ruv b
! Tev : & S dy

http://media.ed.ac.uk/media/1_7rnjbf3t

Video Summary: This video extends the probability transformation rule from the scalar
case to the vector case for vector functions of random vectors. The video discusses how
the Jacobian determinant needs to be calculated instead of a simple gradient, and therefore
this can influence whether the Jacobian or its inverse should be calculated depending on
the ease of calculating the derivatives for the mapping or inverse mapping. The video
provides a reminder of the physical interpretation of the Jacobian. Finally, the video
considers the probability transformation for the Cartesian to Polar coordinate mappings.

The probability transformation rule for scalar RVk can be extended to multiple RVk using a similar
derivation.

Theorem 5.1 (Probability Transformation Rule). The set of random variables X ({) =

{X.((),n € N} where NN = {1,...,N} are transformed to a new set of [RVk,
Y (¢) = {Y.(¢), n € N}, using the transformations:
Ya(Q) = 9u(X(C)), neN (5.61)

or, using an alternative notation,
Y(¢) = (X (¢)) (5.62)
where g(-) denotes a vector of functions such that Y;,(¢) = ¢,(X ({)) as above.
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Sidebar 7 Jacobian

The Jacobian determinant is used to represent how an elemental region in one domain changes volume
when it is mapped to another domain. Consider the elemental area 0 A, = dx dy in the (x, y) domain:

’ 1 SAX ~ ox 8y V‘ -

»
>
X

ox

This elemental area is mapped into the (u,v) domain through the relationships v = ¢;(z,y) and
v = go(x,y). The elemental area in the (u,v) domain is approximately given by 6 A,, = du dv. The
Jacobian determinant indicates the ratio of these two elemental areas, namely:

ou ov
0Auw = Jpy—suw 0 A, I sy N ——— 5.59

In the limit, it can be shown that the Jacobian determinant, or just the Jacobian, is given by :

du  Ov
Juv—)zy — % _915‘ (560)
dy Oy

Informally, the Jacobian can be considered as the multi-dimensional version of the scalar derivative
||
dx |*
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Assuming M -real vector-roots of the equation y = g(x) by {x,,, m € M}, such that

y =g(x1) = = g(xXu) (5.63)

then the joint{pdflof Y (¢) in terms of (L._t. o)) the joint{pdfjof X (¢) is

- - fx (Xm)
= 2 ) 69

m=1

where the Jacobian of the transformation, Jg(x), is given by:

dgi1(x) 09g2(x) . O9gn(x)
o) o) oin (x)
ANy1,- - YN) alx ax 5vx
J £ TV IV | 022 r2 r2 T:2.123
R TEe S ( :
991(x) 9g2(x) |, dgn(x)
oxr N oxr N orn

It should also be noted, from vector calculus results, that the Jacobian can also be expressed as:

Ozy  Ozy | dan

1 Jdnn Oy1
Oz1 Oz, Ozn
1 N (9(33'1, - 7mN) __ | 9y2 Oy Oy2 (T'2 123)
Jg(X) 8(y17"'7yN) : : T :
Oz Oz . Oday
Oyn  Oyn YN

For further background information on the Jacobian, see Sidebar [7]

PROOE. The proof follows a very similar line to that for the scalar RVk case. The definition of the
joint{pdf]is:
y)[[dy =Pr(y < Y(() <y+dy) (5.65)

where [[dy = dyy dy, . .. dyy. The set of values x such that y < g(x) < y + dy, consists of the
intervals:
Xy < X < X, + dX,, (5.66)

The probability that x lies in this set is, of course,
x (%m) [ [ dxm = Pr (xm < X (¢) < Xy + dxy) (5.67)
Moreover, the transformation from x to y is given by the Jacobian:

H dy = Jg( H dx (5.68)

Since these are mutually exclusive sets, then

M:

Pry<Y({) <y+dy) = r (X, < X (0) <X+ dxp) (5.69)
E

-3 ix ) Lldy (5.70)

m—1 Jg(%Xm) 0

and thus the desired result is obtained after minor rearrangement.
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»
>

X

Figure 5.10: The Cartesian and polar coordinate systems.

5.3.1 Polar Transformation

An important transformation example is the mapping from Cartesian to polar coordinates. Each of
these coordinates are shown in Figure [5.10]

Consider the transformation from the random vector C(¢) = [X(¢), Y/()]T to P(¢) = [r(¢), ()],
where

r(¢) = VX2(C) + Y2(¢)
Y(¢) (5.71)
X(¢)

where it is assumed that r(¢) > 0, and |0(¢)| < m. With this assumption, the transformation r =
V2% 4 y?, 0 = arctan ¥ has a single solution:

0(¢) = arctan

x =1 cosf
, } forr >0 (5.72)
y =1 sinf
The Jacobian is given by:
a(r, ) 20 or dz 9z |1
Jele) =5 =18 &|=18 & (5.73)
5 0wy ey &l e @
In the case of polar transformations, Jg(c) simplifies to:
cosf —rsinf| 1
Je(c) = sinf rcosf |  r (5.74)
Thus, it follows that:
fro (r,0) =rfxy (r cosf, r sinf) (5.75)

Example 5.8 (Cartesian to polar transformation of RVk). If X ({) and Y (¢) are independent and
identically distributed Gaussian distributed coordinates in Cartesian space, such that
X(C), Y(¢) ~ N (0, 0?), find the distribution when these are transformed into polar coordinates.

SOLUTION. First, note:

Fev (@.0) = Fx () f () = 5o e {20, 5.76)
Hence, applying the transformation » = /2% + y?, §§ = arctan £, it directly follows that
r r?
fre (1, 0) = 902 P 52 L7z (0) Ip+ (r) (5.77)
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where, as a reminder, [ 4 (a) = 1 if a € A and zero otherwise. This density is a product of a function
of r times a function of #. Hence, the [RVk r and 6 are independent with:

r

2 1
fR (T) = ; exp {—%‘_2} I[]R+ (T) and f@ (9) = %H[,ﬂ-ﬂr] (9) (578)
[

where the scaling factors have been apportioned such that these are proper densities, in the sense that
Jo fr(r) dr = [ fo (6) d6 = 1. Note that 6 is uniformally distributed, while r has a Rayleigh
distribution.

— End-of-Topic 29: Probability Transformation rule for Random Obi0)
Vectors — [=]-1
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5.3.2 Generating Gaussian distributed samples

Topic Summary 30 Generating Gaussian Samples

Topic Objectives:
* Investigate Box-Muller transformations for generating Gaussians.
* Use probability transformation rule to prove this result.

* Understand importance of simulating random variables.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 14 : 04 min video 3% length
Read Handout | Read page|l61|to page|164| 8 mins/page
Try the code | Use MATLAB code on LEARN 20 mins

Probabilty, Estimation Theory, [§ . . e
PE Generating Gaussian distributed samples

Generating a Gaussian Distribution
o randp

44444

http://media.ed.ac.uk/media/1l_gOnvufir

Video Summary: In this video, the probability transformation rule is used to show
that the Box-Muller transformation can convert two uniform random variables into two
independent Gaussian random variables. Although one aim of this video is to provide
as another example of how to use the probability transformation rule, it also motivates
the discussion about tools that can be used for simulating random numbers from various
distributions.

It is often important to generate samples from a Gaussian density, primarily for simulation studies. In
practice, it is difficult for a computer to generate random numbers from an arbitrary density. However,
it is possible to generate uniform random variates fairly easily. This will be seen in later handouts.

The probability transformation rule can be used to take random variables from one distribution
as inputs, and outputs random variables in a new distribution function. One particular well-known
example is the Box-Muller (1958) transformation that takes two uniformly distributed random
variables, and transforms them to a bivariate Gaussian distribution. Consider the transformation
between two uniform random variables given by,

fx, (op) =lon (vx), k=1,2 (5.79)

where [ 4 (x) = 1if v € A, and zero otherwise.
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Empirical Gaussian pdf

Empirical Probability Density
o e o o o e o o
o (=] g o o (=] (=] (=)
[ w a (=) ~l @ [
T T T T T T T

<
o
=

60 70 80 920 100 110 120
Data value

140

Figure 5.11: This histogram shows an empirical Gaussian probability density function, where the
samples are drawn from a Gaussian density. But how are these samples drawn?

Now let two random variables y;, y2 be given by:

Y1 = v —2Inxy cos2mxy
Yo =/ —2Inzq sin 27z,

It follows, by rearranging these equations, that:

1

Ty = exp {—g(yf + y%)]

1 Y2
Tr9 = — arctan —
2m Y1

The Jacobian determinant can be calculated as:

Oy1 Oyr

_|a B
J(x,22) = |55 G43
6(171 6902

27
T

Hence, it follows:

2T

fy (y1,12) = - {Le_y%/z} {E

V2r

71 _ _ :
B —m@ COS 27Xy 2w/ —21Inxq sin 2wxo
v/ Sin 2mxe 2w/ —2Inx cos2mx,y

(5.80)
(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

e—yﬁ/Q} (5.87)

since the domain [0, 1]? is mapped to the range (—oo, 00)?, thus covering the range of real numbers.
This is the product of the [pdfls of y;alone and y, alone, and therefore each yj, is [ 1. d]according to

the normal distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution in order to obtain

samples that have the same [pdf]as a Gaussian random variable.
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2D mapping

Figure 5.12: The first Box-Muller transformation.

Generating a Gaussian Distribution
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Figure 5.13: The resulting histogram from the generation of these Gaussian samples.
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— End-of-Topic 30: Generating Gaussian Samples —
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5.3.3 Auxiliary Variables

Topic Summary 31 Auxiliary Variables

Topic Objectives:
* Use auxiliary variables for functions of multiple random variables.
* Applications of one random variable as a function of two random variables.
* Choices of auxiliary variable.

* Detailed examples to demonstrate application of technique.

Topic Activities:

| Type | Details | Duration | Progress
Watch video | 21 : 25 min video 3% length

Read Handout | Read page |165Jt£page |168| 8 mins/page
Try Example | Try Examples M and |5. 10| 25 minutes

Probabilty, Estimation Theory, |

Nl |49, Auxiliary Variables 2= a X +b)

Note that you might be concerned about the choice of the
auxiliary variable, and what happens if you chose something
different to that used here.

= W 53 2—aw
Yys Z-aw b
bb W= z—bd
T\ &+ =1 " -
\l ar 4 =
gur(“”) i;‘fxv[“’ z%',“—g )
l-‘]‘ o
-Sz(z) > Hiz_;b% G ws b du

http://media.ed.ac.uk/media/1l_5n9%ox50s

Video Summary: Auxiliary variables are introduced as a method for calculating a
single function of multiple random variables, through a two-stage process of using the
probability transformation rule followed by marginalisation. While there are alternative
methods for calculating a single function of multiple random variables, the auxiliary
variable method is very algorithmic. More generally, the auxiliary variable method is
for transforming /N random variables to M random variables, where M < N. The video
presents several problems of varying complexities and choice of axuiliary variables.

So far, when considering functions of random variables, the problem of transforming from NRVS to
NRVkhas been considered. However, what about the case of transforming from NRVE to MRVE,
where M < N for example, Z(¢) = g(X(¢), Y (())?

Note that it the case of M > N need not be considered, as in this case, it can be shown that multiple
variables are deterministically related, or 100% correlated.

The density of a[RV]that is one function Z(¢) = g(X(¢), Y (¢)) of two[RVk can be determined from
the results above, by choosing a convenient auxiliary variable, 17/ (¢). The choice of this auxiliary
variable comes with experience, but usually the simpler the better. Examples might be W (¢) = X (¢)

or W(¢) = Y(¢)
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton34'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_5n9ox5os

168 Multiple Random Variables

The density of the function Z(() can then be found by the probability transformation rule,

M

fwz (w, 2) Z ximyj’)”‘) (5.88)
followed by marginalisation:
fz(2) = / fwz (w, 2) dw = i/[: Jxx (@ms Ym) dw (5.89)
SL 2 Jo T (s )]

Example 5.9 (Sum of two[RVE). If X (¢) and Y ({) have joint{pdf] fxy (x, y), find thepdf] of the RV]
Z(¢) = aX(¢) + bY (C) for constants a and b.

SOLUTION. Use as the auxiliary variable the function W (¢) = Y'(¢). The system z = ax+by, w =y

has a single solution at z = =22y = w.
Hence, the Jacobian is given by:
ow 9z
J(z,y) = |55 %’:‘O Z =—a (5.90)
oy oyl T
Hence, it follows that:
1 z — bw
fwz(w, 2) = —fxy (| ——, w (5.91)
|al a
Thus, it follows that:
1
2) = —/ Fxy <Z v w) dw (5.92)
|CI,| R O

KEYPOINT! (Choosing the auxiliary variable). Note that you might be concerned about the choice
of the auxiliary variable, and what happens if you chose something different to that used here.

The answer is that, as long as the auxliary variable is a function of at least one of the [RVS, then it
doesn’t really matter, as the marginalisation stage will usually yield the same answer. An example
is discussed in Sidebar [§ on page [I67] Nevertheless, it usally pays to chose the auxiliary variable
carefully to minimise any difficulties in evaluating the marginal{pdf]

As an example, consider using W (¢) = X (¢) — Y(¢) in the previous example (Example[5.9).

Example 5.10 ( [Papoulis: 1991, Page 149, Problem 6-8]). The RVk X(¢) and Y(¢{) are
independent with Rayleigh densities:

2

fx (z) = % exp {—%2} Ip+ (z) (5.102)
2

fr (y) = 7 exp{—Qy—BQ}Hw (y) (5.103)

fz(2) = I+ (2) (5.104)
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Sidebar 8 What if you chose a complicated auxiliary variable?

Consider Example [5.9) and suppose that rather than chosing W (¢) = Y ((), you accidentally chose
something more complicated such as:
X (<)

Will the resulting expression for f7 (z) be the same as Equation[5.92]? The answer can be seen through
an example, or a more detailed generic analysis. Here, we show an example. While the joint{pdf]
fwz (w, z) will be different from Equation it is the marginalisation stage that ensures the
expressions for f (z) are the same. For the auxiliary variable shown in Equation noting that
Z(¢) = aX(¢) + bY ((), then

r=wy = z=oawy+by=ylaw+Db) (5.94)

z wz
aw + b’ x_aw—i-b (5.95)

The Jacobian is given by:

9z 9z a b

J = abs {gf,j g’gj} = abs {1 I} (5.96)

9y y 9

b b)?
= abs ar+ oy = abs Z_ abs M (5.97)
y? y? z
For simplicity, assume that (z, y) > 0F] Then, the joint{pdf]is given by:
z wz z

= 5.98
fwz (w, 2) (b+aw)2fXY (aw—i—b’aw—i—b) (5.98)

This is clearly different to that in Equation However, the marginal for Z(() is:

fz(2) = / #fXY< R > dw (5.99)

(b + aw)? aw + b’ aw + b
7 az
Letd = , such that dff = —————— dw, and also note that
aw + b (aw + b)
wz z — bl z — bl
—Qw=2~0 = 5.100
aw + b w ( 0a ) a ( )

Substituting into Equation [5.99] and noting that the minus sign in the differential term will get
absorbed into the limits of the integral, then Equation [5.99]becomes:

fz(2) = é/fxy <z —0 6) df (5.101)

a

which is indeed equivalent to Equation [5.92]

“This ensures that it is not necessary to worry about the absolute value of the Jacobian. Depending on the range of
values that X (¢) and Y (¢) take on, this proof will need to be tightened up to take account of the absolute value of the
Jacobian.
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2. Using this result, show that for any £ > 0,

2
Pr(X(C) < kY(C)) = k’“— (5.105)
ﬂ2

SOLUTION. Considering the first part of the question, then choose the auxiliary variable as W (() =
X((), then the system z = 5, w = x has the single solution x = w, y = . The Jacobian is given

by:

22

w

w0z 1 3 x
g_%; & 0 Y )
dy y Y
The RVk X (¢) and Y'(¢) only take on positive values, since they are Rayleigh distribution, and
therefore in this case the Jacobian can be simplified to

Q
SR

J(z,y) = abs = abs = abs (5.106)

del 3

2

Jz, y) == (5.107)
w
Hence, since X (¢) and Y'({) are independent,
w w
fwz (W, 2) = — fx () fy (;) (5.108)
1w w? [ 1 1
T P {_7 (@ i 2—252> } T+ (W, 2) (5.109)
&> w w?
- —Z3a2ﬁ2 [w2 a2 exp {—ng H Ig+xr+ (w, 2) (5.110)
where 42 = a2 —2 . Integrating over all values of w gives:
22—1—;—2
o= [ e de= 0 (v tepf- e e
= w, 2 = =55 w ex w .
A - xz (W, w B2 ), a2 P T 942
The integral is the second moment of a Rayleigh distribution. It can be shown that
oo 2
/ 2w { = }dw:2d2 (5.112)
0 a2 202

Finally, therefore,
244 202 z
fz2(2) = 555k (2) = — 3
e ﬂ 5 (22 + g_;)

Ig+ (2) (5.113)

For the second part of the question, notice that:

Pr(X(¢) < kY (C) =Pr(Z(¢) < k) /fZ (5.114)
k

ﬁ/ 2 dz = — 52 1&_2 (5.115)
B2 1o

:a_zliz__l 1o i i (5.116)

Ple P+% K+ % 0

which gives the desired result when these fractions are combined.

O 430
— End-of-Topic 31: Using auxiliary variables and their applications — 3%
E 1
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5.4 Statistical Description

Topic Summary 32 Statistical Description of Random Vectors

I8

New slide

Topic Objectives:
» Appreciate the notion of correlation between random variables.
* Understand the details of the mean vector and correlation matrix.
* Calculate mean vector and correlation matrix from a joint{pdf]

* Awareness of statistical orthogonality.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 23 : 53 min video 3% length
Read Handout Read page |169| to page |175| 8 mins/page
Try Example Try Examples|5.11{and [5.12]| 20 minutes
Practice Exercise | Exercise ?? 25 mins

Statistical Description

Statistical averages are more manageable, but less of a complete
deseription of random vectors.

# With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

® Second-order moments of individual RVs do not adequately
capture key characteristics of the joint-pdf.

http://media.ed.ac.uk/media/1_vxko6rgpd

Video Summary: This video extends the concept of statistical descriptors of [pdfs to
random vectors or multiple random variables. It introduces the concept of correlation,
and how this relates to the dependency of the random variables. The mean vector and
correlation matrix are introduced in detail with careful attention to the exact meaning
of these expectations. An example of calculating these values for a given joint{pdf] is
covered carefully. Finally, the notion of statistical orthogonality is mentioned, although
this will be covered in another video.

As with scalar RV, the probabilistic descriptions require an enormous amount of information that is
not always easy to obtain, or is too complex mathematically for practical use.

Statistical averages are more manageable, but less of a complete description of random vectors. With
care, it is possible to extend many of the statistical descriptors for scalar RVE to random vectors.
Rather than list them all here, they will be introduced where necessary.

In particular, note that using second-order moments of individual RVk does not adequately capture the
key characteristics of the joint{pdf] For example, as shown in Figure[5.14] two very different joint{pdfs
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T

> X, p > X,
1

i
(a) A contour plot (b) A contour plot of
of a typical [pdf] with a typical [pdf] with no
correlation between correlation.

parameters.

Figure 5.14: Mean and second-moments of individual RVk does not capture all of the information
about the joint{pdi]

can have the same position and spread measurements, if only considered from the perspective of the
cartesian axis representing the random variables. As will be see, other statistical descriptors are need
to catch the richer information in a multi-dimensional [pdf} Further examples of how the a joint{pdf]
relates to the key statistical feature of correlation is shown in Figure[5.13]

Probability Density, p = 0.8
Estimated Statistics: , = 0253, = 0.801, oy =102

Probability Density

http://media.ed.ac.uk/media/1_gi3zlzp9

Video Summary: An annimation showing how a bi-variate Gaussian changes with
correlation term.

Consequently, it is important to understand that multiple [RVk leads to the notion of measuring their
interaction or dependence. This concept is useful in abstract, but also when dealing with stochastic
processes or time-series.

The most important statistical descriptors discussed in this section are the mean vector, the
correlation matrix and the covariance matrix.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton36'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_gi3zlzp9

5.4. Statistical Description 173

Probability Density, p = -0.86

Estimated Statistics: oy = 0.246, p = -0.858, oy = 0.988
3

74 =
2 o

o
IS

Probability Density
IS) o
N o

S

o

(a) A joint{pdf]with strong correlation.

Probability Density, p = -0.072

Estimated Statistics: o, =0.248, p = -0.0673, 0, =1
3

Probability Density
o o
o = S N =
S 0@ o & @

=]
=)
a

o

(b) A joint{pdi] with very weak correlation, so almost independent.

Figure 5.15: Relating correlation to the description of the joint{pdi]
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Sidebar 9 Elaborating on the Mean Vector for Real Random Vectors

The mean-vector, when written as the expectation px = [E [X ({)], has a lot of hidden steps involved.
This Sidebar deals with real random vectors; to deal with complex random vectors, it is necessary to
extend this discussion by integrating over the real and imaginary elements separately. First, note that
the mean vector can be written as:

px =By (X (O] = [ x1 () dx (5.117)

:/ /xf (1, X9, ..., xN) drydas -+ dry (5.118)

where dx = Hf\il dr; = dxidxy --- dry and the multi-dimensional integral has been expanded.
Therefore, note that this integral is a vector multiplied by a scalar function, and that dx isn’t in this
context considered as a vector. Thus, it follows that:

T
Hx :/ P f(x) dx (5.119)
TN
[ f (x) dx
= : (5.120)
Janf(x) dx
Note that the k-th row can be simplified as i, = [px ],
/xkf(x) dx = //:L’kf (x) dxq ... dog_ydagdagy, ... dey (5.121)
N integrals
:/xk // f(x)dxy ... deg_q1dagyy .. dey p dog
—_———
N — 1 integrals
:/mjmmm%:Ewam (5.122)

which results from the marginalisation formula earlier. It therefore yields the results given in the
definition of the mean vector, namely that the mean vector is the vector of the means of the individual
elements.

Note that the element dx does depend on context, and in some cases, should infact be interpreted as:

dlL‘l
dl’g

dx = | . (5.123)
dl’N

This alternative definition will be introduced when appropriate.
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y Llne y Line
1 pox 1 3
i yi=x
- wtdy| y oy
o Yol A
UL R R
0 x, x4ox 1 x 0 Xo 1 x

Figure 5.16: The region-of-support for the [pdf]in Example

Ie

- 5.4.1 Mean Vectors and Correlation Matrices

Newslide  Mean vector The most important statistical operation is the expectation operator. The mean vector

is the first-moment of the random vector, and is given by:

E [XI(C)] Hxy
px =E[X ()] = : = : (M:3.2.16)

EXyO)| |

Further discussion on the mean-vector is given in Sidebar 9]

Example 5.11 (Mean Vector). This question follows up on Example which
introduced a simple [pdf] that clearly had dependency between the random variables.
This example is similar, but different, so that a numerical example is easily generated
in MATLAB.

Let fxy (z, y) = 2for 0 < z < y < 1 and zero otherwise. Find the mean-vector.

SOLUTION. The calculation involves finding the marginals and then the expected
value. Using the region-of-support for this problem as shown in Figure then:

fx (x) = / fxy (x,y) dy = / 2dy =2(1 —x) (5.124)

y y
Iy (v) =/ Ixv (z, y) dz :/ 2dr = 2y (5.125)
=0 0
Taking expectations then gives:
1 1
px = / x fx (x) de = / 2z(1 — x)dx (5.126)
0 0
2 #1
=25 -—| =3 5.127
i { 2 3 h 3 (5.127)
1 1 yg 1 9
HYZ/ y fy (y) dy:2/ dey:2[—] == (5.128)
0 0 3], 3 ;

This can be verified with the following very simple code:
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Correlation Matrix The second-order moments of the random vector describe the spread of the
distribution. The autocorrelation matrix is defined by:

E[Xi(OXT(Q] - E[Xi(OXK(Q)]
Rx £ : (5.129)
E[Xn(OXT(Q] -+ E[XN(OXK ()]
or, more succinctly,
x:x: 0 TXi Xy
Rx 2E[X(OXT(Q]=| + -~ (M:3.2.17)
xyx: °°° TXnXN

where the superscript H denotes the conjugate transpose operation; in otherwords,
for a general N x M matrix A € CV*M with complex elements a;; € C, then

H

a1 12 ccc o Qiy apy Gy o A
Af PRGN |y (5430
anit anz2 -+ ANM Ay oy 0 Gy
The diagonal terms
rxx, =E[IXi(QF], i€{l,....N} (M:3.2.18)

are the second-order moments of each of the RV, X;(().
The off-diagonal terms

rxx; TR [Xi(OXFQ)] =rx,x, 1F#J (M:3.2.19)

measure the correlation, or statistical similarity, between RVk X;(¢) and X;(().
If X;(¢) and X;(¢) are orthogonal, then their correlation is zero:

rxx, = E[Xi(QX;(Q)] =0, i#j (M:3.2.26)

J

Hence, if all the[RVk are mutually orthogonal, then the Rx will be diagonal.

Note that the correlation matrix Rx is conjugate symmetric, which is also known as
Hermitian; that is, Rx = R)fé.

Example 5.12 (Correlation Matrix). Following on from Example [5.11} find the
correlation matrix for random variables with joint{pdf] given by fyy (z, y) = 2 for
0 <z <y < 1 and zero otherwise.

SOLUTION. The second-moments can utilise the marginals calculated in
Example[5.11] such that:

1 1
E [X?*(0)] :/ 2% fx (v) d:p:/ 220%(1 — x) dw (5.131)
0 0
e |
5 {3 _ Z} -2 (5.132)

1 1 471
E[Yz(é)]Z/O v fy () dy=2/0 y*dy = [?ﬂ :% (5.133)
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The correlation terms are given by:

1 ry
EXQOVOI= [ [ ayfx () dody (5.134)
10 Oy Y 227
2/ y/ xdxdyzZ/ Y l;} dy (5.135)
0 0 0 0
1 471
I S e R
_/Oydy_hh_él (5.136)

This correlation matrix can be evaluated by the MATLAB expressionin addition to
the code in Example [5.11]: Hence, putting all of these calculations together gives the

correlation matrix: )
rxx TXy =
4

DN | = | =

} (5.137)
U

— End-of-Topic 32: Key Statistical definitions —

&l;
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5.4.2 Properties of Correlation Matrices

Topic Summary 33 Properties of Correlation Matrices

I8

New slide

Topic Objectives:
» Understand properties that a valid correlation matrix must satisfy.
* Understand how to calculate positive semi-definiteness.

 Test several matrices to see if they are valid correlation matrices.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 15 : 50 min video 3x length
Read Handout Read page|176]to page|179] 8 mins/page
Try Example Try Examples|5.13| [5.14] and |5.15| 30 minutes
Practice Exercise | Exercises ?? and ?? 25 mins

Properties of Correlation Matrices

Theorem (Positive semi-definiteness). PRoOF. Consider:
‘\,
Y=Y anXul¢) =a" X(¢)
n=l

where X({) = [.\\[U . ‘\'\w:()] and a = [;., . ;‘N] is
an arbitrary vector of coefficients,

The variance of Y (¢) must, by definition, be positive, as must its
second moment. Considering the second moment, then:

http://media.ed.ac.uk/media/1_xcdewkg9

Video Summary: This video considers the properties of valid correlation matrix,
including the Hermitian property, positive semi-definiteness, and positive real-valued
leading diagonal. This video proves these results, and shows how to test for postive
semi-definiteness. The video then continues with a few examples, testing whether several
matrices are valid correlation matrices or not.

It should be noticed that the correlation matrix is positive semidefinite; that is, the correlation
matrices satisfies the relation:

a’ Rxa >0 (T:2.65)

for any complex vector a.
a Rxa = a'E [xx"]a = E [|x"al’ (5.138)

A more detailed proof is given in Theorem[5.2] Note that a Hermitian matrix is semi-positive definite
if all its eigenvalues are greater than or equal to zero. Moreover, note that if Ry is real, then the
expressions simplify somewhat to replacing a with a real value, as shown in Sidebar[I0] Hence, using
the transpose rather than the Hermitian, such that a’ Rya > 0.
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Sidebar 10 Positive semi-definiteness of Real Matrices

If a matrix I is real, then the calculation a’’ T a simplifies to only needing to consider any real vector
a. This can be shown by writing:
a=ap-+jas (5.142)

where ap and a; are real column vectors. Hence, assuming I is real, it follows:

7 = a'Ta = (ag + ja;)” (Tag + jTa;) (5.143)
= a}, (Tag + jTa;) — jar (Tag + jTa;) (5.144)
= aplag + japla; — jaj Dag + a) la; (5.145)
= aplag +ajla; + j (apla; — aj ag) (5.146)

Now, noting that Z is a scalar quantity, and with T' = T'", 7 is also a real scalar quantity. Hence, as
7 cannot have any imaginary terms, the last term above disappears and therefore aiT’'a; = al/Tap,
such that:

T =a'Ta=ajlag +ajla; (5.147)

Since both of these terms are real, then there is no need for both the real and imaginary components
of the vector a, and therefore it makes sense to set a; = 0.

Theorem 5.2 (Positive semi-definiteness of correlation matrix). Covariance and  correlation
matrices are positive semi-definite.

PROOF. There are various methods to demonstrate this, but one is as follows. Consider the sum of

RVk:

N
Y(Q) =) anXa(¢) =a" X(Q) (5.139)

n=1
where X(¢) = [X1(¢) --- XN(C)}T e RV anda=[a; --- aN}T € R¥*! is a non-random

but arbitrary vector of coefficients.
The variance of Y'(¢) must, by definition, be positive, as must its second moment. Considering the
second moment, then:

i) =E[Y2(Q] =EY(QY(I=E | a"X()X() a (5.140)
(1><N)(N><13?1><N)(N><1)

— a’E [X(g) X(()T] a=aRya>0 (5.141)

0

A similar expression can be obtained for the covariance matrix.
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Example 5.13 (Valid correlation matrix). Determine whether the following is a valid correlation
matrix:

Rx = B iﬂ (5.148)

SOLUTION. This is not a valid correlation matrix as it is not symmetric, which is a requirement of a
valid correlation matrix. In otherwords, Rg; # Rx.

Example 5.14 (Valid correlation matrix). Determine whether the following is a valid correlation
matrix:

1 2
Rx = [2 1} (5.149)
SOLUTION. Writing out the product I = a’ R xa gives:
1 2| |«
I = [04 ﬁ} [2 1} [5} (5.150)
o a+ 203
= [04 ﬁ} [204 n 5} (5.151)
=a(a+28)+ B 2a+pP) (5.152)
a? +4aB + B2 (5.153)
~—_—————
look to complete the square
I ==0a*+2a8+ % +2a8 (5.154)
—_—
complete the square
= (a+ ) +2a8 (5.155)
——

U

always positive

Noting that the term 2a.3 is not always positive, then selecting a« = —f3, it follows that I = —2a? < 0.
Hence, R x is not a positive semi-definite matrix, and is therefore not a correlation matrix.

Example 5.15 ([Manolakis:2001, Exercise 3.14, Page 145]). Determine whether the following
matrices are valid correlation matrices:

I
RlzL ) R.o= |3 1 3 (5.156)

_ L1 7

L4 2 .

1 (1 1 1]

L 1051
R; = . Ri=15 2 3 5.157

SOLUTION. Correlation matrices are Hermitian and positive semidefinite. The first three correlation
matrices are Hermitian, and are therefore valid. R, is not, and so therefore is not a valid correlation
matrix. Next, it is necessary to test whether these matrices are positive semi-definite, and this test is
performed below:

1. Setting a = [ay, ay)”, then

CL1+(12
a; + as

a'Ria=[a; as) { ] =a] +2a1az + a5 = (a1 +az)* >0 (5.158)

for all aq, as. Thus, this is a valid correlation matrix.
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2. Setting a = [ay, as, as)’, then
ap -+ % + %
a’'Roa=[a1 ar as] |[L+a+% (5.159)
42 +ag
1
= a% + ajas + §a1a3 + a% + azas + a§ (5.160)
1 1 1 1 3
= §(a1 +ag + az)? + §(a1 — 5&3)2 + 5@3 + gag >0 (5.161)
for all a1, as. Thus, this is a valid correlation matrix.
3. Finally, for this complex case, a = [a1, ay]”, then
H _ * * a + (1 - j)a2
a"Rsa = [a} a}) [<1 N ion (5.162)
= |a1|* + (1 — j)ajas + (1 + j)asa; + |as|? (5.163)
= la; + (1 — j)az]® — |as)? (5.164)
O
for all a;, ay. To see that this is not always positive, choose the counter-example: a; = —1 4 j
and as = 1; then clearly af’Rsa = —1 < 0. Therefore, this is not a valid correlation matrix.

4. As mentioned above, but repeated here for completeness, R4 is not Hermitian, and is therefore

not a valid correlation matrix.

— End-of-Topic 33: Positive Semi-Definiteness for Correlation Matrices
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5.4.3 Further Statistical Descriptions

Topic Summary 34 Further Statistical Descriptors

re

New slide
Topic Objectives:
* Define and understand the covariance matrix and its properties.
* Define and understand the correlation coefficient and its properties.
* Understand the notion of cross-correlation and cross-covariance matrices.
* Example of using cross-correlation for sum of random vectors.
Topic Activities:
| Type | Details | Duration | Progress
Watch video 17 : 13 min video 3% length
Read Handout | Read page|180| to page|182| 8 mins/page
Try Example | Try Example |5.16| 5 minutes
st et ' - Further Statistical Descriptions
®: The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:
Tx 2 E [[X(0) - (X (©) — ix]] = R — pxessl]
]}f‘lhc mnd]om variablis .\';j((} anfl X;(¢) are independent, then
rx.x, = E[Xi(Q) X;(0)'] = E [X(OIE [X](¢)]
http://media.ed.ac.uk/media/1l_2vfmiklw
Video Summary: This video builds on the Statistical Descriptors introduced in
Topic [32] by discussing the covariance matrix, the correlation coefficient, and then
the cross-correlation and cross-covariance matrices for multiple random vectors. The
properties of these matrices are discussed, including uncorrelatedness, followed by an
example of calculating the cross-correlation of the sum of random vectors.
Building on the notes from the previous sections.
Covariance Matrix The autocovariance matrix is defined by:
TxXix: T UXa Xy
A H :
Ix 2 E [(X () - px) (X () — px)"] = (M:3.2.20)
TXnX1 T VXNXn

The diagonal terms

yxix, 2ok, =E[1X(0) — px "], ie{l,...,N} (M:3.2.21)
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are the variances of each of the RV, X;(().
The off-diagonal terms

vxox; 2 E[(Xi(0) — pxy) (5(0) — px;,) ]

XA ) (M:3.2.22)
=Txix; — MXiqu = 7XjX¢7 ¢ 7& J

measure the covariance X;(¢) and X, ().

It can easily be shown that the covariance matrix, I'x, must also be positive-semi
definite, and is also a Hermitian matrix.

alT'xa >0 (T:2.65)

Moreover, as for scalar RVS, the covariance, 7x;, X;» can also be expressed in terms of the standard

deviations of X;(¢) and X;(():

VX X, "
px.x;, = O_X_O_;_ = X, x, (M:3.2.23)
% J

Again, the correlation coefficient measures the degree of statistical similarity between two random
variables.

Note that:
lpx.x,| <1, i#j, and pxx, =1 (M:3.2.24)

If ‘ PX,X, | =1, i # j, then the RVE are said to be perfectly correlated. However, if px,x, = 0, which
occurs when the covariance 7y, x; = 0, then the [RVk are said to be uncorrelated.

The autocorrelation and autocovariance matrices are related, and it can easily be seen that:

I'x 2B |[X () — px] [X(¢) — ux]" | = Rx — pxp¥ (M:3.3.25)

which shows that the two moments have essentially the same amount of information. In fact, if
pnx =0, then I'x = Rx.

If the random variables X;(() and X,(() are independent, then they are also uncorrelated since:

rx.x, = E[Xi(¢) X;(0)] = E [Xi(¢)] E [X](C)]

i (M:3.3.36)
= HxiHx; = YxX; = 0

Note, however, that uncorrelatedness does not imply independence, unless the RV are
jointly-Gaussian. If one or both [RVk have zero means, then uncorrelatedness also implies
orthogonality.

Naturally, the correlation and covariance between two random vectors can also be defined. Let X ({)
and Y'(¢) be random N- and M- vectors.

Cross-correlation is defined as
Rxy £ E [X(0) Y"(¢)]

EXNOYT(O] - EXN(QY5(C)]

which is a N x M matrix. The elements rx,y, = E [X;(¢)Y;(¢)] are the correlations
between the RVk X (¢) and Y (¢).
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Cross-covariance is defined as

Iy 2 E [{X () = {Y(0) — iy}
= Rxy — pxpy

(M:3.2.29)

which too is a N x M matrix. The elements ~x,y, =
E [(X:(¢) — px,) (Y;(C) — py; )] are the covariances between X (¢) and Y'(¢).

In general, cross-matrices are not square, and even if N = M, they are not necessarily symmetric.

Two random-vectors X () and Y ({) are said to be:

e Uncorrelated if 'xy =0 = Rxy = pxpi.

* Orthogonal if Rxy = 0.

Again, if px or p or both are zero vectors, then uncorrelatedness implies orthogonality.

Example 5.16 (Sum of Random Vectors). Consider the sum of two zero-mean random vectors that
are uncorrelated. What are the correlation and covariance matrices of the sum of random variables?

SOLUTION. Let Z(¢) = X(¢) + Y(¢). Then:

Rz = E [2(0) 27(0)] = E |(X(C) + Y(O) (X(¢) + Y ()" (5.165)
—E [X(O)X(0)] + E [X(¢) Y*(¢)]

+E [Y(OX"(QO] +E[Y(Q) Y™ ()] (5.166)

= Rx + Rxy + Ryx + Ryy (5.167)

U

Since the random vectors are uncorrelated, then Rxy = Ryx = 0, and therefore Rz = Rx +
Ry. Moreover, the covariance matrix is equal to the correlation matrix as the random vectors are
zero-mean.

— End-of-Topic 34: Further Statistical Descriptions — b
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5.5 Linear Transformations

Topic Summary 35 Linear Transformations

Topic Objectives:
* Appreciate importance of linear transformations in probabilistic systems.
* Find transformed [pdf]in terms of the inputpdf using the probability transformation rule.
* Calculate statistical descriptors for linearly transformed variables.

* Apply these results to a simple example.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 15 : 36 min video 3% length
Read Handout Read page [183to page[186| | 8 mins/page
Try Example Try Example |5. 17 10 minutes
Practice Exercise | Exercises ??, ??,and ?? 90 mins

t
eory, Py an Y . -
) @ Linear Transformations

#® Since linear systems represent such an important class if
signal processing systems, it is important to consider linear
transfermations of random vectors.

#® Thus, consider a random vector Y () defined by a linear
transformation of the random vector X (¢) through the matrix
A

Y()=AX(()

(PRI

http://media.ed.ac.uk/media/l1_kémuyzb6h

Video Summary: Since linear transformations is such an important class of signal
processing systems, this video looks at considering linear transformations of random
vectors. After discussing various types of linear transformations, the video considers the
relationships from the approach of using the probability transformation rule, but notes
this is a rather tedious process in most cases. A more practical approach is to manipulate
the statistical descriptors, which leads to a set of elegant results. An example of a 3-to-2
linear transformation is presented, and the viewer is encouraged to try the corresponding
self-study exercises.

Since linear systems represent such an important class if signal processing systems, it is important to
consider linear transformations of random vectors. Thus, consider a random vector Y (¢) defined
by a linear transformation of the random vector X ({) through the matrix A:

Y (() =AX(() (M:3.2.32)

The matrix A is not necessarily square and, in particular, if X (¢) is of dimension M, and Y (¢) of
dimension N, then A is of size N x M (rows by columns).
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Sidebar 11 Jacobian of a Linear Transformation

A linear transformation of N variables, {z;}Y, to N variables, {y;}), can either be written in

matrix-vector form as shown in Equation or equivalently:
Y1 a1 Q2 - AN 1
Y2 a1 G2z - 42N T3
=1 . L : (5.168)
Yn ani an2 - AaNN| |TN
Y(¢) A X(¢)
or in the scalar form by the linear equation:
N
Yi= ) ainTh (5.169)
k=1

where a;; is the ith row and jth column of the matrix A. The Jacobian is obtained by calculating:

Oy —iw Ok _ (5.170)
al'j B ik ailfj I ’

using the fact that

Oy, {1 ifk = 5171

dr; |0 ifk#j

Hence, constructing the Jacobian matrix using Equation[5.170| gives the matrix A.

If N > M, then only M Y,,(¢) [RVk can be independently determined from X (¢). The remaining
N — M Y,,(¢) [RVk can then be obtained from the first M Y, (¢) RVk. If, however, M > N, then the
random vector Y ({) can be augmented into an M -vector by introducing the auxiliary RV,

Yo (¢) = X,(C), forn>m (M:3.2.33)

These additional auxiliary variables must then be marginalised out to obtain the joint{pdf] for the
original N-vector, Y (().

Both of these cases, for M # N, lead to less elegant expressions for fy (y), and therefore it will be
assumed that M = N, and that A is nonsingular.

The Jacobian of a nonsingular linear transformation defined by a matrix A is simply the absolute
value of the determinant of A as shown in Sidebar [I1} Thus, assuming X (¢), Y(¢), and A are all
real, then:

_Sx(ATly)

fy(y) = FETN (M:3.2.34)

In general, determining fy (y) is a laborious exercise, except in the case of Gaussian random vectors.
In practice, however, the knowledge of px, ptv, I'y, I'xy or I'yx is sufficient information for many
algorithms.

Taking expectations of both sides of Equation[M:3.2.32, Y ({) = A X ((), the following relations are
found:
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Mean vector:

py =E[AX(()] = Apx (M:3.2.38)
Autocorrelation matrix:
Ry =E[Y(OY'(Q] =E[AX(OX"(QA"]
= AE [X () X7 (¢)] A" = ARxA" o
Autocovariance matrix:
I'y = ATxAY (M:3.2.40)
Cross-correlation matrix:
Ray =E[X(OY(O] =E[X(OX"(QA"] o)
—E[X (()X"(()] A" = Rx A"
and hence Ryx = ARx.
Cross-covariance matrices:
I'xy =T'x A? and TI'yx = ATx (M:3.2.43)

These results will be used to show what happens to a Gaussian random vector under a linear
transformation in Section

Example 5.17 (Linear Transformation). A random vector X(¢) = [X;(¢) X2(¢) X3(¢)]" has
correlation matrix

9 3 1
Rx=13 9 3 (5.172)
1 39
This vector is transformed to another random vector Y ({) by the followmg linear transformation:
Xy (
Yi(Q)] _ 1
= Xo 5.173
3(

1. Find the correlation matrix Ry for Y (¢

2. Find the cross-correlation matrix Rxy.
SOLUTION. The linear transformation can be written in the matrix-vector form as:

Y = AX (5.174)

1. Using Equation M:3.2.39| the autocorrelation matrix is given by:

3 9 1 9 3 1] (3 1
Ry = ARxA" = [1 5 1} 3.9 3| (2 -2 (5.175)
1 3 9|1 1
Feel free to test your maths, or just use MATLAB:
A=1[321; 1-21]
RX = [9 3 1; 3 93; 13 9]
RY = A*RX#A.'
giving
180 -8
Ry = {—8 32} (5.176)
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2. Finally, Equation M:3.2.42| then the cross-correlation is given by:

9 3 1]1[3 1
Rxy =Rx A7 =3 9 3| [2 —2 (5.177)
1 391 1
34 4
=130 —12 (5.178)
18 4 O

— End-of-Topic 35: Linear Transformations and the Resulting Statistics :
- =




e

New slide

5.6. Multivariate Gaussian Density Function 189

5.6 Multivariate Gaussian Density Function

Topic Summary 36 The Multivariate Guassian Distribution

Topic Objectives:
* Derive an expression for the [pdf] of a multivariate Gaussian.
* Understand how the Gaussian depends on the correlation coefficient.

* Key properties of the multivariate Gaussian.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 20 : 20 min video 3% length
Read Handout Read page |187| to page |191| 8 mins/page
Try Code Use the MATLAB code 10 minutes
Practice Exercise | Revisit Exercise ?? 30 minutes

Probability Density, p = -0.15
Estimated Statitic: o, = 0253, = 0152, 0

http://media.ed.ac.uk/media/1_Opfz5bll

Video Summary: This video reviews the [pdf] for the multivariate Gaussian random
variable. This [pdf]is then derived by developing the isotropic multivariate Gaussian, and
then transforming through a linear transformation. The effect of the linear transformation
on both the [pdf] and second-order statistical descriptors are considered. The video
considers how the bivariate Gaussian density depends on the correlation coefficient,
and how its orientation changes with this coefficient. Finally, the video considers key
properties of the multivariate Gaussian, such as the fact that the linear transformation
of a Gaussian is a Gaussian; that the marginal of a Gaussian is a Gaussian; and that the
conditional distribution of a Gaussian is a Gaussian. The role of the multivariate Gaussian
distribution within statistical signal processing is also discussed.

Gaussian random vectors and Gaussian random sequences, as will be seen in the following handouts,
play a very important role in the design and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian density function.

For a real random vector, this density function has the form:

1 1
fx (x) = —————exp -3 (x — px) T (x — px) (M:3.2.44)
(2m)= |Tx|?
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Ie

New slide

where NV is the dimension of X ({), and X ({) has mean py and covariance I'x. It is often denoted
as:

fx (x) = N (x| px, Tx) (5.179)

Note the difference between the notation used here, and the notation used to indicate when a random
vector is distributed, or sampled, from a normal distribution:

X (¢) ~ N (px, I'x) (5.180)
The complex-valued normal random vector has [pdf}
1 H -1
= —=— —(x— r — M:3.2.47
fx (x) 7 Tx| exp |— (x — pux)" I'x (x — px) ( )

again with mean px and covariance I'x. For a more detail discussion of complex random variables,
see [Therrien:1991].
5.6.1 Deriving the Multivariate Gaussian

The [pdf] for the multivariate Gaussian is often quoted, but where does it come from? It is most easily
obtained by reusing some results from Section [5.2.4] and more specifically Topic

Suppose that NRVE, X,,(¢) for n € {0,..., N — 1}, are independent zero-mean unit variance
Gaussian densities, and each have [pdf] given by fx, (z,). Then the joint{pdi] of the multivariate
random vector X(¢) = [Xo(¢), -+, Xn_1(¢)]" is given by:
N-1
fx (x) =[] fx. (@) (5.181)
n=0
Since X,(¢) is Gaussian distributed with zero-mean and unit variance, such that zx ~ N (0, 1) or:
1 oy
Tn) =N (2,0, 1) = —e 2 5.182
Ix, (zn) (2010, 1) Jon ( )
and hence, as previously developed, it follows that:
R R 1 Nt
Tn 1 - 2
fx (x) = €2 = e 2 2n=0 Tn (5.183)
}_[0 V2T (Qﬂ)%
Defining the vector x = [zg, - -+, N_l]T, then it follows that
T N-1
xI'x = [:El mN] = Zmi (5.184)
TN n=0
Using this relationship, it is possible to write Equation [5.183]as:
1 1
fx (%) = ——ge (5.185)
(2m) =

This is an isotropic Gaussian, which is circularly symmetric.

A non-isotropic Gaussian can be obtained by a linear shift, scale, and rotation using the linear
transformations from Topic[33] Hence, set:

y=Ax+p (5.186)
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Isotropic Gaussian

4

PDF, f, , (x,X,)

Figure 5.17: A graphical representation of an isotropic Gaussian random vector.

Similar to Topic [35] apply the probability transformation rule, noting there is one solution x =
A~ (y — p) and the Jacobian J,_,, = det A. Hence:

fx (A (y — )

= 5.187
and
o) = e exp | =5 (A (v — ) (A (v — ) (5.188)
¥ |det A] (27)% 2 '
1 1
- N T exp {—5 (y—p) ATA  (y — u)} (5.189)
(2m)2 |ATA|?
where it has been noted that |AAT ‘ P o det A.
Finally, writing 'y = A AT and py = p, then:
1 1 T
)= —Tew |5 -py) Iy y —ny) (5.190)
(2m)= [Ty|?
=N (v|py, Ty) (5.191)

This is the expression for the multivariate Gaussian, which can be seen as a linear transformation of an
isotropic Gaussian, which is derived from first principles. By calculating the second central moment
for this density, it can be shown that I'y is indeed the covariance matrix, and it is also evident that
[ 1s the mean vector.

Using the definition of the correlation coefficient in Topic [34} for a bivariate Gaussian, the covariance
matrix can be written as:

2
% Y1Y20Y,0Y;
Iy = Y1 PY1Ys 5 1= r2 (5.192)
PY1Y20Y10Y, Oy,

The [pdf] can then be plotted as py,y, changes. This can be seen in the annimation video shown in

Topic[32]
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re

5.6.2 Properties of Multivariate Gaussians |

The term in the exponent of Equation is a positive definite quadratic function of z,,, and can V" */id¢
be written as:

(x — px)" T (x = px) = D> (T Vi — i) (w5 — p1y) (M:3.2.45)

i=1 j=1

where (T'x');; denotes the (i, j)th element of T'y'. It is therefore straightforward to calculate the
marginal distribution for the RV] X, (¢) by marginalising over all the other [RVk.

The normal distribution is a useful model of a random vector because of its many important properties.

l. fx(x) =N (x ‘ mx, I‘X) is completely specified by its mean px and covariance I'x. All
other higher-order moments can be obtained from these parameters.

Theorem 5.3 (Moments of a GaussianRY). The moments of a Gaussian RV| X (¢) ~
N (0, o2), are given by:

1-3---(k—1)o* keven

5.193
0 k odd { )

E [X*(¢)] ={

PROOF. Since fx (x) is an even function, then it follows that the odd moments are zero. The
proof for the even moments then follows by using integration by parts to obtain a recursive
relationship between E [X*(¢)] and E [X*2(¢)]. This is left as an exercise for the reader.

This theorem can be extended to the multivariate case.

2. If the components of X (() are mutually uncorrelated, then they are also independent. This
property has an important consequence in blind signal separation or independent component

analysis (ICA)).

3. A linear transformation of a normal random vector is also normal. This result builds on the
results derived earlier for obtaining the standard expression of a multivariate Gaussian. It can be
readily extended as follows, where the proof assumes a real normal random vector; the proof for
a complex normal random vector follows a similar line. Noting that for a linear transformation,

Afl
fx(y)= fx|d(TA|y> (M:3.2.34)
then if fx (x) = N (x ‘ px, I'x), it follows:
Fely) = 1 : Aty ) TR (A - 5.194
Y Y) N |detA| (2’/T)ﬂ |1-\ ’l CXp 2 ( y I‘I’X) X ( y IJ’X) ( . )
2 x 2

1 1 o
= e Eara [‘i(y—A“x>TA Ty'A 1(y_AI~Lx)] (5.195)
2m)2 X
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. T 1 1 . .
where it has been noted that |[AT'x A”|? = |A||T'x|2. Thus, using the expressions for py and
I'y above, it directly follows that
1 1 Tt
Py () = ————exp [~ (v — iy) T3 (v — py) (5.196)
(2m)% Ty ?
=N (y|py, Ty) (5.197)
This is a particularly useful, since the output of a linear system subject to a Gaussian input is
also Gaussian.
4. If X (¢) and Y (() are jointly-Gaussian, then so are their marginal-distributions, and their

conditional-distributions. This can be shown as follows, assuming real random vectors and
that X (¢) € RY, Y(¢) € R™; as usual, a similar derivation follows for the complex case.
Defining the joint random vector:

Z(¢) = [)é_((g] (T:2.101)
then the corresponding mean vector and covariance matrix is given by:
py =E H};((E))H - L‘jﬂ (T:2.102)
_ X (¢) — px B B H| | I'x TI'xy _
Iz =E HY(O B MY} (X () —px Y(CQ) — py] ] = [FQY Iy ] (T:2.103)
Hence, the joint{pdf]is given by:
fxy (%, y) = fz(2) =N (2| pg, T'z) (5.198)
1 1
- NiM T 6Xp {_5 (z — ILZ)T Fil (z — HZ)} (5.199)
(2m) 2 [Ty

But by substituting for z, i, and I', in terms of the x and y components and their respective
means and covariances, it can be shown that the marginal densities are also Gaussian, where:

fx (x) = N (x| px, Tx) (5.200)
N (y)=N(y|py, Ty) (5.201)
Moreover, since
fxy (x,y)
Fx (y|x)==—=F—=— (T:2.39)
x (] %) e )
then the conditional density is also Gaussian, given by:
1 1 T
fyix (y] x) = — T oxp | =3 (v — yx)” Tyix (v = pyix) (T:2.106)
(27’(’)7 |Fy|x‘ 2
where
Pyx = By + Dxy X' (x — px) (T:2.108)
I'yix = 'y — Ty Ix' Txy (T:2.109)
(=] 52 a]

— End-of-Topic 36: Multivariate Gaussian Distribution —
=
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5.7 Characteristic Functions

Topic Summary 37 The Multivariate Characteristic Function

Topic Objectives:

 Concept of extending the characteristic and moment generating function (MGEF) to random
vectors.

* Example of calculating the characteristic function of a multivariate Gaussian.

» Conceptual use of these transform domain operators.

Topic Activities:

| Type Details | Duration | Progress
Watch video 12 : 45 min video 3% length
Read Handout | Read page|l92| to page|l95| 8 mins/page
Try Example | Try Example |5.18 20 minutes

2s) ® Characteristic Functions

Example (Multivariate Gaussian). Calculate the characteristic
funtion for a multivariate Gaussian.

SOLUTION. Using the integral identity:

l .vq»{—% [a+2y"8 —r—yfry_}ziy
7 om ¥ 1 ;.
= “FJA L,x1>{~;[,. 7n‘r";i]}

where y € R”. Then it follows, by setting a = p% I iy,

http://media.ed.ac.uk/media/1_kv2kkbar

Video Summary: The concept of the characteristic function for scalar random variables
is extended to multivariate densities of random vectors. This is defined as the
multi-dimensional Fourier transform, or the multi-dimensional Laplace transform for
[MGEs. There is a discussion that the multi-dimensional transforms are perhaps more
useful as a conceptual rather than practical tool. The video then considers an example of
finding the characteristic function of the multivariate Gaussian. As an Appendix to this
Topic, a derivation of a key integral identify used in the example is provided.

The characteristic function and moment generating function for a scalar random variable can be
extended to deal with random vectors. Essentially, these are defined as the multi-dimensional Fourier
and Laplace transforms of the joint-pdf. Hence, the characteristic function is:

x(€) 2 E [ XO] / "y (%) T dx (5.202)
Here, as x is a vector, so is the variable & which is defined as:
e=[6 & - &) (5.203)
such that £7x is a scalar, 7 x = Zﬁf:l &, T, and the differential dx = Hfj:l dz,,.
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Similarly, the moment generating function is given by:
dx(s) 2 E [eST X<<>] - / fx (x) €8 X dx (5.204)
Example 5.18 (Multivariate Gaussian). Calculate the characteristic function for a multivariate

Gaussian.

SOLUTION. This problem is an interesting exercise in multi-dimensional integration, and some of
the identities used will be used again in later Topics.

The characteristic function for a real-valued Gaussian random vector is given by:

Dx (&) = / - fx (%) €€ > dx (5.205)
- / "o {—% (x — px)" Tx' (x = ux)} 78 dx (5.206)
(2m)% [Tx|? /-0

1 oo T]_'\fl 9 T T]_-wfl
- ——— / exp{—x x X 20+ ik X“X} dx (5.207)
(2m)7 [Px[2 /-0 2
where 3 = — (I‘;(1 pux + jE)T, and the relationship that 87 x = (XT,B)T both equals scalar values
have been used.
Using the integral identity:
1
/ exp {—5 [Oz +2yT8 + yTl"y} } dy
P
* Y- X (5.208)
)2 Tp-1
mr e el s

wherey € R” is a P-dimensional column vector. This result is proved in Sidebar Then it follows,
by setting o = pk Iy’ px, T =Tx',y =xand P = N, that:

1
() = exp |5 (AT x — (TR + € T (T ax + 7€)} (5209

which, after multiplying out, gives:
T L.r
Ox (&) = oxp | j€ px — 5€ I'x€ (M:3.2.46)

where, of course, £&7 = [€1,...,&n]. Tt can be shown that the characteristic function for the
complex-valued normal random vector is given by

Px (&) = exp [j%{éHp,X} — %gerg} (M:3.2.50)
O

The multivariate characteristic function is perhaps more useful as a powerful conceptual tool than a
practical method for manipulation, as there are only a few cases where analytical results exist. The
concept can also be extended to a multi-dimensional version of the probability generating function
(PGE) for discrete random variables.

The result for the characteristic function of a multivariate Gaussian yields some interesting
consequences:

June 28, 2021 — 08 : 40
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Sidebar 12 Proof of the Multivariate Gaussian Identity

The identity in Equation [5.208] can be derived by using another axiomatic identity, which is the fact
that a multivariate Gaussian @ integrates to one, such that:

oo 1 1 ~
/ PRI —5 (v = y) B (y —py) | dy =1 (5.210)
oo (27)% [y

where y € RP*!, Set ' = 3'; this substitution arguably looks as though it is confusing things
further, but it does keep the manipulations simpler when working towards the required identity. This
means that detT' = |T'| = 1/|Xy|. Hemce, substituting and rearranging by bringing the constant
term outside the exponent and to the other side of the equation gives:

= 1 (27) 2
[ e |5 - m Ty - )| iy = B 521)
~ 0o |]_"| 2
Expanding the exponent, noting that u4T'y = y" Ty, as T'" =T, then:
o0 1 2m)7
/ exp [—5 (yTI‘y — 2y Ty + ugruy)} dy = (|1"|)1 (5.212)
— oo 2
Setting 3 = —TI' .y, such that py, = —I'"'3 gives:
o 1 (2m) %
/ exp {—5 (y'Ty+2y"8+ (-8'T)T (—I“lﬁ))} dy = o (5.213)

Simplifying (—B8"T~") T (—-I''B) = B'I"'B, splitting up the exponent, and taking the term in
BT '3 to the other side gives:

P

/ exp {—% (yTFy+2yTﬁ)} dy = (|217:|)§ exp BBTF*B] (5.214)

oo

N

Finally, multipling both sides by exp (—%) gives the desired identity:

o 1 27) 2
exp | —= (yTI‘y +2yT 3 + a) dy = ( W)l exp
oo 2 INE

—% (a— ﬁTr—lﬁ)l (5.215)

There are many variants of this proof, and indeed of this identity, but they all broadly follow the same
starting point.
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1. The Fourier transform of a Gaussian function is still a Gaussian function.

2. The Fourier transform is a linear transformation, and therefore this result is a natural
consequence.

— End-of-Topic 37: Characteristic Functions —

5.8 Higher-Order Statistics

Random vectors, and random processes as introduced in the forthcoming lectures, can also be
characterised by higher-order moments. These, again, are a generalisation of the equivalent definitions
for scalar-random variables. However, they become significantly more complicated for random
vectors since the various products of the random variables creates a very large set of combinations.
These will not be discussed in this course, although an introduction can be found in [Therrien:1992,
Section 4.10.1]. As an example, taken from [Manolakis:2000, Page 89], it is noted that the
fourth-order moment of a normal random vector

X (€)= [X1(¢) X2(Q) X3(¢) Xa(O)]" (5.216)

can be expressed in terms of its second order moments. For the real case when X () ~ N (0, I'x),
then:

E [X1(¢) X2(¢) X3() X4(0)] =E [X1(O)Xa(O) E [X5(0) X4 (Q)]
+ E [X1(0)X5(¢)] E [X2(0) X4(C)] (M:3.2.53)
+ E [X1 (O X4 (O] E [X2(0) X5(¢)]
Note that each [RV] appears only once in each term. It is also possible to define higher-order

cumulants which can be extremely useful; for example, they are identically zero for Gaussian random
processes, which can help identify whether a process is Gaussian or not.
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5.9 Sum of Independent Random Variables

Topic Summary 38 Sum of Independent Random Variables

Topic Objectives:
* Investigate [pdfs of sum of random variables.
* Apply to simple examples.

¢ Understand the role of characteristic functions in this case.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 18 : 23 min video 3x length
Read Handout Read page|196|to page|198| | 8 mins/page
Try Example See video 10 mins
Practice Exercise | Try Exercises ?? to ?? 80 minutes

). Sum of Independent Random Variables

Theorem (Sum of Random Variables and Vectors). If X (¢) and Y(()
have joint-pdf, fxy (x. ¥), then Z({) = X ({) + Y(¢) has density
James R. Hoj s funetion:

James.Hopgoo:

fz(2) 2 fxiv (2) [fxy(x,z — x)dx &

Sxr= Ex gy

Theorem (Sum of Independent Random Variables and Vectors). If X (()
and Y (¢) are independent, this result becomes

Commen
e v ) = [ £x () fy (2 x)ax ” convelvhe

f

¥ & dole g

Cpf\«al‘\)l"@_/_\)

http://media.ed.ac.uk/media/1_kxi2oy5p

Video Summary: This Topic considers further the sum of random variables that was
introduced in Topic 31 on auxiliary variables. The case of independent random variables
and vectors is considered specifically, where it is seen that the [pdf] of the sum is the
convolution of the individual [pdfs. An example shown in the video, but not in the
notes, is the probability mass function of the sum of two fair dice. The video then
shows how the sum of independent random variables can be elegantly dealt with using
characteristic functions, because convolution in the @ space becomes multiplication in
the characteristic function space. This becomes useful in proofs such as the central limit

theorem (CLT)) in Topic[39}

Theorem 5.4 (Sum of Random Variables and Vectors). If X (¢) and Y({) have joint{pdi]
fxvy (%, y), then Z(¢) = X (¢) + Y(() has density function:

fz (z) = x4y (z) = /11{ Ixy (x, 2 —x)dx (5.217)

PROOF. This can easily be obtained using the probability rule and an appropriate auxiliary variable,
as in Section [5.3.3] and indeed is a simplification of the result already proved there. However, an
alternative proof which avoids the use of auxiliary variables is given here for completeness.
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Define the event Z = {(x,y) : x + y < z}. Then:

Pr(X+Y <x)= // fxy (u, v dudv-/ / fxvy (u, v)dudv (5.218)
veR =—00

and by making the substitution w = u + v.

_ / / Ty (W v)dwady (5219)
veR =—00

_ / ‘ Fry (1, w— v) dudy 2 / fx(v)dv  (5.220)
=—o0 JveR W=—00 O

giving the result as required.

Theorem 5.5 (Sum of Independent Random Variables and Vectors). If X (¢) and Y(() are
independent, this result becomes

fz(2) £ fxiv (2) = /R fx (%) fy (z — x) dx (5.221)
= /R fx(z—-y) fy(y)dy = fx (2) * fy (y) (5.222)

PROOF. Follows trivially by writing fxv (x, ¥) = fx (x) fvy (y)

Independent can also be dealt with using characteristic functions or moment generating
functions (MGE¥) as introduced in the lecture on scalar random variables.

If Z(¢) = X(¢) + Y (Q), then its characteristic function is:
(I)Z(g) L E [leZ(C)] —E [ejﬁ[X(QHY(C)}] —E [ejﬁX(C)] E [ejﬁY(C)} (M:3.2.59)

where the last inequality follows from independence. More explicitly, observe that:
() =E [ejE[X(C)JrY(C)]] - / / Fxy (z, y) I g dy (5.223)

and noting that due to independence fxy (x, y) = fx () fy (y), then

D€ / / fx () fy (y) €%l da dy (5.224)

:{/ fi (o eﬂfwdg;} {/ v (y eﬂfydy} (5.225)

Hence, from the convolution property of the Fourier transform, it follows directly from this result that

[z (2) = fx () fy () (M:3.2.61)

This result can be generalised to the summation of M independent [RVk:

giving the desired result.

M

Y(Q) = e Xi(Q) (M:3.2.55)

k=1
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where {c;, } is a set of fixed (deterministic) coefficients.

It follows straightforwardly that:
M
By (€) 2 E [¢*VO] = T E [ef¢er (¢ H D, (crf) (M:3.2.72)
k=1
Hence, the [pdf]of Y'({) is given by:

fr (y) = ! —fx; (g) * fo2 (ﬁ) ook LfXM (i> (M:3.2.73)
=1 c) e Ca lea | cum

where, implicitly, the Fourier transform of a frequency scaled signal has been used, which is
equivalent to using the probability transformation rule for a scalar random variable.

Theorem 5.6 (Mean and variance of sum of independent[RVk). Using the linearity of the

expectation operator, and taking expectations of both sides of Equation then:
M
py = cpfix, (M:3.2.56)
k=1

Moreover, assuming independence, then the variance of Y'(¢) is given by:

M 2 M
oy =B || crpx, —px| | =D lal’ ok, (M:3.2.57)
k=1 k=1

PROOF. These results follow from the linearity of the expectation operator, and the independence
property of the random variables. The proof is left as an exercise for the reader.

Finally, the cumulant generating, or second characteristic, function can be used to determine the
nth-order cumulants for Y ().

Recall that A
Ux(§) £Indx(¢) =InE [/ *19] (5.226)

Then, from Equation
M
Uy (€) 2 InE [76Y© ZmE [ X O] =3 "Wy, (r) (M:3.2.74)

Therefore, it can readily be shown that the cumulants of Y ({) are given by:

i = Z o k) (M:3.2.75)

It is left as an exercise for the reader to demonstrate this.

When these results are extended to the sum of an infinite number of statistically independent random
variables, a powerful theorem known as the central limit theorem is obtained.

Another interesting concept develops when the sum of random variables preserve their
distribution, which results in so-called stable distributions. Examples are the Gaussian and Cauchy
distributions.

— End-of-Topic 38: Sum of Independent Random Variables —




5.10. Central limit theorem 201

5.10 Central limit theorem

[E)

Topic Summary 39 The Central Limit Theorem New slide

Topic Objectives:
 Motivate the central limit theorem (CLT)) using an example.
* Demonstrate the using a simulated numerical example.
 Formally define the

¢ Give an outline proof of the

Topic Activities:
| Type | Details | Duration | Progress
Watch video 23 : 02 min video 3% length
Read Handout Read page|199]to page[202] | 8 mins/page
Try Example Try Example|5.19| 15 minutes
Try Code Use the MATLAB code 10 minutes
Practice Exercise | Try Exercise ?? 10 minutes

Example. SOLUTION. The convolution calculations

Is (PETARS! @ Central limit theorem
-y lations:
o8 i ssian

— & ;Q‘(-j)

1% [ k4
The pdf of fy, (y), and also the pdf of N (y |0, 1).
Cubic {19y Dy < 1)

~ (1

http://media.ed.ac.uk/media/1_795s419h

Video Summary: This Topic motivates the by considering the [pdf] of the sum of
uniform random variables, from two through to just four variables. It is shown that this
[pdfl approaches a Gaussian very rapidly. In addition to a mathematical development, the
video also shows simulated numerical results (in this case using MATLAB, but easily
done in any language). The video considers the formal definition of the in terms of
normalised random variables. Finally, for completeness, the video gives an outline sketch
of the [CLT using characteristic functions.

To motivate the central limit theorem, consider the following example.

Example 5.19. In Exercise ??, the problem considers the sum of four independent random variables.
Suppose {X;(¢)}i_, are four 3. d] random variables uniformally distributed over [—0.5,0, 5].
Compute and plot the [pdfks of Ya,(¢) 2 S, X4 (¢) for M = {2,3,4}.
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|-
»

-1 ' Ly

-1.5 -0.5 0.5 1.5 %

Figure 5.19: The|pdf] fy, (u), the sum of three uniform random variables.

Jilx) 4

0.5 05 14

SOLUTION. The zero-mean uniform [pdf] for fx, (zj) as specified is shown in Figure ??, where the
subscripts have been dropped for clarity. Using the convolution result for the sum of independent

random variables from Section[5.9] it follows:

fvo () = fxo (W) * fxo (y) = fx (y) * fx (v)
fvs W) = fro (U) * fxs (Y) = fra () * fx (v)
v W) = frs (W) x fx, (y) = frs () * fx (v)

The convolution calculations to this problem Example ?? should yield the following [pdfk:

1+y -1<y<0
froy)=q1-y 0<y<1

0 otherwise
2
H+d) —3<y<-d
3 2 1 1
i —3SY<3
fv: (y> =41 2 2 2
’ =3 15y<;
0 otherwise
(1(y+2)° —2<y<—1
6 —_

—1Pp -+ 2 —1<y<0
) =93 —y*+2 0<y<1
Ly -2’ 1<y<?2

0 otherwise

\

Thse [pdfk is plotted in Figure[5.18] Figure[5.19] and Figure[5.20} respectively.

(5.227)
(5.228)
(5.229)

(5.230)

(5.231)

(5.232)
U
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Sum of four uniform random variables

— 1)
— Gaussian

-4 -2 0 2 4

Figure 5.20: The [pdfjof fy, (y), and also thepdfjof A (y | 0, 3).

Consider the random variable Y ({) given by:

V() =) Xi(¢) (M:3.2.55)

What is the distribution of Y),(() as M — oo?

If Y3/ (¢) is a sum of [ 1. dJ[RVk with a stable distribution, the distribution of Y,,(¢) also converges to
a stable distribution. If the distributions are not stable and, in particular, have finite variance, then the
reveals the distribution for limy; . Ya/(C).

Informally, the is well known, and the answer is a Gaussian. However, more care is needed.
Assume that the X ,({)’s are and the mean and variance of X,,,(() are finite and given by px
and c%. Then:

* the mean of Y),/(() is

M M
EYu] =E > Xu(¢ )] =Y E[Xu(0)] (5.233)
m=1 m=1
iy = Mux ~ Whatis gy as M — 00? (5.234)
* the variance of Yj/(() is
M M
var [Yy] = var [Z Xm(()] =) var [X,u(Q)] (5.235)
m=1 m=1
oy = Moy  Similarly, what is o3 as M — oco? (5.236)

Theorem 5.7 (Central limit theorem). Let {X;(¢)}., be a collection of RVk that are independent
and identically distributed and for which the mean and variance of each [RV] exists and is finite, such

that ux = px, < ooand ox = 0%, < oo forall k = {1,..., M}. Define the normalised random
variable:
M
. Y —
Yu(C) = M where  Yi,(¢) = ZXk(C) (M:3.2.55)
Yu —1
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Then the distribution of Y}, (¢) approaches that of a normal random variable with zero mean and unit
standard deviation as M — oo; in other words,

Jim fy (y) =N (y]0, 1) (5.237)
PROOF. Since the X;(¢)’s are[L1-d] then y1y,, = Mpx and 03, = Mo%. Let
X _
2() = 2O —ix (5.238)
ox
such that py, = puz =0, O'%k = 02 = 1 andthe normalised random variable can be written as:
| M
Yi(Q) = == Z(Q) (5.239)
T
Noting that if V(¢) = a U(() for some real-scalar a then
Oy (¢) = E [e4VO] = &y (al) (5.240)
Hence, from EquationM:3.2.72} the characteristic function for YM(C ) is given by:
2 ¢
Py (&) = gézk (m) (5.241)
Since the X} ((¢)’s and therefore the Z;(()’s are[l. 1. dl then @ (&) = P4(&), or:
_om (€
Py, (&) = @7 ( rM) (5.242)
From the previous chapter on scalar random variables,
D4(6) =E [4400)] = (‘75) E[Z7(C)] (5.243)
n=0 )

and therefore, the characteristic function for }A/M(C ) becomes:
M

DNGE {Z% () e [Z“(g)]} (5244

M
j€uz _ £y { ¢ }3
14 — +o({—=— 5.245
{ 57 oM T ( )
Using the moments piz = 0 and 0% = 1,

N\ Y M
®?Al(§):{1_ﬁ+o<{\/%}>} Se 2 s M — oo (5.246)

where the following limit is used:

lim (1+2)" = (5.247)
n—oo n
O
This last term is the characteristic function of the V" (y | 0, 1) distribution.

— End-of-Topic 39: Central Limit Theorem —




Principles of Estimation Theory

An approximate answer to the right
problem is worth a good deal more than an
exact answer to an approximate problem.

John Tukey

This handout presents an introduction to estimation theory, including the notion of an estimator,
measures of performance of the estimator (bias, variance, mean-squared error (MSE), the Cramér-Rao
lower-bound (CRLB)), and consistency). Discusses various estimators such as maximum-likelihood
estimate (MLE)), least-squares, and Bayesian estimators.
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Estimation Theory

6.1 Introduction

Topic Summary 40 Introduction to Estimation Theory

re

New slide

Topic Objectives:

vector.

* Motivation for Estimating Parameters from Data.
* Examples of Parameter Estimation.

Properties of Statistical Estimations.

Numerical example showing the sampling distribution.

Conceptual difference between a point-estimate and the estimator as a random variable or

Topic Activities:

] Type Details \ Duration | Progress
Watch video 18 : 31 min video 3% length
Read Handout | Read page |204| to page |209| 8 mins/page
Try Code Use the MATLAB code 10 minutes
Try Example | Try Example 15 mins

Properties of Estimators

Since 6 is a funetion of a number of realisati
experiment, it is itself a RV, and thus h:

of a random
nd variance.

# As an example of an estimator, consider mating the mean
px of a random variate, X (¢), from N observations
X = {en]})~". The most natural estimator is a simple
arithmefic average of these observations, the sample mean:

=
h =0X) =5 > aln
" n=0

a L=

http://media.ed.ac.uk/media/1_ltynridnm

Video Summary: In this video, Estimation Theory is introduced in which unknown
parameters are estimated from data, rather than assuming that problems can be described
by fully known distributions or statistics.
highlighted as an example. Examples of parameter estimation problems are discussed,
followed by the concept of an estimator. The concept of distinguishing point-estimators
from an estimator as a random variable before a set of observations is introduced, and a
numerical example of the sampling distribution of the sample mean is presented in depth.

The taxi-cab problem from Topic [ is

* Thus far, the theory and material presented in this lecture course have assumed that either the
probability density function (pdf)) or statistical values, such as mean, covariance, or higher order
statistics, associated with a problem are fully known. As a result, all required probabilities,
and statistical functions could either be derived from a set of assumptions about a particular

problem, or were given a priori.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton44'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_1tynr4nm

6.1. Introduction 207

* In most practical applications, this is the exception rather than the rule. In fact, unless the
process by which observations, such as random values or vectors, are generated is known
exactly, such that desired [pdf] or statistical properties could be theoretically calculated, there
is absolutely no reason why they should be known a priori.

* The properties and parameters of random events must be obtained by collecting and analysing
finite set of measurements. Again, it would be impossible or very rare indeed to known
the ensemble of realisations of a sample space, and it will always be the case in practical
applications that only a few realisations will ever be observed.

* This handout will consider the problem of Parameter Estimation. This refers to the estimation
of a parameter that is fixed, but is unknown. For example, given a collection of observations
that are known to be from a Gaussian distribution with unknown mean, estimate the mean from
the observations.

)

6.1.1 A (Confusing) Note on Notation -

Note that, unfortunately, from this point onwards, a slightly different (and abusive use of) notation for New slide
random quantities is used than what was presented in the first set of handouts.

So far, as in the literature, the nth-order particular observation of a random variable are written as
lower-case letters, possibly using subscripts such as x,,, but also often using square brackets, such
as x[n]. This is all fine; except that for convenience, lower-case letters are also used in some literature
to refer to the random variable itself with the consequence that, in different contexts, x[n| can refer
both to a particular observation, as well as a potentially random value (z[n] = X (¢)). Where possible,
upper-case letters are used to denote random elements, but this isn’t always true.

The reason for this sloppiness is due to the notation used to describe random processes later in
the course, where the representation of a random process in the frequency domain is discussed, and
upper-case letters are exclusively reserved to denote spectral representations. Moreover, lower-case
letters for time-series are generally more recognisable and readable, and helps with the clarity of the
presentation (where, as will be seen, x[n] is short-hand notation for x[n, (]).

Since this handout leads onto the notation of stochastic processes in the next course, this sloppy
notation will be introduced now, but note that where the existing notation can be used without
ambiguity in exam questions, it will be.

I8

6.1.2 Examples of parameter estimation o

To motivate this handout, this section lists a number of potential problems in which parameters might New slide
wish to be estimated.

Frequency Estimation Consider estimating the spectral content of a harmonic process, z[n],
consisting of a single-tone, given by

z[n] = Ay cos(won + ¢g) + wln] (6.1)

where Ay, ¢o, and wy are unknown constants, and where w(n] is an additive white
Gaussian noise (AWGN) process with zero-mean and variance o%. It is desired to
estimate the unknown constants, namely the amplitude A, phase ¢y, and frequency
wp from a realisation of the random process, giving rise to observations x[n].
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Sidebar 13 The taxi-cab problem (Repeated)

The following taxicab problem has been part of the orally transmitted folklore in the area of
elementary parameter estimation for several decades [Jaynes:2003, Page 190], and is essentially an
application of estimating the parameters of a sampling distribution from a small sample size. It was
initially discussed as the Venice Water-Taxi problem in Chapter 2.

It goes as follows: you are travelling on a night train; on awakening from sleep, you notice that the
train has stopped at some unknown town, and all you can see is a taxicab with the number 27 on it.
What, then, is your guess as to the number /N of taxicabs in the town, which would in turn give a clue
as to the size of the town?

Many people intuitively answer that there seems to be something about the choice N g = 2 X 27 = 54
that recommends itself; but few can offer a convincing rationale for this. The obvious model that
seems to apply is that there will be /N taxicabs numbered 1 through N, and, given NV, the taxicab
observed is equally likely to be any of them. Given that model, it is deductively known that N > 27,
but from that point on, the reasoning depends on what metric is being used for deciding what a good
estimator is.

If the problem seems to abstract by virtue of just one observation, consider observing a number of
taxi’s, say 2 or 3 taxi’s with numbers 27, 13, and 28. Now what would your estimate be, and how
many taxi’s would you prefer to see before estimating the value of N?

This problem might seem rather academic, but has actually in the past been far from it.

Sampling Distribution Parameters It is known that a set of observations, {z[n]}{"!, are drawn

from a sampling distribution with unknown parameters 6, such that:
z[n] ~ fx (x| 0) (6.2)

For example, if it is known that [n| ~ U, 5, then it might be of interest to estimate
the parameters a and b.

Estimate of Moments It might be of interest to estimate the moments of a set of observations,
{x[n]}{", for example px = E [z[n]] and 0% = var [z[n]].

Constant value in noise An example which covers the various cases above is estimating a “direct
current” (DC) constant in noise:

zn|=A+wn], ne{0,...,N—1} (6.3)

This list isn’t exhaustiive, but gives an example of the type of parameter estimation problems that
need to be addressed.

6.2 Properties of Estimators

Consider the set of N observations, X = {z[n]}5 ", from a random experiment; suppose they are
used to estimate a parameter ¢ of the process using some function:

0=0[x]=0[{x[n]}) ] (6.4)
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Sidebar 14 German Tank Problem

In the statistical theory of estimation, the problem of estimating the maximum of a discrete uniform
distribution from sampling without replacement is known in English as the German tank problem,
due to its application in World War II to the estimation of the number of German tanks.

In this scenario, an intelligence officer has spotted a number of enermy tanks, with serial numbers
that were assumed to be sequentially numbered from 1 to N. Given these observations, what is the
prediction of the number of tanks produced? http://en.wikipedia.org/wiki/German_
tank_problem

The function §[X] is known as an estimator whereas the value taken by the estimator, using a
particular set of observations, is called a point-estimate.

An aim is to design an estimator, é, that should be as close to the true value of the parameter, 6, as
possible.

Since 6 is a function of a number of particular realisations of a random outcome (or experiment), then
it is itself a random variable (RV)), and thus has a mean and variance. As an example of an estimator,
consider estimating the mean px of a random variate, X (¢), from N observations X = {z[n]}y '
The most natural estimator is a simple arithmetic average of these observations, given by the sample
mean:

fix =0[X] = =) x[n] (M:3.6.1)
0

6% =0'X] = (z[n] — fix)? (M:3.6.2)

Thus, to demonstrate that these estimates are [RVk, consider repeating the procedure for calculating
the sample mean and sample variance from a large number of difference sets of realisations. Then a
large number of estimates of 1x and 0%, denoted by the set {/ix } and {6% } respectively, is obtained,
and these can be used to generate a histogram showing the distribution of the estimates.

Example 6.1 (Numerical Example). Suppose that N = 1000 observations are generated from a
Gaussian density with mean ; = 5 and variance 0> = 1. Use MATLAB and a Monte Carlo
experiment to find the distribution of the sample mean.

SOLUTION. One realisation of the experiment would generate N = 1000 data points generated from
z[n] ~ N (=5, 0? = 1) using the code:

mu = 5; sigma = 1; N = 1000;
X = mu + sigma * randn(N, 1);
muEst = sum(x) /N

The second line of the code utilises a probability transformation rule from a Gaussian density of unit
variance and zero mean. This experiment can be repeated K = 100000 times to produce a Monte
Carlo estimate. This can be achieved with the following code:
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Histogram of Sample Mean Estimates
14 T T T T T T

PDF of ji

4.85 49 4.95 5 5.05 5.1

Estimator of u, i

Figure 6.1: A Monte Carlo experiment showing the distribution of the Sample Mean estimator.

clear var; close all
N = 1000; K = 100000;
mu = 5; sigma = 1;

muEst zeros (1, K);
for k =1 : K
X = mu + sigma * randn (N, 1);
muEst (k) = sum(x) / N;
end
mean (muEst)

figure; histogram (muEst, 'Normalization', 'pdf');
L = 1000; % Number of points to plot
muPlot = linspace (min (muEst), max (muEst), L);

muPDF = normpdf (muPlot, mu, sigma/sqgrt (N));

hold on; plot (muPlot, muPDF, 'r-', 'linewidth', 3);

The results of this Monte Carlo experiment are hence shown in Figure [6.12]

The set of N observations, {z[n]}"-; can be regarded as one realisation of the random process

{x[n, ¢]}V=; which, technically, is defined on an N-dimensional sample space. Hence, the estimator
0 [{x[n, (]} "] becomes alRVIwhose probability density function can be obtained from the jointpdf
of the random variables {x[n, (]}{' " using the probability transformation rule. This distribution is
called the sampling distribution of the estimator, and is a fundamental concept in estimation theory
because it provides all the information needed to evaluate the quality of an estimator.
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Now, the sampling distribution of a good estimator should be concentrated as closely as possible
around the parameter that it estimates. To determine how good an estimator is, and how different
estimators of the same parameter compare with one another, it is necessary to determine their
sampling distributions. Of course, in practice, the joint{pdf] for the random process z[n, (] is rarely
known, so frequently it is not possible to obtain the sampling distribution. However, it is possible to
estimate the statistical properties of the sampling distribution, such as lower-order moments (mean,
variance, mean-squared error, and so forth), and that is the subject of this handout.

=

0]

— End-of-Topic 40: Introduction to Estimation Theory and the
Definition of an Estimator —

=
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6.2.1 What makes a good estimator?

Topic Summary 41 Measuring Performance of an Estimator

Ie

New slide

Topic Objectives:
* Understanding how good an estimator is.
* Concepts and definitions of bias and variance.
* Calculating bias and variance.

* Understanding the bias-variance tradeoff for an estimator.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 20 : 20 min video 3% length
Read Handout Read page 210/to page[213| 8 mins/page
Try Example Try Example |6.2| and Example |6.2| 15 mins
Practice Exercises | Exercises ?? to ?? 40 mins

@ What makes a good estimator?
1 8§53 £575-y -
@ A 1p3: E6p3-p=c

var{yi) = E[(i-Efu)Y)

i Trve valve i

true value,fi. However, the spread estimated value
around the true v: is very large:

Wh'\ CE Lw;;lm w'vlqolm)il“q /v

£ seshu e LS

@O o ce - Eode ol |
e —

http://media.ed.ac.uk/media/l_7isroiw3

Video Summary: In this video, the question of measuring and quantifying the
performance of an estimator is discussed. The video focusses on the concepts
and definitions of bias and variance of the [pdf] of the estimator, and highlights the
bias-variance trade-off; namely, that by introducing a small amount of bias in an
estimator, the variance can be reduced. The normalised bias and normalised variance
are also defined. Assuming the observations are independent, then the bias of the sample
mean is calculated and shown to be unbiased. Similarly, the variance of the sample mean
is calculated, using two similar but different calculations.

Figure[6.2]and Figure[6.3|illustrate properties of the sampling distribution, and how they might inform
how to choose a good estimator.
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A/ B =EfE)n
—p

>

no Efw] o
Figure 6.2: Here, the [pdf] of the estimated value, fi, is biased away from the true value, ;1. However,
the spread of the estimated value around the true value is small.

var[u] = E[(n-E[n])’]

!

i

Figure 6.3: Here, the @ of the estimated value, ji, is centered on the true value, u. However, the
spread of the estimated value around the true value is very large.

A —>
u n

Figure 6.4: It is important to note that higher-order statistics can also play a part in quantifying the
performance of an estimator, although that won’t be considered further here.
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Sidebar 15 Expectation [w. 1. t] what?

Note that the expectation is taken with respect to the [pdf] of the data X, denoted by p (X' | ). Thus,
more precisely one would write:

B(0) 2 By oy |6] -0 6.5)
where

Ey(x6) [9} é/@é(ﬂf)p(?ﬂ 0) dx 6.6)

However, often in textbooks and the literature, the [pdf] with which the expecation is taken against is
omitted.

6.2.2 Bias of estimator
The bias of an estimator 6 of a parameter 6 is defined as:
B)2E [é] .y (M:3.6.3)

It is important to appreciate that the expectation is taken with respect to (W. L. t]) the observed data
given the true parameter 6.

Therefore, the normalised bias is often used:

o B0 _E[
e (0) = % =—= L 0+#0 (M:3.6.4)
Example 6.2 (Biasness of sample mean estimator). Is the sample mean, [, = 4 LS an]

biased?

SOLUTION. No, since E [ji,] =E | 307 a:[n]] = LS NE [2n]] = M5 = iy,

When B(é) = 0, the estimator is said to be unbiased and the [pdf] of the estimator is centered exactly
at the true value of 6. Generally, estimators that are unbiased should be selected, such as the sample
mean above, or very nearly unbiased. However, as will be seen later, it is not always wise to select
an unbiased estimator. That an estimator is unbiased does not necessarily mean that it is a good
estimator, only that it guarantees on average that it will attain the true value. It might have a higher
variance, as discussed below, than a biased estimator. On the other hand, biased estimators are ones
that are characterised by a systematic error, which presumably should not be present, and a persistent
bias will always result in a poor estimator.

[Therrien:1992, Section 6.1.3, Page 290] gives a more formal definition of unbiasedness, and this is
as follows:

Definition 6.1 (Bias of an estimator). An estimate 0 ~, based on N data observations, of a parameter
0 is unbiased if

E [éN] .y 6.7)
Otherwise, the estimate is biased with bias B [ } — . An estimate is asymptotically
unbiased if A
lim & [9 | =o (6.8)
N—o0

¢
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6.2.3 Variance of estimator

The variance of the estimator 6 is defined by:

A

var 0] =02 2.5 |05 [3]

2
] (M:3.6.5)

This, as with any variance value, measures the spread of the @] of 6 around the mean. Therefore,
it would, at first sight, seem sensible to select an estimate with the smallest variance. However, a
minimum variance criterion is not always compatible with the minimum bias requirement; reducing
the variance may result in an increase in bias.

Therefore, a compromise or balance between these two conflicting criteria is required, and this is
provided by the mean-squared error (MSE) measure described in the next topic.

The normalised standard deviation is defined by:
a 9% )
&= 0 #0 (M:3.6.6)
Example 6.3 (Variance of Sample Mean). Calculate the variance of the sample mean, assuming the
observations are independent.
SOLUTION. Noting that the samples {x[n]}. - are independent and identically distributed
with variance o2, then there are two approaches to calculating the variance.

The first is to use the result that the variance of a sum of independent random variables, is equal to
the sum of the variances, or generalised to:

var [Z_ Cn Xn(C)] = Z_ 2 var [X,(¢)] (6.9)

n=0 n=0
Therefore,
1 N-1 1 N-1 o2
var [fi,] = var [N ;% x[n]] =z nz; var [z[n]] = ﬁ (6.10)
The second approach uses the result that E [x[n] z[m]] = 026(n — m) + p2. The sample mean

estimator is unbiased, and therefore writing 6 = (i, then E [/i,] = .. Therefore:

i | Nl 2
var [fi,] = E '{— x[n]} — Y (6.11)
N n=0
d | NoiN-1 N-1
=E e Z x[n] xz[m] — 2% z[n] + p2 (6.12)
L n=0 m=0 n=0
—L{N[Q—H\f 2] = 2N?pl + N? —U—g (6.13)
o N2 093 /’LI qu :ux - N .
O
— End-of-Topic 41: What makes a good estimator? Introduction to bias E!; o
and variance — w15
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6.2.4 Mean square error -
Topic Summary 42 Minimum Mean Square Error Estimators New slide
Topic Objectives:

* Definition of IMSE|and the MSE) estimator.
 Relationship to bias and variance.

¢ Example of calculating estimator.

Topic Activities:
| Type | Details | Duration | Progress
Watch video 14 : 50 min video 3% length
Read Handout | Read page [214{to page[217| | 8 mins/page
Try Code Use the MATLAB code 10 minutes
Try Example | Try Example |64| 15 mins

Bias-Variance Trade-off

James R. Hoj
James.Hopgoo:

http://media.ed.ac.uk/media/1_4h9ulwfx

Video Summary: This video introduces the simple as a criterion which trades-off
bias and variance for an estimator. The relationship between the [MSEl and bias and
variance is defined. The minimum[MSElis introduced as an estimator which would appear
to produce an improved design. However, through an example, it is shown that such
estimators are sometimes unrealisable if there is bias. Nevertheless, there are applications
where the can produce results, or indeed inspire other estimators, such as estimators
for variance (examples will be given later in the course).

Minimising variance can increase bias. A compromise criterion, and a natural one at that, is the [MSE!

~

MSE(f) = E “9 - eﬂ — o2+ |B(O)? (M:3.6.7)

Again, it is important to remember that the expectation in the term is the data, x, as
discussed in Sidebar [[3] page 212]

PROOF (RELATIONSHIP BETWEEN VARIANCE AND BIAS OF AN ESTIMATOR.). Rewriting
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Equation M:3.6.7|by substracting and adding the mean of the estimator gives:

MSE(d) = E [yé _E M _(0-E [9] )]2] (6.14)
—E [|é—]E M 12] E [(0 E M) 0—E [(5])} (6.15)
—E[(@—E[é})(é—lﬁ:[é})} [ EH } (6.16)

Now, note that E [|0 —-E [é] |2} =10—E [é} )|2, since both # and E [é} are deterministic values.
Moreover,

E [(9 ~E [9] (0 —E M )] —(0—E [9} )E [é ~E [9” (6.17)
:(G—EM)*{E [9] —EM}:O (6.18)
giving:
MSE(d) = [\é ~E [9] ﬂ |0 -E [9} 2 (M:3.6.9)
_ — O
o2 B(6)

as required.

The estimator fysg = Ouse [X'] which minimises MSE(6) is the minimum mean-square error:
éMSE = arg; min MSE(@) (6.19)

This measures the average mean squared deviation of the estimator from its true value. Unfortunately,
the last expression in the right hand side of Equation indicates that adoption of this
natural criterion leads to unrealisable estimators; ones which cannot be written solely as a function of
the data.

To see how this problem arises, note from Equation that the is composed of errors due
to the variance of the estimator, as well as the bias. This inevitable leads to an optimal estimator that
is a function of the true parameter value.

Note that when finding the minimum through application of Equation the argument (or
parameter) that is minimised is usually a parameter that defines the structure of the estimator and is
not necessarily the unknown parameter of interest. Thus, a parameter v might affect the functional
form of the estimator such that 6 = ¢ [X, a], and it is actually « that is used as the variable parameter
in the optimisation. The following examples demonstrates these issues.

Example 6.4 ([Kay:1993, Example 2.1, Pages 16 and 19]). Consider the observations
zn|=A+whn|, ne{0,...,N-1} (K:2.2)

where A is the parameter to be estimated, and w[n| is white Gaussian noise (WGN)) with variance 0.
The parameter A can take on any value in the interval —oo < A < oco. A reasonable estimator for the

average value of z[n], A, is:
L N
Ay=a Z:% z[n] (6.20)

If a = 1, then this is just the sample mean. Find the optimal (modified) estimator A, by finding the
value ofa that minimises the
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SOLUTION. Due to the linearity properties of the expectation operator, then it can be seen, as in the
previous example, that:

| N
E [Aa] =E |a Z z[n] 6.21)
for all A. Therefore, this is a biased estimate with bias B ( ) = A(a — 1). As in the previous
example, then:
| Nl
Ay| =var |a 6.22
var [ [ N 2 x[n ] ( )

N—

Z N (6.23)

Hence, the is given by:

a’o?

+ (a —1)2A% (6.24)

MSE(A,) = var [ i } +|B(A,)]? =
In order to find the minimum mean-square error (MMSE), then differentiate this and set to zero:

dMSE(A,)  2a0?

= 2(a — 1)A? 6.25
da N +2a—1) (6:25)
which is equal to zero when
AQ
Qopt = —A2 n o2 (626)

Thus, unfortunately, the optimal value of a depends upon the unknown parameter A. The estimator
is therefore not realisable, and this is since the bias term is a function of A. It would therefore seem
that any criterion which depends on the bias of the estimator will, generally, lead to an unrealisable
estimator. Although this is generally true, on occasion realisable estimators can be found.

Despite the unrealisable estimator, the result in Equation [6.27|can still be informative. First, note that
Equation can be written in the form:

11

1 2\ 1
1+5 (%) 1+ vsw
where the signal-to-noise ratio (SNRJ) is the signal power, which in this case is the mean value squared,

divided by the noise power, which in this case is the variance: SNR = ‘;‘—22. It is apparent that when N
and the [SNR] are low, some value less than ¢ = 1 may be appropriate.

Substituting Equation into Equation [6.24] the minimum can be calculated as:

(6.27)

Qopt =

CL2 0'2
MSE (aop) = 5{[ + (Gopt — 1)° A2 (6.28)
2
= UN [agp + (aop — 1) (N'SNR)] (6.29)
) (s )
=~ |({————) +(————1) (INSNR) (6.30)
N L 1+N81NR 1+N51NR
o? [ 1 2 e 2
A O S (M) (NSNR) (6.31)
N _(1+N51NR) 1+N51NR
0_2

=

1
(—1) (6.32)
L+ Yoxw 0
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Normalised MSE vs Nx SNR
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Figure 6.5: vs N x SNR for the sample mean estimation problem.

This is therefore the of the sample mean, multiplied by the a factor dependent on the
SNRI This can therefore be plotted against this value, as shown in Figure [6.5] and indicates that
for low or a low number of samples, the estimator can do better than just the sample mean.
Moreover, by plotting the bias, variance, and separately, Figure [6.6] ultimately shows the
bias-variance trade-off. Here, as the parameter a approaches 1, the bias reduces but the variance
increases. Figure [6.6]also shows that a slightly lower value of @ than unity gives a lower MSEL

Moreover, by plotting the bias, variance, and as shown in Figure [6.6] we can see how the
bias-variance trade-off occurs.

From a practical viewpoint, therefore, the estimator needs to be abandoned. An alternative
approach is to constrain the bias to be zero, and find the estimator that minimises the variance. Such
an estimator is termed the minimum variance unbiased estimator (MVUE)). Note that the of an
unbiased estimator is just the variance.

It should be noted, however, that the MMSE! criterion is the basis of most least-squares algorithms as
will be seen later in the course, and is also intimately connected with Gaussian processes. However,
in those contexts, the meaning and application is somewhat different, as will be seen.

miE

— End-of-Topic 42: Mean Square Error and MSE Estimators — 3
=
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Bias-Variance Trade-off
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Figure 6.6: Plotting the bias, variance, and MSEL

6.2.5 Consistency of an Estimator & r
Topic Summary 43 Cramer Rao Lower Bound New slide
Topic Objectives:

* Understanding the concept of a lower bound as a performance benchmark.

Introduce the concept of the MVUE!

Define and use the Cramér-Rao lower-bound (CRLB)).

Apply to the example of the sample mean.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 20 : 20 min video 3% length
Read Handout | Read page |2ZHE) page |227| 8 mins/page
Try Example | Try Example l@l 15 mins

If the of the estimator,

MSE(f) = E [|é . eﬂ — o2+ |B(O)? (M:3.6.7)

can be made to approach zero as the sample size /V becomes large, then both the bias and the variance
tends toward zero. Thus, the sampling distribution tends to concentrate around #, and as N — oo, it
will become an impulse at f. This is a very important and desirable property, and such an estimator
is called a consistent estimator.

Note that [Therrien:1992, Section 6.1.3, Page 290] gives a slightly more formal definition of a
consistent estimator:
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Definition 6.2 (Consistent Estimator). An estimate 0 ~, based on IV data observations, is consistent
if

lim Pr (‘éN _ 9‘ < e) ~ (6.33)
N—oo <>

for any arbitrarily small number e. The sequence of estimates {éN}go is said to converge in
probability to the true value of the parameter 6.

Example 6.5 ( [Manolakis:2001, Exercise 3.32, Page 147]). The Cauchy distribution with mean
is given by:
1 1

fx (x) = At@—p cR (6.34)

Let {z},}2 ' be N L1 d]RVk with this distribution. Consider the mean estimator based on these
samples:

MZ

Tk (6.35)

1
“N

k=0

Determine whether /i is a consistent estimator of .

SOLUTION. Itis simplest to use the definition that an estimator is consistent if limy_,.. MSE(6) = 0,
where

MSE(6) = [|9 9|]:ag+|3(é)|2 (M:3.6.7)

i—F M ﬂ =K U@ﬂ _ 2 [9] (M:3.6.5)

Hence, by noting that E [fi] = p, such that | B(6)[2 = 0, then the [MSElis given by:

and

2
0

oAéE{

MSE(0) = o2 =E [|a|*] — E*[] (6.36)
| V-l 2
=E[ai-E@]=E ||5 > o —n (6.37)
k=0
1 N—-1N-1
= — E [ 7] — p? (6.38)
N? k=0 (=0

Since the samples are independent and identically distributed (Li._dl), then the autocorrelation
function is given by:

E [zx] E k#1
E [ 2] = {E Eg ] ) i z (6.39)
G k#1
- {;F e ke (6.40)
= 0% 0(k — 1) + 1? (6.41)
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Hence,
| NoiN-
MSE(0) = < (0®6(k — 1)+ p?) — p? (6.42)
k=0 1=0
=,
= G 2 (P NR) - g2 (6.43)
k=0
L 2 ,_0°
~ (02 + Ni?) —p? = = (6.44)

O

Since the variance for a Cauchy distribution is unbounded, such that 02 — oo, then limy_, MSE(6)
does not converge to zero, and is therefore not consistent.

Definition 6.3 (Efficiency of an estimator). An estimate is said to be efficient another
estimate if it has a lower variance. Thus, if 6 is an estimator that depends on N observations and is
both unbiased and efficient with respect to 6 _; for all V, then 6 is a consistent estimate.

(=] 8% =
=

— End-of-Topic 43: Consistency of Estimator —
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New slide
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6.2.6 Cramer-Rao Lower Bound

Topic Summary 44 Cramer Rao Lower Bound

Topic Objectives:
* Understanding the concept of a lower bound as a performance benchmark.
¢ Introduce the concept of the MVUEL
* Define and use the [CRLBI

* Apply to the example of the sample mean.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 20 : 20 min video 3% length
Read Handout Read page[221{to page[227| | 8 mins/page
Try Example Try Example6.6| 15 mins
Practice Exercises | Exercises ?? and ?? 50 mins

$, Cramer-Rao Lower Bound

Theorem (GRLB - scalar parameter). If X(¢) = [a[0] . -+ , a[N — 1]]°
and fx (x| #) is the joint density of X(() which depends on the
fixed but unknown parameter 6, the variance of ¢ is bounded by:

var [0] = m

Alternatively, it may also be expressed as:

http://media.ed.ac.uk/media/l_r6cgib2g

Video Summary: In this video, the question of finding the lower bound on the
performance of all estimators for a particular probabilistic problem, as a benchmark with
which to compare the performance of a given estimator. The is introduced in this
video for this benchmark, for the class of unbiased estimators. The Fisher Information
is discussed, and it is shown how to test for the existence of a[MVUE which attains the
An example is shown for deriving the sample mean, which is a[MVUE] (and as a
result also the estimator). In the example, the minimum variance is found through
the two alternate but equivalent expressions for the

In the previous sections, the performance of a given estimator has been considered; what is the bias,
and what is the variance? The criterion gives a possible design method for finding the structural
form of an optimal estimator, but isn’t always realisable. This leads to the general question of whether
there is a particular methodology for designing an estimator for a given probabilistic problem.

Being able to place a lower bound on the variance of any unbiased estimator process to be an
extremely useful tool in practice. At best, it allows the identification of a minimum variance
unbiased (MVU)) estimator. This will be the case if the estimator attains the bound for all values
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of the unknown parameter. At worst, it provides a benchmark against which the performance of any
unbiased estimator can be compared.

Moreover, it highlights the physical impossibility of finding an unbiased estimator whose variance is
less than the bound, and this can be useful in signal processing feasibility studies. Although many
such bounds on the variance of an estimator exists, the is by far the easiest to determine.
Additionally, the theory of the provides a condition for which it is possible to determine
whether an estimator exists that attains the bound.

If the can be minimised when the bias is zero, then clearly the variance is also minimised. Such
estimators are called MVUEs. [MVUE! possess the important property that they attain a minimum
bound on the variance of the estimator, called the Cramér-Rao lower-bound .

Theorem 6.1 (CRLBI - real scalar parameter). Recalling {z[n]})' ™" is just one realisation of the
{x[n, ¢}, defined on an N-dimensional space, then if X(¢) = [2[0,¢], -+, [N — 1,¢]]"
and fx (x| ) is the joint density of X ({) which depends on the fixed but unknown parameter 6, then
the variance of the estimator 6 is bounded by:

var M > ( 1( |>)2 (M:3.6.17)
E{ Blnfg(ex 0 }

Alternatively, it may also be expressed as:

|2
- E[azlnfx(qu

A

var [9

(M:3.6.18)
962

The function In fx (x| @) is called the log-likelihood function of §. A discussion about the
likelihood-function is given in Sidebar [16]

Furthermore, an unbiased estimator may be found that attains the bound for all § if, and only if, (iff)
JOln fx (x| 0)
a0
for some function K (), and where 6 = 6(x) is a function of the data only and, importantly, not

a function of the true value of #. Alternatively, a more useful way of writing Equation is to
determine whether the log-likelihood function can be written in the form:

6—0=K(0) (K:3.7)

Olnjx(x]6) )ée(x L9 _ 1) (6-0).  where1(6) = K'(6). (6.49)

The estimator § which attains this bound is the MYUE] and the minimum variance is given by K (6).
Note that an estimator which is unbiased and attains the 1s also said to be an efficient estimator
in that it efficiently used the data.

PROOE. If § is unbiased, then E [é — 9} = 0, which may be expressed as:

/Oo.../oo(é—e)fx(x|9)dx:0 (M:3.6.11)

Differentiating the true parameter ¢, and assuming a real-value 0, then:
o0 oo a R
o:/ / = 6—0)5x (x1 0)] ax (6.50)

/ / afxé;(’ ¥ —/_:“/_fo(X! 0) dx (M:3.6.12)
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Sidebar 16 The likelihood function

The likelihood function is discussed in detail in Section [6.3] As has been noted throughout this
course, given a physical model of a problem, it is possible to write down the joint density of the RVl
X(¢) = {z[n,¢]}Y=}, which depends on a fixed but unknown parameter vector @: it is given by
fx (x| 0), and can be viewed as a function of x.

This same quantity, viewed as a function of the parameter & when given a particular set of
observations, x = X, is known as the likelihood function. It is usually written as:

L(0;x)= fx(x]|0) (6.45)

|ﬁxed x, variable 6

Thus, the likelihood function £ (6; x) should be intepreted as a function of 8 given x. However, it
is important to note that £ (0; x) = fx (x| €) as a function of @ is not necessarily a [pdf] since, in
general, it does not integrate to one over 6:

/£(0; X) d0:/fx(x|0) do # 1 (6.46)
Note, however, that according to Bayes’s theorem:
fx (x| 0) fe(6)
0 do = do =1 6.47
UL e == 2

or alternatively, a weighted version of the likelihood gives rise to the probability of the observations:

/ £(6; %) fo (6) 46 = fx (x) (6.48)

In otherwords, it is simply important to not intepret the likelihood function as a pdf, and simply to be
carefull with the manipulations.
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Note that here it has been assumed differentiation and integration may be interchanged. This is
generally true except when the domain of the [pdf] for which it is nonzero depends on the known
parameter. Using the fact that

Oln fx (x| 0) 1 9fx(x]0)
= 6.51
o9 fx(x]0) 00 D)
or,
Ofx (x| 0) Olnfx(x]|0) )
56 = 50 fx(x]0) (M:3.6.13)
then substituting into Equation gives:
/ / { 0 alnf’gg(x‘ 9)}fx(x| 0) dx = 1 (M:3.6.14)
which can be written using the expectation operator as:
A 1
E|@_o2mx0) (M:3.6.15)
00
Now, using the Cauchy-Schwartz inequality (see [Papoulis:1991]), which states that:
EXQOY QI <E[XQP]E[Y(QF] (6.52)

then squaring both sides of Equation |[M:3.6.15|gives

Oln fx (x| 9)] <

1=E|(0-0)—" E[(é—@)Q]E

00

(alnfx—(xmﬂ (M:3.6.16)

Note that the Cauchy-Schwartz inequality becomes and equality [iff the two integrands that are implicit
in the expectation operator are related by a constant multiplier, independent of x. That is, when:

. 1 2
007w (x]0) = 500 (TLS L) pex 0 (6.53)
or, alternatively,
0—0= K(@)ah}f’g—éxle) (K:3.7)

This is the minimum variance unbiased estimator. Since the estimator is unbiased, then var [é] =

E [(é — 9)2}, and therefore:

var [9] > ! (M:3.6.17)

- 2
Oln fx(x]0)
| (=) ]

To derive the second form by starting with the simple condition that:

/oo---/oofx(x|0)dx:1 (6.54)

Differentiating once to fand using Equation [M:3.6.13| gives

/ / dfx Xye / / dIn fx X|9)fx(X|9) 0 655
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and differentiating again gives:

/ / (@21n];§2xye)fx(x|9)+{%§X’9)}2fx(x|9)> fx=0 (656

which gives the desired result

& In fx (x| 6) dln fx (x| 6))”
E =-FE [ ————— 6.57
[ 06? 00 (6.57)
O
This can then be substituted into Equation
Note that a generalisation of the for biased estimates is given by:
2
) (1+252)

var M > (6.58)

2
Oln fx(x]0)
|5

where B(é) is the bias as previously defined. The proof follows a very similar line as given above,
and is left as an exercise for the reader.

Example 6.6 ( [Kay:1993, Example 3.3, Page 31]). Consider again the observations:
z[n]=A+whn], ne{0,...,N-1} (K:2.2)

where A is the parameter to be estimated, and w[n| is[WGN| The parameter A can take on any value
in the interval —oo < A < 0o. Determine the for an estimator, A, of the parameter A.

SOLUTION. Since the transformation between w|n| and x[n] is linear, with a multiplication factor of
1, the likelihood function can be written down as:

fx (x| A) = 1:[ \/%exp {—%'2 (x[n] — A)Q} (6.66)

(6.67)

Note, a more detailed derivation of this likelihood is given in Sidebar|17{on page Taking the first
derivative of the log-likelihood gives:

o1 A o N 1 =
n=0
1 N-1 N 1 N-1
== (z[n] — A) = po ({N x[n]} — A) (6.69)
n=0 n=0
N
= = lix = 4) (K:3.8)

where [ix is the sample mean.
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Sidebar 17 Likelihood Derivation for Signal in Noise

A common model for a set of observations X = {z[n]}" " is the signal in noise:

zln] = s[n; 0] + win], wln] ~N (0, o2) (6.59)

where s[n; 0] denotes a parametric model for the underlying signal, and is dependent on a parameter
(vector) 6. The noise process w(n] is assumed to be [l 1._d.; therefore, since x[n| does not depend on
previous values of either the input, w([n|, or the observed process, x[n], it follows that z[n| is also

fidl

Conditional on 6 and a particular time index n, the [pdf] for the observed sample x[n] can be obtained
using the probability transformation rule. Hence, noting that there is one unique solution w(n] =
x[n] — s[n; 0], and that the Jacobian of the transformation is given by:

Ox[n|
Jufn]—afn] = Twn] 1 (6.60)

it follows that

fx (zln] | 0) = 1% (x}i;i?; o) _ \/2;76)@ {—(x[”] _252[” i } (6.61)

where it is implicitly understood that fx (z[n]| 8) = fx (z[n]| 0, ¢2) also depends on the noise
variance o2 although this isn’t always explicitly written. Since the z[n]’s are 1. dl then it follows
that:

fx (x]0) = fx (z[0], ..., z[N —1]| 0) (6.62)
— 1 #x (zinl 1 6) (663)
_ 2; o {_(a:[n] ;;Z[Um 0)) } 660
- — e {_Z% alel = ol 0])2} (6.65)
(2m02)2 203,

Note, therefore, that many of the examples in this handout have a likelihood function that take this
form. Nevertheless, it is important to derive these results carefully each time you attempt to solve
a problem, as a different model might give a different result. Moreover, this derivation should be
included in any example questions that you tackle.
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Differentiating again, then:
82 In fx (X | A) N

=—— 6.70
0A? o? (6.70)
and noting that this second derivative is constant, then the [CRLB/is given by:
N 0'2
A} > 7 K:3.9
var [ Y ( )

Comparing Equation and Equation [K:3.8] where it is noted the first derivative of the
log-likelihood is in the form:

alnf}ée(XW) — 1(0) (é_9>:%<{%§m[n]}_,4> (6.71D)

then it is clear that the sample mean attains the bound, such that A= itx, and must therefore be the
IMVUEL Hence, the minimum variance will also be given by var [A

— End-of-Topic 44: Introduction to the CRLB and how to identify Of400
MVUE that satisfy the bound — !
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Sidebar 18 Alternative Solution to Example [6.6]

The solution to Example [6.6| used the second derivative form of the But what if, in fact, the
first version of the had been used, which calculates the square of the first derivative? What
would the calculation look like?

Returning to Equation [6.69] and using the first form of the [CRLBI

- 1
var (6| > 5 (M:3.6.17)
[ ] E {(am@(ﬂ@) }
Then note that
(amf;(;@(ﬂ 0)> _ lé (n:_oa;[n] —A) (6.72)
= % alw (z[n] — A) (x[m] — A) (6.73)
Taking expectations, then note that
_JE[(@[n] - 4)%] =0 n=m
Pl = A=A {E (afr) - AE[Gafr) ~ ) =0 mAn O

where the independence of x[n] and x[m| have been used for n # m, and the fact that the first and
second central moments are zero and the variance, respectively. Hence, in the double summation,
n = m occurs N times (giving rise to N o2 terms), and n # m occurs N? — N times (giving rise to
N? — N zero terms). Therefore:

2
<alnf;;0(><|9)) :%XNX(,z:% (6.75)

which gives the same answer as determined in Unknown Exercise: Taxi2.
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6.2.7 Estimating Multiple Parameters

Topic Summary 45 Cramer-Rao Lower Bound for Parameter Vectors

Topic Objectives:
* Extending the properties of scalar estimators to parameter vectors.
e Defining the Fisher information matrix (FIM]) and the multi-parameter [CRLBL

* Apply to the example of fitting a straight line.

Topic Activities:

Type Details | Duration | Progress
Watch video 24 : 39 min video 3x length

Read Handout Read page |22%E) page |234| 8 mins/page

Try Example Try Example |6_7| 25 mins

Practice Exercises | Exercises ?? 30 mins

t
® Estimating Multiple Parameters
Example (Line fitting). Consider the problem of fitting :

zln]|=A+Bn+wpn], ne{01,...,N-1}

Determine the CRLB for the slope I3 and the intercept A

SoLuTion. A numerical result is show to finish off this example.

http://media.ed.ac.uk/media/l_sxx68ats

Video Summary: In this video, the concepts in estimation theory introduced so far for
scalar random variables are extended to deal with estimating multiple parameters, for
example the mean and variance of a distribution simultaneously. The definition of a
vector parameter estimator is introduced, and the example of extending the definition of
bias. The principal focus of the video is on extending the to real parameter vectors,
by placing a bound on the covariance matrix of the estimator. Parallels with the scalar
ICRLBJ are made throughout, but the emphasis is on the key calculation of the Fisher
information matrix (EIM)). This is the expectation of functions of the derivatives of the
log-likelihood function, but considering the derivatives with respect to all the elements
of the parameter vector. Finally, the line-fitting example of estimating the parameters
of a straight line to fit a set of data that is assumed to follow a linear model. The [FIM]
and are calculated, and it is shown that in this case the can be found as
before. Numerical simulations are also provided to demonstrate the correctness of the
calculations.

Multiple parameters occur in, for example, estimating the statistical properties of a random
time-series, estimating the parameters of a curve fitted to a set of data, estimating any model or
[pdf] described by a set of parameters. To deal with these vectors of parameters, the previous results
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can be extended and defined in an analogous way.

A vector of parameters, 6, of a random event X (() can be estimated from a set of observations,
X = {x[n]}{""*, using some function:

0=0[x]=0[{z[n})"] (6.76)

The definitions of unbiasedness, consistency, efficiency, and the are all straightforward
extensions of the definitions and results for scalar parameter estimates.

Assuming @ is a P x 1 parameter vector, these properties are:

Unbiased Estimator An estimate 0 n 1s unbiased if

E [eN] _0 (6.77)

Otherwise, the estimate is biased with bias b(6y) = E [9 N} — 6. An estimate is
asymptotically unbiased if:

lim E [éN} — 0 (6.78)

N—oo
Consistent Estimator An estimate 6 ~, based on IV data observations, is consistent if

lim_ Pr (’éN — 0( < e) _1 (6.79)

for any arbitrarily small number e. The sequence of estimates {9N}8° is said to
converge in probability to the true value of the parameter 6.

. N, . ° . ~/ . .
Efficient Estimator An estimate 6 is said to be efficient another estimate @ if the difference
of their covariance matrices I' ;s —I'y is positive definite. This implies that the variance

of every component of 6 must be smaller than the variance of the corresponding

component of 9,. If ~ 1s unbiased and efficient with respect to 0 ~—p forall N, then
0 is a consistent estimate.

Theorem 6.2 - real parameter vectors). This theorem is only for real parameter vectors.
Complex-parameter vectors are slightly more detailed, but the principle no different, as highlighted by
the note following this theorem. Assuming that the estimator 6 is unbiased, then the vector parameter
will place a bound on the variance of each element, as well as all the elements of the covariance
matrix. This for a vector parameter is similar in concept to the scalar form, but requires a little
more slickness in mathematical presentation.

Define the gradient of the log-likelihood function to be:
s=s(x;0) = Voln fx (x| 0) (T:6.43)

The vector s is called the score for 6 based on x. If 6 is substituted for , the score is a measure of
the optimality of the estimate, which scores near 0p,; being more desirable (albeit, not necessarily
revealing the optimum solution). The covariance of the score vector is known as the [FIM] and is
assumed to be nonsingular:

J(6) =E [s(x;0)s" (x;60)] (T:6.42)

This form is equivalent to the first form of the scalar shown in EquationM:3.6.17|on page [228
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The Fisher information matrix can also be written in the following equivalent form:

3(0)],, = —E {8 lnaf;j(,)f;' “’)]

If 0 is any unbiased estimate, and I' is the covariance matrix of é, then the can be stated as:

(K:3.21)

T, >J ") (6.80)

where the notation > means that the difference matrix I'y — J ~1() is positive definite.

This bound is satisfied with equality [iffl the estimate satisfies an equation of the form:
6—6=J"0)s(x;0) (T:6.47)

where 6 = é(x) is a function of the data only (and, importantly, not a function of the true value
of 6. Note that an estimator which is unbiased and attains the ICRLBI is also said to be an efficient
estimator in that it efficiently used the data.

PROOF. For a full proof, see [Therrien:1992, Page 298], or [Kay:1993]. However, the proof is
relatively straightforward and is analogous to the proof for the case of the scalar real parameter.
It currently omitted from this document.

The derived here can, of course, be applied to complex parameters by separating the parameter
into real and imaginary parts, and including those parts separately into the real vector 0. It is possible
to develop a direct complex version of this bound, and this is discussed in [Therrien:1992, Page 298].

Example 6.7 ([Kay:1993, Example 3.7, Page 41] - Line fitting). Consider the problem of fitting a
line to a set of observations, that is dependent on the observation index n. This, given a random
process X (¢, n) = x[n], and the model:

zln]=A+Bn+wn], ne{0,1,...,N—-1} (6.81)

where w(n] is WGNl with variance 0. Determine the for the slope B and the intercept A,
assuming o2 is known.

Data points
100 T T T
X
0 x
>3<><><><><>< X% x X
X x X x
>3< XX X X

-100 Xy Xx
2 X % « X&( X x
(@] X
‘% >S<>< XXXX ><><
> -200 )% x>
3 XX Xy XX X
S W

XX X X
X
-300 | XWX
XX %
X x >$<><
X X X
-400 e
_500 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Observation index
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SOLUTION. The 2 x 2 Fisher information matrix (FIM)) is given by:

J(0) =E [s(x;0)s" (x;0)] (T:6.42)
=E [Voln fx (x| ) Vi In fx (x| 0)] (6.82)
Jln XX 4 2 Jln XX 0) dln X (X 4
E {( Ix(x19)) } E [Zeix(x10) o fx(x10)] .
- Oln fx(x1]0) dln fx(x|6 Blnxx02 ’
E [2as(x10) 0 el x10)] E[( faém”

where the notation @ = [A, B]? is used as a shorthand.

Alternatively, the elements of the Fisher information matrix be found using:

9*In fx (x| 0)
[J(0)];; = -E { (K:3.21)
J 00,00,
or as a matrix:
9In fx(x|6) 9%Infx(x|8)
J(O) =—|» lnf;g(x|9) 21| 0) (6.84)
9AOB B2

This alternative expression is often a more straightforward method for evaluating the Fisher
information matrix, and will be used here. Similar to the derivation in the case of a[DC signal in
[WGN] the likelihood function can be written as

1 | V-l ,
fx(x]0)=——Fexp | -5 (x[n] — A — Bn) (6.85)
(27T0'2) 20 n=0
from which the following derivatives follow:
dln fx (x]0) 1=
— == n:O — A — Bn) (6.86)
0ln x| 0 1
% = (x[n] — A— Bn)n (6.87)
n=0
and
0*In fx (x| 0) N
A2 =—— (6.88)
82In fx (x| 6) 1
DADE =~ 2 n (6.89)
8In fx (x| 6) 1 =
55 == " (6.90)
n=0
where it is noted that
9’In fx (x| 0)  9*In fx (x| 0) 6.91)
0AOB B 0BOA '
Using the identities that
A al 1
_ 2 _
> n= SN(N+1) and Zn = NN+ 12N +1) (6.92)
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and noting that the second-order derivatives do not depend on x and therefore equal their expected
values, then the Fisher information can be written as follows:

1 N N(N-1)
J(O) = F N(N-1) N(N—1§(2N—1) (6.93)
2 6
Inverting this yields:
22N-1) ¢ ]
J7(0) =0 | NNED N(HD (6.94)
T N(N+1) N(N?2-1) |
or, equivalently, the covariance matrix of 6 is given by:
202 (2N —-1) -3
ri>——— 6.95
| 0%

Hence, it can be deduced that the variances for the individual parameters are given by the or:

. 2(2N — 1)0?
i) > 22N - Dot .
Var[ NV ] (6.96)
N 1202
B] P — 6.97
Var[ > YT (6.97)
Finally, note that a[MVUE] if it exists, satisfies the relationship:
0—6=1J0)"Vyln fx (x| 0) (T:6.47)

where the estimator 0 depends on the observations only, and not the true parameter 0; if this were not
the case, then the cannot exist physically. Hence, it follows that using the expressions for the
terms in the

R . Oln fx(x]0)
0—0=J() alnf?f(lxw) (6.98)
0B
. 22N—1 -
B-B TN+  N(N2-D) 0_12 2 n=o (z[n] = A —=Bn)n
_| ¥ Zinco (aln] = A= Bn) — yigy Sy (zln] —A=Bmjn | 000
—m Yoo (z[n] = A — DBn) + ﬁ > n—o (z[n] = A= Bn)n
_ 2 eN=DSE el 35 N naln] | H (6.101)
NN +1) | =335 z[n ] o1y om0 N[ B

where again the identities for Z __0 n and Z _0 n? have been used, and the terms not involving
the data have been grouped, simplified, and ultimately either cancelled or rearranged into the second
column vector on the

This gives the final result that:

N = )Xol - 350 nal
3y el + ﬁ%i?hwm] (6102

Since the estimator is not dependent on the true value of the parameters, then this is indeed the MVUE|

for the line fitting problem. It would not be straightforward to have intuitively determined what this
estimator should have been without using the

ol 5o

A numerical result is show to finish off this example.
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100 CRLB for Straight-line Fitting

x % Data points
MVUE estimator
0 b Numerical least squares | 4

-100

-200
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_500 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Observation index

Figure 6.7: Data drawn from the model in Equation m

e Let 02 = 1000, A = 4, B = —4, and generate 100 data points.
* This gives the covariance matrix of 0 as:

39.2079  —0.5941

Lo=1 05041 0.0120

(6.103)
U

+ Remember 6 only depends on N and o2, and is not actually related to the value of A and B. So
for a given N and o2, the uncertainty is always the same.

* The estimates of the intercept, fl will have a lot higher variance than the estimates fo the
gradient, B.

A given realisation is shown in Figure and the validation of the results is shown in Figure [6.§]
which is a histogram of parameter estimates drawn from a Monte Carlo estimate of 1000 different
noise realisations. The sample variances are also shown, and sample variance will be discussed
elsewhere.

This previous example leads to an interesting observation. Note first that the I(CRLBI for A has
increased over that obtained when B is known, for in the latter case, it can be determined that

var [A} > %2, which for N > 2, is less than % This relates to quite a general result that

asserts that the (CRLBl always increases as more parameters are estimated.

— End-of-Topic 45: Introduction to the CRLB for multiple random I
variables — obgs
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Monte Carlo Simulation
Estimate for A. Theoretical variance: 39.406, Sample variance:38.907

bt
=}
o

bt
=
3}

Empirical pdf
o
2

0.02
0
-15 -10 -5 0 5 10 15 20 25 30
\hat A, estimate for A
Estimate for B. Theoretical variance: 0.012001, Sample variance:0.011968
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Now
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Figure 6.8: Data drawn from the model in Equation m
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6.3 Maximum Likelihood Estimation

Topic Summary 46 Maximum Likelihood Estimation

Topic Objectives:

 Example of applying the MLE technique.

* The invariance property of the MLE!

* Introduction to the notion of maximising the likelihood function.

* The maximum-likelihood estimate (MLE)) techniques and the properties of the MLEL

Topic Activities:

Type | Details | Duration | Progress
Watch video 15 : 26 min video 3% length

Read Handout Read page |23§E) page |241| 8 mins/page

Try Example Try Example @ 15 mins

Practice Exercises | Exercises ?? to ?? 60 mins

http://media.ed.

DC Level in white Gaussian noise

ofn] = A+ w

forne N ={0,...,.N

i. i. d., then so is «[n], and therefore:

N 3
Infx (x| A) = - In(2ma3)

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknewn signal is observed in additive WGN. That is,

n] where wln] ~N (0, 02)

1}. Calculate the MLE of A.

SOLUTION. Since this is a memoryless system, and w/[n] are

Ty (xfn] = 4)°

202

ac.uk/media/l_t7jwroia

Video Summary: This video introduces the MLE technique as a way of determining a
good estimator for a given probabilistic problem. This method is very straightforward and
intuitive, and the video motivates the approach by considering again how the likelihood
function is formed. The properties of the is discussed, and it is noted that many
of the caveats and tricks used in optimisation theory simply apply to maximising the
likelihood function. An example is shown for finding the MLE] for estimating the mean
of a Gaussian distributed set of data. This, of course, equals the MVUEI since, as we
know from a previous video, the exists. Finally, the video considers the [MLE
for a transformed parameter, and its application to, for example, calculating the
(although a detailed solution is saved for other exercises for the viewers).

This section now investigates an alternative to the which is desirable in situations where
the MVUE] does not exist, or cannot be found even if it does exist. This estimator, which is based
on the maximum likelihood principle, is overwhelmingly the most popular approach to practical
estimators. It has the advantage of being a recipe procedure, allowing it to be implemented for
complicated problems. Additionally, for most cases of practical interest, its performance is optimal
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for large enough data records. Specifically, it is approximately the estimator due to its
approximate efficiency. For these reasons, almost all practical estimators are based on the maximum
likelihood principle.

The joint density of the X(¢) = {z[n, ]}y, which depends on fixed but unknown parameter
vector 0, is given by fx (x| €). This same quantity, viewed as a function of the parameter @ when a
particular set of observations, X is given, is known as the likelihood function.

~

The maximum-likelihood estimate (MLE) of the parameter 6, denoted by 8,,,, is defined as that
value of € that maximises fx (x| ). In other-words, the [MLE for a parameter 0 is that estimate that
makes the given value of the observation vector the most likely value.

This point cannot be over-emphasised; it is common to think of fx (x| @) as a function of x; now it
is necessary to turn this thinking around, and view fx (x| ) as a function of 6, for a given x.

The MLE! for 0 is defined by:

~

0, (x) = argg max fx (x| 0) (T:6.40)
Note that since 9ml(x) depends on the random observation vector x, and so is itself a

Assuming a differentiable likelihood function, and that @ € R”, the MLElis found from

8fx(X|0) O
96,
: = |: (6.104)
ofx(x|0
o] o
or, more simply,
Ofx (x| 0
Vofx (x| 6) = % = 0pyx1 (K:7.35)

where Op; denotes the P x 1 vector of zero elements. If multiple solutions to this exist, then the one
that maximises the likelihood function is the MLEL

There is a slight abuse of notation here, in that x is used to denote both the argument in fx (x| ), as
well as the given parameter in the likelihood function. However, this strict distinction is not important
here, although it can be useful to be more careful in advanced work of this nature.

6.3.1 Properties of the MLE!

1. The MLE satisfies

Vofx (x| 0)lg—s,, =0prx1 (T:6.41a)
Veln fx (x| 0)lg_p,, = Orx1 (T:6.41b)

where @ € RP*1,

June 28, 2021 — 08 : 40
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—»
6

i i
eMLI:

Figure 6.9: A single parameter that occurs at a boundary, and therefore for which
Ofx(x

00

19) o # 0. Hence, in this case, a[MLE and the MVUE] are not necessarily equal.
=Umi

KEYPOINT! (Specific Conditions). These results assume that the [MLEl does not occur at a
boundary, and that in the set of stationary points of the function, one of them corresponds
to a global maximum. Note that minimising the likelihood is equivalent to minimising the
log-likelihood, since the likelihood function is always positive, and the logarithm is a monotonic
function. It is also necessary to verify which of the stationary points corresponds to the global
maximum.

Note that in the case of a scalar parameter, 6, then these expressions reduce:

Ofx (x] 0) _ :
2% i =0 (T:6.10a)
Jln fx (x| 0) _0 (T:6.10b)
o0 6=d, | o

. If an exists and the [MLE] does not occur at a boundary, then the MLE is the If

the MLE occurs at the boundary, then the derivative of the likelihood function is not necessarily
equal to zero.

PROOF (EQUIVALENCE OF[MVUEIAND[MLE]). For clarity and simplicity, only the proof for
the scalar case is given. The extension to parameter vectors is straightforward. As shown in the
derivation of the |[CRLBI the MVUE] satisfies:

. 1 0
b— 0= k(o2 Sxx19) (6.105)
00
The satisfies
Ofx (x| 9)
—_— =0 (6.106)
00 =0, ,
1 0
Ol fx (x]0) —0 (6.107)
00 =0, ,
Hence, setting 0§ = 0, and substituting these into one another, gives:
A A - 1 0
0 — 0, = K (61) Iln fx (x| 6) —0 (6.108)
90 0=0,,
Hence, o
0 =0 (6.109)

O
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3. If the [pdf] fx (x| @), of the data x satisfies certain regularity conditions, then the of
the unknown parameter 6 is asymptotically distributed (for large data records) according to a
Gaussian distribution:

0,0~ N (6,37(0)) (6.110)

where J(0) is the Fisher information evaluated at the true value of the unknown parameter.

From the asymptotic distribution, the MLE]is seen to be asymptotically unbiased and asymptotically
attains the It is therefore asymptotically efficient, and hence asymptotically optimal.

[E)

6.3.2 DC Level in white Gaussian noise -

An example of the maximum likelihood principle begins with the scalar case, and again deals with a Vew slide

level in
Example 6.8 ( [Therrien:1991, Example 6.1, Page 282]). A constant but unknown signal is
observed in additive WGNI That is,

zln] = A+wln] where wn] ~N (0, o2) (6.111)
forn e N'={0,..., N — 1}. Calculate the MLE of the unknown signal A.

SOLUTION. Since z[n] = A + w(n], then consider the probability transformation from w[n| to x[n].
Then it is clear that

fx (z[n]| A) = fw (wln]| A) = fw (z[n] — A) (6.112)

Moreover, since this is a memoryless system, and w[n] are then so is z[n], and therefore:

1 z[n] — A)?

i (x1 4) = T fur (o] = 4) = —- e § 2w = 6.113)
N (2m02) 2 o

The log-likelihood is given by the logarithm of the likelihood function, and is usually a simpler

function to minimise, at least for distributions which involve exponential functions. Hence, for this

case, the log-likelihood is given by:

N 2y Lnen (@[] — A)°
In fx (x| 4) = =5 In(2ro,) — =1 %07 (6.114)
Differentiating this expression A gives
O fx (x| 4) e (aln] = 4)
== 6.115
0A o2 ( )
and setting this to zero yields the MLEk
A 1
A =~ > zfn] (6.116)

neN

This is the sample mean, and it has already been seen that this is an efficient estimator. Hence,
the MLEl is efficient. This result is true in general; if an efficient estimator exists, the maximum
likelihood procedure will produce it.

To complete the solution, note that it is worth checking that Equation [6.116|does, in fact, correspond
to a maximum rather than a minimum or other stationary point. This can be verified by differentiating
Equation[6.115|for a second time:

Plnfx (x| A) _ DYen(=1) =N

B 7 =7 <0 (6.117D)

which is always negative and therefore corresponds to a minimum.
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Example 6.9 ([Kay:1993, Example 7.3, Page 162 ]). The previous example of a DC level in WGN]|
is considered again, except that in this case, the DC level is assumed to be positive (A > 0), and
the variance of w|n| is now proportional to A. Thus, for a large value of A, a higher noise power is
expected. Thus, the observations may be modelled as:

z[n] = A4+ wln] where wln] ~N (0, Ad}) (6.118)
forn e N'={0,..., N — 1}. Calculate the MLE of the unknown signal A.

SOLUTION. Following the development of the previous example, the [pdf] for the observed data and,
equivalently, the likelihood function is given by:

> e (@ln] — A)*
A= —— e 6.11
fx (x| 4) @m%aﬁwp{ 2707 (6.119)
and thus the log-likelihood function is given by:
N 2y Donen (@] = A)°
In fx (x| A) = —5111(27#10“)) — &=ne 2402 (6.120)
Differentiating the log-likelihood function A gives:
Omfx (x| A) N 4403 evleln] = 4) +200 5 oy (@l = 4" o0
0A 24 4A%0% '
N Yaenlzl] =4) 3 op (@] - A)
= n n 6.122
24" Ao? LDy PP (6.122)
and setting this equal to zero produces:
ANo2 = {(zn] — A)* + 2A(x[n] — A)} (6.123)
neN
1
A? 4 Ao? = ~ > a?[n] (6.124)
neN
Solving for A>0 gives:
. o2 ob 1
A=-Zey 2 LSy (6.125)
neN ]

Finally, that A indeed maximises the log-likelihood function can be verified by examining the second
derivative.

6.3.3 MLE for Transformed Parameter

Theorem 6.3 (Invariance Property of the MLE). The invariance property is discussed further in
[Kay:1993, Theorem 7.2, Page 176] and [Kay:1993, Theorem 7.4, Page 185], for scalar and vector
parameters respectively. The following theorem is presented for vector parameters, and can be
simplified accordingly for scalar parameters. The [MLE of the parameter a = g(0), where g is
an r-dimensional function of the P x 1 parameter €, and thepdf] fx (x| €) is parameterised by 8, is
given by X

Bt = &(0,m) (6.126)
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where 0, is the MLE of .
The IMLE of 6, 8,,,, is obtained by maximising fx (x| @). If the function g is not an invertible
function, then & maximises the modified likelihood function pr (x| ) defined as:
pr(x| @)= max fx (x| 0) (6.127)
0:a=g(0) <>

— End-of-Topic 46: Introduction to MLE —

(=]
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6.4 Least Squares

Topic Summary 47 Least Squares Estimation

I8

New slide

Topic Objectives:
* Understanding the principle of least squares estimation.
* Comparing least-squares principle with probabilistic approaches.
* Example of calculating the least-squares estimator.

* Understanding nonlinear least squares.

Topic Activities:

| Type Details | Duration | Progress
Watch video 18 : 38 min video 3% length
Read Handout Read page |242| to page |245| 8 mins/page
Try Example Try Example |6.10 and Example |6.1 1| 10 mins
Practice Exercises | Exercises ?? and ?? 30 mins

The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data z[n] and the
assumed, or hidden, signal or noiseless data.

x[n] x[n,s; i&jé’}*em[nl
plleiss sllei e HE M

.\e[nj = modelling
error

01234567 N-1 n

1 ro the MLE merhod. rhe leasr sanares merhy

® Tn eontras

http://media.ed.ac.uk/media/1l_czabmlgf

Video Summary: The least squares approach is presented as a non-probabilistic method
for designing an estimator of a set of parameters, assuming a model is provided for
describing the data. This is presented as an approach which makes good sense as opposed
to being optimal. The least squares approach seeks to minimise the squared difference
between the observed data and an assumed signal model. This is in contrast to the
which also assumes a statistical model on the excitation variable. Other norms, such as
the L,; norm is also mentioned as a comparison. The video considers a simple example
to complement the techniques discussed in previous topics. Nonlinear least squares is
also presented as a general approach, although needing more sophisticated optimisation
techniques.

The estimators discussed so far have attempted to find an optimal or nearly optimal (for large data
records) estimator by considering the class of unbiased estimators and determining the one exhibiting
minimum variance, the For some techniques, this means that the @] of the data must be
known somehow. An alternate philosophy is a class of estimators that in general have no optimality
properties associated with them, but make good sense for many problems of interest: the principle of
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]
A . .
e pllel e
Nl ~ M0, &)
Additive WGN
01234567 N*l%

Figure 6.10: In the MLE method, the observed data x[n, (] is considered to be a random variable
consisting of a known signal model, denoted by s[n; 6], where 0 is a set of unknown model
parameters, plus a noise term w(n, ] which has a given [pdi]

x[n]
A .
A. ______ ? _..__:__:——-o—.—__
§\e[n] = modelling
error
1234567 — N T

Figure 6.11: In contrast to Figure|6.10| the least squares method considers the observed data z[n] to
be the sum of the known signal model, s[n; @], plus an error term, e[n]. The least squares method
aims to minimise the total error term.

least squares.

The principle or method of least squares dates back to 1821 when Carl Friedrich Gauss used the
method to determine the orbit of the asteroid Ceres by formulating the estimation problem as an
optimisation problem.

A salient feature of the method is that no probabilistic assumptions are made about the data; only a
signal model is assumed. The advantage is that it is a simpler procedure to find a parameter estimate
since, for the and MLE] the [pdfl must either be known, or computable from the information
in the problem, which makes these estimates difficult to compute and implement. As will be seen,
it turns out that the least-squares estimate (LSE) can be calculated when just the first and second
moments are known, and through the solution of linear equations. Hence, the method has a broader
range of possible applications. On the negative side, no claims about optimality can be made, and
furthermore, the statistical performance cannot be assessed without some specific assumptions about
the probabilistic structure of the data.

I8

6.4.1 The Least Squares Approach -

Thus far, in determining a good estimator, the focus has been on finding one that is unbiased and has New slide
minimum variance. Hence, it is sought to minimise the average discrepancy between the estimate and

the true parameter value. For unbiased estimates, this corresponds to minimising the variance of the
estimator.

In the least-squares (LS]) approach, it is sought to minimise the squared difference between the given,
or observed, data x[n] and the assumed, or hidden, signal or noiseless data.

To clarify this further, consider the following difference between the MLEl considered in Section[6.3]
and the proposed approach. In the MLEl method, the observed data x[n| = z[n, (] is considered to be
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arandom variable consisting of a known signal model, denoted bys|n; 8], where 6 is a set of unknown
model parameters which define the functional form of the model, plus a noise term, w(n, ¢], which
has a given [pdf] In contrast to the method, the least squares method considers z[n| to be the
sum of a known signal model, s[n; 6], plus an error term e[n|. This error term really consists of two
components: the modelling error, and an observation error.

The modelling error accounts for the fact that the proposed signal model may indeed just be
wrong; for example, fitting a straight line to a set of data that is better described by a higher-order
polynomial. The observation error or sensor error models the fact that any sensor will add noise to the
measurement, and that the measurement therefore is itself not a true representation of the underlying
signal model even if the signal model were perfectly accurate. In this chapter, these two errors are
lumped together, but it should be noted that in general they should be considered as different concepts.

Here it is assumed that the hidden or unobserved signal is generated by some model which, in
turn, depends on some unknown parameter 8. Due to observation noise or model inaccuracies, the
observation x[n], is a perturbed version of s[n].

Now, one approach to finding the estimator is to minimise the sum of the absolute errors:
N-1
0., = arggmin J;(0) where J;(0) = Z |z[n] — s[n, 0] (6.128)
n=0

However, in practice, while this is a good optimisation problem to try and solve, this is a difficult
calculation to do in many cases.

The of @ chooses the value that makes s[n| closest to the observed data z[n|, and this closeness
is measured by the [LS]error criterion:

J(0) =) (x[n] — s[n]) (K:8.1)

n=0

where s[n| = s[n; 0] is a function of . The [LSElis given by:
0,sp = arg, min J() (6.129)

Note that no probabilistic assumptions have been made about the data x[n] and that the method is
equally valid for Gaussian as well as non-Gaussian noise. Of course, the performance of the
will depend on the properties of the corrupting noise, as well as any modelling errors. are
usually applied in situations where a precise statistical characterisation of the data or noise process
is unknown. They are also applied when an optimal estimator cannot be found, or may be too
complicated to apply in practice.

6.4.2 DC Level

Again, start by considering an example with a scalar parameter. The case with vector parameters
follows a similar line.

Example 6.10 (Sample mean revisited: [Kay:1993, Example 6.1, Page 221]). It is assumed that
an observed signal, x[n], is a perturbed version of an unknown signal, s[n|, which is modelled as
s[n] = A, forn € N =1{0,..., N — 1}. Calculate the LSE] of the unknown signal A.

SOLUTION. According to the [LS]approach, then:

Apsp = arg, min J(A) where J(A)

[
&
=

|
=

[\

(6.130)
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Differentiating A and setting the result to zero produces

1
N2 z[n] (6.131)

-0 U

ALSE =

which is the sample mean estimator. Differentiating for a second time shows this indeed minimises
the squared error.

This cannot, however, be claimed to be optimal in the sense, but only in that it minimises
the [LS]error. If it is known that z[n] = A + wn|, where w[n] is zero-mean then the will
also be the MVUE] but otherwise not.

G

6.4.3 Nonlinear Least Squares |

Example 6.11 (Sinusoidal Frequency Estimation). Again, it is assumed that an observed signal, New slide
x[n], is a perturbed version of an unknown signal, s[n|, which is modelled as

s[n] = cos2m fon (6.132)

in which the frequency fj is to be estimated. The can be found by minimising:

=

J(fo) =Y (z[n] — cos 2 fon)? (6.133)
X

i
=)

n

In contrast to the [DC level signal for which the minimum is easily found, here the [LS| error function
is highly nonlinear in the parameter f;. The minimisation cannot be done in closed form. Since the
error criterion is a quadratic function of the signal, a signal that is /inear in the unknown parameter
yields a quadratic function for ./, as in the previous example. The minimisation is then easily carried
out. A signal model that is linear in the unknown parameter is said to generate a linear least squares
problem. Nonlinear least squares problems are solved via grid searches or iterative minimisation
methods.

— End-of-Topic 47: Introduction to Least Squares Estimation —

OBy O}
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6.4.4 Linear Least Squares

Topic Summary 48 Linear Least Squares Estimation

)

New slide

Topic Objectives:
» Awareness of linear in the parameters (LITP) signal model.
* Linear least square theory.

» Example of applying the linear least-squares estimator.

Topic Activities:

| Type Details | Duration | Progress
Watch video 20 : 15 min video 3x length
Read Handout Read page |246| to page |248| 8 mins/page
Try Code Use the MATLAB code 20 minutes
Try Example Try Example6.12] 10 mins
Practice Exercises | Exercise ?? 30 mins

)| Linear Least Squares

[T —

?;QQ sinusorke ]
N = o WA
doton ppies | it}

http://media.ed.ac.uk/media/1_1lwtlkjn8

Video Summary: The special case of linear least squares is presented as an extremely
useful estimation approach, in cases when the signal model can be written as a linear
combination of known basis functions, with unknown weighting parameters. The linear
least squares problem can be written as a matrix vector formulation and solved to yield
the so-called normal equations. The video considers an example of estimating the Fourier
coefficients of a signal modelled as a linear combinations of trigonometric functions.
Finally, a numerical example is shown. The linear algebra manipulations are shown
throughout in order to help the viewer manipulate similar types of equations, although
a full geometric interpretation is not considered here.

Again, assume that an observed signal, {z[n]})" ", is a perturbed version of an unknown signal,

{s[n]}~!, where each of these processes can be written by the random vectors:

s=[s[0] s[1] --- s[N—1]]" andx = [2[0] «[1] --- z[N-1]]" (6.134)



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton51'){ocgs[i].state=false;}}
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In a linear signal model, it is assumed the signal, s[n|, can be written as a linear combination of P
known functions, {h[n]}f_,, with weighting parameters {0, }_,; thus:

P
sln] = Ok hi[n] (6.135)
k=1

Writing this in matrix-vector notation, it follows that:

s[0] ha [0] ha[0] T hp[0] 01
s[1 hqll holl . hpll 0
[.] _ 1.[ ] 2.[ ] - zj[ ] > 6.136)
s|N —1] hi[N —1] ho[N —1] --- hp[N —=1]| |0p
N _— > — R _
s H 2]
Thus, the unknown random-vector s is linear in the unknown parameter vector @ = [0, --- , 0p] ,
and can be written as:
s=H®oO (K:8.8)

As shown above, H is a known N x P matrix, where N > P, and must be of full rank. It is referred
to as the observation matrix. The is found by minimising:

N-1
J(0) =) |z[n] — s[n]|* = (x — HO)" (x — HO) (K:8.9)
n=0
This can be written as:
J(0) =x"x —2x"HO + 6" H'HO (6.137)

and using the two identities that:

obT a Oa’Ba

G —Pp and —— = (B+B")a (6.138)
then observing in this case B = H'H = B7 it follows that
a‘g—(:) = —2H"x + 2H"H¢ (6.139)
Setting the gradient of .J(8) to zero yields the
0,50 = (H'H) ' H'x (K:8.10)

The equations H'HO = Hx, to be solved for @, are termed the normal equation.
The minimum [LS|error is found from Equation and Equation

Join = J(0) = (x - Hé)T <x . Hé) (6.140)
~ (x-m@EH)™ HTX>T (x - H(E"H) " Hx) (6.141)

or alternatively
Juin = %" (Ty = H (H'H) " H") (Ty - H (H"H) " H) x (6.142)
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Now, the matrix A = Iy — H (HTH)_1 H” is an idempotent matrix in that it has the property
A% = A. This follows from noting that:

A’=Ty—2H(H'H) 'H'+H(H'H) H'H(HH) H =A (6.143)
:H(HT;)_lHT
Hence,
Jain =x" (Ty — H (H"H) " H") x (K:8.11)
Other forms for J,,;,, are:
Juin = x"x —xTH (HTH) " H"x (K:8.12)
=x' (x — HO) (K:8.13)

Example 6.12 (Fourier Series Estimation). An application of the general linear model is in spectral
estimation. Suppose that a signal, s[n], is modelled as the sum of sinusoids:

P
sln] = " a, sin (pwon) + b, cos (pwon) (6.144)

p=1

where the coefficients {ay, b,},_, are the unknown amplitudes to be estimated, and the fundamental
frequency, wy, and model order P, are assumed to be known. It is implicitly assumed that the sampling
period 7' = 1 and that the fundamental wy is normalised to between 0 and 7.

The signal, s[n], is observed in noise. Write down the least squares solution.

SOLUTION. Writing the relationship between the observation, signal model, and modelling error:
P
x[n] = s[n] +e[n] = Z (a, sinw,n + b, cosw,n) + e[n] (6.145)
p=1

This model can be written in a so-called [LITP| form by defining the matrix, where { £ N — 1:

0 1 0 1 e 0 1
sinwg coswy sin2wg  cos2wy -+ sin Pwg  cos Pwy
H = [sin2wy cos2wy sindwy cosdwy --- sin2Pwy cos2Pwy (6.146)
sinfwg cosbwy sin2fwg cos2lwg --- sin Plwy cos Pluwg

Hence, with the parameter vector defined as:

0= [al bl (05} b2 s ap bp:|T (6147)

the signal model is s = H@, and the linear [LSE estimator is then given by:
60— (H"H)  H'x (6.148)
O

where the parameter vector, 9, is of dimension 2P, and therefore the size of H is NV x 2P.

Using the orthognality of the Fourier basis, it is possible to show that this relationship can simplify
further, and this is left as an exercise.

— End-of-Topic 48: Introduction to Linear Least Squares Estimation —
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Least Squares Signal Estimation
e T T T

T T
—Real signal value
——Observed signal (in noise)
‘ —Estimated signal

Al
W | ‘

(e
adlill |
|

Observations

Sample index

Figure 6.12: In this figure, the true underlying signal model is shown (the sawtooth), the observed
signal (with sensor noise), and the estimated Fourier signal model.

6.4.5 Weighted Linear Least Squares

An extension of the linear problem is weighted linear least squares. Instead of minimising
Equation an NV x N positive definite, and by definition, therefore symmetric, weighting matrix
W, so that

J(0) = (x —HO)" W (x — HO) (K:8.14)
If, for instance, W is diagonal with diagonal elements [W]; = w; > 0, then the error of
Equation [K:8.1] reduces to:

J(0) = Z_ w, (x[n] — s[n])” (6.149)

The rationale for introducing weighting factors into the error criterion is to emphasise the
contributions of those data samples that are deemed to be more reliable. Hence, consider again
Example on page[244] and assume that z[n] = A+ w[n], where w(n] is a zero-mean uncorrelated
noise signal with variance o2; if o2 is large compared with A, then the estimate of the underlying
signal s[n] = A from x[n] will be unreliable. Thus, it would seem reasonable to choose a weighting
factor of w,, = %

Example 6.13 ([Kay:1993, Problem 8.8, Page 276]). Find the weighted least squares estimate of
an unknown signal, s[n| = A, from an observed signal z[n|, where the known weighting factors are

: 1
given by w,, = el

SOLUTION. The weighted [LSlerror is given by:

1
J0)=>)" — (wln] - A)? (6.150)
n=0 "
Differentiating w. . ] A, and setting to zero gives:
N-1
0= = (x[n] — A) (6.151)
n=0 T
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Rearranging gives straightforwardly:

N-—1
Zn:O éx[n}

Apsp = = (6.152)
Yno 5 O
The general form of the weighted [LSElis readily shown to be:
6 — (H"WH) ' H'Wx (K:8.16)
and its minimum error is
Jonin = X© (W — WH (H"WH) HTW) x (K:8.17)

6.5 Bayesian Parameter Estimation

Topic Summary 49 Introduction to Advanced Bayesian Estimation Theory

Topic Objectives:

¢ Introduction to Bayesian Parameter Estimation.

¢ The General Linear Model.

¢ The Removal of Nusiance Parameters and Prior Probabilities.

Topic Activities:

| Type | Details | Duration | Progress

Read Handout | Read page |250| to page |257|

8 mins/page

Try Example | Try Example |6. 14|

15 mins

Using the method of maximum likelihood (or least squares) to infer the values of a parameter has

several significant limitations:

1. First, the likelihood function does not use information other than the data itself to infer the

values of the parameters. No prior knowledge, stated before the data is observed, is utilised
regarding the possible or probable values that the parameters might take. In many applications,
a physical understanding of the problem at hand, or of the circumstances surrounding how an
experiment is conducted, can suggest that some values of the parameters are impossible, and
that some are more likely to occur than others.

There are cases where the maximum-likelihood estimate (MLE) can return parameter estimates
outside the sensible range of the parameters, or outside the physical constraints of the system
under consideration.

. The likelihood function on its own does not limit the number of parameters in a model used to

fit the data. The number of parameters is chosen in advance, by the Signal Processing Engineer,
but the likelihood function does not indicate whether the number of parameters chosen is more
than necessary to model the data, or less than needed.

In general, the more parameters used to model the data, the better the model will fit the data. For
example, a data set consisting of N observations can always be described exactly by a model
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with [V parameters. However, suppose that a model is used to describe a particular realisation of
a stochastic process with no error by using N parameters to model N observations. If another
realisation of that random process is generated, then a new model is required to describe the
new data with no error. Often the new parameter estimates can be vastly different to the old
parameter set.

This problem arises from the tendency to attempt to over-parameterize the data; there is
clearly a tradeoff between modelling a signal with no error and having a more complicated or
sophisticated model. With this in mind, model simplicity is the key to maximising the degree of
consistency between parameter estimates computed from independent realisations of a process.

There are methods to this model order selection problem: these include final prediction error
(EPE), Akaike’s information criterion (AIC), minimum description length (MDLI), Parzen’s
criterion autoregressive transfer function (CAT)) and B-Information criterion (BIC). However,
it would be preferable to have a parameter estimation method that explicitly takes into account
the fact that the model order is unknown. Although model selection will not be discussed in
detail in this course, Bayesian parameter estimation is a framework in which it is consistent
and straightforward to consider the model order as simply another unknown parameter.

6.5.1 Bayes’s Theorem (Revisited)
Suppose N observations, x = {z[n]}) "', of a random process, z[n, (], is denoted by X({) =
{x[n, ]}y, Tt is assumed that this process can be assigned a signal model, Z;, such that it is
possible to write down a likelihood function:

Ly (0k; x) = pxje, (X| Ok, Ii) (6.153)

where 6, is an unknown parameter vector which characterises the k-th signal model, Z;. Suppose
knowledge prior to observing the data regarding the probability of the values of the parameters of Z
is summarised by the probability density function, pe, (65 | Z;). Then Bayes’s theorem gives:

0, T 0, T
pek\x(ﬂk\x,zk):px‘ek(x| b Th) pey (Ok| Tn) (6.154)

px (x| Zy)

Equation[6.154]is composed of the following terms:

Prior: pe, (0k| Z)) summarises all the knowledge of the values of the parameters 6y, prior
to observing the data;

Likelihood:  pxje, (x| 0%, Z;), is determined by the signal model Zy;

Evidence: px (x| Zj), which is the normalising expression in Equation [6.154] is known as the
Bayesian evidence. Since the left hand side (LHS) must integrate to unity to be a
valid [pdf] then it follows:

p (x| 7 = | pxie (x| 61 T2) po, (61] T2) do (6.155)
(C7%

This term is of interest in model selection; in cases where only one model is under
consideration, this term may be considered as a constant, since it is not a function of
the unknown parameters 6.

Posterior: Pe,x (01| x, I) is the joint posterior [pdf|for the unknown parameters 6, given the
observations x.
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The posterior density may be used for parameter estimation, and various estimators exist. One
common estimator is the value of 6, that maximises the posterior [pdf

A

0, = arge, max pe,|x (O | x, I) (6.156)

This is known as the maximum a posteriori (MAP) estimate.

Note that in order to simplify the notation, Bayes’s theorem is frequently written as:

p(x| 0k, Ii) p(6x| Ik)

p(Ok| x, 1)) = (6.157)
(6 | ) (x| )
It is understood in Equation |6.157|that the probability density functions, p (- | -), are identified based
on its context. In other-words, it is important to realise that each term in Equation represents a
different functional form for the [pdfk.
In cases where there is only one model in consideration, Equation simplifies further to:
p(x]6,7) p(6]| 1)
p(O|x,7)= (6.158)
Ol = & D)
6.5.2 The Removal of Nuisance Parameters
Consider a signal model, Z, that involves two parameters, « and 3:
T T

p(x|I)

It might be that it is only of interest to estimate «, and that an estimate of [ is unnecessary. The
marginal a posteriori [pdf] for o can be obtained by marginalising over the random variable :

MM&D=/MmM&ﬂM

-5 [ P (Xl 8.D) pla. 5] T) s
Marginalisation, also known as marginal inference, is an appealing procedure when the integral in
Equation can be calculated in closed form. In such cases, the marginal posterior density is
reduced in dimensionality since the parameter 3 is no longer present in the term p (« | x, Z). Note
that marginalisation necessitates a loss of information; the integration in Equation |6.160, means that
all the information about the value of [ is lost.

(6.160)

If the marginal is used for parameter estimation, then the value of o that maximises the marginal:

& =arg, maxp(a|x,7) = argamax/p(a, Bl x,I)dp (6.161)

is known as the maximum marginal a posteriori (MMAP) estimate.

6.5.3 Prior Probabilities

The selection of prior densities is a highly involved topic for discussion, and is only briefly mentioned
here. A prior density is selected to describe ones state of knowledge, or lack of it, about the value of
a parameter before it is observed.
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One can claim to have no knowledge whatsoever about the value of a parameter prior to observing the
data. This state of ignorance may be described by using a prior [pdf]that is very broad and flat relative
to the likelihood function. The most intuitively obvious non-informative prior is a uniform density.
This prior is typically used for discrete distributions, or for unbounded real value parameters:

p(Ox| L) =k (6.162)

where k is a constant. In the case of an uniform prior, parameter estimates obtained from a [MAP]
estimate are identical to those obtained using maximum likelihood. The problem with the uniform
prior in Equation [6.162]is that is is not normalisable, and is therefore not a valid [pdf]

Prior probabilities are non-informative if they convey ignorance of the parameter values before
observing the data compared with the state of knowledge afterwards. Therefore, the prior [pdf] need
only be diffuse in relation to the likelihood function. Thus, to avoid the normalisation problem with
the uniform prior, frequently a Gaussian prior is adopted:

1 0.6
p(0x| Ii) = —— exp |[——£E (6.163)
(2md2) 2 20

where P is the number of parameters inside the vector 8;. The parameter ¢ is known as a
hyper-parameter, and needs to be chosen somehow. To indicate ignorance of the value of a
parameter, 6 should be set to a large value. Alternatively, it is possible to assign another prior to
the hyper-parameter ¢ itself. This hyper-prior will be characterised by hyper-hyper-parameters.

Often a prior is chosen for mathematical convenience. In many situations, the likelihood function has
an exponential form. For the ease of analysis, the prior density can be chosen to be conjugate to
the likelihood function so that the posterior density is of the same functional form as the likelihood.
In general, however, it is desirable to convey all prior knowledge in a prior density function; this is
problem specific, and is discussed in many many research texts.

6.5.4 General Linear Model

The general linear model has previously been introduced in the discussion on the method of least
squares. Any data that may be described in terms of a linear combination of basis functions with an
additive Gaussian noise component satisfies the general linear model. Suppose that the observed data
may be described by a signal model of the form:

P
x[n] = Zap gp[n] +e[n], where 0<n<N-1 (6.164)
p=1

and g,(n) is the value of a time-dependent model or basis function evaluated at time index n, and e[n]
is[WGNl with variance ¢2: thus, e[n] ~ A (0, ¢2). Consider writing Equation |6.164]for all values of

z[0] 91[0] g0 - gp[0] ao e[0]
x[zll _ 91:[1] 92:[1] : gpz[l] a:1 . 6[:1] (6.165)
z[N — 1] Q[N =1] @[N—=1] --- gp[N —1]| |ap e[N —1]
e h ¥ Y 4

In other-words, Equation [6.164] may be written as:

x=Ga+te (6.166)
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where x is an NV x 1 vector of observations, e is an N x 1 vector of Gaussian noise samples,
G is a N x P matrix, and a is a P x 1 vector of parameters. The columns of matrix G are the
basis functions evaluated at each time index, and the basis functions themselves are a function of
some unknown parameters 8. For example, the basis functions might be sinusoids, and € denotes the
frequencies of these sinusoids.

The vector-matrix equation in Equation is linear in the parameter vector a; hence, the model
in Equation is often called the LITP model. Now, consider finding the likelihood function
p(x| @, a, 0%, I), where 6 is the unknown parameter vector of the basis functions that form the
matrix G. The probability density function for the noise vector is given by:

1 ele
p(e] o) = ——Fexp -5 (6.167)
(2mo2)> 207

Now, suppose that G is not a function of the observations x; the probability transformation from
the random vector e to the random vector x is linear, and has unity Jacobian. Hence, the likelihood
function for the observations is given by:

T
p(x] 6.8 0%7) = ——exp [—(X_Ga> <X_Ga>] (6.168)

(2mwo2)2 207

where Z indicates all the known information in the chosen signal model. Now, suppose that the aim
is to infer the values of the parameters of the basis functions, @, without inferring the values of the
nuisance parameters, namely the linear parameters, a, and the variance of the white noise, af. The
Bayesian methodology is thus applied. First some priors are required for the variance and the linear
parameters.

The variance term is known as a scale parameter and is a measure of scale or magnitude. A vague
non-informative prior that is usually assigned to scale parameters is the inverse-Gamma density; the
reason for this is not discussed here. Therefore:

(2] e ) = 70 (| s 6) = { 0 e
Ue, Pe) = e | Xey Pe) = e — — Qe .
e ’ B 02O R g2 >0,

Note that . and [, are hyper-parameters. Further, for linear parameters, it is usual to apply a vague
Gaussian prior similar to that in Equation

2 2 or \ 1 _a'a
p(al o, I) =N (a|0, §°071p) = —(27“5202)% exp [ 25203} (6.170)

where Ip is the P x P identity matrix. Note that the prior p (a| o2, 6, Z) is conditional on ¢?;
the choice of this prior allows both o2 and a to be marginalised analytically. The hyper-parameters
0, a, B, are all assumed to be known.

Using Bayes’s theorem, the posterior density for all the parameters 6, a, 2 is given by:
P (0, a, o2 ‘ X, I) xXp (x| 0, a, o, I)p(@, a, o’ | I) (6.171)

where the evidence term is considered as a constant and therefore omitted, and o< indicates
proportionality. The prior term factorises as:

p(0.a 00) =p@)p(alod)p (o) (6.172)
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where the dependence on the model Z has been dropped for convenience. Thus, the joint posterior
density is given by:

p(8.8.0%| x.I) xp(6) —— exp [JX—Ga) <><—Ga>]

(2m02)2 20¢ (6.173)
1 a’a] af o\ —(Betl) —%%
" amr)E P s 13y )

Since the observations and hyper-parameters are known, and therefore constant from the perspective
of the posterior density, then after some manipulation, this may be written as

p(@,a,ag‘x,I)oc

p(6) [ a’ (G"G +671p) a—2x"Ga +x"x + 2a,
oxp | —

(02)#+5e+1 2072
(6.174)
The linear parameters a can be marginalised out using the identity:
1 )% 1
/ exp {—— [a+2y"B+y'Ty]| } dy = ( ”)f exp {—— [o — BT '] } (6.175)
RP 2 |F|§ 2
To perform this, sety = a,T' = & (GG +67%Ip), a = %, and 3 = — % G"x, so that
p(6, 02| x, 1) :/ p(6.a, 02| x, I) da (6.176)
p(0) x'x 4+ 20, — x'G (GTG + 5_211:)_1 GTX]
X exXp | —
\/det |G"G + 0-2Ip| (02)! 20
(6.177)
where R = % Finally, the variance can be marginalised using the fact that the inverse-Gamma
[pdf] implies:
* 2 2 > o’ 2 —(B+) o . 9
1:/ Ig(a|a,ﬁ,)da:/ —— (0?) e o% do (6.178)
0 o T'(B)
and therefore: - r
/ (02) Y e do® = —(g) (6.179)
0 Q@

Hence, this gives the marginal a posterior [pdf] for the parameters 0 as
pOIx )= [ p(6.0|x 1) do?
0

(N .
[5x4 20, - XTG (GG +61,) " GTx] (F+5) (6.180)

o p(0)

\/det |GG + 0721,

The MMAP] estimate can be found by maximising this expression with respect to the parameters 6
which are implicitly incorporated in the basis matrix G.

It is important to realise that the expression in Equation is a function of the basis parameters
0 only. This means that there is no need to know about the standard deviation, 02, nor the values
of the linear parameters to infer the values of 8. Moreover, since the integrals in the marginalisation
process have been performed analytically, the dimensionality of the parameter space has been reduced
for each parameter integrated out. This reduction of the dimensionality is a property of Bayesian
marginal estimates and is a major advantage in many applications.
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Example 6.14 (Frequency estimation). An application of the general linear model is in frequency
estimation. Suppose that a signal, s[n], is modelled as the sum of sinusoids:

P
sln] = Z (ap sinw,n + b, coswyn) (6.181)

p=1
where the coefficients {a,, b,}!" are the amplitudes, {w,}!" are the frequencies, and P is the model
order. As usual, it is implicitly assumed that the sampling period 7" = 1 and that the frequencies

{w,}" are normalised to between 0 and 7. The signal, s[n], is observed in white Gaussian noise
(WGN) with unknown variance o2:

P
x[n| = s[n] +e[n| = Z (a, sinw,n + b, coswyn) + e[n] (6.182)
p=1

This model can be written in the [LITP| form by defining the matrix:

0 1 0 1 e 0 1
sinw; cosw; sSitws C€OSwy -+ Sinwp COSwWp
G = |sin2w; cos2w; sin2w; cos2wy -+ sin2wp cos2wp (6.183)
sinfw; cosfw; sinfwy coslws --- sinfwp coslwp

where ¢/ = N — 1. Hence, with the parameter vector defined as:
a=1la b ay by - ap bp] (6.184)
the marginal a posterior [pdf] for the unknown frequencies {w, }} is given by:

(N .
e

(6.185)
Vet |GTG + 521p | X

P ({wph' | x) ocp ({wp 1)

where the parameter vector, a, is of dimension 2P, and therefore the size of G is NV x 2P.

The MMAPI estimate can be found by maximising this the frequencies {w,}!. Note that the
hyper-parameters and a prior for {w, }1 must also be chosen; typically, a uniform prior on w, between
0 and 7 will be sufficient.

6.5.4.1 Model Selection using Bayesian Evidence

Next, the Bayesian evidence term is considered:

px (x| Zy) = / px|e, (x| Ok, Ii) pe, (01| Ii) dby (6.186)
O

This term can be used to select signal models and noise statistics appropriate to the observed data. To
clarify, in this equation, ®y, is the parameter space, and Z, denotes the structure of the k-th model. The
term 7, represents the joint assumption of both the noise statistics and the signal model; together, this
is called the data model. It is important to note that the integral in Equation [6.186]is the likelihood
multiplied by the prior integrated over all the parameters in that data model. In the case of discrete
distributions, the integration simplifies to a summation.
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Consider a set of competing possible data models labelled {Z; }} proposed to describe a given set of
observations. Bayes’s theorem can be used to find the posterior density of each model given the data:

x|z (x| L) pz (Zk)

D T | x) = (6.187)
ox (i ) px (x)
where the probability of the observations is given by:

M

px (x) =Y pxiz (x| k) pr (T1) (6.188)

k=1

If all the models are equally likely a priori, then
1

pz (L) = i (6.189)

Therefore, the posterior probability of a model is given by the relative evidence:
P x| Z,

IEPX|I(X| Tk)

This expression constitutes the evidence framework for the selection of signal models. It is important
to realise that in terms of real data, the correct data model may not be in the set chosen. It is only
possible to compare the candidate models that have been considered to determine which models are
more plausible.

— End-of-Topic 49: Introduction to Advanced Bayesian Parameter CIAHE]
Estimation — ]
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This handout discusses the problem of generating sequences of random numbers or variates, for use
in numerical simulations, including Monte Carlo integration and optimisation.

7.1 Introduction

Many signal processing problems can be reduced to either an optimisation problem or an integration

problem:

Optimisation: involves finding the solution to

Integration:

0 = arg max h(6) (7.1)
6co

where h(-) is a scalar function of a multi-dimensional vector of parameters, 6.
Typically, A(-) might represent some cost function, and it is implicitly assumed
that the optimisation cannot be calculated explicitly. An example of a complicated
optimisation problem might be finding the maximum of the equation:

h(z) = (cos 50z +sin20z)*, 0<z <1 (7.2)

This function is plotted in Figure|/.1

involves evaluating an integral,

T = /@ £(6)de, (1.3)

that cannot explicitly be calculated in closed form. For example, the Gaussian-error
function:

t 2
D(t) = / \/1276—92 df (7.4)

Again, the integral may be multi-dimensional, and in general @ is a vector.

260
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Function h(x) = (cos 50x + sin 20x)2
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Figure 7.1: Plot of the function in Equation

Optimisation and Integration Some problems involve both integration and optimisation: a
fundamental problem is the maximisation of a marginal distribution:

= argmax/ (0, w) (7.5)

6co

The reader is encouraged to honestly consider how many problems they solve reduce to either an
integration or an optimisation problem.

re

7.1.1 Deterministic Numerical Methods .

There are various deterministic solutions to the optimisation and integration problems. A browse Vv sfide

through [Press:1992, Chapters 4 and 10], for example, reveals a variety of well-known approaches:

Optimisation: 1. Golden-section search and Brent’s Method in one dimension;
2. Nelder and Mead Downhill Simplex method in multi-dimensions;

3. Gradient and Variable-Metric methods in multi-dimensions, typically an
extension of Newton-Raphson methods.

Integration: Most deterministic integration is only feasible in one-dimension, and many methods
rely on classic formulas for equally spaced abscissas:
1. simple Riemann integration;
2. standard and extended Simpson’s and Trapezoidal rules;
3. refinements such as Romberg Integration.
More sophisticated approaches allow non-uniformally spaced abscissas at which

the function is evaluated. These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.

Unfortunately, these methods are not easily extended to multi-dimensions.

Some examples of deterministic numerical solutions to these problems are considered in

Section|/.1.1.1land Section|[/.1.1.2
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7.1.1.1 Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls downhill in a straightforward fashion
that makes almost no special assumptions about your function. This can be extremely slow, but in
some cases, it can be robust.

Gradient methods are typically based on the Newton-Raphson algorithm which solves the equation
Vh(@) = 0. For a scalar function, h(8), of a vector of independent variables 6, a sequence 8, is
produced such that:

0,41 =0, — (VVTh(6,)) " Vh(8,) (7.6)

Numerous variants of Newton-Raphson-type techniques exist, and include the steepest descent
method, or the Levenberg-Marquardt method.

The primary difficulty in evaluating Equation|[7.6]is the computation of the Hessian term V V71 (6,,).
However, it is not crucial to obtain an exact estimate of the Hessian in order to reduce the cost function
at each iteration. In fact, any positive definite matrix will suffice, and often a matrix proportional to
the identity matrix is used.

The Broyden-Fletcher-Goldfarb-Shannon (BEGS)) algorithm, for example, constructs an approximate
Hessian matrix by analyzing successive gradient vectors, and by assuming that the function can be
locally approximated as a quadratic function in the region around the optimum.

7.1.1.2 Deterministic Integration

Numerical computation of the scalar case of the integral in Equation [/.7| can be done using simple
Riemann integration, or by improved methods such as the trapezoidal rule. For example, the

b
7= / £(6) db, (1.7)

can be solved with the trapezoidal rule using:

=

I= (Ok1 — Ok) (f(Ok) + f(Ors1)) (7.8)

0

1
2

£
Il

where the 6),’s constitute an ordered partition of [a, b]. Another formula is Simpson’s rule:
5 N N
I=3 {f(a) +4)  f(Bar1) +2) h(0ar) + f(b)} (7.9)

k=1 k=1

in the case of equally spaced samples with 6 = 6, — 0.

7.1.2 Monte Carlo Numerical Methods

Monte Carlo methods are stochastic techniques, in which random numbers are generated and use to
examine some problem.
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-1 -0.5 0 0.5 1

Figure 7.2: Estimating the value of 7 through Monte Carlo integration.

7.1.2.1 Monte Carlo Integration

Consider the integral,
I:/f(a)de. (7.10)
e

Defining a function (@) which is non-zero and positive for all @ € O, this integral can be expressed
in the alternate form:
f(6)

where the function (@) > 0, @ € © is a probability density function (pdf) which satisfies the
normalised expression:

/ (6)d6 — 1 (7.12)
o

It can now be seen that Equation can be viewed as an expectation of the function h(6) =
f(0) 7(0)~* over the [pdfj of 7(8). In other-words, Equation becomes

This may be written as an expectation:

1=E, {m] (7.13)

7(60)

This expectation can be estimated using the idea of the sample expectation, and leads to the idea
behind Monte Carlo integration:

1. Sample N random variates from a density function 7(8),
0% ~ (), keN=H{0,...,N—1} (7.14)
2. Calculate the sample average of the expectation in Equation using

F(o™) £(0)

. 1 N-1
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This technique is known as importance sampling because the function f(0) is sampled with the
density 7 (@), thereby giving more importance to some values of f(6) than others.

7.1.2.2 Stochastic Optimisation

There are two distinct approaches to the Monte Carlo optimisation (here, maximisation) of the
objective function h(0):

A

0 = arg max h(0) (7.16)
oco

The first method is broadly known as an exploratory approach, while the second approach is based
on a probabilistic approximation of the objective function.

Exploratory approach This approach is an exploratory method in that it is concerned with fast
explorations of the sample space rather than working with the objective function
directly.

For example, Equation can be solved by sampling a large number, N, of
independent random variables, {O(k) }, from afpdf] 7(8), and taking the estimate:

0 ~ arg max h (0“’”) (7.17)
{6}

Typically, when no specific features regarding the function h (@), are taken into
account, 7(6) will take on a uniform distribution over ©. Although this method
converges as N — oo, the method is very slow: one can usually do better by finding
a density (@) that is related to h (@), but this requires some additional insight into
the function £ (8).

Stochastic Approximation * The Monte Carlo EM algorithm

A more sophisticated approach to stochastic exploration is based on the deterministic gradient-based
methods. A modified form of Equation [7.6]is:

0,41 =0, +G,Vh(8,) (7.18)

where G, is a sequence which may approximate the Hessian of / (8,,) in order to ensure the algorithm
converges.

7.1.2.3 Implementation issues

Monte Carlo methods rely on the assumption that is is possible to simulate samples or variates {O(k)}
from the density 7 (6).

The next sections address how such samples can be obtained.

7.2 Generating Random Variables

This section discusses a variety of techniques for generating random variables from a different
distributions.
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o 7.2.1 Uniform Variates

Newslide  The foundation underpinning all stochastic simulations is the ability to generate a sequence of

independent and identically distributed uniform random variates over the range (0,1]. All
random variates are generated using techniques that assume uniform random variates are available.

Random variates are pseudo or synthetic and not truly random since they are usually generated using
a recurrence of the form:
ZTpi1 = (az, +0) mod m (7.19)

This is known as the linear congruential generator. For the purposes of generating random variates,
it is importance that knowledge of a particular set of variates gives no discernible knowledge of the
next variate drawn provided that the transformation in Equation [7.191s unknown. Of course, given
the sample ¢, and the parameters {a, b, m}, the samples {x1, ..., z,} are always the same.

However, suitable values of a, b and m can be chosen such that the random variates pass all statistical
tests of randomness.

I8

7.2.2 Transformation Methods Y

It is possible to sample from a number of extremely important probability distributions by being V" stide

able to sample from the simplest of distribution functions, namely the uniform density, and then
applying various probability transformation methods. Assuming that it is possible to sample from the
uniform distribution, this section gives an overview of the methods for obtaining variates from other
well-known distributions.

Beyond the basic definitions of random variables (RVk), the fundamental probability transformation
rule forms the basis of most of the methods described in this section.

Theorem 7.1 (Probability transformation rule). Denote the real roots of y = g(z) by {z,, n €
N}, such that:

y=g(x) =---=g(zn) (7.20)
Then, if the Y ({) = ¢g(X(C)), the [pdflof Y'(¢) in terms of the [pdfof X (¢) is given by:
N
fx (@n)
- 7.21
P =2 e, 72

where ¢'(x) is the derivative with respect to (. T.tl) = of g(z).

PROOF. The proof is given in the handout on scalar random variables.

7.2.3 Generating white Gaussian noise (WGN) samples

Recall that the probability transformation rule takes random variables from one distribution as
inputs and outputs random variables in a new distribution function:

Theorem 7.2 (Probability transformation rule (revised)). If {z;, ... z,,} are random variables
with a joint{pdf] fx (x1,...,x,), and if {y1, ... y,} are random variables obtained from functions
of {z}, such that y, = gi(x1, 22 ... z,,), then the joint{pdi] fy (v1,...,¥y,), is given by:
1
) = o an 7.22
fY(yla » Y ) |J(l’1,,$n)|fX(x1 x ) ( )
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where J(z1, ..., x,) is the Jacobian of the transformation given by:
8(y1, e yn)
J ey ) = /= 7.23
(w1, @) O(z1,... z,) (7.23)

&

One particular well-known example is the Box-Muller (1958) transformation that takes two uniformly
distributed random variables, and transforms them to a bivariate Gaussian distribution. Consider the
transformation between two uniform random variables given by,

ka (l’k) = ]1071 (l‘k) s k= 1, 2 (724)

where [ 4 () = 1if z € A, and zero otherwise, and the two random variables y;, y, given by:

y1 =/ —2Inz; cos2mxsy (7.25)
Yo = v/ —2Inx; sin 27y (7.26)

It follows, by rearranging these equations, that:

1
Ty = exp {—§<yf + yg)} (1.27)
1
£y = — arctan 22 (7.28)
2m Y1

The Jacobian determinant can be calculated as:

oy O — =L cos2mxy —27m+\/—2Inx; sin 27z 2
Janws) = (3 G = |VRE L s == g29
Jz1 Dz m Sin 271'.%’2 2my/—21n ZI1 COS 271'1'2 1
Hence, it follows:
T 1 y2/2:| |: 1 y2/2:|
, = — = |——e™% ——e %2 7.30
Iy (1, v2) o l o o (7.30)

since the domain [0, 1]? is mapped to the range (—oo, 00)?, thus covering the range of real numbers.
This is the product of y; alone and y, alone, and therefore each y is according to the normal
distribution, as required.

Consequently, this transformation allows one to sample from a wuniform distribution
in order to obtain samples that have the same [pdfj as a Gaussian random variable.

Example 7.1 (MSc. Exam Question, 2005). 1. Let U be a random variable generated from a
uniform [pdf on the interval [0, 1], such that

fr (1) 1, if0<u<l
u) =
v 0, otherwise
Show the random variable X = —% log U has an exponential distribution with parameter A,

where log U is the natural logarithm of U.
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. Let Y be a Beta random variable with parameters o and 1 — o, where 0 < o < 1, such that it

has [pdf}

o = {0 0y
0, otherwise

where B(a, b) is the Beta function.

The independent random variables X, from part |1} and Y are transformed to give two new
random variables W = X and Z = XY

Show that the joint{pdf]of W and Z is given by:

fwz (w, z) = {B(a:\l_a) e W=, w2 ER

0, otherwise

and write down the region R over which the density is non-zero.

. Hence, show that the marginal-@ of the random variable Z is Gamma distributed. Use the

substitution ¢ = A\(w — z) where appropriate.
You may assume that the Beta function may be written as:

['(a)T'(b)

B(CL, b) = m

where [(p) = / Pl e " dx X
0

is the Gamma function with I'(1) = 1.

. Suppose two random number generators are available, one which generates samples from a

uniform distribution, and the other from a beta distribution.

Describe an algorithm that generates random samples from a Gamma distribution.

SOLUTION. 1. The transformation X = ¢g(U) = —% log U for 0 < u < 1 has a single root:
—Az ifz>0
D (7.31)
0 otherwise

The derivative of the function X = ¢g(U) for 0 < u < 1 is given by:

d 1
g'(u) = ff;‘) - (732)

Hence, noting that the [pdf] for the RVI U is uniform, then the [pdf] for X is:

L= if0<u<0

fx (@)=Y i (u”>‘ = {A (7.33)

|9’ (un) 0 otherwise

which gives the desired exponential distribution with [pdf}

fx (z) =

-z if ¢ >
{)\e ifx>0 (7.34)

0 otherwise
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Figure 7.3: Region of non-zero probability density

2. Consider the transformation from the two [RVk X and Y to the two new random variables

W = X and Z = XY. In this case, the probability transformation rule for two random
variables is required. This is a straightforward extension of the scalar case, but the Jacobian
needs to be evaluated:

) ow  Ow
Ory) 1o 5l ¥ @
Moreover, note that there is one root of the transformation, and this is given by:
r=w and y=2 (7.36)
w

Since X and Y are independent RV, the joint{pdflof IV and Z is therefore:
1 1 z
fwz (w, z) = ijY (z, y) = EfX (w) fy <E> (1.37)
Note that if < 0, then fx (x) = 0. Moreover, if y < 0 or y > 1, then fy (y) = 0. Thus, z
varies between 0 X w and 1 x w. Thus, the regions of non-zero probability density is shown in

Figure
Substituting for fx (z) and fy (y) in the non-zero region gives:

1 1 zyol AN
)= e (—) (1 - —) 7.38
fwz (w, 2) w B(a,1—a) \w w (7.38)

A e ol o fw—2\"
_ w o a 7.39
B(a,1 — oz)6 = < w ) (7.39)
which gives the desired result:
A —“Aw ,a—1 —a
Furg (w0, 2) = Baiat 2 (w—z) w > O' and 0<z<w (7.40)
0 otherwise

. The marginal{pdf]of Z is given by integrating over w:

fz (w) = /Oo fwz (w, 2) dw (7.41)

The limits of this integration are obtained by looking back at Figure [7.3] and considering the
values of w for a fixed value of z. Hence, for z > 0,

fz(2) = /Z me_kw 22w — 2)7 dw (7.42)

A

B(a,l—a)z /Ze (w—2)"" dw (7.43)



7.2. Generating Random Variables 269
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Figure 7.4: A simple derivation of the inverse transform method

Making the substitution ¢ = A(w — z), such that when w = z, g = 0, and when w — oo,
g — oo. Further, dg = A dw. Therefore,

A [T e (9 49
=—2° 2= — 7.44
12G) = gaa=a” /0 ¢ <)\> N\ (7.44)
A® e [T
— o z (03 '4
B(a,l—a)z e /0 e 99 %dg (7.45)

Finally, using the identities given in the question:

I'()I(1—a

) /OO l-a—1 —x
Bla, 1 —a) = h I(l—a)= d 7.46
(cv a) I(1) where (1-a) i T e “dx (7.46)

where I'(1) = 1, then it follows that:

A —1 -2 A" a1
_— ¢ *T(1 — = ——2° z >0 7.47
F(a)F(l—a)Z e (1—-a) 2N 2 > (7.47)

2= (@)

and zero otherwise, which, using the definition given in the notes, is a Gamma distribution with
parameters A and «: f7 (2) =T(z| A, ).

4. To generate a Gamma random variable, assuming that a uniform and beta random number
generators are available, the algorithm is thus:

(a) Generate random variate, u, between 0 and 1 from uniform generator.
(b) Generate variate, y, from the beta generator with parameters o, 1 — .
(c) Calculate x = —% log u.

(d) Calculate product z = zy; z is a variate from a Gamma distribution with parameters \
and a. U

Note, in the above example, a Beta generator is required. It is possible to generate Beta random
variates when the distribution has integer parameters using order statistics.

I8

7.2.4 Inverse Transform Method -

There are various ways of deriving the inverse transform method, but a straightforward approach "4
follows a similar line to the derivation of the probability transformation rule.
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Figure 7.5: Rejection sampling
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Referring to Figure suppose that X (¢) and Y(¢) are RVk related by the function Y ({) =
II(X(¢)). The function I1({) is monotonically increasing so that there is only one solution to the
equation y = II(x), and this solution is denoted byzr = 1T~ (y).

Writing the probability transformation rule in an inverted form:

_dIl(z)
 dx

fx () fr () (7.48)
Now, suppose II(z) only takes on values in the range [0, 1], and that Y'({) ~ U q] is a uniform
random variable. If the function I1(z) is the cumulative distribution function (cdfl) corresponding to a
desired [pdf] 7 (), then since 7(z) and II(z) are related by the equation

dll(x)
= 7.49
m(x) dr (7.49)
it follows that

fx () =n(z), where z=TII"(y) (7.50)

In otherwords, if
U(C) ~Up1p, X)) =TT'U(C) ~ 7 (2) (7.51)
Example 7.2 (Exponential variable generation). If X ({) ~ Exp(1), such that 7(x) = e * and
[I(z) = 1 — e, then solving for z in terms of u = 1 — e~ % gives z = —log(1 — u). Therefore,
if U(() ~ Up,1, then the RV] from the transformation X ({) = —logU(() has the exponential

distribution (since U(({) and 1 — U(() are both uniform).

7.2.5 Acceptance-Rejection Sampling

For most distributions, it is often difficult or even impossible to directly simulate using either the
inverse transform or probability transformations. If if the distribution could be represented in an
usable form, such as a transformation or as mixture, it would in principle be possible to exploit
directly the probabilistic properties to derive a simulation method; unfortunately, it is not usually
possible to make such representations.

Thus, acceptance-rejection sampling is a flexible class of methods that relies on the simpler
requirement of finding a density p (x) from which it is easy to sample from, where Mp (z) > 7 (z).
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The basic idea of acceptance-rejection sampling is shown in Figure It is desired to sample from
the distribution 7 (x) which cannot be sampled from using the transform methods above. However,
assume it has been possible to find a proper density p (x) and a constant M such that Mp (x) > 7 (x).
This is shown in Figure as a generous envelope around the desired function. For simplicity of
explanation, assume that M = 1.

Imagine now that a sample variate X has been drawn from the density p (x). This sample has been
drawn with probability P, = where P, = p (X). However, if the sample were really to have been
drawn from the desired distribution, it should have probability P, 6= where P, = 7 (X ). Hence, on
average, you would expect to have too many variates that take on the value X by a factor of

u(X) = % - i (())g (7.52)

Thus, to reduce the number of variates that take on a value of X, simply throw away a number of
samples in proportion to the amount of over sampling. This throwing away of samples is also called
discarding samples, or rejecting samples.

Rather than drawing a large number of samples and discarding a certain proportion, the accept-reject
method will accept a sample with a certain probability given by:

X
P, = Pr (accept variate X) = %(:3) (7.53)

This leads to the full accept-reject algorithm which takes the form:

1. Generate the random variates X ~ p(z) and U ~ Uy, 1;

2. Accept X if U < P, = 70

3. Otherwise, reject and return to first step.

G

7.2.5.1 Envelope and Squeeze Methods o'

A problem with many sampling methods, which can make the density 7 (x) difficult to simulate, is New slide
down to the complexity of the function 7 (x) itself; the function may require substantial computing
time at each evaluation.

It is possible to reduce the algorithmic complexity of the accept-reject algorithm by looking for
another computationally simple function, ¢ (x) which bounds 7 (x) from below.

In the case that the proposed variate X satisfies ¢ (X) < 7 (X), then considering the probability of

acceptance in the accept-reject algorithm the proposed variate X should be accepted when U < 1\2(:8) ,
since this also satisfies U < ]\Zg(% This is shown graphically in Figure (7.7

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ~ p(z) and U ~ Uy, 1);

: q(X) .
2. Accept X if U < Mp()

3. Otherwise, accept X if U < W;X) .

Mp(z)’

4. Otherwise, reject and return to first step.
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Figure 7.6: Envelope Rejection sampling

By construction of a lower envelope on 7 (x), the number of function evaluations is potentially

decreased by a factor of
1
P. = i /q () dx (7.54)

which is the probability that 7 () is not evaluated.

7.2.6 Importance Sampling

The problem with accept-reject sampling methods is finding the envelope functions and the constant
M. This difficulty can easily be resolved if the eventual application of the samples is considered,
rather than considering the sampling process as an end to-itself.

The simplest application of importance sampling is in Monte Carlo integration. Suppose that is is
desired to evaluate the function:
= / f(0)de. (7.55)
o

In principle, this integral can be solved by drawing samples from the density f(€) and finding those
values of @ that lie in the region of integration: 8 € O. In other words, an empirical average of 7 is:

N—-1
.1
1 (®) ®
7= NZH@ (0 ) where %) ~ £(0) (7.56)

where [ 4 (a) is the indicator function, and is equal to one if a € A and zero otherwise.

It is often difficult to sample directly from f(@), and in any case, there are other problems with the
estimator in Equation[7.56] A best estimate is as follows:

Defining an easy-to-sample-from density 7(0) > 0, VO € O:

f(8) o [f(0)
= 7(8)d6 =E, [ } , (7.57)

leads to an estimator based on the sample expectation;

t\]>

(7.58)

"N
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Figure 7.7: Graphical representation of the Metropolis-Hastings algorithm.

Ie

- 7.2.7 Other Methods

New slide Include:

* representing [pdfs as mixture of distributions;

* algorithms for log-concave densities, such as the adaptive rejection sampling scheme;

 generalisations of accept-reject;
* method of composition (similar to Gibbs sampling);

* ad-hoc methods, typically based on probability transformations and order statistics (for
example, generating Beta distributions with integer parameters).

7.3 Markov chain Monte Carlo Methods =
In the previous chapter on sampling random variables, the variates are drawn from an independent V" /¢
process.

A Markov chain is the first generalisation of an independent process, where each state of a Markov

chain depends on the previous state only.

7.3.1 The Metropolis-Hastings algorithm &

The Metropolis-Hastings algorithm is an extremely flexible method for producing a random New slide
sequence of samples from a given density.

Metropolis-Hastings explores the parameter space of the density 7 (x) by means of a random walk.
Unlike the accept-reject algorithm, each new sample is proposed as a random perturbation of a
previously accepted variate. The Metropolis-Hastings algorithm is as follows, given a previously
drawn sample X z):

1. Generate a random sample from a proposal distribution: Y ~ g (y| X*)).
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2. Set the new random variate to be:

) Y w%th probab%l%ty p(X®)Y) (7.59)
X®) with probability 1 — p(X*) | Y)
where the acceptance ratio function p(z, y) is given by:
-1
p(x, y) = min ul) ( ™ (@) ) 1 Emin{w(y)g(ﬂy),l} (7.60)
g(ylz) \g(z|y) m(x) g(y|x)

This calculation is represented graphically in Figure

7.3.1.1 Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling from a multivariate density
function, m (g, 01, ..., O)) by drawing successive samples from marginal densities of smaller
dimensions.

Using the probability chain rule,

n ({em}%ﬂ) =m (91! | {em}n]\le,m;éé) n ({em}n]\fﬂ,m#) (7.61)

The Gibbs sampler works by drawing random variates from the marginal densities
7 (0] {0m}i—1.me) in @ cyclic iterative pattern.
This proceeds as follows assuming the components are initialised with values 080), 9§0), ceey 9;2)
First iteration:

o~ (001687, 0, 60, 0)

o)~ (62101, 0, 60, 0))

o) ~ (93 RSN IC eg?) (7.62)

oY ~ (eM RSO 95\?_1>
Second iteration:

02 ~x (el| ISR ORI egy)

o ~m (02100, 08, 00, )

0% ~ 7 (93 0@ 02 o eg?) (7.63)

0~ (0ur 1 0, 68, 07, o))
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k + 1-th iteration:
oD~ (o] 6, 0, 6, o)
oY (92 | gD g g 9}’?)

o)~ (0] 680, 650, 0 o) (764

o~ (O] 017, 080, 0, 6l

At the end of the j-th iteration, the samples Qéj ), 99 ), cee 95{2 are considered to be drawn from the
joint-density 7 (6o, 01, ..., Ou).
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Review of Fourier Transforms and
Discrete-Time Systems

This handout will review complex Fourier series and Fourier transforms, followed by a review of
discrete-time systems. It covers complex Fourier series, Fourier transforms, Discrete-time Fourier
transforms, Discrete Fourier Transforms, Parseval’s Theorem, the bilaterial Z-transform, frequency
response, and rational transfer functions.

8.1 Introduction

This handout will review complex Fourier series and Fourier transforms, followed by a review of
discrete-time systems. The reader is expected to have previously covered most of the concepts in this
handout, although it is likely that the reader might need to revise the material if it’s been a while since
it’s been studied. Nevertheless, this revision material is included in the module as review material
purely for completeness and reference. It is not intended as a full introduction, although some parts
of the review cover the subject in detail.

As discussed in the first handout, if the reader wishes to revise these topics in more detail, the
following book comes highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Pearson New International Edition, Fourth edition, Pearson Education,
2013.

IDENTIFIERS - Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

278
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For undergraduate level text books covering signals and systems theory, which it is assumed you have
covered, the following book is recommmended:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing: Concepts and
Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS - Paperback, ISBN10: 0333963563, ISBN13: 9780333963562
See http://www.homepages.ed.ac.uk/pmg/SIGPRO/

The latest edition was printed in 2002, but any edition will do. An alternative presentation of roughly
the same material is provided by the following book:

Balmer L., Signals and Systems: An Introduction, Second edition, Prentice-Hall, Inc.,
1997.

IDENTIFIERS — Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

In particular, the appendix on complex numbers may prove useful.

8.2 Signal Classification

)

Topic Summary 50 Deterministic time-series signal classification New slide

Topic Objectives:
* Distinguish periodic and non-periodic, discrete-time and continuous signals.

* Ability to distinguish different signal types.

Topic Activities:

| Type | Details | Duration | Progress |

| Read Handout | Read page[277|to page[281] | 8 mins/page | |

Before considering the analysis of signals and systems, it is necessary to be aware of the general
classifications to which signals can belong, and to be aware of the significance of some subtle
characteristics that determine how a signal can be analysed. Not all signals can be analysed using
a particular technique.

Different types of deterministic signals include:
* continuous-time periodic signals;
* continuous-time non-periodic (or aperiodic) signals;
¢ discrete-time periodic signals;

* discrete-time aperiodic signals.

The variety of signal classes rapidly changes when the notion of random or stochastic signals are
introduced (not until the fourth-year!).
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A
x(t)

d Period T’ J ¢

‘A
I

(a) An example of a periodic signal with period T'.

X,
A
K3 0,=21/T

0 o, 3o, O=no,

(b) The Fourier series of the periodic signal in Figure with fundamental
frequency wg = 27/T.

Figure 8.1: Example of a periodic signal and its spectral representation, found using the Fourier series.

8.2.1 Types of signal
In general, there are four distinct types of deterministic signals that must be analysed:

Continuous-time periodic Such signals repeat themselves after a fixed length of time known as the
period, usually denoted by 7'. This repetition continues ad-infinitum (i.e. forever).

Formally, a signal, x(t), is periodic if
z(t)=xz(t+mT),VmeZ (8.1)

where the notation Vm € Z means that m takes on all integer values: in other-words,
m = —oo, ..., —2, —1,0, 1,2, ..., co. The smallest positive value of 7" which
satisfies this condition is the defined as the fundamental period.

These signals will be analysed using the Fourier Series, and are used to represent

real-world waveforms that are near to being periodic over a sufficiently long period
of time.

An example of a periodic signal is shown in Figure This kind of signal vaguely
represents a line signal in analogue television, where the rectangular pulses represent
line synchronisation signals.

Continuous-time aperiodic Continuous-time aperiodic signals are not periodic over all time,
although they might be locally periodic over a short time-scale.
These signals can be analysed using the Fourier transform for most cases, and more
often using the Laplace transform. Aperiodic signals are more representative of
many real-world signals.

Iy

New slide
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x(?)

v

(e
~

(a) An example of an aperiodic signal.

X(w) A

>

0 ®
(b) The Fourier transform of the aperiodic signal in Figure where every possible
frequency exists.

Figure 8.2: Example of an aperiodic signal and its spectral representation, found using the Fourier
transform.

Again, real signals don’t last for all time, although can last for a considerably long
time. An example of an aperiodic signal is shown in Figure

Discrete-time periodic A discrete-time periodic signal is shown in Figure [8.3] which is essentially
a sampled version of the signal shown in Figure Note in this case, the period
is often denoted by N, primarily to reflect the fact the time-index is now n; in other
words, z[n] = x(nTs), n€{0,1,2,...}, where Ty is the sampling interval.

A discrete-time signal, z[n], is periodic if:

zln]=zn+mN],VmeZ (8.2)

This is, of course, similar to Equation Discrete-time periodic signals can be
analysed using the discrete-time Fourier series or discrete Fourier transform (DET))
depending on whether the period is a multiple of the number of samples.

Discrete-time aperiodic Analogous to the continuous-time aperiodic signal in Figure [8.2a] a
discrete-time aperiodic signal is shown in Figure [8.4]

Aperiodic discrete-time signals will be analysed using the discrete-time Fourier
transform (DTET). It can also be analysed using the so-called z-transform, which
is the discrete-time version of the Laplace transform, although this will not be
covered in complete detail until the third and fourth year courses, Signals and
Communications 3, Discrete-Time Signal Analysis.

Finite-length discrete-time signals Discrete-time signals can also be classified as being finite in
length. In other words, they are not assumed to exist for all-time, and what happens
outside the window of data is assumed unknown. These signals can be modelled
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Figure 8.3: A discrete-time periodic signal.
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Figure 8.4: An example of a discrete-time aperiodic signal.
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1

N-1 n

Figure 8.5: An example of a finite-duration signal.

using the so-called [DE'T] but again this is not covered until the fourth year course,
Discrete-Time Signal Analysis. The Fast Fourier transform (EET) is the well-known
fast (low complexity) version of the

[=]ity (=]
— End-of-Topic 50: Summary of Different Types of Signals? — %
=37
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8.2.2 Energy and Power Signals
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Figure 8.6: Which signal is the largest?
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Topic Summary 51 Measuring the size of a signal (and introduction to signal norms)

New slide

Topic Objectives:

* Motivation for Energy and Power.

* Understanding how to measure the size (or norm) of a signal.

Topic Activities:

| Type | Details | Duration | Progress |
Read Handout | Read page |28§E) page |284| 8 mins/page
Try Example | Try Example |8.1| 15 mins

The are many applications, such as signal detection, where knowing the size of a signal is important.
A large signal such as aircraft noise as it flies over a particular town might be more or less significant

than a longer signal of lower amplitude, but it all depends on the application.

Example 8.1 (Multi-choice Question). Which of the signals shown in Figure[8.6]is the largest!?

Moreover, as stated in Section [8.2.1] signals can be analysed using a variety of frequency-domain
transform methods, such as the Fourier series, Fourier transform, Laplace transform, and for
discrete-time, the z-transform. For example, the Fourier transform is used to analyse aperiodic
continuous-time signals.
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Figure 8.7: What is the size of an object?

Sidebar 19 Size of a Human Being

Suppose we wish to devise a signal number V' as a measure of the size of a human being. Then
clearly, the width (or girth) must also be taken into account as well as the height. One could make the
simplifying assumption that the shape of a person is a cylinder of variable radius r (which varies with
the height h). Then one possible measure of the size of a person of height H is the person’s volume,
given by:

H
Ven / () dh (8.3)
0

This can be found by dividing the object into circular discs (which is an approximation), where each
disc has a volume 6V ~ 7r?(h) dh. Then the total volume is given by V = [ dV.

However, not all aperiodic signals can be analysed using the Fourier transform, and the reason for this
can be directly related to a fundamental property of a signal: a measure of how much signal there is.

Therefore it is relevant to consider the energy or power as a means for characterising a signal. The
concepts of power and energy intuitively follow from their use in other aspects of the physical
sciences. However, the concept of signals which exist for all time requires careful definitions, in
order to determine when it has energy and when it has power.

Intuitively, energy and power measure how big a signal is. A motivating example of measuring the
size of something is given in Sidebar 19} and in Figure However, there are other possible signal
measures, as discussed in Sidebar 20

8.2.2.1 Motivation for Energy and Power Expressions

I8

Considering power from an electrical perspective, if a voltage x(¢) is connected across a resistance
R, the dissipated power at time 7 is given by:

P(7) = o 2%(7) (8.4)
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Figure 8.8: Energy Density.

where o< denotes proportional to. In this case, the constant of proportionality is the inverse resistance.
Since energy and power are related through the expression

Energy = Power x Time, (8.5)
the energy dissipated between times 7 and 7 + 47, as indicated in Figure is:
SE(1) o P(7) 67 o< 2*(T)67 (8.6)

The total energy over all time can thus be found by integrating over all time:

Eufaﬂﬂm (8.7)

[e.9]

This leads to the formal definitions of energy and power.

=i =
— End-of-Topic 51: Introduction to Energy and Power Signals — i—%
=
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Sidebar 20 Other signal measures

1. While the area under a signal x(¢) is a possible measure of its size, because it takes account not

only of the amplitude but also of the duration, is defective since even for a very large signal, the
positive and negative areas could cancel each other out, indicating a signal of a small size.

. Using the sum of square values can potentially give undue weighting to any outliers in the

signal, where an outlier is defined as an unusual signal variation that is not characteristic of the
rest of the signal; an example might be a high-energy shot burst of interference.

. Therefore, taking the integral of the absolute value, |z(t) | = absz(t), is a possible measure

and in some circumstances can be used. The relationship between input and output for this
signal measure is shown below.

| x(@) |

0 X0

Unfortunately, dealing with the absolute value of a function can be difficult to manipulate
mathematically. However, using the area under the square of the function is not only more
mathematically tractable but is also more meaningful when compared with the electrical
examples and the volume in Sidebar

. These notions lead onto the more general subject of signal norms. The L,-norm is defined by:

Ly(a) 2 ( [ or dt)’l’, p>1 8.8)

—00

In particular, the expression for energy is related to the Lo-norm, while using the absolute value
of the signbal gives rise to the L;-norm:

Li(z) 2 /_ e dt (8.9)

(e.9]

which is the integral of the absolute value as described above in part

. While Parseval’s theorem, described on later for the power of periodic signals, develops a

relationship between the Ly-norms in the time-domain and frequency-domain, in general no
relation exists for other values of p.

6. Note that the L,-norm generalises for discrete-time signals as follows:

P

Ly(z) 2 <i \:r;[t]|p) ) p>1 (8.10)
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8.2.2.2 Formal Definitions for Energy and Power

Topic Summary 52 Energy and Power Definitions

Topic Objectives:
* Formal definitions for Energy and Power.

* Units of Energy and Power.

Topic Activities:

| Type Details | Duration | Progress
Read Handout | Read page |286mpage |288| 8 mins/page
Try Example | Try Examples@ and 15 mins

Based on the justification in Section[8.2.2.1] the formal abstract definitions for energy and power that
are independent of how the energy or power is dissipated are defined below.

Energy Signals A continuous-time signal x(t) is said to be an energy signal if the total energy, F,
dissipated by the signal over all time is both nonzero and finite. Thus:

o0

0<E<oo MmeE:/‘M@fﬁ (8.11)

— 00

where |z(t) | means the magnitude of the signal x(t). If (¢) is a real-signal, this is just
its amplitude. If z(¢) is a complex-signal, then |x(t) |*> = x(t) z*(t) where * denotes
complex-conjugate. In this course, however, only real signals will be encountered.

A necessary condition for the energy to be finite is that the signal amplitude |z(¢) | —
0 as |[t| — oo, otherwise the integral in Equation will not exist. When the
amplitude of z(¢) does not tend to zero as |t| — oo, the signal energy is likely to be
infinite. A more meaningful measure of the signal size in such a case would be the
time average of the energy if it exists. This measure is called the power of the signal.

Power signals If the average power delivered by the signal over all time is both nonzero and finite,
the signal is classified as a power signal:
0<P< here P — lim — W|®Fﬁ (8.12)
oo where = lim — x .
W—o0 2W —w
where the variable IV can be considered as half of the width of a window that covers
the signal and gets larger and larger.

Example 8.2. Name a type of signal which is not an example of an energy signal?

SOLUTION. A periodic signal has finite energy over one period, so consequently has infinite energy.
However, as a result it has a finite average power and is therefore a power signal, and not an energy
signal.

Example 8.3 (Rectangular Pulse). What is the energy of the rectangular pulse shown in Figure 8.9
as a function of 7, and for the particular case of 7 = 47
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Figure 8.9: Rectangular pulse of length 7.
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Figure 8.10: The total energy of the signal in Figure can be found as the area under the curve
representing the square of the rectangular pulse, as shown here.

SOLUTION. The signal can be represented by

x(t):{2 0<t<r

0 otherwise

so that the square of the signal is also rectangular and given by

9 4 0<t<T
z*(t) = .
0 otherwise

(8.13)

(8.14)

Since an integral can be interpreted as the area under the curve (see Figure [8.10), the total energy is

thus:

E =4r

When 7 =4, F = 16.

(8.15)
U

Example 8.4 (Multiple Choice). The signal x(t) = exp (—|t|) is:

1. an energy signal, but not a power signal;
2. a power signal, but not an energy signal;
3. both an energy and a power signal;

4. not an energy signal, nor a power signal?
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I8

8.2.2.3 Units of Energy and Power '

It is important to consider the physical units associated with energy and power, and therefore to New slide
determine how the abstract definitions of £ and P in Equation [8.11] and Equation [8.12] can be
converted into real energy and power.

Consider again power from an electrical perspective. When considering “direct current” (DC) signals,
power is given by

Po — V2 _ Volts?
R Ohms
where V' is the signal voltage, and R is the resistance through which the power is dissipated. Consider

now the units of the abstract definition of power, P in Equation |8.12]

= Watts (8.16)

1
P= time x Volts? x time = Volts?> = Watts x Ohms (8.17)
1

where the second unit of time comes from the integral term dt, and in which the integral may be
considered as a summation. Therefore, by comparing Equation and Equation [8.12] the abstract
definition of power, P, can be converted to real power by Ohms for the case of electrical circuits.

Similarly, the units of energy in Equation[8.11]is given by
E = volts® x time (8.18)

Therefore, to convert the abstract energy to Joules, it is again necessary to divide by Ohms by noting
that energy is power multiplied by time.

ie

- 8.2.2.4 Power for Periodic Signals

Newslide  The expression for power in Equation [8.12] can be simplified for periodic signals. Consider the
periodic signal in Figure Let 2IWW = T and define:

Pr= 1/Wumwt (8.19)
T—2W 7WZE .

Thus, the average power over two periods is 2P, and the average power over /N periods is Pyr.
Then, it should becomes clear that:

Pr = PNT; VN € Z (8.20)
since the average in each period is the same. Consequently, power for a periodic signal with period
T may be defined as:

1 T
P:—/LmWﬁ (8.21)
T Jo

Note that the limits in Equation may be over any period and thus can be replaced by (7, 7 + T')
for any value of 7.

— End-of-Topic 52: Definitions of Energy and Power Signals —

=
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ie

= 8.3 Fourier Series and Fourier Transforms

Newstide  Topic Summary 53 Fourier Transform Theory

Topic Objectives:
* Understanding how to measure the size (or norm) of a signal.

* Motivation for Energy and Power.

Topic Activities:

| Type Details | Duration | Progress
Read Handout | Read page |289mpage |296| 8 mins/page
Try Example | Try Examples M and 40 mins

In this review of Fourier series and transforms, the topics covered are:

* Complex Fourier series
¢ Fourier transform
¢ The discrete-time Fourier transform

¢ Discrete Fourier transform

o

8.3.1 Complex Fourier series "

The complex Fourier series is a frequency analysis tool for continuous time periodic signals. New siide
Examples of periodic signals encountered in practice include square waves, triangular waves,
sawtooth waves, pulse waves and, of course, sinusoids and complex exponentials, as well as half-wave
recitifed, full-wave rectified and p-phased rectified sinusoids. The basic mathematical representation

of periodic signals is the Fourier series, which is a linear weighted sum of harmonically related
sinusoids or complex exponentials.

A periodic continuous-time deterministic signal, z.(t), with fundamental period 7}, can be expressed
as a linear combination of harmonically related complex exponentials:

ro(t) = Y X (k)™ teR, (M:2.2.1)
k=—00
where wy = 27 F, = % is the fundamental frequency. Here, wy is in radians per second, and the

fundamental frequency, in Hertz, is given by F{ = 7%, Moreover,

. 1 [T 4
Xk = o /0 sty et ke, (M:2.2.2)

p

are termed the Fourier coefficients, or spectrum of x.(t). Note that although the region of integration
in Equation [M:2.2.2]is from 0 to 7}, it can actually be over any period of the waveform, since the
signal, z.(t), is periodic with period T},.

The kth frequency component corresponds to frequency wy = kwy = kQT—: The set of exponential

functions '
F(t) = {0 ke 7} (8.22)
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“f(l)

t

0 T 3n

Figure 8.11: Function f(t) of Example

can be thought of as the basic building blocks from which periodic signals of various types can be
constructed with the proper choice of fundamental frequency and Fourier coefficients.

Example 8.5 (Complex Fourier Series). Find the complex form of the Fourier series expansion of
the periodic function f(t) defined by:
1
f(t) = cos it (—m <t<m)
ft+2m) = f(1)

SOLUTION. A graph of the function f(t) over the interval —7 < ¢ < 37 is shown in Figure The
period 7;, = 2, so therefore the complex coefficients, denoted by F;,, are given by Equation M:2.2.2
as:

(8.23)

I .
Fo=— | flt)e ™otdt, nerz (8.24)
T, Jo
_ L[ cos t e /M dt = L (ej% + e_j%> e I dt (8.25)
2 J_. 2 A J_ .
_ 1 <e—j(”—%>t + e—j<”+%)t) dt (8.26)
A J_.

which, after some trivial integration, gives:

1 [—9e—i@n-1%  g9—ien+nL]"
_ Lz *_ = ’ (8.27)
A | j(2n—1) j(2n+1)
j [[emmelz e InT eI T eTIE eI els
= — 8.28
2%[( 2n—1 * 2n+1 2n —1 +2n+1 (8.28)
Noting that %72 = £, and e®"™ = cosnt = (—1)", then it follows that:
J J J J J
n = — — — -1 8.29
27(271—1 1 21 2n—|—1>( ) (8.29)

_ (=" < 1 1 ) _ (2<—LH (8.30)

T \2n4+1 2n—1 4n? — D)

Note that in this case, the coefficients F,, are real. This is expected, since the function f(t) is an even
function of ¢. The complex Fourier series expansion for f(¢) is therefore:

o 29(—1 n+1 '
fy=> —(4512_)1% eIt 8.31)
n=-—o00 [
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8.3.1.1 Common Fourier Series Expansions

In the following Fourier series expansions, wy = 2?” is the fundamental frequency.

Half-wave rectified cosine-wave:

1 1 2 — cos(2nwyt)
() =—=+= tp =S (—pntt R0
z.(t) — 5 coswp +7T,( in? — 1

p-phase rectified cosine-wave (p > 2):

t
) = Lon™ sz oo stpent)

~v

~ Ax(0) L Square wave:
4 N sin(2n — 1wot
7 0o 72 T ‘f Te(t) p Z 2n—1
-1
x.(7) Triangular wave:

/ 8 1 SI(2n — Dwot
A ‘ ‘ > _7T g (2n —1)2

72 Jlo WT ;
-1

A3 Sawtooth wave:

2 — sin nwot

z.(t) = — 1) —

7 0o AT ‘f ( ) ™ ;( ) n
-1
Pulse wave:
sin(n
ze(t) = 1+2 Z » cos(nwot)
1 nﬂ'?

»
»

t

8.3.1.2 Dirichlet Conditions

An important issue that arises in the representation of the continuous time periodic signal z.(t) by the
Fourier series representation,
[e.e]
= > Xo(k) e, (P:4.1.5)

k=—0o0
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is whether or not the series converges for every value of ¢t € R; i.e., is it true that
To(t) = 2.(t), VteER (8.32)

The so-called Dirichlet conditions guarantee that the Fourier series converges everywhere except
at points of discontinuity. At these points, the Fourier series representation Z.(t) converges to the
midpoint, or average value, of the discontinuity.

The Dirichlet conditions require that the signal x.(t):

1. has a finite number of discontinuities in any period;
2. contains a finite number of maxima and minima during any period;

3. is absolutely integrable in any period; that is:

/ |ze(t)| dt < o0 (P:4.1.6)
TP

where the integral is over one period. Many periodic signals of practical interest easily satisfy
these conditions, and it is reasonable to assume that all practical periodic signals do. However, it
is important to beware that pathological cases can make certain proofs or algorithms collapse.

8.3.1.3 Parseval’s Theorem (for Fourier series)

It is sometimes relevant to consider the energy or power as a means for characterising a signal.
These concepts of power and energy intuitively follow from their use in other aspects of the physical
sciences. However, the concept of signals which exist for all time requires careful definitions for
when it has energy and when it has power. Consider the following signal classifications:

Energy Signals A signal x.(t) is said to be an energy signal if the total energy, F, dissipated by the
signal over all time is both nonzero and finite. Thus:

[e.e]

0<E<oo where E= / |z (t)| dt (8.33)
Power signals If the average power delivered by the signal over all time is both nonzero and finite,
the signal is classified as a power signal:

1 T
0<P<oo where P= lim —/ EXGIR (8.34)
T—o00 2T _T

A periodic signal has infinite energy, but finite average power. The average power of z.(t) is given by
Parseval’s theorem:

T o0
o= [P = Y )P (M:2.2.3)
Tp 0

k=—o00

The term | X, (k)| represents the power in the kth frequency component, at frequency w, = k2.

TP
Hence, 5 §
Pu(k) = |X.(k)]?, —co<k<oo, ke (8.35)

is called the power spectrum of z.(t). Consequently, it follows P, may also be written as:

Po= S Pulk) (8.36)

k=—00
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PROOF. Starting with
1 [T
P, = —/ xe(t) xL(t) dt (8.37)
Ty Jo

then substituting for the Fourier series expansion of z.(t) gives:

T, 00 *
P, = % xc(t){ > Xo(k) eikwot} dt (8.38)

pJ0 k=—o0

Noting that the conjugate of a summation (multiplication) is the summation (multiplication) of the
conjugates, then:

o

I . 4
Pr= / o(t) Y X7 (k)e ot dt (8.39)
p JO

k=—o00

Rearranging the order of the integration and the summation gives:

[e'e) Ty
P,= Y Xk {Ti / To(t) eIkt (t) dt} (8.40)
k=—00 <P 0 _

-~

Xc(k)

which is the desired result and completes the proof.

Later in this course, the notion of a power spectrum will be extended to stochastic signals.

Example 8.6 ( [Proakis:1996, Example 4.1.1, Page 237]). Determine the Fourier series and the
power density spectrum of a rectangular pulse train that is defined over one period as follows:

0 if-2<t<-1I
z(t)=Q A if-I<t<I (8.41)
0 ifI<t<l

where 7 < T),.

4 x(1)
A
- <« T
1 1 : : > !
T, -T2 -2 2 T2 T,

SOLUTION. The signal is periodic with fundamental period 7, and, clearly, satisfies the Dirichlet
conditions. Consequently, this signal can be represented by the Fourier series. Hence, it follows that

Tp -

. 1 2 . A .
X (k) = — / ’ To(t) eIt gt = T / T ket gy (8.42)

T,
P z
p 2
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Two different integrals need to be performed depending on whether £ = 0 or not. Considering the
case when k& = 0, then the average value of the signal is obtained and given by:

. 1 [z 1 [z AT
X (0) = — / To(t) dt = — Adt = — (8.43)
T, ) : T, ) : T,

For k # 0, then

_ A z ) A e—jk’wot 2
Xo(k) = = ket gt = — 8.44
W=7].° T, {—jkwo} . (844)
2 2
in Twok
A jhwo e—jkwog) _ At sin 75 (8.45)
TkwoT, T, kwog
A .
= ZT6inc %% where sincz & 22T (8.46)
T, 2 x
Hence, the power density spectrum for the rectangular pulse is:
3 Ar\? k
X.(k)|* = (—7) sine? 22 ez (P:4.1.19)
T, 2 0

where it is noted that sinc (0) = 1.

8.3.2 Fourier transform

An aperiodic continuous-time deterministic signal, x.(t), can be expressed in the frequency domain
using the Fourier transform pairs:

1 [ »
z.(t) = 2—/ X (w) et dw (M:2.2.5)
™ —00
and -
X (w) = / T (t) eI dt (M:2.2.4)

X.(w) is called the spectrum of z.(t). Again, note that [Manolakis:2000] uses the defintion ' = ;~.
Continuous-time aperiodic signals have continuous aperiodic spectra.

There are a few mathematical requirements that x.(¢) must satisfy for X.(w) to exist; these can
be summarised by the phrase that the signal must be well-behaved. More specifically, the set of
conditions that guarantee the existence of the Fourier transform are the Dirichlet conditions which are
the same as for Fourier series.

Example 8.7 (Fourier Transforms). Find the Fourier transform of the one-sided exponential
function
f(t)=H(t) e wherea >0 (8.47)

and where H (t) is the Heaviside unit step function show in Figure and given by:

1 ift>0
Hty={ "'=" (8.48)
0 otherwise
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A H

~Vv

0
Figure 8.12: The Heaviside step function H ().

4

A
A1) =H(He ™

»
>

0 t
Figure 8.13: Exponential decaying function, f(t) = H(t) e~ for a > 0.

SOLUTION. Since f(t) — 0 as t — oo, then the signal energy is bounded, as indicated by plotting
the graph of f(t) as shown in Figure[8.13]

A Fourier transform therefore exists, and is given by:

X (w) = / H(t)e ™ e ¥ qt (8.49)
o0 , —(at+jw)t] >
_ / o (atio)t gy [__e ‘ } (8.50)
0 a+jw |
giving
1
X (w) = —, for —oo < w < 00 (8.51)
a—+ Jw
O
8.3.2.1 Parseval’s theorem (for Fourier transforms) C ,

The energy of z.(t) is, as for Fourier series, computed in either the time or frequency domain by New stide
Parseval’s theorem:

o0 1 oo
L, :/ (1) dt = 2—/ | X (w)[? dw (M:2.2.7)
oo T J oo

The function |X.(w)[*> > 0 shows the distribution of energy of z.(t) as a function of frequency, w,
and is called the energy spectrum of x.(t).

PROOF. The derivation of Parseval’s theorem for Fourier transforms follows a similar line to the
derivation of Parseval’s theorem for Fourier series; it proceeds as follows:

E, = / xe(t) zi(t) dt = / z(t) 2—/ X (w)e 7 dw dt
-0 —00 T J -

1 peo o L e (8.52)
o [ M) [y e dtas = o [ X)X do .

2m —00 —00
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8.3.3 The discrete-time Fourier transform

Topic Summary 54 Fourier Transform Theory

Topic Objectives:
* Understanding how to measure the size (or norm) of a signal.

* Motivation for Energy and Power.

Topic Activities:

| Type | Details | Duration | Progress |

| Read Handout | Read page [297]to page[301| | 8 mins/page | |

Turning to discrete-time deterministic signals, the natural starting point is to consider aperiodic signals
that exist for all discrete-time; i.e. {x[n|}>, . It is interesting to note that there are fewer convergence
issues with transforms for discrete-time signals than there are in the continuous-time case.

An aperiodic discrete-time deterministic signal, {z[n]}*>_, can be synthesised from its spectrum
using the inverse-discrete-time Fourier transform, given by:

1 g . .
z[n] / X (/7)) e dw, neZ (M:2.2.13)

T or

—T

and the discrete-time Fourier transform (DTFT):

X ()= an] e, weR (M:2.2.12)

alln
X (e7%T) is the spectrum of z[n].

Since X (e#T) = X (e7“*27™%)), discrete-time aperiodic signals have continuous periodic spectra
with fundamental period 27. However, this property is just a consequence of the fact that the
frequency range of any discrete-time signal is limited to [—m, 7) or [0, 27); any frequency outside
this interval is equivalent to some frequency within this interval.

There are two basic differences between the Fourier transform of a discrete-time finite-energy
aperiodic signal, as represented by the discrete-time Fourier transform, and the Fourier transform
of a finite-energy continuous-time aperiodic signal:

1. For continuous-time signals, the Fourier transform, and hence the spectrum of the signal, have
a frequency range of (—oo, 00). In contrast, the frequency range for a discrete-time signal is
unique over the frequency range [—m, 7) or, equivalently, [0, 27).

2. Since X (ejWT) in the [DTFT is a periodic function of frequency, it has a Fourier series
expansion, provided that the conditions for the existence of the Fourier series are satisfied. In
fact, from the fact that X (ej“T) is given by the summation of exponentially weighted versions
of x[n] is is clear that the already has the form of a Fourier series. This is not true for the
Fourier transform.

In order for X (e/“T) to exist, z[n] must be absolutely summable:

> " Jz[n] | < oo M:2.2.11)

alln
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Finally, as for the Fourier series, and the Fourier transform, discrete-time aperiodic signals have
energy which satisfies Parseval’s theorem:

= Z lz[n] |* = %/W X (7)) P dw (P:4.2.41)

n=—00 -

8.3.4 Discrete Fourier transform

Any finite-length or periodic discrete-time deterministic signal, {x[n]})""", can be written by the

Fourier series, or inverse{DFT] (IDFT):
X, el vk pe N (M:2.2.8)
where N = {0,1,..., N — 1} C Z", and where the DFT}

Xe=Y zn]ed ¥ keN (M:2.2.9)

are the corresponding Fourier coefficients. The sequence X}, k € R is the spectrum of z[n]. X is
discrete and periodic with the same period as x[n].

Note that a finite-length discrete-time signal of length /N has the same Fourier transform, through
the [DFT] as an infinite-length discrete-time periodic signal of period N. Hence, these equivalent
perspectives will be considered synonymous.

PROOF (DERIVATION OF DISCRETE FOURIER TRANSFORM). If the discrete-time signal x[n] is
periodic over NV samples, then it can be written over one period in continuous time as:

)=T,> zn]ét-nT), 0<t<T, (8.53)
neN

where NV = {0,..., N — 1}, Ty is the sampling period, and 7, = N T is the period of the process.

Substituting into the expression for the Fourier series, using the sifting property and noting that
2

wo =7 = NT , gives:

I 4
X, = ?/ T.(t) e Ikt gy (8.54)

p

— _/ {T Z t—nTs)} eIkt gt (8.55)

neN
=) z[n St —nT,) e 9kt g (8.56)

neN

= Z x[n] e‘jWW”k (8.57)
neN O

The [DFT] can be obtained using the appropriate identities to ensure a unique inverse.
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8.3.4.1 Parseval’s Theorem for Finite Length Discrete-Time Signals

The average power of a finite length or periodic discrete-time signal with period NV is given by the
sum of squared sample values:

N-1
P,=> |zn] (P:4.2.10)
n=0

Through the same manipulations as for Parseval’s theorems in the cases presented above, which are
left as an exercise for the reader, it is straightforward to show that:

N-1 =,
_ 2 _ 2 )
P,=Y " |a[n]|* = ~ > 01Xl (P:4.2.11)
n=0 k=0
8.3.4.2 The[DFET as a Linear Transformation =
The formulas for the [DET] and [[DET| may be expressed as: New slide
N—-1
Xp=> aln] Wi, keN (P:5.1.20)
n=0
s,
] =+ S OX W™, neN (P:5.1.21)
k=0
where, by definition:
Wy =e % (P:5.1.22)

which is the Nth root of unity. Note here that, if W has been pre-calculated, then the computation
of each point of the can be accomplished by /N complex multiplications and N — 1 complex
additions. Hence, the N-point DF'T can be computed in a total of N? complex multiplications and
N(N — 1) complex additions.

It is instructive to view the DFT]and IDFT) as linear transformations on the sequences {z[n]}5 ' and

{X;.}5'~1. Defining the following vectors and matrices:

XN = : , Xy = : (8.58)
LU[N — 1] XN_1
[1 1 1 1 ]
Wy Wﬁ, WJJVV—l
2 4 2(N-1)
wWy= |1 Wy Wy - Wy (8.59)
1wy Y e |

Observe that X, can be obtained by the inner-product of the (k — 1) th-order row with the column

XN
x[0]
Xp= |1 Wt w2 ... W}VN—W] : (8.60)
z[N — 1]
Then the N-point may be expressed in vector-matrix form as:

XN = WNXN (P5124)
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where Wy is the matrix of the linear transformation. Observe that Wy is a symmetric matrix.
Assuming that the inverse of Wy exists, then Equation |P:5.1.24f can be inverted by pre-multiplying
both sides by W]_Vl, to obtain:

xy = W' Xy (P:5.1.25)
This is the expression for the [DFT] which can also be expressed in matrix form as:
1
Xy = NW}*VXN (P:5.1.26)

where W7, denotes the complex conjugate of the matrix W . Hence, it follows that:
1
W= NW}; or WyWj = NIy (P:5.1.27)

where Iy is the N x N identity matrix. Hence, W y is an orthogonal or unity matrix.

8.3.4.3 Properties of the discrete Fourier transforms

There are some important basic properties of the [DFT] that should be noted. The notation used to
denote the N-point[DFT pair x[n] and X} is

DFT
z[n] = X (8.61)
DFT
Periodicity  If z[n] = X}, then:
zln+ N] =z[n] foralln (P:5.2.4)
Xpyn = Xj, forall k (P:5.2.5)
These periodicities in x[n] and X} follow immediately from the definitions of the
DET and IDFT
DFT DFT
Linearity If z[n] = Xj and y[n] = Y}, then

DFT
az[n] + ay[n] = Xy + anYy (P:5.2.6)

for any real or complex-valued constants a; and as.

DFT
Symmetry of real-valued sequences If the sequence x[n] = X} is real, then

Xka = X; = X,k (P5224)

DFT
Complex-conjugate properties If z[n] = X} then

2] = X%_, (P:5.2.45)

PROOF. The[DFT of the sequence x[n] is given by:

N-1
Xp=)Y a[n] e I¥™ keN (M:2.2.9)

n=0

and the DFT) of y[n] = x*[n] is given by:

N-1
Yi=Y a'[n] e IN (8.62)
n=0
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Taking complex conjugates, and noting that ¢/ ¥ ™ = ¢35 m(N=k) then:

N—-1
V=" wln] eI ¥R = X (8.63)
n=0 O

. DFT ,
Hence, giving 2*[n] = X} _, as required.
) DFT
Time reversal of a sequence If z[n] = X} then

2N —n] = Xy (P:5.2.42)

Hence, reversing the N-point sequence in time is equivalent to reversing the [DFT|
values in frequency.

PROOF. From the definition of the DFT] if y[n] = [N — n], then:

=

N
Yy = [N — n] e IRk = Z x[m) eI (N=m)k (8.64)

=1

S
I
o
3

where the second summation comes from changing the index from n to m = N — n.
Noting then, that [ N] = z[0],then this may be written as

N-1 N-1
.27 - 27
Y = z[m] eI N N-mk x[m] ef N ™ (8.65)
m=0 m=0
N-1
- 27
=Y zm] eI NN = X, (8.66)

3
I
U

as required.

Circular Convolution As with many linear transforms, convolution in the time-domain becomes
multiplication in the frequency domain, and vice-versa. Since the signals are periodic,
it is necessary to introduce the idea of circular convolution. Details of this are
discussed in depth in [Proakis:1996, Section 5.2.2, Page 415] and are currently
ommitted here. However, assuming that convolution is interpreted in the circular
sense (i.e. taking advantage of the periodicity of the time-domain signals), then if

DFT DFT
z[n] = Xy and y[n] = Y, then:

DFT
zn] xy[n| = X Yy (P:5.2.41)

— End-of-Topic 54: Revision of the Discrete-Time Fourier Analysis: the Ol 0]
DTFT and the DFT — e
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uln] x[n]
o[n]
(@)  The wunit sample (b) The unit step sequence (c) The exponential decay sequence.
or unit impulse sequence uln].

d[n].

Figure 8.14: Basic discrete-time signals.

8.4 Review of discrete-time systems

)

Topic Summary 55 Fourier Transform Theory New slide

Topic Objectives:
* Understanding how to measure the size (or norm) of a signal.

* Motivation for Energy and Power.

Topic Activities:

| Type | Details | Duration | Progress

Read Handout | Read page [302{to page[311| | 8 mins/page
Try Example | Try Examples[8.8/and [8.9] | 40 mins

The following aspects of discrete-time systems are reviewed:

* Basic discrete-time signals
e The z-transform
* Review of linear time-invariant systems

¢ Rational transfer functions

8.4.1 Basic discrete-time signals

In general, the notation z[n| is used to denote a sequence of numbers that represent a discrete-time
signal. The nth sample refers to the value of this sequence for a specific value of n. In a strict
sense, this terminology is only correct if the discrete-time signal has been obtained by sampling a
continuous-time signal z.(¢). In the case of periodic sampling with sampling period 7', then z[n| =
z.(nT), n € Z; that is, x[n] is the nth sample of x.(t).

There are some basic discrete-time signals that will be used repeatedly throughout the course, and
these are shown in Figure [8.14}
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1. The unit sample or unit impulse sequence [n] is defined as:

1 =0
3[n] = " (M:2.1.1)
0 n#0
2. The unit step sequence, u[n| is defined as:
1 >0
ul[n] = "= (M:2.1.2)
0 n<0
3. The exponential sequence is of the form
z[n] =d", —oco<n<oo,neZ (M:2.1.3)

If a is a complex number, such that a = r e/ for r > 0, wy # 0, 7, then z[n] is complex
valued and given by:

x[n] = r" " = gp[n] + jr;[n] (M:2.1.4)

= r" coswon + Jr" sin wyn (8.67)
where xz[n| and x;[n] are real sequences given by:
zrln] =r"coswon and x;[n] = r"sinwyn (M:2.1.5)
4. The critical decay sequence is of the form
z[n] =anrun], neZ (8.68)

which is discussed further in Sidebar

[E)

8.4.2 The z-transform -

The z-transform of a sequence is a very powerful tool for the analysis of discrete linear and Ve slide
time-invariant systems; it plays the same role in the analysis of discrete-time signals and linear
time-invariant (LTI)) systems as the Laplace transform does in the analysis of continuous-time signals

and [LTT systems. For example, as will be seen, in the z-domain, also known as the complex z-plane,

the convolution of two time-domain signals is equivalent to multiplication of their corresponding
z-transforms. This property greatly simplifies the analysis of the response of an[LTT system to various
inputs.

Although the Fourier transform also satisfies the property that convolution in the time domain
becomes multiplication in the frequency domain, it is not always possible to calculate the Fourier
transform of a signal, x[n], even for some elementary signals that are important for the analysis of
systems. For example, if z[n] is a power signal (having finite power), rather than an energy signal,
the discrete-time Fourier transform (DTET) does not exist.

One such signal, of practical importance, is the unit step function, u[t], as can be illustrated by
attempting to evaluate the [DTETE

o0

U (") = Z ufn] e = Ze‘j“’” (8.72)

n=-—o00 n=0
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Sidebar 21 The signal n 7"

The discrete-time signal
z[n] =anr” (8.69)

is equivalent to the continuous-time signal z[t| = ¢t e~**, and both are important, as they represent the
response of a critically damped system, as will be seen later. Note in both cases that:

lim nr" — 0 (8.70)

n—oo

The shape of z[n] is shown below for r = 0.9, and note the relationship derived in Sidebar that:

+
i = I if |[r| <1 (8.71)

3.5 o990

X[n]

1.5} fo
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o

This is a geometric series, of the form _ r™ where r = e™7“; however, this series diverges since
n=0

|r| = 1. Therefore, the DTFT] does not exist; this could also have been deduced from the fact that

u[n] is not absolutely summable, which a necessary condition for a Fourier transform to exist:

D fun][ =) 1 ¢ (8.73)

alln n=

The solution is to multiply the signal by a convergence factor, which leads to the z-transform. Details
of the derivation can be found in some text books.

I8

8.4.2.1 Bilateral z-transform -l

The bilateral z-transform is defined by the following pairs of equations: New slide

X (2) £ Zla[n)] = ) ] 27" (M:2.2.29)
1 n—1 .
x[n] = %jiX (2) 2" " dz (M:2.2.30)

where 2 is a complex variable. This is usually denoted as:
zln] = X (2)  or X (2) = Z[z[n]] (8.74)

The set of values of z for which the power series in the (direct) z-transform converges is called the
region of convergence (ROC) of X (z). A sufficient condition for convergence is:

>z l]z < o0 (M:2.2.31)

n=—oo

The unilateral or one-sided z-transform, which is more commonly encountered in undergraduate
Engineering courses, is discussed below in Section For the moment, it suffices to mention that
the difference between them usually comes down to the initial conditions, and therefore a discussion
of the bilateral transform is not too restrictive at this point.

By evaluating the z-transform on the unit circle of the z-plane, such that z = ¢/, then:

X (2)] oo = X () = Y zln] e7" (M:2.2.32)
zln] = % / X () " dw (M:2.2.33)

which are the DTFT and inverse{DTF relating the signals x[n] and X (e/*”). This relation holds
only if the unit circle is inside the

Example 8.8 ( [Proakis:1996, Example 3.1.3, Page 154]). Determine the z-transform of the signal:

2[n] = a" ufn] = {g‘n Z i 8 (8.80)
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Sidebar 22 The Ubiquitous Geometric Progression

The geometric progresson occurs frequently in discrete-time analysis due to the existance of the
summation operator and the commonality of exponential decay functions. It is essentially the
discrete-time equivalent of integrating an exponential function. The geometric progression is given
by

Z ar" =a—— (8.75)
1—7r

1
Y art=a if ] < 1 (8.76)
1—1r

More interesting are variants of the geometric progression that can be obtained by simple
manipulations, such as differentiating both sides of Equation 8.76| with respect to (w.r. ) 7:

d | d 1
4[] - 2]
0

1
Zanr"‘l = a(l )2 (8.78)
— 77
n=0
or, multiplying both sides by r, gives:
) . - ‘
> anr =0Ty if ] < 1 (8.79)
n=0 B

which is also a useful identity. The signal z[n] = nr™ is an important one and discussed further in
Sidebar Differentiating repeated times gives a general expresion for > n? r™ which can often be
useful.
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A Im(z)
unit

circle> | ROC
ot
1 >

\ky Re(z)

Zero poleatz=o
at origin outside of ROC

Figure 8.15: The region of convergence (ROC) for the transfer function in Equation [P:3.1.7

SOLUTION. From the definition of the z-transform, it follows that:

X(z)=> a"" =) (az")" (8.81)
k=0 n=0
The summation on the right is a geometric progression, and converges to #if, and only if, (iff)

|az71| < 1 or, equivalently, |z| > |«|. Further details on the geometric progression are given in
Sidebar[22] Thus, this gives the z-transform pair:

zln] =a"un] = X (2) = TR ROC: |z| > |« (P:3.1.7)
Note that, in general, o need not be real. The RO is the exterior of a circle having radius |«|. The
RO is shown in Figure[8.15] The z-transform in Equation [P:3.1.7| may be written as:

X (2) = Za ROC: |z| > |a (8.82)

T 0
and therefore it has a pole at z = « and a zero at z = 0. The position of the pole is outside the
which is as expected since the z-transform does not converge at a pole; it tends to infinity instead.
However, simply because there is a zero at the origin does not mean the z-transform converges at that
point — it doesn’t, since it is outside of the ROC. However, the concept of the zero is still important
and is thus still drawn on the pole-zero diagram.

Example 8.9 (Two-sided exponential (Laplacian exponential)). What is the bilateral z-transform
of the sequence x[n] = al"! for all n and some real constant a, where |a| < 1?

SOLUTION. The bilateral z-transform of a sequence x[n] = a!"l, shown in Figure[8.16| is given by:

o0 [e.9]

X (2) = Z zln] 27" = Z al"l 2 (8.83)
i& a;
= Z a "2+ Z a®z™" (8.84)
n=—o00 n=0
Setting m = —n in the first summation, noting that when n = —oo then m = oo, and when n = 0

then m = 0, gives:

X (2) = i (a2)" + i (g)n (8.85)

n=1 n=0
=Y (e -1+ (g)” (8.86)
n=0 n=0
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x[n]=a"
..-o-q-o--v-?'?'T'T I LJ I T.T‘T"?'Q--Q--Q-o--%
Figure 8.16: The sequence x[n] = a/™l.

Figure 8.17: The region of convergence (ROC) for the transfer function in Equation m

giving:
1 14 1
1—az -2

X (z)= (8.87)

where the expression for an infinite geometric progression has been used. Note, however, that each

summation has different convergence constraints. Thus, note that the first summation only exists for
a

laz| < 1, while the second summatlon only exists for |%| < 1. This means that the [ROC| for this
transform is the ring |a| < z < al | The RO is thus shown in Flgurew

Combining the various terms and a slight rearrangement gives the expression:

X(2) = (1-— azl)zla— az™1) (8.88)

which has a zero at z = 0 and poles at 2 = a and z = %

8.4.2.2 Properties of the z-transform

The power of the z-transform is a consequence of some very important properties that the transform
possesses. Some of these properties are listed below, as a re-cap. Note that the proof of many of these
properties follows immediately from the definition of the property itself and the z-transform, and is
left as an exercise for the reader. Alternatively, cheat and look in, for example, [Proakis:1996].

Linearity If 241 [n] = X, (z) and x4 [n] = X (z), then by linearity

z

z[n] = aqy[n] + agxen] = X (2) = a1 X (2) + e X (2) (P:3.2.1)

for any constants a;; and a,.
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Obviously, this property can be generalised for an arbitrary number of signals, and

therefore if ., [n] = X, (2) form={1,...,M}

M M
x[n] = Z QT [ 1] = X (2) = Z amXm (2)
m=1 m=1
for any constants {a, }7.

Time shifting If z[n] = X (z) then:
x[n — kl = kX (2)

(8.89)

(8.90)

The ROC of 27*X (2) is the same as that of X (z) except for z = 0 if £ > 0 and

z=o00if k <O0.
Scaling in the z-domain If x[n] =X (z) with ROC 71 < |z| < 79, then
a"z[n] = X(a~'z) ROC: |a|r < |2| < |a|rs
for any constant a.

Time reversal If z[n] = X (z) with ROC ry < |2| < 7o, then

z 1 1
z[-n] = X (27" ROC: — < |z| < —
Tl T2

Differentiation in the z-domain If x[n] = X (z) then

dz
PROOF. Since -
X (2) = Z x[n] 27"
then differentiating both sides gives:
dX S
) _ 3 [nal] 57 = ="' 2ol

Both transforms have the same
Convolution If z,[n] = Xi(z) and z5[n] = X5(z), then

z[n] = z1[n] * 22[n] = X (2) = X1(2)Xa(z)

The ROC of X (z) is, at least, the intersection of that for X (z) and X»(z).

PROOF. The convolution of x1[n] and 25[n| is defined as:

o0

wln] = Y @y[k] zan — K]

k=—o00

The z-transform of x[n] is:

X (2) = Z xn] 27" = Z [ Z x1[k] 22[n — k]] 27"

n=—o00 n=—oo Lk=—o00
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Upon changing the order of the summations, then:

X(2)= > alk] [ > anfn— K] z—n] = Xa(2) > m[k] 2" (8.95)

nN=—00

-~

Xo(z)z=k Xi1(z)

giving the desired result.

The Initial Value Theorem If z[n] = 0, n < 0 is a causal sequence, then

z[0] = lim X (2) (P:3.2.23)

Z—00
PROOF. Since z[n] is causal, then:
X () =z[0)+2[1] 27t +2[2] 272+ (8.96)
U

Hence, as z — 0o, 27" — 0 since n > 0, and thus the desired result is obtained.

8.4.2.3 The Unilateral z-transform

The two-sided z-transform requires that the corresponding signals be specified for the entire time
range n € Z. This requirement prevents its used for systems that are described by difference equations
with nonzero initial conditions. Since the input is applied at a finite time, say ng, both input and
output signals are specified for n > ng, but are not necessarily zero for n < 0. Thus the two sided
z-transform cannot be used.

The one-sided unilateral z-transform of a signal x[n] is defined by:

Xtz)=> an) 2 (P:3.5.1)
n=0
This is usually denoted as:
P
zn] = X1 (2) or XT(z)=Z"[z[n]] (8.97)

The unilateral z-transform differs from the bilateral transform in the lower limit of the summation,
which is always zero, whether or not the signal x[n] is zero for n < 0 (i.e., causal). Therefore, the
unilateral z-transform contains no information about the signalz|n| for negative values of time, and is
thereforeunique only for causal signals. The unilateral and bilateral z-transforms are, consequentially,
identical for the signal z[n| u[n| where u[n] is the step function. Since z[n]| u[n| is causal, the of
its transform, and hence the ROC of X (z), is always the exterior of a circle. Thus, when discussing
the unilateral z-transform, it is not necessary to refer to their [ROC - which perhaps explains why this
is the more commonly discussed transform in undergraduate courses.

Almost all the properties for the bilateral z-transform carry over to the unilateral transform with the
exception of the shifting property.

2t
Shifting property: Time Delay If x[n] = X () then:
—1
2t
zln—kl = 2"X (2) + Z z[n) 2= R k>0 (8.98)

n=—k
N

vV
initial conditions
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PROOF. Since

n=0
then it follows that
Zaln— k] =) aln—k "= > xlm] 2"
n=0 m=—k
by the change of index m = n — k,
-1 )
=2k Z z[m] 2™+ 27" Z x[m] z7™
m=—k m=0
X+(z)
This is the desired result.
Pas
Shifting property: Time Advance If z[n| = X (z) then:
- k-1
zln+ k) =2X(2) =Y z[n] 2 k>0
n=0

PROOF. From the definition of the unilateral transform, it follows

o0

Z [zl + k]| = Zm[n +kl 2" = Z z[m] z=(m=

n=0 m=k

by the change of index m = n + k. Thus,

e k-1
= Z z[m] z7™ =2y xfm] 2™
0 m=1
—_————
X*(2)

This is the desired result.

P
Final Value Theorem If z[n] = X (z) then:

lim z[n] = lim(z — 1) X" (2)

n—o00 z—1

(P:3.5.1)

(8.99)

(8.100)
U

(8.101)

k) (8.102)

(8.103)
U

(P:3.5.6)

The limit on the right hand side exists if the ROC of (z — 1) X (2) includes

the unit circle.

Further information can be found in books on discrete-time systems, for example [Proakis:1996,

Section 3.5, Page 197].

— End-of-Topic 55: Revision of Basic Discrete-Time Signals and the
z-transform —

(1A
(=]t
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8.4.3 Review of linear time-invariant systems

Topic Summary 56 Fourier Transform Theory

I8

New slide

Topic Objectives:
* Understanding how to measure the size (or norm) of a signal.

* Motivation for Energy and Power.

Topic Activities:

| Type Details | Duration | Progress
Read Handout | Read page |312Jt£page ]3i4| 8 mins/page
Try Example | Try Examples8.8/and [8.9] | 40 mins

 Systems which are [LTIl can be elegantly analysed in both the time and frequency domain:
convolution in time, multiplication in frequency.

* For signals and sequences, it is common to write {y[n]|}5>__, or even {y[n]},cz rather than
simply y[n]: the latter is sufficient for these notes.

* Output, y[n], of a[LTIl system is the convolution of the input, z[n], and the impulse response
of the system, h[n]:

yln] = x[n] * hin] £ " x[k] hin — k] (M:2.3.2)
keZ
* By making the substitution k = n — k, it follows:
yln] = hlk] z[n — k] = hin] « z[n] (M:2.3.3)

keZ

8.4.3.1 Matrix-vector formulation for convolution

If z[n] and h[n] are sequences of finite duration, the convolution operation can be written in
matrix-vector form. Let z[n], 0 < n < N — 1 and hn],0 < n < M — 1 be finite-duration
sequences, then y[n], 0 < n < L — 1, where L = N + M — 1, can be written as:

Cy[0] ] [ z[0] 0 0 T
y[1] z[1] (0]

: : 0
oM —1| e =1 2[0] Zﬂ

: = : : ; (M:2.3.4)
y[N — 1] [N —1] z[N — M] h[M'— 1

: 0 :
ylL = 2] : 2N =1 z[N-2]
LylL=11 | o 0 2[N — 1] |

N y=Xh (M:2.3.5)

e Here,y € RF, X € RF*M and h € RV,
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The matrix X is termed an input data matrix, and has the property that it is toeplitz. E]

The observation or output vector y can also be written in a similar way as:
y=Hx (M:2.3.6)
in which H is also toeplitz.

* A system is causal if the present output sample depends only on past and/or present input
samples.

* Assume system is asymptotically stable.

[

8.4.3.2 Transform-domain analysis of [CTT systems -
Time-domain convolution: New slide
yln] = alk] hin — k] (M:2.3.2)
keZ
or
yln] = > hlk] z[n — k| (M:2.3.3)
keZ

Taking z-transforms gives:
Y(2)=H(z) X (2) (M:2.3.8)

where X (z), Y (2) and H (z) are the z-transforms of the input, output, and impulse response
sequences respectively. H (z) = Z[h[n]] is the system function or transfer function.

)

8.4.3.3 Frequency response of [CTIl systems |

The frequency response of the system is found by evaluating the z-transform on the unit circle, so New slide
2 = el

Y (7)) = H (7)) X () (M:2.3.9)

 |H(e’*)] is the magnitude response of the system, and arg H (e’*) is the phase response.

* The group delay of the system is a measure of the average delay of the system as a function of
frequency:

() = — o A8 H(e) (M:2.3.11)

)

8.4.3.4 Frequency response to Periodic Inputs -’

Although the convolution summation formula can be used to compute the response of a stable system New slide
to any input, the frequency-domain input-output relationship for a [LTIl cannot be used with periodic
inputs, since periodic signals do not strictly possess a z-transform. However, it is possible to develop

an expression for the frequency response of [LTI| from first principles. Let z[n] be a periodic signal

with fundamental period N. This signal can be expanded using an as:

N-1
1 - 27T
z[n] = ¥ § Xpednto nef0,...,N -1} (M:2.3.19)
k=0

A Toeplitz matrix is one in which the elements along each diagonal, parallel to the main diagonal each descending
from left to right, are constant. Note that the anti-diagonals are not necessarily equal.
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where X, are the Fourier components.

Hence, it follows that on substitution into the convolution equation:

0o o) N-1
yln] = > h[m] zln —m] = % 7 hfm] Y X el Fhnmm) (M:2.3.20)
k=0

m=—00 m=—0oQ

which, by interchanging the order of summation (noting that the limits are over a rectangular region

of summation), gives;
N—-1 [ee)

1 o com
y[n] = N X eI Rk Z him] e~ R km (8.104)
k=0 m=—00
H(e;gﬁ”)
where H(e/ ") are samples of H (e7*). Hence,
| Nl
- 27 - 27
yln) = {H(E%5) X} e (8.105)
k=0

However, this is just the inverse{DFT] expansion of y[n], and therefore:
Vi =HETHX, kel{0,...,N—-1} (M:2.3.21)

Thus, the response of a [LTI system to a periodic input is also periodic with the same period.
The magnitude of the input components is modified by |H (¢ %k) , and the phase is modified by
arg H(e/ &%),

8.4.4 Rational transfer functions

Many systems can be expressed in the z-domain by a rational transfer function. They are described
in the time domain by:

P Q
y[n] = —Zak y[n — k| —|—de z[n — k] (M:2.3.12)
k=1 k=0
Taking z-transforms gives:
Y 9 + D
H(z) = L&) b2 o D(2) (M:2.3.13)

X 14 aet A()

This can be described in the complex z-plane as:

D) _ Il (=22
A2) T =z )

where p;, are the poles of the system, and z;, are the zeros.

H(z) = (M:2.3.14)

— End-of-Topic 56: Revision of analysing LTI systems — |%
N




Discrete-Time Stochastic Processes

Introduces the notion of time-series or random processes. Gives an interpretation using ensembles,
and covers second-order statistics including correlation sequences. Discusses types of stationary
processes, ergodicity, joint-signal statistics, and correlation matrices.

9.1 A Note on Notation

Note that, unfortunately, for this module, a slightly different (and abusive use of) notation for random
quantities is used than what was presented in the first four handouts of the Probability, Random
Variables, and Estimation Theory (PET) module. In the literature, most time series are described
using lower-case letters, primarily since once the notation for the representation of a random process
in the frequency domain is discussed, upper-case letters are exclusively reserved to denote spectral
representations. Moreover, lower-case letters for time-series are generally more recognisable and
readable, and helps with the clarity of the presentation. Hence, random variables and vectors in this
handout will not always be denoted using upper-case letters.

317
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9.2 Definition of a Stochastic Process e
Topic Summary 57 Introduction to Stochastic Processes New slide
Topic Objectives:

¢ Definition of a Stochastic Process.

Concept of an ensemble of realisations.

Example of drawing an ensemble and the corresponding sample space.

Interpretation of the random sequences.

Topic Activities:
| Type | Details | Duration | Progress
Watch video 13 : 22 min video 3% length
Read Handout | Read page[316|to page[318| | 8 mins/page
Try Example | Try Example M 10 mins

http://media.ed.ac.uk/media/1_f7dlldvi

Video Summary: In this first video of the Statistical Signal Processing part of the
PETARS course, the notion of random signals, or stochastic processes is introduced. It
is defined as a natural extension to the conceptual development of random variables and
random vectors, but where a deterministic signal is associated with each outcome of the
experiment. After a formal definition of the random process, the notion of an ensemble
of realisations is considered. The video then gives an example of plotting an ensemble
for a particular problem. The random process is also considered as a sequence of random
variables, where the random variables have dependences. Finally, this video discusses
the general concepts regarding analysing random processes that will be considered in the
remainder of the course.

After studying random variables and vectors, these concepts can now (easily) be extended to
discrete-time signals or sequences.

* Natural discrete-time signals can be characterised as random signals, since their values cannot
be determined precisely; that is, they are unpredictable. A natural mathematical framework
for the description of these discrete-time random signals is provided by discrete-time stochastic
processes.
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Real space
x(n, C) . Ensemble of realisations

[rerllr L1,
i

I MT S

‘ [ l ¢l Realisations
x(”a CIS) of the random
processes

! >
¢ 1iT : J "
x(n, )
Abstract I ]
sample space, S T | I ! ; ! : T > 7

T

Random variable x(n,, ()

Figure 9.1: A graphical representation of a random process.

* To obtain a formal definition, consider an experiment with a finite or infinite number of

unpredictable outcomes from a sample space S = {(x, ¥ € Z*}, each occurring with
probability Pr ({j). Assign by some rule to each (, € S a deterministic sequence x[n, (], n €
Z.

» The sample space S, probabilities Pr ((x), and the sequences z[n, (], n € Z constitute a
discrete-time stochastic process, or random sequence.

Formally, z[n, (x|, n € Z is a random sequence or stochastic process if, for a fixed value
ng € Z* of n, z[ng, (], n € Z is a random variable.

* A random or stochastic process is also known as a time series in the statistics literature.

* Itis an infinite sequence of random variables, so could be thought of as an infinite-dimensional
random vector. Indeed, finite-length random signals and sequences can specifically be
represented by the concept of a random vector.

o

9.2.1 Interpretation of Sequences -

Example 9.1. Consider a continuous-time random process, (¢, (), defined by a finite sized ensemble New slide
consisting of four equally probable functions given by:

z(t,1) = —3u(t) x(t,2) = cos (b t) u(t)
z(t,3) = 10t u(t) z(t,4) = 2sin (6t 4 0.2)
1. Draw the ensemble.

2. Fort = 0.2, determine the sample space.
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A x(t,C) ol x(t, G,)
Z%ﬁ f ,\0 7
-3
4 x(t, ) 440, C)
1
—0
2/5
-1
Figure 9.2: Ensemble of waveforms.
SOLUTION. 1. To plot the ensemble, draw all the realisations. The ensemble is therefore shown
in Figure[9.2]

2. The sample space is thus {—3, —1,2, —1.4736}.

The set of all possible sequences {x[n, (]} is called an ensemble, and each individual sequence
x[n, (x|, corresponding to a specific value of { = (j, is called a realisation or a sample sequence of
the ensemble. Hence, when a random process is observed through the outcome of a single experiment,
one member of the ensemble is selected randomly and presented. A graphical representation of a
random process is shown in Figure 9.7

There are four possible interpretations of x[n, (]:

¢ Fixed ¢ Variable
n Fixed Number Random variable
n Variable | Sample sequence | Stochastic process

Use simplified notation z[n] = x[n, (] to denote both a stochastic process, and a single realisation.
The word stochastic is derived from the Greek word stochasticos, which means skillful in aiming or
guessing. Use the terms random process and stochastic process interchangeably throughout this
course.

Building on these intepretations of sequences, this course will therefore investigate:

» The statistical properties of random signals, the statistical dependence of samples at different
points in time.

* Interpreting stochastic signals in the frequency domain, the notion of a random spectrum, and
the concept of the power spectral density.

* What happens to a stochastic process and signals as it passes through systems?

* The notion of signal modelling for signal analysis and prediction.

— End-of-Topic 57: Introduction to the definition of stochastic processes O30
- =
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9.2.2 Description using probability density functions (pdfs)

[

Topic Summary 58 Statistical Description of Random Processes

New slide

Topic Objectives:
» Concept of second-order statistical descriptions.
e Calculating autocorrelation sequence (ACS) from a signal model.

* Calculating |ACS| of a linear function of random processes.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 25 : 34 min video 3% length
Read Handout | Read page [319|to page[323| | 8 mins/page
Try Example | Try [9.2and [9.3] 10 mins

heory, RS Vi o
5 ® Second-order Statistical Description

Autocorrelation sequence provides a measure of the dependence

between values of the process at two different times:
realns,na) = E [afm] *ne]
.

http://media.ed.ac.uk/media/1_fpiz8id7

Video Summary: As with random vectors, other than in certain special cases, it can
be difficult to describe and manipulate random processes through the use of joint{pdf,
although the definitions for the joint{pdf] is provided. Instead, the video discusses that
second-order statistics including the mean sequence, the (second-moment), and the
autocovariance sequence (central moment) are often adequate for capturing key salient
features of the random processes. After extending the definitions for the mean and
correlations previously seen for random vectors to random processes, two examples
are given. The first example derives the for a process which is based on an a
priori defined physics-based model (namely, an harmonic process). The second example
considers finding the of a linear function of random processes (in this case, a
non-causal delay).

For fixed n = ny, it is clear from Figure that z[ng, (] is a random variable. Moreover, the
random vector formed from the & random variables {z[n;|, j € {1,... k}} is characterised by the
joint-cumulative distribution function (cdf)) and [pdfk:

Fx(zy...zg|ny...ng) =Pr(zng] <, ..., xfng] < ) 9.1)
:8kFX(x1 c TR my o ny)
oxy -+ Oxy,

fx(zy.o.omp | ny o ) (9.2)
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In exactly the same way as with random variables and random vectors, it is:

* difficult to estimate these probability functions without considerable additional information or
assumptions;

* possible to frequently characterise stochastic processes usefully with much less information.

Thus, the density and distribution functions are characterised using moments and, in particular,
second-order moments.

9.3 Second-order Statistical Description

Random variables can be characterised, upto second-order statistics, using the mean and variance;
random vectors are characterised by the mean vector, auto-correlation and auto-covariance matrices.
Random processes, however, are characterised by sequences, where a particular sample, 7, of this
sequence characterises the random variable x[ng, (]. These sequences are the mean and variance
sequence, the autocorrelation and autocovariance sequences, as outlined below.

Mean and Variance Sequence At time n, the ensemble mean and variance are given by:

pzn] = E[z[n]] (M:3.3.3)
o2[n] = [Jofn] — ealn] ] = E [Jel] ] — o] P M:3.3.4

T

Both s, [n] and 02[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic 7,.[ni,ns] provides a measure of the
dependence between values of the process at two different times; it can provide
information about the time variation of the process:

Tzz[N1, o] = E [xz[ng] 27 [ns]] (M:3.3.5)

Note this definition is not consistent across all text book, or indeed University courses!
Autocovariance sequence The autocovariance sequence provides a measure of how similar the
deviation from the mean of a process is at two different time instances:
Yaa[n1, 2] = E [(z]n1] = po[na]) (x[ne] — pa[n2])’]

= ryp[ny, na] — pe[n] wh[ne]

(M:3.3.6)

To show how these deterministic sequences of a stochastic process can be calculated, several examples
are considered in detail below.

9.3.1 Example of Calculating Autocorrelations

Example 9.2 ([Manolakis:2000, Ex 3.9, page 144]). The harmonic process x[n] is defined by:

M

wln) =Y Ay cos(win + ¢x),  wi #0 (M:3.3.50)
k=1

where M, {A;}M and {w;} are constants, and {¢; }{! are pairwise independent random variables
uniformly distributed in the interval [0, 27].
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x[n, C_)l] *
R walhn
x[n, G,] . (
T = r 1 Aty
Ensemble of
realisations
n
Abstract
samplessr;;ce,S I [ T ! T I I I > 7

L.V. T ‘o T J L.V.
x[n,, C] x[n,, €]
Statistics across
time samples

1. Determine the mean of x[n].

2. Show the autocorrelation sequence is given by
| M
rezll] = = Z |A|? coswil, —o0 < { < o0 9.3)

2
k=1

where ¢ £ ny — ngy, and 1., [(] 2 74011, ny + £] for any n;.

SOLUTION. 1. The expected value of the process is straightforwardly given by:

E [z[n]] = E Z Ay, cos(wgn + o)

k=1

M
— Z AL E [cos(wgn + op)] 9.4)
k=1

Recall from results derived earlier in the course that if x[n, (| = g(n, ¢({)) is a random variable
obtained by transforming ¢(¢) through a known function, g, the expectation of x[n] = x[n, ]
is:

E [zfn]] = / 2fn] p(aln]) defn] ©.5)
_ / " gn. 6) pal) do ©.6)

This property results from the invariance of the expectation operator, and helps for problems like
the present one; this invariance was covered back in the handout on Scalar random variables. It
is important to consider n as a constant.

Since a co-sinusoid is zero-mean, then:

E [cos(wgn + ¢x)] = /Cos(wkn + ¢k) fo, (Pr) doy 9.7)

2T 1
= / cos(wrn + @) X — X dop, =0 (9.8)
0 2m
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Hence, it follows:
E[z[n]] =0, Vn 9.9)

. The autocorrelation r,,.[n1, ny] = E [z[n1] 2*[ns]] follows similarly:

M
Tez[1,no] =E ZAk cos(wgny + o) ZA cos(w;ng + ¢;) (9.10)
j=1
M M
= Z Z A A} E [cos(wpn + gzﬁk) cos(wjng + qb])] (9.11)
k=1 j=1 ~
T(¢kv¢])

After some algebra, it can be shown that the term 7 (¢, ¢,):

%coswk(nl —ng) k=7

E [cos(wgny + ¢r) cos(wing + ¢;)] = { 9.12)

0 otherwise

The proof of this statement is obtained by considering the term

7(Pr, ¢;) = E [cos(wrny + ¢x) cos(wjna + ¢;)] (9.13)

for the cases when k # j, and when k = j. Considering the former case first, & # 7, then
r(60,05) [ [ costwnns + 6n) cos(wins + 6) foso, (65, 0x) doydon ©.14)

Using the fact that {¢.})? come from the uniform density, then fo,0, (05, O6) =
(27{’) Ijo,2x) (¢5) Ljo,2x] (@), then:

2 2w
(¢, ¢j) = / / cos (wrny + @) cos (wing + ¢;) do; doy, (9.15)
1 2w 2
=i cos(wgny + é) dgbk/ cos(wjng + ¢;) do; (9.16)
0 0
_0 9.17)

An alternative derivation for this case when k£ # 7, which might be considered more
straightforward, is to observe that Equation[9.13] might also be written as:

r(or, ¢5) = Elg(on) h(¢)] = E [g(¢r)] E [1(e;)] (9.13)

where g(¢x) = cos(wgny + ¢x) and h(¢y) = cos(wjng + ¢;), and the fact that ¢, and ¢, are
independent implies the expectation function may be factorised.

For the case when £ = j such that ¢ = ¢, = ¢; and w = w;, = wj, then:

(¢, ¢) = /cos(wnl + ¢) cos(wng + @) fo (¢) do (9.19)
21
= % cos(wny + @) cos(wng + @) do (9.20)

Using the trigonometric identity cos A cos B = 3 (cos(A + B) + cos(A — B)), then:

27
r(r, ¢;) = % / {cosw(ny — ny) + cos(w(ny + nz) + 2¢)} do (9.21)
0

1
= 5 cos w(ny —ng) (9.22)
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giving the result above; namely:
1
E [cos(wgny + ¢r) cos(w;ng + ¢;)] = 5 cos wi(n1 —ng) 0(k — j) (9.23)

Substituting this expression into
M M
Twz[M1, M) = Z Z Ay, A E [cos(winy + ¢x) cos(wing + ¢;)] (9.24)
k=1 j=1

thus leads to the desired result, where £ = n; — ny. It can be seen that the process x[n] must be
a stationary process, as it is only a function of the lag ¢:

M
1
raall] = 5 D JA? coswil, —o0 < £ < o0 (9.25)
k=1 O

Note finally that these are ensemble statistics, meaning that they are expected values across the
different realisations (i.e. across the ensemble).

Example 9.3 (Functions of Random Process). A random variable y[n] is defined to be:

y[n] = x[n] + x[n + m] (9.26)

where m is some integer, and x[n] is a stochastic process whose is given by:

Fealni, ng] = e~ (M—2)° (9.27)

Derive an expression for the of the stochastic process y[n|, denoted 7, [ny, na.

SOLUTION. In this example, it is simplest to form the product:

y[m] y*ne] = [z[na] + 2[ng + m]] [2¥[ng] + ¥ [ne + ml] (9.28)

= z[n1] % [ng] + z[n1] 2*[ngy + m]

+ z[ng + m] x*[ns] + x[ng + m| 2" [ny) (9.29)

Then, taking expectations, it follows:
ryylna, ne] = raz[ng, nel + reglng, ne +m (9.30)
+ ryz[n1 + m, ngl + reg[ny + m, ng +mj (9.31)

Using the result 7, [ny, ny| = e~ (m—n2)? gives, in this particular case:

ryylrn, 2] = 27T | em(mmnatm)? | o= (mimnz—m)® (9.32)

— End-of-Topic 58: Statistical Description of a Stochastic Process —
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9.4 Types of Stochastic Processes

Topic Summary 59 Important Types of Stochastic Processes

[E)

New slide

Topic Objectives:
* Concepts and definitions of fundamental types of stochastic processes.

* Understanding predictable and unpredictable processes and signal decompositions.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 16 : 37 min video 3% length
Read Handout | Read page |324| to page |327| 8 mins/page
Try Code Use the MATLAB code 10 mins
Try Example | Try Example 20 mins

Probabilty, Estimation Theery, Realisations of A sin(u: n+3) + W
and Random Signals (PETARS)

3514

http://media.ed.ac.uk/media/1_rnwrdpim

Video Summary: This video discusses some fundamental types of stochastic processes,
including predictable processes, unpredictable processes, independent and independent
and identically distributed processes, uncorrelated, and orthogonal processes, and an
introduction to stationary processes. These fundamental processes are introduced mainly
to define terminology for the rest of the course, but also to discuss the importance of
some of these processes in signal modelling, and processes that can be dealt with in a
mathematically convenient manner. There are no examples associated with this topic, but
there is a MATLAB example for generating a linear combination of a predictable and
unpredictable process (and Wold’s decomposition theorem is mentioned in passing).

Some useful types of stochastic properties, based on their statistical properties, are now introduced:

Predictable Processes A deterministic signal is by definition exactly predictable; it assumes there

exists a certain functional relationship that completely describes the signal, even
if that functional relationship is not available or is extremely difficult to describe.
The unpredictability of a random process is, in general, the combined result of the
following two characteristics:

1. The selection of a single realisation of a stochastic process is based on the
outcome of a random experiment; in other-words, it depends on (.
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Independence

2. No functional description is available for all realisations of the ensemble. In
other-words, even if a functional relationship is available for a subset of the
ensemble, it might not be available for all members of the ensemble.

In some special cases, however, a functional relationship is available. This means that
after the occurrence of all samples of a particular realisation up to a particular point,
n, all future values can be predicted exactly from the past ones.

If this is the case for a random process, then it is called predictable, otherwise it is
said to be unpredictable or a regular process.

KEYPOINT! (Predictable Process). As an example of a predictable process,
consider the signal:
z[n,(] = A sin (wn + ¢) (9.33)
0
where A is a known amplitude, w is a known normalised angular frequency, and ¢ is
a random phase, where ¢ ~ fq (¢) is its [pdi]

As an outline of this idea, suppose that all the samples of a stochastic process z[n, (]
upto sample n — 1 are known; thus, {x[k, (]}7=" __ are known. Then the predicted
value of x[n] might, for example, be expressed as:

n) == apx[n — k] (T:7.189)
k=1
The error in this prediction is given by
e[n] = x[n] — [n] = Z ay x[n — k| (T:7.190)

k=0

where ag = 1. The process is said to be predictable if the {a;}’s can be chosen such
that:
o2 =E [le[n] ’] =0 (T:7.191)

Otherwise the process is not predictable. The phrase not predictable is somewhat
misleading, since the linear prediction in Equation [I:7.189| can be applied to any
process, whether predictable or not, with satisfactory results. If a process is not
predictable, it just means that the prediction error variance is not zero.

An example of predictable process is the process z[n, (] = ¢, where ¢ is a random
variable, since every realisation of the discrete-time signal has a constant amplitude,
and once x[ng, (x| is known for a particular realisation, all other samples of that
process have also been determined.

The notion of predictable and regular processes is formally presented through the
Wold decomposition, and further details of this very important theorem can be found
in [Therrien: 1992, Section 7.6, Page 390] and [Papoulis: 1991, Page 420].

A stochastic process is independent if, and only if, (iff)

N
fX (1‘1, ., N ’ Ny, ... ,TLN) = H ka (SEk | nk) (M3310)

k=1
VN, ng, k € {1,..., N}. Here, therefore, z[n| is a sequence of independent random

variables.
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An independent and identically distributed (i.i. d.) process is one where all the random variables
{z[ng, ¢], ny € Z} have the same [pdf] and x[n]| will be called an fi. i. d] random
process.

Example 9.4 (Independence: [i. i. d]processes). I am selling my house, and have
decided to accept the first offer exceeding K pounds. Assuming that the offers
are random variables, with common cumulative distribution function Fx (x),
where z is the offer price, find the expected number of offers received before I sell
the house.

SOLUTION. Suppose that I sell the house after /V offers. Then there are N — 1 offers
that are less than K, which occur with probability Fy (K). Thus, the probability of
selling the house after NV offers is:

Pr(N=n)=Fx(K)"'[1-Fx(K) n>1 (9.34)
This is a geometric distribution, and its mean can either be looked up in tables, or

calculated:
pn =Y nPr(N=n)=> nFx(K)" [l - Fx (K)] (9.35)

n=1 n=1
1 o o0
_ { T} S nrn (9.36)
T

where 7 = Fy (K). There is a general result which can be found in mathematical
tables that [Gradshteyn:1994]:

=

wa—la+(N=10br" br(l—rNT)
(a+nb)r'" = T + A=z r#0, N>1 (9.37)

I
o

n

Therefore, in the case whena = 0,r = 1,and N — oo, and 0 < r < 1 then:

oo . r
nzgm =q 0<r<l (9.38)

Hence, this gives the mean of the geometric distribution as:

1—r r 1 1
NN:|: . ](1—T)2_1—r_[1_FX(K)] (9.39)

An uncorrelated processes is a sequence of uncorrelated random variables:
Yez 1, M2] = 02[n1] [y — ny) (M:3.3.11)

Alternatively, the can be written as:

2 2 _
ol ] = {%[m] el P = s M33.12)

fhe [n1] 15 [102] ny # ng
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An orthogonal process is a sequence of orthogonal random variables, and is given by:
Taz[ni, na] = E [|z[m] |?] 6[ni — no (M:3.3.13)

If a process is zero-mean, then it is both orthogonal and uncorrelated since
Yex|M1,NM2] = Tzz[n1,ma]. More often than not, in this course, we shall consider
zZero-mean processes.

A stationary process is a random process where its statistical properties do not vary with time. Put
another way, it would be impossible to distinguish the statistical characteristics of
a process at time ¢ from those at some other time, t’. Processes whose statistical
properties do change with time are referred to as nonstationary.

— End-of-Topic 59: Types of Random Signals — "
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9.5 Stationary Processes

[E)

Topic Summary 60 Stationary and wide-sense stationary (WSS)) processes New slide

Topic Objectives:
* Awareness of common types and definitions of stationary random processes.
* Understand order- N, strict-sense stationary, and wide-sense stationary processes.

* Examples of manupulating means and autocorrelation sequences for stationary processes.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 18 : 07 min video 3% length
Read Handout Read page |328 to page |334| 8 mins/page
Try Example Try Examples|9.5, [9.6] and 15 mins
Practice Exercises | Exercise ?? 15 mins

@

http://media.ed.ac.uk/media/1_c2z10igx

Video Summary: This video starts by considering the common types and definitions
of stationary processes used in time-series analysis. This topic then considers meanings
and relationships of order-N, strict-sense stationarity, and wide-sense stationarity. The
second half of the video focusses on an example of showing that the sum of a co-sinusoid
and sinusoid with independent random amplitudes but fixed phase and frequency is
a stationary process (and although not mentioned, will of course be a predictable
processes). Other examples are included in the handout associated with this video.

A random process x[n] has been called stationary if its statistics determined for z[n| are equal to
those for z[n + k|, for every k. There are various formal definitions of stationarity, along with
quasi-stationary processes, which are discussed below.

Order-N and strict-sense stationarity

Wide-sense stationarity

Autocorrelation properties for [WSS|processes

Wide-sense periodicity and cyclo-stationarity
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Ensemble of
realisations

Abstract I l
sample space, S TTTITTwa > 7
afet ] |
2nd-order stationary if
Sx, x,[ny, ny) = flxs, x,|nt &, nytk) x[n,, C] _ ))CC[[Z;HE,] ]
x[n,, C]

x[n, Cl= x[n+k, C]

Figure 9.3: Demonstrating 2nd-order stationarity.

* Local- or quasi-stationary processes

After this, some examples of various stationary processes will be given.

®—

9.5.1 Order-N and strict-sense stationarity |

Definition 9.1 (Stationary of order-/NV). A stochastic process x[n| is called stationary of order-N New slide
if for any value of k then:

fx(x1,...,an|ng,..oony) = fx (21, x| no+ k..o ony + k) (M:3.3.21)
&

Definition 9.2 (Strict-sense stationary). If x[n| is stationary for all orders N € Z™, it is said to be
strict-sense stationary (SSS).

Clearly, any stochastic process that is stationary of order-N is also stationary of order-M, where
M < N.

An independent and identically distributed process is[SSS|since, in this case, fx, (zx | nx) = fx (z)
is independent of n, and therefore also of n + k. However, [SSS|is more restrictive than necessary in
practical applications, and is a rarely required property.

o

9.5.2 Wide-sense stationarity -

A more relaxed form of stationarity, which is sufficient for practical problems, occurs when a random New slide
process is stationary order-2; such a process is wide-sense stationary (WSS).

Definition 9.3 (Wide-sense stationarity). A random signal z[n| is called wide-sense stationary if:
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* the mean and variance is constant and independent of n:

E [2[n]] = pa (M:3.3.22)
var [x[n]] = o2 (M:3.3.23)

* the autocorrelation depends only on the time difference ¢ = n; — no, called the lag:

Toz[1, 2] = 15 [n2, 1] = E [2[n,] 2%[ny]]
= Ty [l] = 1oz — no] = E [z[ng] [y — (] (M:3.3.24)
= E [z[ng + (] 2" [ny]] ¢

KEYPOINT! (Inconsistency of definition of lag). The definition of the lag is not consistent across
textbooks, or indeed courses on this MSc! Elsewhere, the following definition is used for a stationary
process:

Taa[n1,m2] £ E [fv[m] o [”1 * 4] (9.40)
reo[f] 2 [ — ] a*[n]] .

Although a minor change in sign, this does have implications when considering results that are
functions of random processes, such as a signal passing through a linear system, or frequency-domain
analysis. It is simply something to become used to, and to understand the equations and use the
appropriate subsequent results carefully.

Additionally:

» The autocovariance sequence is given by:
Vaal] = Tz €] — |Nx|2 9.41)

* Since 2nd-order moments are defined in terms of 2nd-order [pdf] then strict-sense stationary are
always but not necessarily vice-versa, except if the signal is Gaussian.

* In practice, however, it is very rare to encounter a signal that is stationary in the wide-sense, but
not stationary in the strict sense.

Example 9.5 ([Manolakis:2000, Example 3.3.1, Page 102]). Let w[n] be a  zero-mean,
uncorrelated Gaussian random sequence with variance o2 [n] = 1.

1. Characterise the random sequence w|n].

2. Define z[n| = win|+w[n — 1], n € Z. Determine the mean and autocorrelation of z[n]. Also,
characterise z[n|.

SOLUTION. Note that the variance of w[n] is a constant.

1. Since uncorrelatedness implies independence for Gaussian random variables, then w(n| is an
independent random sequence. Since its mean and variance are constants, it is at least stationary

of first-order. Furthermore, from Equation M:3.3.12|or from Equation |M:3.3.13] then:
Tww[n1, 2] = 02 8[ng — ny) = 6[ng — Nyl (9.42)

Since the autocorrelation sequence depends only on the lag n, —no, then by definition it is
process.
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Realisations of A cos(w0 n) + B sin(u;0 n)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (sec)

Figure 9.4: Ensemble of waveforms for the problem in Example

2. The mean of z[n] is zero for all n since wn| is a zero-mean process. Next, consider:

Tez[n1, 2] = E [z[n1] 2¥[nsg]] (9.43)
=E [[w(ny) + w(ng — 1)][w*(ng) + w*(ny — 1)]] (9.44)
= Tww(n1, n2) + ruw(ni, no — 1) + ruw(ng — 1,n9) + rpw(ng — 1,ng — 1)
(9.45)
=20(ny —ng2) +0(ny —ng + 1) +0(ng —ng — 1) (9.46)
=25() + 61+ 1)+ (1 —1), [=ns—ny (9.47)
O

Hence, since 7,,(n1, ng) = r..(1) is a function of the difference between n; and ny only, then
z(n) is a[WSS|sequence. However, it is not an independent process since both x(n) and z(n+1)
both depend on w(n).

Example 9.6 (Sum of sinusoids). A discrete-time random process, g[n/], is defined as
g[n] = A sin (won) + B cos (won)

where A and B are independent random variables each having zero mean and variance o2, wy is a
fixed frequency, and n is the time-index. An example of realisations from this random process are
shown in Figure 9.4

* Determine the mean and autocovariance function of g[n].

* Determine whether or not g[n| is a[WSS|process. Explain your answer.
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SOLUTION. * Noting that the expectation operator is linear:
pgln] = E[g[n]] = E [A sinwon| + E [B coswyn| (9.48)

Since sin wyn and cos wyn are deterministic functions, and E [A] = E [B] = 0, the expectation
simplifies to:
pgln] = E [A] sinwen + E [B] coswen =0 (9.49)

The autocovariance function is given by:
Yaglni, ne] = E [(g[n1] — pg[na]) (glne] — pglnal)] (9.50)
Hence, since j14[n;] = 0, it follows:

Yggln1, Mo = E [(Asinwony + B coswony ) (Asinwyng + B cos wyns)] (9.51)
=E [AZ} sinwgn sinwgng + E [AB] sinwgn; coswgns

+ E [BA] coswon sinwgng + E [BQ] COS WoN1 COS WoNa (9.52)

SinceAandB are independent random variables (RVk), E [AB] = E [BA] = E [A|E [B] =
0 x 0 = 0. Noting var [A] = var [B] = ¢ and that

var [A] = E [A%] — E* [4] (9.53)
means that E [A%] = E [B?] = ¢2. Thus,
YgglM1, Ma] = o? (sinwgny sinwongy + coswny cos wons) (9.54)
Using the supplied trigonometric identity, it follows that:

Ygg [111, n2] = 0% coswy (ny — ng) (9.55)

* For a process to be [WSS]| the mean and variance must be constant, and the a function of
the time difference or lag ¢ = n; — ny. The[ACSlis thus also given by:

Tagln1, Mol = Ygg[n1, na] + pg[na] pigns] (9.56)
= 0% coswy (N1 — ng) (9.57)
O

Thus, it can be seen the mean is constant, and the is a function of the time difference
n1 — ngy only. Therefore it is[WSS]

Example 9.7 ([Manolakis:2000, Example 3.3.2, Page 103]: Wiener Process). A coin is tossed at
eachn € Z. Let:

(9.58)

i) +S  if heads is the outcome, with probability Pr (H) = p
wln] =
—S if tails is the outcome, with probability Pr (7)) =1 —p

where S is some arbitrary increment or step size in the process w[n]. Since wn|, for a given n, is a
discrete-random variable taking on two possible values (either S or —S5), then w(n| is an independent
random process with mean:

E [w[n]] = SPr(H) + (=S)Pr (T) (9.59)
pw = Sp+ (=5)(1—p)=502p—1) (9.60)
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and second moment:

E [w’[n]] = o2 + 122, (9.61)
= S?Pr(H) + (—S5)*Pr (T) (9.62)
=S+ S*(1—p) =52 (9.63)

This in turn means that the autocorrelation function for w[n] is given by:

S? if n =

Tww|n, M) =19, ) 5 1 e (9.64)
po, =S2p—1)° ifn#n

Not only is the process w{n| an L. 1._dlprocess, it is also[SSS| and therefore, it is also [WSS|

Now, define a new random process z[n], n > 1, as:

z[1] = w(l] (9.65)
z[2] = z[1] + w[2] = w[l] + w|2] (9.66)
: (9.67)
zn] = z[n — 1] + w|n] (9.68)
=Y wn] (9.69)

k=

—_

Note that z[n| is a running or cummulative sum of independent increments; this is known as an
independent increment process. Such a sequence is called a discrete Wiener process or random
walk. It can easily be seen that the mean is given by:

z”: w[n]] (9.70)

k=1

—nS(2p—1) 9.71)
The variance of x[n] is given by:

ozln] = E [2%[n]] — pz[n] = E wlk] Y w[ﬂ] — pi3[n] (9.72)

k=1 /=1
=E wlk]wlf]| — pz[n] = Puwwlk — €] — piz[n] (9.73)

k=1 ¢=1 k=1 ¢=1
=) [P+ (n—1)S*2p-1)* - (nS(2p—1))? (9.74)
k=1

=nS*+ (n(n—1)—n*) S*(2p—-1°=[1-(2p—1)*| n S (9.75)
=4p (1 —p) nS? (9.76)

Therefore, the random walk is a nonstationary (or evolutionary) process with a mean and variance
that grows linearly with n, the number of steps taken.

It is worth noting that finding the autocorrelation the process x[n| is somewhat more involved, as it
involves a calculation involving different limits in each summation:

E [ofn] ofm)) = > D" E fwlk] wlf] ©.77)

k=1 ¢=1 X

Substituting the expression for 7|k, ¢], and rearranging will give the desired answer. This is left as
an exercise to the reader, but note that you will need to consider the cases when m < n and n > m.
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— End-of-Topic 60: Overview of types of stationary processes, and
examples of WSS processes —
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9.5.3 Autocorrelation properties for processes

Topic Summary 61 Properties of autocorrelation sequences of [WSS|processes

Topic Objectives:
* Properties of autocorrelation sequence for wide-sense stationary processes.
* Testing the positive semi-definite property in the lag domain but also frequency domain.

* Examples of testing these properties on sequences and functions.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 21 : 10 min video 3% length
Read Handout Read page [335]to page 339 8 mins/page
Try Example Try Examples[9.8/and Example[9.9 | 15 mins
Practice Exercises | Exercises ??, ??,and ?? 75 mins

tion Theory, [J—
s (PETARS) \ .| WSS Propertles

Jx“/vv

http://media.ed.ac.uk/media/1_6n3mjxwo

Video Summary: Second-order statistics are fundamental to the definition of
processes, and this video considers the properties that a must satisfy. Some
of properties primarily derive from the key property that the must be positive
semi-definite, but other basic ones include the symmetrical property of the that
a random variable cannot be more correlated with another random variable than itself,
and that the second moment must always be positive. The video then considers a couple
of examples, which tests whether a particular sequence or function is indeed valid.

The average power of a[WSS]|process z[n] satisfies:

Tex[0] = 02 + [|> > 0 (M:3.3.27)
T2z [0] > |ree[€]|, forall £ (M:3.3.28)

The expression for power can be broken down as follows:

Average DC Power: |1, |*

Average AC Power: o2

Total average power: r,.[0] > 0
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In otherwords,

Total average power = Average DC power + Average AC power (M:3.3.27)
To prove 7,,[0] > |r..[¢] |, observe that E [|z[n + ¢] & x[n] [*] > 0. On expansion, this yields the
desired result; this is left as an exercise to the reader, see [Manolakis:2000, Exercise 3.21, Page 145].
Moreover, it follows that 7,,.[0] > |7..[¢] |.

It is also the intuitively obvious, since the autocorrelation of a function should be maximum when it
is “self-aligned” with itself. This property also it useful for template-matching time-series; i.e. to
find which of a particular set of realisations is most like a given separate realisation.

It is left as an exercise to show that the [ACS]r,, [] satisfies two more properties, namely it is:

* aconjugate symmetric function of the lag ¢:

Toel =) = 722 [(] (M:3.3.29)

Trxr

* a nonnegative-definite or positive semi-definite function, such that for any sequence «/[n|:

Z Z a*[n] rea[n —m] afm] >0 (M:3.3.30)

n=1 m=1

Note that, more generally, even a correlation function for a nonstationary random process is positive
semi-definite:

Z Z a*[n] ree[n,m]alm] >0 for any sequence a[n] (9.78)

n=1 m=1
When dealing with stationary processes, this course will exclusively consider wide-sense stationary
(WSS)) rather than strict-sense stationary (SSS)) processes. Therefore, the term stationary will be used
to mean form here onwards.

Example 9.8 (Cosinusoid). The function r[¢] = coswyl is claimed to be a valid [ACSl Test the
properties of this function to determine if this is claim is true or not.

SOLUTION. The function r[¢] = coswy/ satisfies: the symmetric property, r[¢] = r[—/|; the equality
r[0] > |r[¢] | for all £; and r[0] > 0.

The final property of positive semi-definiteness is a little more tedious to verify. Let:

M M
I= Z Z a*[n] ree[n —m] ajm] (9.79)
n=1 m=1
M M
= Z a[n] alm] coswy (n —m) (9.80)
n=1 m=1
Using the trigonometric identity: coswgy(n —m) = coswn coswym + sinwyn sinwym, then

consider the resulting first term and using the fact r[/] is real:

I = Z | coswon cos wym (9.81)

n=1 m=1

M
= < aln coswon) (Z alm] cosw0m> (9.82)
m=1

2
:< aln coswon) >0 (9.83)
O

»iMs iMs
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A similar argument can be made for the second term as well, showing that I > 0. This proof is a little
tedious, and can often be more easily shown using the following equivalent result.

KEYPOINT! (Equivalent condition for positive semi-definiteness). The Fourier transform of an
autocorrelation sequence (ACS)) or autocorrelation function (ACE) is an extremely important concept,
called the power spectral density (PSD)) which will be discussed in the next handout. It will be proved
that the should always be positive. It is easy to prove that an[ACS|or[ACH has a positive Fourier
transform if, and only if, it is positive semi-definite.

To prove this result, then writing the inverse discrete-time Fourier transform (DTFT) for 7, [¢]:

€ / S () &n du 9.84)

T m - 2

Substituting into Equation [M:3.3.30[ (but not assuming the inequality) gives:

i i o { / TS5 () e dw} afm] (9.85)

n=1 m=1

= %/W S (e/) {;Tnzla ej“”e_j“ma[m]} dw (9.86)
1/ M 2

=5 77rS (e’) mZZIQ[n} e m duw (9.87)
1 4 s o

=0 _ﬂS(eJ ) A ()] dw (9.88)

where a/[n] iy (e7*) are DTFT pairs. Since S (¢7) > 0, then so is I > 0.

Example 9.9. Consider the functions shown in Figure For each function, state whether it is a
valid autocorrelation function or autocorrelation sequence or not. Explain carefully the reasoning for
your answers, but no detailed calculations are required.

SoLUTION. Consider each function or sequence in turn. For each function or sequence, test the four
properties.

1. The first function violates the symmetry rule.
2. The second function violates for property that r,,.[0] > 0 in order to have positive power.

3. This function is valid, as it is symmetric, satisfies the positive power condition, that the largest
[ACS] value occurs at zero-lag. The final condition of testing the positive semi-definiteness is
most easily done by noting that the Fourier transform of the is positive, but this is left as
an exercise to the reader.

4. This violates the property that r,,.[0] > |r,.[¢] | for all £.
5. The Fourier transform of this function is not always positive.

6. This function satisfies all the properties and is therefore valid.
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(@) Two-sided exponential function, where (b) Inverted sinc function (sinc 7 = Si%).
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Figure 9.5: Candidate autocorrelation functions.
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Thus, in summary, the claims are satisfied as follows: 1)-2) and 4)-5), No; 3) and 6) Yes!

O[A0]
— End-of-Topic 61: Properties of the ACS for WSS — Qgﬁ
E 1
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®

9.5.4 Wide-sense periodicity and cyclo-stationarity =

Topic Summary 62 Wide-sense periodic, wide-sense cyclo-stationary, and quasi-stationary processes ye,, side

Topic Objectives:
* Concept of nontationary process that have structured second-order statistics.
¢ Definition of wide-sense periodic (WSP) and wide-sense cyclo-stationary processes.
* Example of wide-sense cyclostationary process in a communications system.

* Notion of quasi-stationary processes.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 17 : 33 min video 3% length
Read Handout | Read page [340|to page [344] | 8 mins/page
Try Example | Try Example |9.10| 10 mins
‘ a'."’?pl'%i"n'! I ). Wide-sense cyclo-stationarity
& Yt [,
SOTTICTIELT T

An example pulse and typical transmit signal.

Example (Pulse-Amplitude Modulation). An important example of a

cyclo-stationary process is the random signal:

bol)
Transeilbe ) . = / 53 e
”WE\M__' a[n] mz‘ L) h(!u —mT)] %

http://media.ed.ac.uk/media/1_tgl3vboom

Video Summary: This video considers a wider class of nonstationary processes that
share some similarities with processes. Such nonstationary processes occur
in systems where, for example, there is some aspect of upsampling, or a random
process generates a new process that is a function of some deterministic signal that has
temporal extent. This video looks at wide-sense periodic and wide-sense cyclo-stationary
processes. An example of pulse-amplitude modulation is presented. Finally, globally
non-stationary but locally-stationary processes are discussed, called quasi-stationary
processes. The application of speech modelling is considered as an example of a
quasi-stationary process.

A signal whose statistical properties vary cyclically with time is called a cyclostationary process. A
cyclostationary process can be viewed as several interleaved stationary processes. For example, the
maximum daily temperature in Edinburgh can be modeled as a cyclostationary process: the maximum
temperature on July 21 is statistically different from the temperature on December 18; however,
the temperature on December 18 of different years has (arguably) identical statistics (although
unfortunately there seems to be a growing trend).

Two classes of cyclostationary signals that are actually nonstationary process which, in part, have



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton57'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_tql3v66m
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n,A
m+N e °
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Figure 9.6: The periodicity of the [ACS|for a[WSP|signal.

n,a
m+N ®
j, |
L 9
m, N m+N n,

Figure 9.7: The periodicity of the [ACS|for a wide-sense cyclo-stationary process.

properties resembling stationary signals are:

1.A process is classified as signals whose mean is periodic, and whose[ACSlis periodic in both
dimensions:

pz[n] = pz[n + N| (M:3.3.14)
Tex|M1, 2] = Taz[n1 + N, no] = 1yp[n1, 12 + N]

(M:3.3.15)
= ryz[n1 + N,ng + N]

for all n, ny and ny. These are quite tight constraints for practical signals.

2. A wide-sense cyclo-stationary process has similar but less restrictive properties than a
process, in that the mean is periodic, but the [ACS| is now just invariant to a shift
by N in both of its arguments:

pz[n] = pz[n + N| (M:3.3.16)
Tez[N1, No] = Tuz[n1 + N, ng + N]| (M:3.3.17)

for all n, nq and ns.

Example 9.10 (Pulse-Amplitude Modulation). An important example of a cyclo-stationary process

is the random signal:
o0

z[n] = > ¢ hln —mT) (9.89)

m=—0Q
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(c) Communications system that generates the transmitted signal.

Figure 9.8: An example pulse shape and typical transmit signal in a communications system.

for some period 7', and where c,, is a stationary sequence of RVk with Teelni, o] =
E [cn, ¢,] = Tec[n1 — na), and h[n] is a given deterministic sequence, usually an impulse response.
An example of a particular pulse shape for h[n] and a typical sequence z[n] is shown in Figure

Show that z[n| satisfies the properties of a wide-sense cyclo-stationary process.

SOLUTION. The stochastic processz|n] represents the signal for several different types of linear
modulation techniques used in digital communication systems. The sequence{c,,} represents the
digital information (of symbols) that is transmitted over the communication channel, and % represents
the rate of transmission of the information symbols.

Note that this example demonstrates why notation can become an issue: how is it possible to
determine that ¢, is a[RV] while h[n] is not?

To see that this is a wide-sense cyclo-stationary process, first begin by writing:
pali =Bl = 3" Elen] -l e Y bn—mT]  ©.90
where pi.[n] = . since it is a stationary process. Thus, observe that:
pa[n 4+ KT = e i hin + kT — Tm| = u. i hin —Tr] = p.[n] (9.91)
by a change of variables r = m — k.

Next consider the autocorrelation function given by:

rmc[nla n?] =E [m[nl] x* [nQH

= Y > hlny = Tm] hing — T4 rec[m — (]

m=—00 {=—00

(9.92)
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Pitch Voiced/unvoiced Filter Speech
Period indicator function Parameters —segment
J ‘ ] ‘
Voiced Impulse train ;

Speech generator v
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Excitation Variance '\._> All-pole v Synthetic
: Filter signal

Unvoiced Vocal tract model
Speech

Figure 9.9: The speech synthesis model (repeated from Introduction handout).

where it has been noted that r..[m, ¢] = E [c,, ¢j] = re.[m — ¢] since it is a stationary process. Similar
to the approach with the mean above, then set n; — ny + p7" and no — ny + q7'.

Therefore, it follows:

Tzx [nl + pTa ng + (]T]

— - (9.93
= 3 bl = T(m = p)] hine = T( = )] reclm — ] )
m=—00 {=—00
Again, by the change of variables r = m — p and s = ¢ — g, it can be seen that:
Tex [nl + pTa ng + (]T]
(9.94)

= Y D hlm —Tr] hlng — Ts] reclr — s +p — g

T=—00 §=—00

In the case that p = ¢, then comparing Equation 9.92| and Equation [9.94 it finally follows that:

Taa [nl + pT7 ng + pT] =Tz [nla n?] (995)
]

By definition, z[n] is therefore a cyclo-stationary process.

[E)

9.5.5 Local- or quasi-stationary processes =

At the introduction of this lecture course, it was noted that in the analysis of speech signals, the speech New slide
waveform is broken up into short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary or quasi-stationary process. Such
processes possess statistical properties that change slowly over short periods of time. They are
globally nonstationary, but are approximately locally stationary, and are modelled as if the statistics
actually are stationary over a short segment of time.

Quasi-stationary models are, in fact, just a special case of nonstationary processes, but are
distinguished since their characterisation closely resemble stationary processes.
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— End-of-Topic 62: Wide-sense periodic and cyclostationary signals, [EITAE
and other forms of nonstationary signals — opR
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9.6 Estimating statistical properties

e

Newstide  Topic Summary 63 Time-Averages and Ergodicity

Topic Objectives:
» Concept of estimating statistical averages from a single realisation of a stochastic process.
* Introduction to the notion of ergodicity and estimating ensemble averages from time-averages.

* Examples of testing if a process is ergodic or not.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 26 : 59 min video 3% length
Read Handout | Read page |345| to page |350| 8 mins/page
Try Example | Try Example |9.1 1[ 15 mins

@ Ensemble and Time-Averages

® Ergodicity requires a single realisation of the random process
to display the behaviour of the entire ensemble of realisations.

Realisations of random level DC process

]
1

i} = A

<

& ‘éééébéA&é&}AA&EAABA&?AAH:?&A&}
s A Ve f

+ DC leel/
@askat

Gl xn,

n

=

http://media.ed.ac.uk/media/1_Ilnebgvba

Video Summary: This Topic introduces the notion of estimating statistical averages from
a single realisation of a stochastic process. This concept is most easily developed for
estimating first and second moments of stationary random processes using time-averages.
This requires the process to be Ergodic and The video first introduces ergodicity
from an intuitive perspective, and then further expands the definition in terms of using
the properties of a consistent estimator. This is expressed through the two definitions
of ergodic in the mean, or ergodic in correlation. Examples of non-ergodic and ergodic
processes are presented. One very detailed example proves a process is ergodic in the
mean through calculating the bias and variance of the time-average.

* A stochastic process consists of the ensemble, x[n, (|, and a probability law, fx ({z}| {n}). If
this information is available Vn, the statistical properties are easily determined.

* In practice, only a limited number of realisations of a process is available, and often only one:
ie. {z[n,¢], k€ {1,..., K}} is known for some K, but fx (x| n) is unknown.

* Is is possible to infer the statistical characteristics of a process from a single realisation? Yes,
for the following class of signals:

— ergodic processes;
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Realisations of random level DC process
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Figure 9.10: The temporal-variability of the DC level does not capture the ensemble statistics.

— nonstationary processes where additional structure about the autocorrelation function is
known (beyond the scope of this course).

9.6.1 Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not frequently used in practice since it is
impractical to obtain the number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single realisation of a process is a time-average,
defined by:

(glaln])) 2 tim S S (el M3332)

For every ensemble average, a corresponding time-average can be defined; the time-average above
corresponds to: E [g(z[n])].

Time-averages are random variables since they implicitly depend on the particular realisation, given
by (. Averages of deterministic signals are fixed numbers or sequences, even though they are given
by the same expression.

It should be intuitive that ergodicity requires a single realisation of the random process to display the
behaviour of the entire ensemble of realisations. If not, ergodicity will not hold.

9.6.2 Ergodicity

A stochastic process, x[n], is ergodic if its ensemble averages can be estimated from a
single realisation of a process using time averages.
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The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical expected values and sample-means:
(xz[n]) = E [z[n]] (M:3.3.34)

Covariance-Ergodic Processes (or ergodic in correlation) have the property that:
(x[n] z*[n —1]) = E [z[n] *[n — ] (M:3.3.35)

Another form of ergodicity is a distribution-ergodic process, but this will not be discussed here.

* It should be intuitiveness obvious that ergodic processes must be stationary and, moreover, that
a process which is ergodic both in the mean and correlation is [ WSS|

WSS|processes are not necessarily ergodic.
* Ergodic is often used to mean both ergodic in the mean and correlation.

* In practice, only finite records of data are available, and therefore an estimate of the
time-average will be given by

(g(z[n))) = % > glaln)) (M:3.3.37)
neN

where N is the number of data-points available.

)

9.6.3 More Details on Mean-Ergodicity W

Returning to the definition of mean-ergodicity, a little more detail of conditions on the random process New slide
is given.

The time-average over 2N + 1 samples, {x[n]}" is given by:

pely = {elol) = g o) 9.96)

Clearly, /1|, is a random variable with mean:

E [NHN] = Z E [x[nﬂ = Uz 9.97)

since x[n| is a stationary stochastic process. As is seen elsewhere in these lectures, this is known as
an unbiased estimate since the sample mean is equal to the ensemble mean.

Since | y 1s arandom variable, then it must have a variance as well:

var [ | y] = var

1 N
SN ZNx[n]] (9.98)
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v

-N

Figure 9.11: Region of summation for deriving the variance of the time-average.

Theorem 9.1 (Variance of estimator). Suppose the sample mean of a sequence of a process,
x[n], is given by:

1 3 afn) (9.99)

N
Helv = 5811 2

n=—N
If the process x[n] has[ACS|v,.[¢], then the variance of the sample mean can be expressed as:

2N

_ 1 4]
Var[ux|N]—2N+1ez2:N<1 2N+1>7 2|7 (9.100)

PROOF. Noting the mean of the expression in the square brackets on the right hand side of
Equation [9.98|1s equal to i, then:

var [z y] = (QNH [Z Z ]—% (9.101)

=N m=—

2N+1 {Z Y Tasln - } I (9.102)

N m=—N

since x[n] is a stationary process, and therefore its [ACS| only depends on the time difference. With
a little manipulation, then noting that the autocovariance is given by v, [(] = 7,.[(] — p2, it follows
that:

1
var [ fie| ] :W Z Z Yz —m (9.103)

——Nm=—N

A change of variable can now be performed by setting £ = n — m. Hence:

N n+N

var [j :m SO (9.104)

n=—N {=n—N

The region of summation is shown in Figure[9.11]

Thus, the next step is to change the order of summation (as this is the usual trick), and so considering
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the region of summation, then summing [ first:

min{N,/+N}
var [paly} = 2N+ 1)2 Z > Ve ] (9.105)
{=—2N n=max{—-N,/—N}
1 2N
= an e 2o N L=l (9.106)
(=—2N
2N
1 < 4] )
- > (1= Vo] (9.107)
2N+1£:_2N IN +1 !
as required.
KEYPOINT! (Mean-ergoic). If the variancelimy_,o, var [p,|y] = 0, then pg|y — p, in the

mean-square sense. In this case, it is said that the time average u,|, computed from a single
realisation of x[n] is close to y, with probability close to 1. If this is true, then the technical definition
is that the process x[n] is mean-ergodic.

The result presented above leads to the following conclusion:

Theorem 9.2 (Mean-ergodic processes). A discrete-random process z[n] with autocovariance
vz |€] is mean-ergodic [ifft

2N

, 1 1|
1 1- wall] = 108

PROOF. See discussion above.

Example 9.11 ( [Papoulis: 1991, Example 13.3, Page 429]). A stationary stochastic process x[n]
has an [ACS] given by ~,.[(] = ge~¢¥! for some constants ¢ and c. Is the process x[n] ergodic in
the mean?

SOLUTION. Writing:

2N

o1 4
var | y] = 2N+1£ZN (1— 2N+1) Vea (4] (9.109)
2N
__ 1 S (1- _4 e—cldl (9.110)
ON 1 ON 1
(=—2N

which can be rearranged to give as:

2N
q l e
var[ux\N]zzNH{zE <1—2N+1)e 5—1} (9.111)
=0

Now, noting the general result which can be found in mathematical tables [Gradshteyn:1994]:

N-1

_ _ N _ .N—-1
Z(aJrnb)rn:a [a+1(§r 1)b]r +br((11_:>2 )’ r£0,N>1 9.112)
n=0
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then by setting a = 1, b = _Wlﬂ andr = e ¢, withn = fand N — 2N + 1:
1 _ Le—Mc Le—c _ Le—Mc 1
o n) = 2¢ | L2 M2 Wk - 9.113
var [/‘L ’N] q 1 — e—¢ + (1 . 6_6)2 2M ( )

where M = 2N + 1. Now, by setting N — oo, which is equivalent to M/ — oo, and noting the
relationship that:
lim n®z™ — 0 if |x| < 1 for any real value of s (9.114)

n—oo
it can easily be seen that
A}l_r}r(lm var [fz| ] =0 (9.115)
U
and therefore x[n] is mean-ergodic.

— End-of-Topic 63: Ergodicity and time-average estimates of statistics El 401
of WSS processes — 13
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9.7 Joint Signal Statistics

&

Newstide  TOpic Summary 64 Joint Signal Statistics and Correlation Matrices

Topic Objectives:
» Extending definitions presented previously to Joint signal statistics.
* Understanding notion of cross-correlation and cross-covariance.
* Application of these techniques to Blind Source Separation.

¢ Definition and use of Correlation Matrices.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 19 : 21 min video 3x length
Read Handout Read page[351{to page[354| | 8 mins/page
Try Example Try Example |9. 12l 15 mins
Practice Exercises | Exercises ?? to ?? 75 mins

improve voice recognition.

http://media.ed.ac.uk/media/1_smlhg601

Video Summary: This video starts to wrap up the Chapter on Stochastic processes
by looking at joint signal statistics, such as cross-correlation and cross-covariance,
uncorrelated pairs of random processes, and an extension of the various concepts
previously developed for analysing random processes. An example is presented of using
cross-covariance as a surrogate for measuring independence of signals in the classic
signal processing problem of blind source separation. Finally, the Topic introduces the
use of correlation matrices for analysing a finite-block or window of samples. Correlation
matrices are a convenient way of representing signal statistics when it comes to creating
real signal processing algorithms.

Next, it is important to consider the dependence between two different random processes, and these
follow similar definitions to those introduced for random vectors. In this section, consider the
interaction between two random processes x[n| and y[n|.

Cross-correlation and cross-covariance A measure of the dependence between values of two
different stochastic processes is given by the cross-correlation and cross-covariance
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functions:

Toyln1, ne) = E [z[n] y*[no]] (M:3.3.7)

Yay (1, 2] = Tay[n1, 2] — prp[na] gy [122] (M:3.3.8)

Normalised cross-correlation (or cross-covariance) The cross-covariance provides a measure of

similarity of the deviation from the respective means of two processes. It makes sense

to consider this deviation relative to their standard deviations; thus, normalised
cross-correlations:

fya:y [nla 712]
og[m] oy[ne]

(M:3.3.9)

Py [nla n2] =

9.7.1 Types of Joint Stochastic Processes

The definitions introduced earlier for a single stochastic process can be extended to the case of two
joint stochastic processes:

Statistically independence of two stochastic processes occurs when, for every n, and n,,
fxy (2,9 nayny) = fx (2] ne) fv (y] ny) (M:3.3.18)

Uncorrelated stochastic processes have, for all n, & n, # n,:

Vey[zs 1y] = 0

Tay [nét’ ny] = Mz [nz] My [ny]

(M:3.3.19)

Joint stochastic processes that are statistically independent are uncorrelated, but not necessarily
vice-versa, except for Gaussian processes. Nevertheless, a measure of uncorrelatedness is often used
as a measure of independence. More on this later.

Further definitions include:

Orthogonal joint processes have, for every n; and ny # ny:

Tuyln1,m2] =0 (M:3.3.20)

Joint[WSS] s a similar to [WSS| for a single stochastic process, and is useful since it facilitates a
spectral description, as discussed later in this course:

Tayll] = Tay[ns —no| =7

vl =) = E [z[n] y*n — 1] (9.116)
Voyll] = Yaylra = no] = vy [—l] = 1uy [l] = pta 1 (9.117)

Joint-Ergodicity applies to two ergodic processes, x[n] and y[n], whose ensemble cross-correlation
can be estimated from a time-average:

(z[n] y*[n —1]) = E [z[n] y*[n —]] (M:3.3.36)
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9.8 Correlation Matrices for Random Processes

A stochastic process can also be represented as a random vector, and its second-order statistics given
by the mean vector and the correlation matrix. Obviously these quantities are functions of the index
n.

Let an M -dimensional random vector X[n, (] = X|n| be derived from the random process x[n] as
follows:

X[n] 2 [z[n] z[n—1] ln — M +1])" (M:3.4.56)
Then its mean is given by an M -vector
T
pxn] £ [pen] poln —1] fiz[n — M + 1]] (M:3.4.57)
and the M x M correlation matrix is given by:
Rx[n] = E [X[n] X"[n]] (T:4.23)
which can explicitly be written as:
Ty [T, 1] Tez[,n — M + 1]
Rx[n] = : (M:3.4.58)

Tez[l — M + 1, n] Texn — M +1,n — M + 1]

Clearly Rx[n| is Hermitian, since r,n—in—j = Elzn—d|z*n—j]] =
rin—jmn—i,0 < i,j < M — 1. This vector representation can be useful in discussion
of optimum filters.

For [WSS| processes, the correlation matrix has an interesting additional structure. Note that:

1. Rx[n] is a constant matrix Rx;
2. Tapn —i,n —j] = reeli — i) = reell], £ = — i

3. conjugate symmetry gives 7., [¢(| = ri, [—{].

rx

Hence, the matrix R, is given by:

T220] Tz [1] Tz 2] Tox|[M — 1]
;x[l] L [O] Tmm Tz [M - 2]

Rx 2 | 752 Trel1] T22[0] Tae[M — 3] (M:3.4.60)
(M 1) M 2] (M -3 reald]

It can easily be seen that Rx is Hermitian and Toeplitz; a Toeplitz matrix is one in which the elements
along each diagonal, parallel to the main diagonal, are equal. Note that the anti-diagonals are not
necessarily equal. Thus, the autocorrelation matrix of a stationary process is Hermitian, nonnegative
definite, and Toeplitz.

Example 9.12 (Correlation matrices). The correlation function for a certain random process x[n]
has the exponential form:

reell] = 4(—0.5) (9.118)
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Hence, the correlation matrix for N = 3 is given by:

Tez[0] Tox[l] T22[2]
Rx = |r5.[1] 72a[0] 720[1] (9.119)
a2l T[] r2[0]
[4(—0.5)° 4(—0.5)' 4(—0.5)? 4 =2 1
— [4(—0.5)" 4(—0.5)° 4(—05)'| = |-2 4 -2 (9.120)
[4(—0.5)% 4(—0.5)" 4(-0.5)° 1 -2 4 X

which is clearly Toeplitz.

Note that the definition of a covariance matrix for a random process follows an almost identical form,
except with the elements of the autocorrelation functions replaced by the autocovariance functions.
Finally, note that is is possible to define a correlation or covariance matrix for a random vector that
consists of non-consecutive samples from a random process. Hence, if

X({n}) 2 [(n1) x(ns) - x(na)]’ (9.121)

where {n;,} are unique arbitrary indices to samples from the random process, then the correlation
matrix is still defined as:

Rx({n}) = E [X({n}) X" ({n})] (T:4.23)

— End-of-Topic 64: Joint Statistics and Correlation Matrices —
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9.9 Markov Processes

Topic Summary 65 Brief Introduction to Markov Processes

Topic Objectives:
* Introduction to advantages of the Markov model.
* Definitions of a Markov Process.

* Calculating the joint{pdf] for first-order Markov process.

Topic Activities:

| Type | Details | Duration | Progress
Watch video | 8 : 32 min video 3% length
Read Handout | Read page |355| to page |356| 8 mins/page
Try Example | Try Example |9.13 15 mins

Probabilty, Estimation Theory, |[——
and R: ignals (i ) (.| Markov Processes

Example (First-order Markov). A first-order Markov process is
where, given the infinite past, the current sample of a random
process z[n] depends only on the previous sample a[n — 1):

Ix (@[] afn =1, aln—2], ..., 2[0]) = fx (2[n]| «[n — 1])

Hence, using the first-order Markov property, this simplifies to:
fx (%) = fx (=[0]) TT £x (af#] | afk = 1))
P

‘This allows us to substitute, for example, the Gaussian:

http://media.ed.ac.uk/media/l_vy9zrkrsk

Video Summary: This video gives a very brief introduction to the powerful Markov
model for random processes. It considers in detail the first-order Markov process,
deriving the joint{pdf]for a Gaussian-excited process. This powerful model allows certain
problems to be analysed in a comprehensive manner. The video mentions higher-order
Markov processes, as well as Markov Chains.

Finally, in this handout, a powerful model for a stochastic process known as a Markov model is
introduced; such a process that satisfies this model is known as a Markov process. Quite simply,
a Markov process is one in which the probability of any particular value in a sequence is dependent
upon the preceding sample values. The simplest kind of dependence arises when the probability of
any sample depends only upon the value of the immediately preceding sample, and this is known as
a first-order Markov process. This simple process is a surprisingly good model for a number of
practical signal processing, communications and control problems.

As an example of a Markov process, consider the process generated by the difference equation
zln| = —ax[n — 1] + w(n] (T:3.17)

where a is a known constant; and w[n] is a sequence of zero-mean [ 1. d] Gaussian random variables
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with variance 0% density:

fw (win]) = % exp {_uﬁ[n} } (T:3.18)

2
2oy, 207y

The conditional density of z[n| given z[n — 1] is also Gaussian, and using the probability
transformation rule for which the Jacobian evaluates to one, it can be shown that

exp {_ (x[n] + az[n — 1])? }

2
207y,

F (aln] | 2l — 1]) = ———

2wy,

(T:3.19)

In fact, if w[n] is independent with any density fy (w[n]), the conditional density of z[n| given
z[n — 1] is fw (z[n] + ax[n — 1]). Note that x[n — 1] completely determines the distribution for
x[n], and z[n| completely determines the distribution for z[n + 1] and so forth. Thus, the value of the
sequence at any time no completely determines the distribution of z[n| for any n > n,. The following
serves as a formal definition of a Markov process.

Definition 9.4 (Markov Process). A random process is a Pth-order Markov process if the

distribution of z[n|, given the infinite past, depends only on the previous P samples
{z[n —1],...,z[n — P]}; that is, if:

fx (z[n]| zln—=1], zn=2],...) = fx (z[n]| zln—=1], ..., z[n — P]) (T:3.20)

¢

Example 9.13 (First-order Markov). A first-order Markov process is where, given the infinite past,
the current sample of a random process x[n] depends only on the previous sample x[n — 1]; that is, if:

fx (z[n]| z[n —=1], z[n=2], ..., z[0]) = fx (z[n]]| z[n — 1]) (9.122)
Note that using the probability chain rule, and defining x = {z[n], z[n — 1], ..., x[0]}, the general
joint{pdf] of all samples can be written as:
fx (%) = fx (z[n]] xln = 1], z[n—2], ..., z[0])
9.123
X fx (z[n—=1]| z[n—2],2n=3],..., z[0]) - - fx (x[0]) ( )

This can be written in the form:
frc () = e alO) T e 8] ol — 1. a[0]) ©.124)
k=1
Hence, using the first-order Markov property, this simplifies to:
fre () = i (al0) T e b1 ol — 1) ©.125)
k=1

This allows us to substitute, for example, the Gaussian expression in Equation [T:3.19;

k=1

n

(9.126)
X

Finally, it is noted that if x[n] takes on a countable (discrete) set of values, a Markov random process
is called a Markov chain. This will always be the case in digital signal processing since the values
of the random sequence are represented with a finite number of bits. There is a tremendous volume
of results on Markov chains, but they will not presently be covered in this course.

(=] 48 [
— End-of-Topic 65: Brief Introduction to Markov Processes — E%E




Frequency-Domain Description of Stationary
Processes

Introduces the notion of a frequency-domain description of stationary random processes, defining
the power spectral density (PSD)) as the Fourier transform of the autocorrelation function. Considers
the properties of the including the of harmonic processes. Defines the cross{PSDl and the
complex spectral density.
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360 Power Spectral Density

10.1 Introduction to the power spectral density

Topic Summary 66 Concept of the Power Spectral Definition and its Origins

)

New slide

Topic Objectives:
* Notion of representing a random process in the frequency domain.
* Development of the power spectral density.

* Introduction to the Wiener-Khinchin(-Einstein-Kolmogorov) theorem.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 22 : 59 min video 3% length
Read Handout | Read page |358| to page |363| 8 mins/page

& Introduction K£ngineers Gﬁr Sciences
L e — ~t regpon,
Exrenmnb *n, C) W. ‘.} e Farier X(C) A )
: gy chiom
[ e TR N
James R. Hopgood, & = TR 2V 5_)/1
James.Hopgood@ed.ac.uk R @
i tin [N 4 1 0 N7 S
fouie U v
& X(C) H RGIAH
PATK R

http://media.ed.ac.uk/media/1_zk0lrnwd

Video Summary: This video introduces the frequency-domain description of stationary
processes, through the equivalent but conceptually different ideas of stochastic
decompositions and Fourier transforms of moments (such as the autocorrelation or
autocovariance). The video considers the conceptual equivalence of a random spectrum
and random time-series. The power spectral density is developed in an informal method
by calculating the second moment of the Fourier transforms of the realisations of the
random signals. This is then formalised as a limiting process, to develop the infamous
Wiener-Khinchin(-Einstein-Kolmogorov) theorem. The video considers the conceptual
traps that you should be aware of, although ultimately the theory all leads to the definition
that the power spectral density is the Fourier Transform of the autocorrelation sequence.

Frequency- and transform-domain methods including the Fourier-transform and z-transform are very
powerful tools for the analysis of deterministic sequences. It seems natural to extend these techniques
to analysis stationary random processes. In principle, it would make sense to extend the techniques

to non-stationary processes, but this requires futher insight and additional constaints to come up with
a general theory.

So far in this course, stationary stochastic processes have been considered in the time-domain
through the use of the autocorrelation sequence (ACS). Since the for a stationary process
is a function of a single-discrete time process, then the question arises as to what the discrete-time
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x(n, €1) Fourier X(C )
l I Transform
ERIIEES L—”n ok
I i \
. F
x(n’ Z;Z) Tra(r)llgrfl;rrm %¢ (QZ)
SRR I <
: l : ] > \ >k
Fourier
Transform  y (g)
: ! ( T )i .
T " >k
Fourier
x(n, C[)) o Transform k(C) I
Abstract I
sample space, S I 1 T I ! ; 1 I I >N | >k
Real space Complex space
Ensemble of realisations Ensemble of realisations
of random processes of random spectra

Figure 10.1: A graphical respresentation of random spectra.

Fourier transform (DTET)of the [ACS| corresponds to. It turns out to be known as the power spectral
density of a stationary random process, and the[PSDlis an extremely powerful and conceptually
appealing tool in statistical signal processing. This handout will study the in some detail.

In signal theory for deterministic signals, spectra are used to represent a function as a superposition
of exponential functions. For random signals, the notion of a spectrum has two interpretations:

Transform of averages The first involves transform of averages (or moments). As will be seen, this
will be the Fourier transform of the autocorrelation function.

Stochastic decomposition The second interpretation, and arguably more natural perspective,
represents a stochastic process as a superposition of exponentials, where the
coefficients are themselves random variables. Hence, a stochastic process z[n] can
be represented as:

i/ X (eT) " dw, neR (10.1)

tn] = 2m

where X (¢“) is a random variable for a given value of w. Alternatively, X (¢’*) can
be considered as a continuous random-process, as a function of w. This interpretation
is extremely powerful, and can in fact be extended to the superposition of any set
of basis functions; the Karhunen-Loeve (KL) transform is an example of such a
decomposition. Unfortunately, there is not time in this course to consider this spectral
representation in detail, extremely interesting as it is, although it will be used below
to motivate the for stationary signals.
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10.2 Motivating the power spectral density =

gt

It is important to appreciate that most realisations of stationary random signals, x[n, (], do not have New stide
finite energy, as they usually don’t decay away as n — =oo. This is because the statistics as n — £o0

are the same as the statistics at any other time. Therefore, technically, these realisations do not possess

a corresponding [DTFT], and hence it is not possible simply to take the [DTFT] of the random signal
without further addressing these technicalities.

Moreover, noting that a random signal is actually an ensemble of realisations, each realisation
occuring with a different probability, it raises the question of what does it mean to take the DTFT
of a random process directly? It should also be remembered that the DTFT of a particular observed
realisation, even if it existed, is itself a realisation of a random process, albeit as a function of
frequency rather than time. Therefore, it is necessary to take an alternative perspective, as discussed in
Section However, in order to motivate the first an informal and imprecise, yet insightful
analysis is given in the next section.

ie

b 10.2.1 Informal Motivation

Newslide This section contains an informal but insightful derivation of the [PSD| Assume for the moment that

the DTET] of a realisation from a stationary random process does in fact exist, by ignoring any issues
with convergence of the sequence. If a particular realisation is denoted by xz[n, (], then suppose the
corresponding [DTET]is denoted by:

o0

Xe (7)) = Y aln, (] e (10.2)

n=—oo

where |w| < 7 is the normalised frequency (with respect to the sampling frequency). The collection
of different[DTFTk forms an ensemble of frequency-domain realisations, as shown in Figure

As this spectrum is continuous, the second-order autocorrelation function (ACE) is a seemingly
important statistic to consider, representing the correlation between two frequencies at w; and wo,
say. Hence, consider forming:

Rxx(wi, wo) = E [X¢ (/1) X[ (e2)] (10.3)

Substituting the expression from Equation [10.2] into this expression, and reorganising where
possible:

Ryx(wi, wo) =B | > zn, ¢l e ™ > a[m, (] & (10.4)

= > Y Elz[n, (] 2*m, (JJedmmem) (10.5)

n=—00 m=——0o0

=SS el m] e (10.6)

n=—00 m=—0o0o

At this stage, this is quite a generic expression; note further, that a very similar result can be obtained
if the random process in the time-domain were continuous, where the would be replaced by
the continuous-time Fourier transform (CTET) which amounts to replacing summations by integrals.
However, it can be seen though that it is indicative of a frequency domain correlation being some kind
of Fourier transform of the corresponding time-domain correlation.
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Indeed, as it has been assumedx[n, ] is stationary, then let 7, [n, m| = r,,[n — m|. Consider finding
the second-moment or power at a given frequency, so setting w = w; = w9, and then undertaking a
change in variable of summation such that = n — m. Then, it follows that:

Rxx(w)= > Y rulll e = )" F(rul) (10.7)

n=—o00 f=—0o0 n=-—oo

The additional summation results from the fact the realisations of the process do not have
finite-energy, and the mathematical treatment somewhat informal. However, it clearly indicates that
the power at each frequency can be found from the Fourier transform of the[ACS] and is therefore the
This proof can be tidied up somewhat by using careful limiting operations, as described in the
next section. It can also easily be extended to the continuous-time case, by effectively just replacing
the summations by integrals.

I8

10.2.2 Formal Statistical Derivation W

Motivated by the stochastic decomposition in Equation [I0.I] and restricting the analsysis to New slide

wide-sense stationary (WSS)) processes, consider the random variable, X (e/“7), resulting from the
[DTFT of a random signal, z[n]:

[e.e]

X (&) = ) afn]e (10.8)

n=—oo

It is of interest to consider the total power in the rv, X (ej‘*’T), which is given by the second moment:
Pyx (¢7) =B [|X (e#7) ] (10.9)

Since random signals are not finite energy, then this expression will diverge, so consider instead the
definition: ]
Pxx (¢2*T) = lim
XX ( ) N—oo 2N + 1
where X (¢7) is the truncated Fourier transform of x[n], or basically a windowed version of the
sequence x[n| between —N and N, as given by:

E |[Xy ()] (10.10)

N o0
Xy (7)) £ Z x[n] e I = Z wln] x[n] e =" (10.11)
n=—N n=-—00
where w|n] is the window function:
1 - N<n<N
wn] = == (10.12)
0 otherwise
Then, substituting Equation|10.11{into Equation|10.10}and rearranging gives:
N N
jwl\ 7 —jwn * jwm
Pxx (7)) = ]\}l_l;noo N T 1E n;Nx[n] e’ m;Na: [m] e’ (10.13)
1 N N
T * —jw(n—m)
= Jim o RZ:N mz_:NE [z[n] 2*[m]] e~ (10.14)
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v

-N

Figure 10.2: Region of summation for deriving the variance of the time-average.

It can be shown, through the following manipulatings, that in the limit this expression does indeed

simplify to [DTFT] of the [ACS]

To show this, first substitute the variable / = n — m, such that when m = +N, then { = n = N.
Since the summation is over integers, which means that 3.°(-) = $2¢(-), and noting that for
processes, E [z[n] z*[n — {]] = r,.[(] this means Equation|10.14| becomes:

n+N
Pyx (¢*) = lim 2N+1 ZWZNM eIt (10.15)

The region of summation is shown in Figure [I0.2] Changing the order of summation (as this is the
usual trick), to sum over / first, then it can be seen that ¢ varies from —2N to 2N, while n will vary
from max{—N, ¢ — N} to min{N, ¢ + N}. Hence, Equation|10.15|becomes:

min{N, (+N}
Pxx (¢) = lim Z S e (10.16)
N=eo 2N +1 {=—2N n=max{—N,{—N}
1 2N min{N, /+N}
Pxx (¢) = lim D raff e oo (10.17)
Noeo 2NV +1 {=—2N n=max{—N,{—N}

The second summation in the square brackets can be shown by, simple counting, to simplify to 2N +
1 — |¢|, and therefore:

2N
Pyx (%) = A}gnoo ON + 1 Z (2N 4+ 1 — |€]) 74a[€] 77° (10.18)
(=—2N
> 2N 1
= —Jwt ) —jwl
- ;_:oo el gz_;N on 1 elde (10.19)

Assuming the mild assumption that the autocorrelation sequence 7., [¢] decays sufficiently rapidly
such that:

dim Y (e[ = 0 (10.20)
(=—2N
then Equation [10.19]simplifies to:
Pyx (e?) = Z Tell] €794 (10.21)
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Hence, Pxx (eJWT) can be viewed as the average power, or energy, of the Fourier transform of a
random process at frequency w. Clearly, this gives an indication of whether, on average, there are
dominant frequencies present in the realisations of x[n].

— End-of-Topic 66: Introduction to the concept of the PSD —
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10.3 The power spectral density

[E)

Topic Summary 67 Definition and Properties of the [PSD New slide

Topic Objectives:
* Definition and Properties of the [PSD
* Dealing with periodic and non-periodic components in an [ACS|

» Examples of calculating [PSDk.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 20 : 15 min video 3% length
Read Handout Read page |364| to page |367| 8 mins/page
Try Example Try Examples [10.1{and Example[10.2 | 25 mins
Try Code Use the MATLAB code 10 mins
Practice Exercises | Exercise ?? 20 mins

€. Properties of the power spectral density

® P (') :w— R in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

P (e“T) 20

B P (e#) = Ppo(e?“*+27)); periodic with period 27

Dersn\’(w are

n:
reclf] s real and even ; §or ML*@’ZEJ’\@
2ea(€1¥) = Prale™) %:n function of w.

http://media.ed.ac.uk/media/l_yoe37jow

Video Summary: This video presents the formal definition of the PSD]of a[WSS|process,
and its inverse relationship, both through [DTFT pairs. The video presents the key
properties of the many of which are related to properties of the Fourier transform,
but also some key conceptual properties such as positivity, total power, and being a
real function. Several examples worked examples for calculating are presented,
including a detailed analysis of dealing with that have a periodic component, as
well as a non-periodic component.

The discrete-time Fourier transform of the autocorrelation sequence of a stationary stochastic process
x[n, (] is known as the power spectral density (PSD), is denoted by P, (e’*), and is given by:

Po(€) = rpull] €77 (M:3.3.39)
lez.
where w is frequency in radians per sample.
The autocorrelation sequence, r,, (], can be recovered from the by using the inverseDTFT:
1 i ) )
Tae [{] / P (e?) et dw, (€ Z (M:3.3.41)

T o

—Tr
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Sometimes the [PSD] is called the auto{PSDI to distinguish it from the cross{PSD| introduced in
Section m In the case that r,,[¢] is periodic, corresponding to a wide-sense periodic stochastic
process, then the power spectral density is defined as the discrete Fourier transform of the
autocorrelation sequence. This natural extension is easily obtained once the aperiodic-case is
considered in depth.

)

10.3.1 Properties of the power spectral density o

There are a number of properties of the power spectral density that follow from the corresponding New slide
properties of the autocorrelation sequence, and the discrete-time Fourier transform.

e P..(e’) : w— RT; in otherwords, the PSDlis real valued, and nonnegative definite. i.e.
Py (7)) >0 (M:3.3.44)

This property follows from the positive semi-definiteness of the autocorrelation sequence.

Py (€7%) = Py (e7“*27™); in otherwords, the is periodic with period 2.
o If z[n] is real-valued, then:
— 7y, [(] is real and even;
- P, (e/%) = P,.(e™7*) is an even function of w.
e The area under P,,(e’*) is nonnegative and is equal to the average power of z[n]. Hence:

1 K

5 Ppp(e7?) dw = 1,,[0] = E [Jz[n] [*] >0 (M:3.3.45)

Example 10.1 ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the [PSD] of a zero-mean
WSS process x[n] with autocorrelation sequence 7., [(] = a/l, —1 < a < 1.

SOLUTION. Using the definition of the [PSD|directly, then:

Pp(e?) = rgg[l] e (10.22)
LEL
=> alle ! (10.23)
LET
=3 (@) 3 (ae) -1 (10.24)
=0 /=0

Hence, by using the expressions for geometric series, the can be written as:

1 1

Jw) _ _ .
Pro(e) = b 7 — 1 (M:3.3.42)
1 —a?
— 10.25
1 — 2acosw -+ a? ( D)

which is a real-valued, even, and nonnegative function of w.
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I8

10.3.2 General form of the -

A process, x[n], and its corresponding autocorrelation sequence (ACS), 7,.[¢], can be decomposed V¢ s'ide

into a zero-mean aperiodic component, % [¢], and a non-zero-mean periodic component, ri) 4K

reall] = T + )¢ (10.26)

rx

Theorem 10.1 of a non-zero-mean process with periodic component). The most general
definition of the for a non-zero-mean stochastic process with a periodic component is given
by:
. . 27
Pyo(e7) = PO (%) 4 = kezlc PP (k) S (w — wy) (T:4.41)

The term P& (¢?) is the DTFT of the aperiodic component r%[¢], while P (k) are the discrete

Fourier transform (DET)) coefficients for the periodic component ri) [¢] assuming a periodicity of

length K, and where wy, = 2.

Moreover, it can be seen that Px(x) (e7*) represents the continuous part of the spectrum, while the sum

of weighted impulses represent the discrete part or lines of the spectrum.

PROOF. The non-zero-mean periodic component, rgﬂ)(l) can itself be decomposed using a discrete

Fourier transform:

(] Z k) e?xl (10.27)

v
where K = {0,..., K — 1}, and wj, = 22k. Thus, the[PSDJof X (¢), becomes:

P, (e7%) = P9 (1) ZZ k) elnt gmiwt (10.28)

ZGZ ke

As usual, change the order of summation:

) 1 )
_ pla)(piwy 4 2 () —jt{w—wr)
ke LeZ
= P (¢l ZP” (w — w) (10.30)
keIC

where Poisson’s formula, which can be derived by writing down the Fourier series for an impulse

train, is used:
o0

> §(t—nT) :% D et (10.31)

n=—o00 {=—00
where wy = 2%. Thus, by letting 7" = 27, and ¢ = w — wy, then:

[e.9]

o Y O(w—wp—2mn) = Y eI (10.32)

n=—00 {=—00

Since —27 < wy, < 2w, and Pm(ej‘“) is periodic in w with period 27, then it is sufficient to write for
|w| < 27, that:

o0

218 (w — wy) = Y eI (10.33)
l=—00 O
which can be substituted to give the desired result.
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Example 10.2 ( [Manolakis:2001, Harmonic Processes, Page 110-111]). Determine the of
the harmonic process introduced in the previous handout and defined by:

M
= Apcos(wn + ¢r),  wp #0 (M:3.3.50)

k=1

where M, {A;} and {w;}4' are constants, and {¢;}1! are pairwise independent and identically
distributed (. 1.d.)) random variables (RVk) uniformly distributed in the interval [0, 27].

SOLUTION. As shown in the previous handout, z[n] is a zero-mean stationary process, and [ACSt

M
1
raall] = = > [Agl? coswil, —o0 < £ < o0 (M:3.3.52)

2 k=1

Note that r,, [¢] consists of a sum of in-phase cosines with the same frequencies as in z[n]. By writing

Jwil —jwil
coswpl = % (10.34)

then Equation [M:3.3.52| may be written as:

raclll = 2 ST AP (5451 4 eint)

]
||M§

1

k ]wkﬁ |Ak‘2 —jwké
Z (10.35)

r'%sw

B
Il
—

’ k jwk€+ Z |A—k’|2 —]wifvf

tllﬁs

k=1 4 k=—1
Hence, the can be written as:
Texll] = i % eIt o0 < < 00 (10.36)
1 )
where the following are defined: Ay =0, A, = A_, and w_; = —wy.
Hence, it directly follows using the results above that:
P, (e?¥) = 27 ff: |Ak|25(w —wy) = T i | AR|?0(w — wy) (10.37)
: k=—M 4 2 k=—M ]

The harmonic process is predictable because any given realisation is a sinusoidal sequence with fixed
amplitude, frequency and phase. The independence and uniform distribution of the phase, however,
is strictly required to ensure the stationarity of the process z[n].

— End-of-Topic 67: Definition and examples of the PSD for WSS
processes —

Ofed 100!
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10.4 The cross-power spectral density

Topic Summary 68 Cross-Power and Complex Spectral Densities

)

New slide

Topic Objectives:
¢ Definition and Properties of the cross-power spectral density (CPSD)).
* Introducing the Complex- and Cross-Spectral Density Functions and their properties.
* Examples of calculating the complex-spectral density of a challenging

* Using tables of z-transforms.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 23 : 18 min video 3% length
Read Handout Read page[368|to page ?? | 8 mins/page
Try Example Try Example[10.3| 25 mins
Practice Exercises | Exercise ?? to ?? 80 mins

R @ Table of bilateral z-transforms

Notes 2] X (z) ROC

r—— e
2[n] =0,n <0 [(Fypmuln _ 2] >

=, R

DTFET dogsns

Ca h.»'w|_u,u >0, q— u[—n] =18 2| <1 éw’;b

== 1-2 inside oadrande

http://media.ed.ac.uk/media/1_ocukvbyi

Video Summary: This Topic extends the definition of the in two ways. First, it
considers the for considering the spectral characteristics of two-jointly stationary
processes. It takes the natural definition of being the [DTEFT of the cross-correlation
function. The video considers some relevant properties of the The Topic then
considers that, due to technical limitations of the [DTET] taking the bilateral z-transform
of the auto- or cross-correlation sequences is a more powerful technique. This is
defined as the complex- and cross-complex spectral densities. An example of the
complex-spectral density is calculated. Finally, a discussion of using z-transform tables
for taking inverse transforms is provided.

The cross-power spectral density (CPSD)) of two jointly stationary stochastic processes, z[n] and y[n],
provides a description of their statistical relations in the frequency domain. It is defined, naturally, as
the DTFT] of the cross-correlation, 7., [(] £ E [z[n] y*[n — {]]:

Py (7)) = Flray [0} =Y ryyll] e (M:3.3.56)

LeZ
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The cross-correlation 7, [¢] can be recovered by using the inverse{DTET

1 ™ . .
Tay ) / Py (1) e dw, (€R (M:3.3.57)

" or

—Tr

Since this integral is essentially a summation, then an interpretation that can be given to the
cross-spectrum is that P, (ej“T) measures the correlation between two at a given frequency
wo-

The cross-spectrum P, (ejWT) is, in general, a complex function of w.

Some properties of the and related definitions include:

1. P,y (¢’*T) is periodic in w with period 2.
2. Since 1, [(] = r;,[—/], then it follows:
Py (e7) = Py, (e™7) (M:3.3.58)
Thus, P,,(e’*) and P,,(e’*) have the same magnitude, but opposite phase.

3. If the process x[n] is real, then r,,[¢] is real, and:

Poy(e’) = Py (e77%) (10.38)

4. The normalised cross-correlation, or coherence function, is given by:

ny(ejw>
V Pro(€79)/ Pyy(€7%)

Its squared magnitude is known as the magnitude square coherence (MSC) function.

(M:3.3.59)

Lay (ejw) =

~ Pyy(e)?
T, (e/)]* = L . 10.3
‘ y(e )| Px:c(ejw)Pyy(ejw) ( %

If y[n] = z[n], then ', (€’*), corresponding to maximum correlation, whereas if [n] and y[n]
are uncorrelated, then r,,[¢(] = 0, and therefore I, (¢/*) = 0. Hence:

0 < |Ty(e™))? <1 (M:3.3.60)

10.5 Complex Spectral Density Functions

The analysis of discrete-deterministic signals is also performed through the the z-transform and,
therefore, in addition to using the Fourier transform, it is also very important to analyse stationary
random processes using this transform; it is a perfectly natural extension.

The second moment quantities that described a random process in the z-transform domain are known
as the complex spectral density and complex cross-spectral density functions. The and [CPSD
functions discussed previously can be considered as special cases of the complex spectral density
functions when the latter are evaluated on the unit circle.
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If the sequences 7,,[¢] and r,,[(] are absolutely summable within a certain ring of the complex
z-plane, then their z-transforms exist. Hence, 7, [/] = P, (2) and 1y, [/] = Py, (2), where:

Ppyp(2) =Y rull] =7 (M:3.3.61)
LeZ

Poy(2) =Y rayll] 2 (M:3.3.62)
LET

Note that these are bilateral z-transforms. If the unit circle, defined by z = €’“ is within the region of
convergence of these summations, then:

Pou(€) = Pop(2)] e (M:3.3.63)
Py (e7) = Poy(2)]_s0 (M:3.3.64)

Example 10.3 (Interleaved Example). Find the complex spectral-density of the sequence:

E
rp] = {7 €0, even} (10.40)
0 for n odd

SOLUTION. Writing the z-transform, noting that the all odd-values are zero:

P(z)= Y rlf] =" (10.41)
f=—00
= > b+ 1] 24 N pf2r,] 27 (10.42)
lo=—00 , {ezfoo ,
Oddzrms Ever??erms
= Z al | 2t = Z altel =2t (10.43)
be=—00 le=—00

Splitting this into two further summations, as previous done with an earlier example:

0 00
P(z)= Y afez 4> a2 -1 (10.44)
Le=0

le=—00
_ f: (a22)" + fj (%)Z —1 (10.45)
Le=0 Le=0

Finally, applying the geometric progression formula y_,°  r* = 1—; gives the desired result:

1 1
P(Z):l—az2+1—az—2_1 (10.40)
1 —2
- 4+ 2 (10.47)

1—az2 1—az?2
Note that this could have, equivalently, been written as:

Ply——2 1 (10.48)

T 1 a2 1 a2
l—az l1—az 0
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The inverse of the complex spectral and cross-spectral densities are given by the contour integral:

_ 1 -1
rezll] = o j{cpm(z) 27 dz (10.49)
1
Tayll] = o j{c P, (2) 2"t dz (10.50)

where the contour of integration C' is to be taken counterclockwise and in the region of convergence.
In practice, these integrals are usually never performed, and tables, instead, are used.

Some properties of the complex spectral densities include:

1. Conjugate-symmetry:

Ppo(2) = P;,(1/2") and Py (2) = P, (1/2") (10.51)

2. For the case when z(n) is real, then:

Poo(2) = Pop(z7h) (10.52)

The possible existence of lines in the function due to a periodic component of the random
process, as discussed in Section[10.3.2] poses some mathematical problems in defining the complex
spectral density function since the z-transform does not exist. A similar approach to that in
Equation is used here, and the complex spectral density function is written as:

Pyy(z) = P9 (z) + 20 P®(k)6 (2 — *) (10.53)
kel

where P\ (z) corresponds to the aperiodic component of the autocorrelation function, and the second

summation term denotes the line spectra.

10.6 Table of bilateral z-transforms e
The bilateral z-transform is defined by the following pairs of equations: New slide
X (2) & Zlz[n]] = i z[n] 27" (M:2.2.29)
z[n] = i j{ X (2) 2" tdz (M:2.2.30)
2rj Jo

In the following table, it is assumed that |a| < 1. It is important to note that this is a crucial condition,
as it will distinguish signals that exist only for n > 0 and those for z < 0. To use these tables, it
is crucial to match an expression with an identity exactly, otherwise the incorrect inverse transform
might accidentally be used.

For the purposes of the table, recall that u[n] is the discrete-time step function given by:

1 n>0
uln] = {o Z o (10.54)

The region of convergence (ROC) is also shown for completeness, although it is usual to assume that
z is only considered within the ROCl Note that if the signal z[n] = 0 for n < 0, it is known as a
causal sequence, and if x[n] = 0 for n > 0, it is known as an anticausal sequence.
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\ Notes x[n] X (2) \ [ROC| \
1
z[n]=0,n<0 uln] 1—2*152i1 lz| > 1
1
=0,n>0 - <1
o] = 0.1 u[n] . 4
1
z[n] =0,n<0 a" uln| = zia |z| > |al
1
a az
—0,n<0 muln — 1 = >
x[n] n a" uln — 1] e |z| > |al
. I 1
z[n] =0,n>0 a " u[—n] o =T |zl<m
. az _a 1
zln] =0,n>0 a " ul-n — 1] TR |zl<m
-1
zn]=0,n<0 na" u[n] 4 5 |z| > |a]
(1 —az"1)
1
zln]=0,n>0 —na~" u[—n — 1] Lz 2] < —
(1—az2) |al
1 N az™?
n ) — g2
See note [3 altl ne {0, even} L=z orl 4 lalz < |2| < T
0 for n odd ) jaf>
l1—a
(1—az?)(1—az"?)
az az™!
|2|+3 1—a22+1—az*2 ! 1
al21™2  forn odd or la]? < |z| < —%
0 otherwise jal>
a(l—a)(z+27")
(1—az?)(1—az"?)
1 az
1 —az™! * 1 —az 1
See notes [1}[3 al”! la| < |2] < —
or ’CL|
1 — a?
(1—az)(1—az™!)
_ 1
See note |2 n|al™ az”! L 9® la| < |z] < —
(1—az1)? (1—az2)’ o]
Notes: 1. This identity follows since a”! = a™ u[n] + a™™ u[-n — 1].

n

2. Similarly, note that |n|a™ = na™ u[n] — na=" u[-n — 1].

3. Note other similar expressions result, as shown below.

A variety of equivalent expressions can result from some simple manipulations; thus, other tables of
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z-transforms may appear to list different results, but are actually equivalent. Some examples include:

o] = {a’g’ n € {0, even}

0 for n odd
EE N az"? _{ az? +1}+{ 1 _1}
T l—az2 1l—az?2 |1-—az? 1—az?
az? 1

:1—az2+1—az*2

and

x[n]:aln‘é ! + @ _ ;—1 + 4z +1
l—az! 1—az 1—az! 1—az

az"! 1

:1—a2—1+1—az

The fact that there are so many equivalent expressions means that sometimes it can be difficult to find
the exact transform relation in tables. The particular form of the z-transform that needs to be inverted
can vary depending on how it is calculated.
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Linear Systems with Stationary Random Inputs

Considers the concept of applying a stochastic signal to the input of a system and determining
the resulting output. Looks at the special case of linear time-invariant (LTI) systems with
stationary inputs. Analysis by looking at the input and output statistics, as well as the input-output
joint-statistics. Discusses system identification using cross-correlation. Provides examples for
systems with rationale transfer functions (using time domain analysis by solving difference equations
and frequency domain analysis).

376
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11.1 Systems with Stochastic Inputs

Topic Summary 69 Introduction to System Response to Random Signals

Topic Objectives:
* Concept of the output of a system to stochastic input.
* Overview of methods for Calculating Input-Output Statistics.

* Introduction of Monte Carlo calculation for Input-Output Statistics.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 18 : 19 min video 3% length
Read Handout | Read page[375[to page[377| 8 mins/page
Try Example | Try Example|1 1.1jusing MATLAB 25 mins

ng the input-output statistics for a random

For full lecture notes, see PETARS [ > UESrat =
-ourse, Part 3 through a deterministic linear system.

c a
“Linear System
Randor

http://media.ed.ac.uk/media/1_dak8253r

Video Summary: This Topic introduces the concept of calculating the stochastic process
at the output of a known deterministic system, given a stochastic process at the input
of the system. This concept is approached by considering the operation of the system
on each realisation of the input stochastic process, and calculating the statistics over the
resulting ensemble at the output. The video discusses why it is necessary, in this course,
to restrict the analysis to known linear time-invariant (CTI) systems with wide-sense
stationary (WSS) inputs. An overview is provided for the four different methods for
calculating the input-output statistics, namely in the time-domain or frequency-domain,
and either using the system impulse-response or the system-difference equation. Finally,
an example of simulating the ensemble statistics through a Monte Carlo experiment is
shown.

Signal processing involves the transformation of signals to enhance certain characteristics; for
example, to suppress noise, or to extract meaningful information. This handout considers the
processing of random processes by systems, and in particular linear systems.

What does it mean to apply a stochastic signal to the input of a system? This question is an interesting
one since a stochastic process is not just a single sequence but an ensemble of sequences.

If the system is a general nonlinear possibly time-varying system, then one approach of expressing
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T()
x(n)=x(n,)—®»  Systemor  ——»y(n)=y(n, )
Transformation

x(n, G) y(n, G)

n
@
n
£ )
y(n, G) :
Abstract
n sample space, S n

Figure 11.1: A graphical representation of a random process at the output of a system in relation to a
random process at the input of the system.

Abstract
sample space, S

the relationship is as follows: Given a stochastic process z[n, (], assign according to some rule to
each of its realisations z[n, (x| a function y[n, (;|. Thus, another process has been created in which:

yln] = T [x[n]] (1L.1)

whose realisations are the functions {y[n, (x]}. This process y[n| so formed can be considered as the
output of a system or transformation with, as its input, the process x[n]. The system is completely
specified in terms of the transformation function (or operator) 77; that is, the rule of correspondence
between the samples of the input x[n] and the output y[n].

In principle, the statistics of the output of any system can be expressed in terms of the statistics of the
input. However, in general this is a complicated problem except in special cases of particular types of
signals or particular types of systems. A special case is that of known-deterministic linear systems,
and this is considered in the next section. In particular, if the input is a stationary stochastic process,
and the system is linear time-invariant (LCTT), then the statistics are even simpler. Moreover, it leads to
a slightly simpler and intuitive explanation for the response of the system to the input. There are other
systems that can be analysed, but due to time constraints, they are not considered in this course. For
more information see, for example, [Papoulis: 1991, Chapter 10]. The case of random signals going
through random systems is of great interest, but also beyond the scope of this course.

11.2 Methods for Calculating Input-Output Statistics

There are four different methods for calculating the input-output statistics for a [WSS] stochastic
process passing through a known deterministic linear system. The techniques build on the theory
that is already well understood in signals and systems theory, and therefore is should be familiar.
The techniques involve either a time-domain solution, or a frequency-domain solution. In the
time-domain, the problem can be solved either using convolution, if the system impulse response
is known, or by solving difference equations if that description of the linear system is available.

Similarly, in the frequency domain, the transfer function approach can be used in which either the
transfer function of the impulse response is known, or the rational transfer function of the difference
equation describing the system is available. These four different methods are summarised in the table
below.
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] \ Time-domain \ Frequency or transform domain ‘

| ‘ [CTT with stationary input |

Impulse Manipulate convolution Take z-transform
response: y[n] = h[n] x z[n] = of new convolution:
rll] = 1l x Fis () = H2) P 2]
Notes: Solve convolution summation; Invert z-transform;
Use graphical method. Use partial fractions, tables,...
Difference Manipulate system Take z-transform
equation: difference equation: of new equation:
Q P
Z aprys[{ — q] > by
= p=0
=0 P wa(z):PM(z)Q
anpz—1
= Z bprxm[g - p] qz::() P
p=0
Notes: | Guess, e.g. 7y.[(] = (ol + )" Invert z-transform;
Recursive substitution. Use partial fractions, tables, ...

Example 11.1 (Typical Question). A real-valued discrete-time random process x[n| consists of
independent and identically distributed random variables each with uniform density on the
interval [0, 6].

The process x[n] is applied to a linear time-invariant (CTT) system with impulse response:

Mm:{@v,nzo

0, n <0

The output of this linear system is denoted as y[n].

1. Calculate the output autocorrelation function 7, [¢].

2. Suppose the process x[n] now has a Weibull distribution with unit mean and variance of
3. Explain how your previous result might change, justifying your answer.

SOLUTION. You can try and answer this question after studing the rest of the handout!

— End-of-Topic 68: Summary of methods for calculating input-output Of40
statistics — O]
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11.3 LTI Systems with Stationary Inputs —

st

Topic Summary 70 Time-Domain Analysis of Response to Random Signals using the System y,,, giz
Impulse Response

Topic Objectives:
* Time-domain relationships for input-output statistics in terms of impulse response.
* Example of calculations for a typical problem.

¢ Observation of how [WSS| processes of arbitrary autocorrelation sequence (ACS) can be
obtained by driving a[CTI system by white Gaussian noise (WGN).

Topic Activities:

| Type | Details | Duration | Progress
Watch video 32 : 23 min video 3x length
Read Handout Read page[378|to page[384| | 8 mins/page
Try Example Try Example |1 1.2| 30 mins
Practice Exercises | Exercises ?? and ?? 40 mins

). Input-output Statistics of a LTI System

1,0 =0 ut- 1 0| 1

James R. Hoj -1 ' 15 p
James.Hopgoo:

Example (Simple example). The LTI system is driven by a process
with mean y, and covariance sequence 7., [{] = ¢26[¢]

SOLUTION. Output autocorrelation In a similar manner:
T £
[l = oull] + |yl 2 SR
Tl 4 | £ Fr<n

e generated by

http://media.ed.ac.uk/media/1_8i50x9z0

Video Summary: This video looks at the method for calculating the output statistics
for a [LTI system in response to a input using a time-domain method given
the system impulse response. The Topic begins by highlighting the conceptual idea
that the expectation of a linear operator or system is equivalent to the linear operator
applied to expectations. This leads to the general idea that the output statistics are the
convolution of the impulse response of the system with the input statistics. The specific
details are presented, including calculating the mean at the output, the output-input
cross-correlation, the output cross-correlation, and the equivalent covariance results.
A detailed and typical example is presented, demonstrating the different stages of the
calculations. Finally, the relationship of these results to the application of stochastic
signal modelling is mentioned, and this will be addressed in detail in a later topic.

The notation:

y[n] = L[z[n]] (P:10-76)
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will indicate that y[n] is the output of a linear system with input z[n]. This means that for X" random
processes {zx[n]} | and K scalar values {a; }5_|, then

yln] =L [Z Qg xk[n]] = Z ay L[zg[n]] (P:10-77)

Since each sequence (realisation) of a stochastic process is a deterministic signal, there is a
well-defined input signal producing a well-defined output signal corresponding to a single realisation
of the output stochastic process:

yln,¢l= > hlk] z[n — k(] (M:3.4.1)

k=—00
This is the familiar convolution integral for [CTT| systems, and the impulse response of this system is
given by:
hin] = L[o[n]] (P:10-78)
If the sum in the right hand side of Equation exists for all ¢ such that Pr (¢) = 1, then
it is said that this sum has almost-everywhere convergence with probability of 1.

Theorem 11.1 (Input-output realisations for a[LTI). If the process x[n,(] is stationary with
E [|z[n,(]|] < oo and if the system is bounded-input, bounded-output stable, such that
> |h[k]| < oo, then the output y[n, (] of the system in Equation converges absolutely
with probability 1, or:

y[n, (] = Z hlk] xz[n — k,(] forall( € A, Pr(A) =1 (M:3.4.2)
k=—0c0 <>

* A complete description of y[n,(] requires the computation of an infinite number of
convolutions, corresponding to each value of (.

* Thus, a better description would be to consider the statistical properties of y[n, (] in terms of
the statistical properties of the input and the characteristics of the system. For Gaussian signals,
which are used very often in practice, first- and second- order statistics are sufficient, since
higher-order statistics are completely specified by these first two moments.

To investigate the statistical input-output properties of a linear system, note the following fundamental
theorem:
Theorem 11.2 (Expectation in Linear Systems). For any linear system,

E [Llz[n]]] = LE [z[n] (11.2)

In other words, for example, the mean /,[n| of the output y[n] equals the response of the system to
the mean p1,.[n] of the input:

py[n] = Ll [n]] (11.3)

However, the definition extends to other statistics as well.

PROOF. This is a simple extension of the linearity of expected values to arbitrary linear operators.

This result will be used throughout the next section, where possible. Note, however, that while this
result is very useful, it is often more practical to derive most equations from first principals.
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. LTI System Output Sienal
Input Signal —» Impulse Response —» y pli ena
x[n] = x[na C] /’l[l’l] y[l’l] —y[l’l, C]

Figure 11.2: A linear time-invariant (CTT) system.

e

11.3.1 Input-output Statistics of a [LTI System e

If a stationary stochastic process x[n] with mean value /i, and correlation 7, [¢] is applied to the input ¥ /4

of a[CTT system with impulse response h[n] and transfer function H (¢’*), then the:

Output mean value is given by:

= Jia Z hlk H () (M:3.4.4)

k=—o00

This is easily shown by using the linearity property of the expectation operator:

> hlk)x[n — k]] = > h[KE [z[n — k] (M:3.4.4)
k=—o0 k=—o00
and since the process x[n| is stationary, then E [z[n — k]| = ., giving the desired

result. Since y, and H (e’%) are constant, j, is also constant. Note that H (e?°) is the
“direct current” (DC)) gain of the spectrum.

Input-output cross-correlation is given by:

Tayll] = B[] % 740 [( Z R (k] 7400 — K] (M:3.4.5)

k=—00

This can be shown by writing:

reyll] = E [z[n] v*[n — )] = E [z[n + €] y*[n]] (11.4)
—E |z[n+ /] Z [k — k] (11.5)
P—

= i WK E [z[n + € *[n — K] (11.6)

k=—00
- f: B (k] Tall + K] (11.7)

—

which by making the substitution m = —F, gives:

Tayll Z W [=m] T4l — m] = B*[—€] % 74 [(] (11.8)

m=—0o0
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D)
0 W D )

Figure 11.3: An equivalent[LTT system for autocorrelation filtration.

Similarly, it follows that r,,[¢] = h[{] * r,,[(], and is arguably easier to prove:

ryall] = B [y[n] 2*[n — /] (11.9)
> bk aln — k] 2*[n — (] (11.10)

= i h[k]E [z[n — k] 2*[n — {]] (11.11)

= Z hlk] 1ol — k] = h[€] % 135 [(] (11.12)

Since r,,[¢] depends only on the lag ¢, then the input and output processes of a[BIBO|
stable linear time-invariant system, when driven by a[WSS|input, are jointly WSS|

Output autocorrelation is obtained by post-multiplying the system-output by y*[n — ¢] and taking

expectations:
ryyll] = E [y[n] y*[n — {]] (11.13)
Z hlk] z[n — k] y*[n — (] (11.14)
k=—o00

and applying the linearity of the expectation operator, it follows:

ryyll] = Z hlk] E [x[n — k] y*[n — €] = h[l] * 174 [{] (M:3.4.8)

k=—0o0
Substituting the expression for r,, [(] = h*[—{] * ., [(] gives:
Tyyll] = 0] * W [—0) % 1y [€] = Tanll] * 722[C] (M:3.4.10)

where rp,[¢] = 7},[—(] is the autocorrelation, for want of a better phrase, of the
system impulse response:

rhnll) = R[] * h*[— Z h[n] h*[n — (] (M:3.4.11)

n=—oo

where £ means defined as. If the relationship in Equation [M:3.4.11|is not apparent,
it can be proven by writing g[¢|] = h*|—/¢], such that the standard convolution formula
gives:

ranll) & B[ *gll) = Y hln] g[t =] (11.15)

n=—oo
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and, since g[¢{ —n| = h*[-({—n)] = h*[n —{], Equation M:3.4.11| follows.
However, this equation can also be written in an alternative form by making the
substitution m = n — [ such that when n — 400, m — 400, and EquationM:3.4.11
becomes:

ran[l] = h[0] * h*[—(] = i hlm + €] h*[m)] (M:3.4.11)

m=—0o0

Both of these forms of the convolution ry,,[¢] = h[f] * h*[—{] are equally valid. It is
straightforward to show that rp,,[¢] = 7}, [—¢] by writing:

rin[=0 = ([0 * K*[+£])" = h[—€]" * h[-+{] = rp[{] (11.16)

Since 1, as given by Equation is constant, and r,,[¢] depends only on the
lag ¢, the response of a[BIBQstable linear time-invariant to a stationary input is also
a stationary process. A careful examination of Equation shows that when a
signal x[n] is filtered by a LTIl system with impulse response h[n], its autocorrelation
sequence is filtered by a system with impulse response equal to the autocorrelation
of its impulse response. This idea is illustrated in Figure[T1.3]

Output-power of the process y[n] is given by r,,[0] = E [|y[n]|*], and therefore since r,,[¢] =

ranll) % re [l

[e.9]

Py = runll) # realllleco = D 7unlk] = (AL1D)

k=—o0

Noting power, P,,, is real, then taking complex-conjugates using 5, [—¢] = ry,[(]:

o (e}

Po=3 rinlk] rualk] = i P[0 Y rasln + K] hlk] (11.18)

k=—o00 n=-—o00 k=—o00

This last step can be shown as follows:

P, = Z Thi(B) Tee (k) = Z { Z h*(n) h(n—k)}rm(n) (11.19)

k=—o00 k=—oc0 \n=—o0

Hence, by rearranging the order of summation, and bringing the h*[n| forward, this
gives:

= Y h*(n) > h(n—k)re(n) (11.20)

n=-—oo k=—00

Then, by letting m = n — k, the desired result is obtained.

Output probability density function It, in general, it is very difficult to calculate the [pdf] of

the output of a[CTTl system, except in special cases, namely Gaussian processes.

If x[n] is a Gaussian process, then the output is also a Gaussian process with mean and
autocorrelation sequence given by Equation and Equation above.
Also, if z[n| isfl. 1. dl the[pdf]of the output is obtained by noting that y[n] is a weighted
sum of independent random variables (RVk). Indeed, as shown in earlier handouts,
the [pdf] of the sum of independent is the convolution of their [pdff or the product
of their characteristic functions.
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R h(n) = p'u(n)
x(n) = x(n, §) W) =y(n, ©)
= T

h(”) e

1o(D) = 6.(p) u(-D) Vo (=)

/

Figure 11.5: The input-output cross-covariance sequences for [Therrien:1991, Example 5.1, Page
229].

Finally, before concluding this section, note that the covariance sequences (or functions) is just the
correlation sequences for the random process with the mean removed. As a result, the covariance
functions satisfy a set of equations analogous to those derived above.For completeness, they are listed
below:

Yy €] = €] * Ya[{] (T:5.18)
Vayll] = 0[] * Y[ (] (T:5.19)
Vyyll] = B * Vay [€] (T:5.20)

= h[0] % B [—{] % Y[ (] (T:5.21)

The following example illustrates the application of these results.

Example 11.2 (Simple example [Therrien:1991, Example 5.1, Page 229]). TheLTIlsystem shown
in Figure is driven by a process with mean i, and covariance sequence 7, [(] = o26[(]; note that
this input process is white noise with an added nonzero mean.

Calculate the mean, autocorrelation and autocovariance sequences of the output, y[n], as well as the
cross-correlation and cross-covariance functions between the input and the output.

SOLUTION. Each of these functions may be calculated using the equations listed in this section.
Hence:

Output mean value First, calculate the mean. Using Equation M:3.4.4] then:

fy =tz Y h[k] Zuprkzlli—xp (11.21)
k=0

k=—00

Input-output cross-covariance Since the input and the output both have nonzero mean, then it is
easiest to first calculate the auto- and cross-covariance functions, and then use these
to find the auto- and cross-correlation functions.

Thus, the output-input cross-covariance is given by Equation [I:5.18]

Yuell) = W 1sll) = (oLull)) 5 (02010) = o20ull)  (1122)
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and therefore the input-output cross-covariance is
Yoyll] = Vya[—€] = 02 (p") " u[~1] (11.23)

Output autocovariance Next, using Equation [I:5.20} then:

Yyyll] = hlL] * vayll Z hk] Yayll — K] (11.24)

k=—00
The input-output cross-covariance sequence, 7,,[¢], is plotted in Figure along
with 7, [¢ — k] as a function of k.
Hence, if ¢ > 0 it follows

Youll) =) hlk] eyl = K] =Y pFal(p) (11.25)
k=t k=t
Substituting m = k — ¢, such that when k = {¢, oo}, then m = {0, oo}, and so:
Yl = o2 Z oo™ (p)" (11.26)
o2t
= fz o)™ = |2,€>0 (11.27)

If ¢ < 0, then the summation is slightly different:

Youll Z pr a2 (pr) R (11.28)
*\—~
fz 10?) 72 (p |)|2,£§0 (11.29)
p
Input-output cross-correlation This can now be calculated using the relationship:
Tayll] = Vay[] + a 113, (11.30)
= 02(p") "ul~0) + e Ha (11.31)
— p*
2 —¢ |,U:E’2
= 2 (p") " ul ] + (1132)
—p

Output autocorrelation In a similar manner, the autocorrelation of the output is given by:
2

o Jrer ] 20
Tyyll] = vyl + |1y|” = o2 ()~ ; (11.33)
T T, =0 O

Note that these results show that a process with the exponential correlation function can always be
generated by applying white noise to a stable first-order system. More generally, in the next handout,
it will be seen that wide-sense stationary of arbitrary autocorrelation sequence can be obtained by

driving a[LTI system by

— End-of-Topic 69: Calculating input-output statistics in the
time-domain with the system impulse response —

m
.4
e 1]
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Deterministic
__inputx[n] | Unknown LTI | ]
system, /[n]

Figure 11.6: What signals might be used for System Identification?

11.3.2 System identification by cross-correlation

)

Topic Summary 71 Application of Cross-Correlation to System Identification New slide

Topic Objectives:
* Concept of the output of a system to stochastic input.
* Overview of methods for Calculating Input-Output Statistics.

* Introduction of Monte Carlo calculation for Input-Output Statistics.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 14 : 24 min video 3% length
Read Handout | Read page [385|to page 387 8 mins/page
Try Example | Try Example|1 1.3|using MATLAB 10 mins

http://media.ed.ac.uk/media/l_e6662yx1l

Video Summary: This video introduces the important signal processing application
of system identification; identifying the system impulse response or transfer function
through measurements. The video highlights the advantages and disadvantages of the
three key deterministic approaches, using as the input an impulse, or step function, or
harmonic input. A fourth method which relies on a stochastic input is then presented,
namely driving a system with It is then shown, using the theory presented
earlier in the course, that the cross-correlation between the input and output is the
impulse response. The sample cross-correlation is highlighted as a way of estimating
the cross-correlation from a single realisation of the random process, where ergodicity of
the output has been assumed. Finally, as simple exam is implemented in MATLAB.

There are three key methods from our deterministic signal analysis for system identification:
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White noise input y[n] =y[n, (] r. [l =hll]
x[n] = x[n, C] Unknown LTI Cross-
system, h[n] correlate
SUEl °
x[n] = x[n, C]

Figure 11.7: System identification by cross-correlation.

Impulse A simple input, but difficult to generate. The output is y[n] = h[n], the system
impulse response.

Step input A simple to generate signal, with the output y[n] = > ;_, h[k] being the step
response. The impulse response is obtained by taking the difference sequence at
the output (equivalent to differentiating).

This is problematic, as the difference signal can lead to errors when there is a small
amount of noise in the signals.

Harmonic input A simple to generate signal, z[n] = cos wgn, leading to the output:
y[n] = |H (¢/**)] cos (won + arg H (¢/“°)) (11.34)

By sweeping across frequencies, the magnitude and phase response of H (/) can be
calculated. The inverse-discrete-time Fourier transform (DTET) can then be used to
reconstruct the impulse response, A[n].

This method is potentially very accurate, but equally it is very slow as a result.

The input-output cross-correlation of a[[TTlsystem is the basis for a classical method of identification
of an unknown linear system.

The system is excited with a[WGNJinput with
raall] = 6] (11.35)
Since the output-input cross-correlation can be written as:
Tyall] = h[l] * ryy ] (M:3.4.6)
then, with 7., [(] = §[¢], it follows:
ryel] = h[l] * §[¢] = h[{] (11.36)

Hence, the impulse response of an unknown [CTT| system can be estimated by exciting the system with
and evaluating the input-output cross-correlation.

If the discrete system represents a sampled continuous system, this method of estimating the impulse
response out-performs an estimation based on simply driving the system by an impulse since:

1. it1is easier to generate an approximation to white noise than to generate an approximation to an
impulse, since the latter must have finite energy in an almost zero-width pulse;

2. application of an impulse to a physical system requires driving it very hard, albeit for a very
short time, and may cause damage. Driving a system with white noise is less traumatic. As an
example, consider estimating the acoustic impulse response (AIR) of a concert hall or office;
one method of generating an impulse is to fire a gun and, obviously, this will damage the concert
hall, which is less than desirable.
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Figure 11.8: The theoretical impulse response h[n] = ()" u[n] and the time-averaged estimate of

the cross-correlation sequence Ry, [(].

As the input or excitation process is[WGN] then the output is WSS, and in many cases will be ergodic.

Hence, the cross-correlation (and therefore system impulse response) can be estimated from a single
realisation using the sample cross-correlation function:

N—1—]i|
R 1
Fall] = < >yl A+ xln], (<N (11.37)
n=0
1 N—1—|¢|
fg’ﬂ[ﬁ]:m >yt zn], [0 <N (11.38)
n=0

It is simple to generate an example in MATLAB.

Example 11.3 (Low-pass filter). A system is described by y[n] = 2y[n — 1] + z[n], although this is
not known to the observer initially. By driving the system with calculate the impulse response

of the system through numerical simulation.

SOLUTION. See the MATLAB code on LEARN, to obtain the numerical result shown in Figure[T1.§]

— End-of-Topic 70: Application of Cross-Correlation to System :
Identification — Dpear
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x(n) = x(n, ) LTV system: y(n)=y(n, Q)
h(n, k)

Figure 11.9: General linear time-varying (LTV)) system with nonstationary input; the impulse
response h[n, k] is the response at index n to an impulse occurring at time index k.

11.4 [LTVISystems with Nonstationary Inputs

Topic Summary 72 Analysis of linear time-varying (LTV]) systems and other special cases

B

New slide

Topic Objectives:

* This topic is not currently examinable.

It is also possible to analyse a general linear system that is not necessarily time-invariant, as shown in
Figure [TT.9} such a system is called linear time-varying (CTV).

The input and output are related by the generalised convolution:

y(n) = i h(n, k) z(k) (T:5.1)

k=—o00

where h(n, k) is the response at time-index n to an impulse occurring at the system input at time-index
k. The mean, autocorrelation and autocovariance sequences of the output, y(n), as well as the
cross-correlation and cross-covariance functions between the input and the output, can be calculated
in a similar way as for [CTT systems with stationary inputs. It is left as an exercise to the reader to
derive these, but the results are summarised in the next section.

11.4.1 Input-output Statistics of a [LTV| System

It is important to note that the input-output statistics of a[LTIsystem with a stationary input are simply
special cases of the following results. Thus, it is perhaps preferable to remember these more general
results and simplify them as necessary.

Output mean value is given by

pmy(n) = > h(n, k)pa(k) (T:5.2)

k=—o00

This can be written as:
tiy(n) = Llpg(n)] (P:10-80)

Output-input cross-correlation is given by
Tye(n, m) = Z h(n, k) ry.(k, m) (T:5.5)
k=—0o0

and the input-output cross-correlation is:

Tay(n,m) =1, (m,n) (T:5.4)
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x(n) = x(n, ) LTV system: y(n)=y(n, Q)
h(n, k)

rn,m) rn,m)

z(n) = z(n, C)

Figure 11.10: Cross-correlation with respect to a third random process.

Output autocorrelation is a similar form, given by:

o0

ryy(n,m) = > h(n, k) rey(k,m) (T:5.3)

Output-input cross-covariance has an identical form to that for the input-output cross-correlation

functions:
e (1,m) = 7y, m) — g1, () 5 (m) (11.39)
= > h(n,k) Yaalk,m) (T:5.9)
k=—0o0
and
Yye (R, ) = 7 (M2, 7) (T:5.8)
Output autocovariance is given by:
Yoy (1, m) = 1y (0, m) — piy(n) gy (m) (T:5.6)
= > h(n, k) yay(k,m) (T:5.7)
k=—o0

Note that if the impulse response of the system has finite support, in the sense the region over which
it has non-zero values is a well-defined finite region, then it is possible to represent the correlation
functions and the impulse response function in matrix form:

R,, = HR, H" (11.40)

Correlation matrices were introduced in an earlier handout.

I8

11.4.2 Effect of Linear Transformations on Cross-correlation -

Another situation worth considering is the cross-correlation with respect to a third random process, V" 5

as shown in Figure [IT.10]

A random process z[n] is transformed by a[LTV] system to produce another signal y[n]. The process
x[n] is related to a third process z[n], and r,.[n, 1o is known. It is desirable to find r, . [n1, no]. The
response of the CTV]system to z[n] is:

yln] = hln, k] x[k] (T:5.22)
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Hence, multiplying both sides by z*|m] and taking expectations:

ryzln,m| = Z hin, k] vy [k, m] = hln, k] * r.,[k, m]
keZ
If the system is [CTT| then this simplifies to:
rye[l] = h[E] rou [l — K] = h[(] %7, (0]

keZ

(T:5.24)

(11.41)

— End-of-Topic 71: Analysis of LTV systems and other special cases —

EHE
EI%.
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Ie

New slide

11.5 Time-Domain Analysis with Difference Equations

Topic Summary 73 Difference Equation Analysis of Input-Output Time-Domain Statistics

Topic Objectives:
* Revising the difference-equation formluation of linear systems.
* Deriving the input-output statistics in terms of the difference equations.

* A worked example of solving the difference equations for a first-order system.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 20 : 14 min video 3x length
Read Handout Read page[391|to page[394| | 8 mins/page
Try Example Try Example |1 1.4| 25 mins
Practice Exercises | Exercise ?? 60 mins

http://media.ed.ac.uk/media/1l_wmwxloel

Video Summary: This topic considers extending previous topics on calculating the
input-output statistics of a [CTTl system in response to a process at the input,
when the [CTT system is described by a difference equation. The video begins by
reviewing the difference-equations description of linear filters, and different possibilities
for manipulating the system. The video proposes a single approach by showing that
the input-output statistics satisfy the same difference equation that describes the system.
Therefore, through solving this difference equation, the desired statistics can be obtained.
A detailed example is then provided for a first-order linear system.

A mathematically elegant analysis of stochastic systems comes about when a [LTI system can
be represented by difference equations. This will be particularly useful in the next handout on
linear signal models. Although the results of the preceding sections apply to these systems, the
difference equation approach offers an alternative representation of the results obtained with the
impulse response function, that can sometimes be quite useful and important. It is possible to use
a combination of methods, such as taking the transfer function of a difference to find the impulse
response, and then use convolution.The purpose of the difference equation approach is to do the
calculations in a single approach.

June 28, 2021 — 08 : 40




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton67'){ocgs[i].state=false;}}

http://media.ed.ac.uk/media/1_wmwxloe1

394 Linear Systems Theory
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Figure 11.11: Difference-equation description of a LTIl system.

Consider a[CTT system that can be represented by a difference equation:

P Q
y[n] = —Zapy[n—p]—i—qux[n—q} (11.42)
p=1 q=0

which is often written in the more compact form:

Q

Zapy[n—p] :qux[n—q] (11.43)

p=0 q=0

where ag = 1. Assuming that both [n] and y[n] are stationary processes, such that E [z[n — p]] = p1,
and E [y[n — ¢]] = p,, then taking expectations of both sides gives, after a little rearrangement:

Q
- P
1+ Zp:1 ap

Without a priori assuming stationarity, then multiplying the system equation throughout by y*[m] and
taking expectations gives:

Iy o (11.44)

P Q
Zaﬂyy[n—p,m] = qumy[n—q,m] (11.45)
p=0 q=0

Assuming stationarity, and setting ¢/ = n — m, this simplifies to:

P Q
> apryll —pl = byrayll — g (11.46)
p=0 q=0
Similarly, rather than multiplying throughout the system equation by y*[m], instead multiply though

by x*[m] to give:

P Q
Zaprygc[n—p,m] = qurm[n—q,m] (11.47)
q=0

p=0
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and again assuming stationarity, this simplifies to:

P

> apryll—pl = Zb Taall — (11.48)

p=0

These two sets of difference equations may be used to solve for r,,[n;,no] and r,,[ng, ny in the
nonstationary case, or in the stationary case. Note the statistics auto- and cross-correlation statistics
satisfy the original difference equations. Similar expressions can be obtained for the covariance
sequences. They are given by:

P Q
Zap'Yyy - D, m} = qu,yxy[n_(_bm] (1149)
p=0 q=0
and
P Q
Z%’ny[”_pvm} :qu%x[n—q,m] (1150)
p=0 q=0

or, if the signals are stationary, then:

P

D alt—p) = qu%y (11.51)

p=0

and

NE

ap Yyl = ] = quvm - (11.52)

p=0

Example 11.4 ([Manolakis:2000, Example 3.6.2, Page 141]). Let xz[n| be a random process
generated by the first order difference equation given by:

zn|=azn -1 +wn], |of<lnelZ (11.53)

where w(n] ~ N (., 02) is an L1 _dJWGNI process.

* Demonstrate that the process z[n] is stationary, and calculate the mean .

* Determine the autocovariance and autocorrelation sequences, 7, [¢] and r,,[¢].

SOLUTION. Note that this is a first-order autoregressive (AR]) process, which will be discussed in
more detail later in the lecture course. The case written above is, in fact, the stationary case, and
[Manolakis, Exercise 3.23, Page 145] poses the case where there is an initial transient, resulting
in a nonstationary autocorrelation function. This exercise is left for those interested, although be
forewarned that this is not an easy exercise. This example uses the theory described above.

* The output of a LTI system with a stationary input is always stationary, although this can also
be proved explicitly. It follows directly from the results above that:

o
1l -«

[y = (11.54)
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* Using the results for the input-output covariance of a system represented by difference

equation:
Va1, M| — @ Yzz[n — 1, m| = Yopu[n, m] (11.55)
Vmw[n7 m] - OZ'YMU[” - 17 m] - 'wa[n7 m} (1156)

which, since the system is stationary, can be written as:

Yoz [l] — @ Vaz[l — 1] = Yapu[{] (11.57)
Noting z[n] cannot depend on future values of w[n|, then v,,[n + ¢, n] = v[l] = 0, ¢ <

0. This can be demonstrated by explicitly evaluating 7,,[n,m], m < n or r,[l] =
E [z[n] w*[n — £]], and noting that x[n] and w(n] are independent. If ¢ < 0, then w[n — ¢
is a sample with time-index greater than that of x[n], or in otherwords a future value.

Since Yy [¢] = 02 0[¢], the second of the difference equations above becomes:

aYewll —1] €>0
Yewll] = < 02 (=0 (11.59)
0 { <0

Solving for £ > 0 gives by repeated substitution, ., [(] = af o2, and zero for ¢ < 0.

Since vy, [¢] = i, [—¥]. then the difference equation for the autocovariance function of z[n]
simplifies to:
0 >0
wxll] — Ve[l — 1] = 11.60
Yaall] = @] 1{(1_%“@ (11.60)
Note the solution for ¢ > 0 is the solution of the homogeneous equation. Hence, since 7, [¢] =
~zz|—¥] for a real process, then this equation is solved by assuming the solution:

Assuming the solution:
Yeall] = a ! + b (11.61)

The values of a and b can be found by directly substituting the proposed solution for ¢ < 0 into
the difference equation:

aat4+b—a (a a Y 4 b) =at o2 (11.62)
at(l-a*)a+(1-a)b=a"0l (11.63)
from which it directly follows that b = 0 and a = o2 = %, corresponding to the case when
¢=0.
Hence, in conclusion ,
Ow l
Yaull] = T o (11.64)

Using the relationship that 7., [(] = 7, [¢] + u2, it follows that the output auto-correlation is
given by:
Fay

=% —(1 S (11.65)

O
As usual, if p,, = 0, then 7., [¢] = 7. [¢].

— End-of-Topic 72: Analysis of input-output statistics using difference

=
3
=

equation approach —
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11.6 Frequency-Domain Analysis of [LTI systems

[E)

Topic Summary 74 Frequency-domain analysis of input-output statistics New slide

Topic Objectives:
* Introduction to frequency and transform domain analysis for input-output statistics.

* Derivation and property of the complex spectral relationships between the system input and
system output.

» Several worked examples of calculations in the transform domain.

Topic Activities:

| Type | Details | Duration | Progress
Watch video 28 : 04 min video 3x length
Read Handout Read page[395|to page|400] | 8 mins/page
Try Example Try Examples|11.5/and [11.6/| 25 mins
Practice Exercises | Exercises ?? to 2?? 40 mins

.if’?pmns; 4P, Frequency-Domain Analysis of LTI systems

Now consider how a LTI transformation affects the power spectra
and complex spectra of a stationary random process.

atmy=a(n, ) ) = ¥(n. €
™ | >

h(m)
rh (0

> Hie™) I >
P P

LTT system with WSS input.
Taking the DTFT of the time-domain relationships for the

input-output statistics in terms of the system impulse response
leads to the following spectral densities:

http://media.ed.ac.uk/media/1_xzqgslijf

Video Summary: This Topic gives a comprehensive overview of using a
frequency-domain analysis technique for evaluating the input-output statistics of a [CTIl
system with a input. By taking the [DTFT] or z-transforms of the time-domain
relationships introduced in earlier topics, the transform domain relationships are obtained.
The video then covers two detailed examples showing the various steps in the analysis
technique; namely, first, find the system transfer function and complex-spectral density
of the input statistics; second, simplify the transform domain using, for example, partial
fraction expansion; and third, take inverse-transforms using, for example, z-transform
tables. The video briefly discusses the trade-off between using the transform vs
time-domain analysis techniques.

Now consider how a[LTIl transformation affects the power spectra and complex power density spectra
of a stationary random process. Recall that the power spectral density is the Fourier transform
of the autocorrelation functions. Alternatively, it is possible to note that the frequency response of a
system is the z-transform evaluated on the unit circle.

Taking the[DTFT of the time-domain relationships for the input-output statistics in terms of the system
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Figure 11.12: The at the input and output of a [CTIl system with [WSSlinput.

impulse response leads to the following spectral densities:

Tagll) = W [0 5 100[l] = Puy(e?) = H*(e7) Ppp(e®) (M:3.4.19)
Tyell]) = B[] % 102[0] =  Puo(e’) = H(e?) Ppp(e?®) (M:3.4.20)
ryll] = R [—0 % hll] x rou[l] = Py (e?) = [H(e’)|* Puu(e’) (M:3.4.21)

These results are derived very easily from the results in Section [[1.3.1] and the properties of the
Fourier transform, especially that convolution becomes multiplication. It is important to stress the
similarity of these results with those for the frequency analysis of linear time-invariant systems with
deterministic signal inputs. The system is depicted in Figure

* If the input and output autocorrelations or autospectral densities are known, the magnitude
response of a system |H (e’*)| can be determined, but not the phase response.

* Only cross-correlation or cross-spectral information can help determine the phase response.

A set of similar relations to Equation M:3.4.19 Equation M:3.4.20[ and Equation [M:3.4.21| can also

be derived for the complex spectral density function. Specifically, if: h[{] = H (z), then:
W= = H* (=) (11.66)

Therefore, the input output relationships:

Tuyll] = R [—0] % 14 [(] (11.67)
Tya[€] = h[l] * 14, [(] (11.68)
Tyyll] = h[€] * 14y (0] (11.69)

= h[l] x h*[—{] * ry,[{] (11.70)

Pyy(2) = H* (1)) Pra(2) (T:5.41)
Pyo(2) = H(z) Puu(2) (T:5.40)
Py, (2) = H(z) Pyy(2) (T:5.42)
Py, (2) = H(z) H* (1/=) Pyy(2) (T:5.44)

Note that P, () satisfies the required property for a complex spectral density function, namely that
P,y (2) = Py, (1/=). Also, note the following result for real filters that make the above equations
simplify accordingly.
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h(n) = p'u(n)

x(n) = x(n, €) y(n) =y(n, &)
e Y 1) I =t <

Figure 11.13: Equivalent figure to Figure|11.13; a[LTIsystem for [Therrien:1991, Example 5.1, Page
229].

Theorem 11.3 (Transfer function for a real filter). For a real filter:

h[—0 = H* (5) = H(z™") (11.71)
PROOF. Writing:
H(z)= > hn] 2" (11.72)

then setting z — Zi gives:
1 - I
H|l— )= h — 11.73
(%)= 3 o |2] (1173
Now, taking complex-conjugates, using the following facts:

* the conjugate of a sum/product of complex numbers is the sum/product of the conjugates of the
complex numbers, or in otherwords (a + b)* = a* + b* and (ab)* = a*b*,

* the filter coefficients are real, such that h*[n] = h[n],

then
1 oo oo
H (— | = h "= h(— o 11.74
(Z) D M= 3 h(=m)s 174
where in the last step, the substitution m = —n has been made. Hence, this gives the desired result.

It is straightfoward to adapt the final stage of this proof to show that h*[—/| = g ( Zi) in general.

Consider again the earlier example based on [Therrien:1991, Example 5.1, Page 229].

Example 11.5 (Simple Example: [Therrien:1991, Example 5.3, Page 237]). Again, the [LCTI
system shown in Figure [I1.4] is driven by a process with mean p, and covariance sequence
Yez[l] = 02 6[¢]. Calculate the cross-power spectral density (CPSDJ)) and the complex spectral
densities.

SOLUTION. The first-order system with impulse response h[n] = p"u[n] has system transfer
function: 1

H = — 11.75

(2) = ( )

The complex spectral density function for the white noise with added mean is given by the z-transform
of the autocorrelation sequence. Since 7, [¢] = 024[¢], then:

Taa[l) = Yoo €] + 12 = 025[0) + |1 |? (11.76)
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Taking z-transforms gives:

Pyy (2) = 02 + 27| |20 (2 — €7°) (11.77)
= 02 + 27| g |*6 (2 — 1) (11.78)

where the complex spectral density result in Equation (T:4.59) at the end of the previous handout has
been used. Hence, the complex cross-spectral density is given by:

Pyy(z) = H™ (V=) Pro(2) (11.79)
1 *
= (TW) [Uz + 27T|,Mm‘2(5(2 — 1)} (11.80)
2 2
_ % 2l ) (11.81)

1—p*2  1—p*z

Moreover, the complex spectral density is given by:

Py (2) = H (2) Puy (2) (11.82)
1 1
B (1 - pz—1> <1 - p*z) [z + 2mlpac|*8(z — 1)] (11.83)
% 1— ol 271 |?
= + d(z—1 11.84
L= [pP A —pz ) (1—p2)  |1—pP (z—1) ( )
2 2
= - b 2l (11.85)

L+ pl2 = prz = pzt |1 —pf
The and the are found by setting z = ¢/“ to obtain:

o2 omlf?

P, (™) = L 4 5(e? —1) (11.86)

1 —prev 1 — preiw

Moreover, the is given by:

‘ % 1—|pf? 2r|pal® o
P, () = < T_5(e’ — 1 11.87
W) = T P T o —2leost —argn) TP Y (1187

where the simplification that:
P 4 peI = |p| [0 Iy eI = g [l g o] (11.88)
= 2|p| cos(w — arg p) (11.89)
has been used.

Taking inverse z-transforms of Equation [I1.84] gives the output [ACS}

4| ’%’2
11— pl”

(11.90)
U

This matches the solutions found using: the impulse response approach, or the difference equation
approach.

2
O-.T
ryyll] = 1= |pP P

Example 11.6 (Partial Fractions Example). The signal y[n] from Example is applied to the
input of a causal [LTT| system with output s[n] which is characterised by the difference equation:

sin] = ps[n — 1]+ y[n] + y[n — 1] (11.91)
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* Show that the cross-power spectral density is given by:

o2 14271
Poy(2) = 7= = { (T } (11.92)

* Hence, find the cross-covariance sequence, 75, [¢], between the output, s[n], and the input y[n|.

The following bilateral z-transform from the sample-domain, ¢, to the z-domain might be useful:

z az !

tafull) = ——————, al <1 11.93
e (199
where u[f] = 1if £ > 0 and zero otherwise.
SOLUTION. * The cross-complex spectral density at the output of the filter is given by:
Py, (2) =G (2) Py, (2) (11.94)
where G (z) is the transfer function of the system.
By taking z-transforms:
1 -1
G(z)= — = (11.95)
1— pz~

and therefore using the expression for P, (z) from the previous example:

B 1+ 271 o2
Py (2) = G(2) Pyy(z) = = e (= pe (1= p2) (11.96)
o2 14271
:1—pz1{u—pzlﬂ1—pa} (n

* The term in the curly brackets can be simplified as:

14271 z+4+1 A B
= = + (11.98)
(I=pz)(1=pz) (2=p)(1=p2z) z—p 1-—p=

Using the cover-up rule to find:

z+1 B
A: xXbyz—p&setz—p=0;=———=A -
yz—p&setz—p 1=77) + (2 p)l_pz
=0
1
B: xbyl—pzé&setl —pz=0;= s =(1—-p2) +B
(z=p) z—p
—_——
=0
which may be rewritten as:
1 1 1
g 2T _Ltr (11.99)
l—pz|_, 1=p* 1-p
1 1 1
p= 2t __tr — A (11.100)
z=plr 1=p* 1-p
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Hence, the cross-complex spectral density is given by:

o2 1 1 1
P(2) = Tu 11.101
v (2) 1—p211—p{2—p+1—pz} ( )
2 1 -1 1
_ %w { 1}{ i -4+ } (11.102)
1—p | 1— pz~ 1—pz~ 1—pz
o2 {1 pz ! 1 1—p? }
= Tw ) + (11.103)
L—plp(l—pz1)? 1=p*(1-pz)(1—pz)

Hence, taking inverse-z-transforms gives the cross-covariance:

2

o 14 1
wll) = 17 {;pfu[f] + 1o pr'“} (11.104)
O

To find the cross-correlation requires the addition of the mean components as before. To find
the output auto-correlation requires substantially more work, and this is left as an exercise to
the reader!

— End-of-Topic 73: Frequency-domain analysis of input-output
statistics — =2




Linear Signal Models

This handout looks at the special class of stationary signals that are obtained by driving a linear
time-invariant (CTT) system with white noise. A particular focus is placed on system functions that
are rational; that is, they can be expressed at the ratio of two polynomials. Thus, the time-domain
and frequency domain characteristics of pole-zero, all-pole, and all-zero models are investigated,
including their time-series equivalents.

12.1 Abstract —

[E)

« In the last lecture, the response of a linear-system when a stochastic process is applied at ™" **

the input was considered. General linear systems were considered, and no focus on their
interpretation or their practical applications was discussed.

* This lecture looks at the special class of stationary signals that are obtained by driving a linear
time-invariant (CTT)) system with white noise. A particular focus is placed on rational system
functions; that is, they can be expressed at the ratio of two polynomials. The power spectral
density of the resulting process is also rational, and its shape is completely determined by
the filter coefficients. As a result, linear signal models provide a method for modelling the
of a process, and thus leads to parametric estimation, also known as modern spectral
estimation.

* The following models are considered in detail:

— All-pole systems and autoregressive (AR) processes;
— All-zero systems and moving average (MA]) processes;

— and pole-zero systems and autoregressive moving average (ARMA]) processes.

* Pole-zero models are widely used for modelling stationary signals with short memory; the
concepts will be extended, in overview at least, to nonstationary processes.

403
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P4
2
o,
£ 2
=
>
-7 0 W

Figure 12.1: White noise [PSDI

Linear signal models are developed first by assuming that the second order moments of the random
process are known, and equations are developed whose solution provides the model parameters. In
most practical applications of the theory, however, the fixed quantities in the equations, namely the
correlation functions and the model orders, are not known a priori but need to be estimated from the
data. This, as a result, introduces the issue of estimation of the model parameters and leads to the
notion of, for example, maximum likelihood estimation and least squares estimates as discussed in
the next handout.

12.2 The Ubiquitous Sequence

The simplest random signal model is the wide-sense stationary (WSS)) white Gaussian noise (WGN])
sequence:

wn] ~ N (0, 02) (12.1)
The sequence is independent and identically distributed (Li_dJ), and has a flat PSDt P, (™) =
02, -1 < w < 7. The is shown below in Figure It is also easy (as shown below) to
generate samples using simple algorithms.

12.2.1 Generating samples

Recall that the probability transformation rule takes random variables from one distribution as
inputs and outputs random variables in a new distribution function:

Theorem 12.1 (Probability transformation rule (revised)). If {z;, ... x,} are random variables
with a joint-probability density function (pdf) fx (z1,...,x,), and if {y1, ... y,} are random
variables obtained from functions of {x;}, such that y, = gi(x1, x2 ... x,), then the joint{pdi]
fy (Y1, -, yn), is given by:

1
) = T 12.2
fY(yla Y ) ’J($1,...,$n)|fX(xl xz ) ( )
where J(x1, ..., x,) is the Jacobian of the transformation given by:
Y1y .- Yn
J(21, .. ) = Oy, yn) (12.3)
8(131, e xn) <>

One particular well-known example is the Box-Muller (1958) transformation that takes two uniformly
distributed random variables, and transforms them to a bivariate Gaussian distribution. Consider the
transformation between two uniform random variables given by,

ka (l‘k) = ]10’1 (ZL’k) s k) = 1, 2 (124)
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H(z) or D(z)/A(z) or 1/A(z)

x(n) =x(n, ©) ] ]

—T

2

0

1l

+n®

Figure 12.2: Signal models with continuous and discrete (line) power spectrum densities.

where [ 4 (z) = 1if z € A, and zero otherwise, and the two random variables y;, y- given by:

y1 = —2Inz; cos2mxs
Yo = v/ —2Inx; sin 27y

It follows, by rearranging these equations, that:

1
Ty = exp {——(y? + y%)}

2

1 Yo
r9 = — arctan —

2 U1

The Jacobian determinant can be calculated as:

Oy1
o1
Oy2
o1

J(,Il, l’g)

Hence, it follows:

g% _ M:—Qllimcos%mg —2m+/—2Inx; sin 2wz, :2_7r
ﬁ W__—Qllimsin 2mrxe 2w/ —2Inx cos2ma, T
-l

, = -_— _e 1 —6 2
Fr (o) = o [\/% V2r

(12.5)
(12.6)

(12.7)

(12.8)

(12.9)

(12.10)

since the domain [0, 1] is mapped to the range (—o0, 00)?, thus covering the range of real numbers.
This is the product of y; alone and y, alone, and therefore each y is according to the normal

distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution in order to obtain

samples that have the same [pdf]as a Gaussian random variable.

12.2.2 Filtration of

By filtering a WGN] through a stable [CTTl system, it is possible to obtain a stochastic signal at the
output with almost any arbitrary aperiodic correlation function or continuous [PSDL The of the

output is given by:

Pyo(€) = oy, | H(e™)]

w2
2:G2Hg:1|1_zke |
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Pitch Voiced/unvoiced Filter Speech
Period indicator function Parameters —segment
J ‘ ] ‘
Voiced Impulse train

Speech generator v
v

Excitation Variance '\._> All-pole v Synthetic
: Filter signal

Unvoiced
Speech

Vocal tract model

Figure 12.3: The speech synthesis model.

Note that the shape of the power spectrum depends only upon the magnitude of the filter’s frequency
response.

Random signals with line can be generated by using the harmonic process model, which is
a linear combination of sinusoidal sequences with statistically independent random phases. Signal
models with mixed can be obtained by combining these two models; a process justified by
the Wold decomposition. This is highlighted in Figure [[2.2] contrast this with the speech synthesis
model shown in Figure [12.3] which was also shown in the introductory handout.

12.3 Nonparametric and parametric signal models

Nonparametric models have no restriction on its form, or the number of parameters characterising
the model. For example, specifying a [LTI filter by its impulse response is a
nonparametric model.

If the input w(n) is a zero-mean white noise process with variance o2, autocorrelation
Tww(l) = 0256(1) and P,,(¢’) = 02, —m < w < m, then the autocorrelation,

w?

complex spectral density, and of the output x(n) are given by, respectively:

rea(l) = op, > (k)R (k= 1) = olrn(l) (M:4.1.2)
k=—o00

Poo(2) = 02 H(2)H* (Zi) (M:4.1.3)

Poo(e7) = o2 |H(e?)|? (M:4.1.4)

Notice that the shape of the autocorrelation and the power spectrum of the output
signal are completely characterised by the system. This is known as a system based
signal model, and in the case of linear systems, is also known as the linear random
signal model, or the general linear process model.

Parametric models, on the other hand, describe a system with a finite number of parameters. For
example, if a LTIl filter is specified by a finite-order rational system function, it is a
parametric model.

Two important analysis tools present themselves for parametric modelling:
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Delay Delay Delay i
B w[n—2 B B w[n-0].
z Pz —» z :
Feed
. b Forward ,
: 2 Taps 0 :
- +
: +
: :+/
! :_\

a, Feedback 4,(%) a,
5 Taps :

Figure 12.4: Filter block diagram for ARMAI model.

|
A

1. given the parameters of the model, analyse the characteristics of that model (in
terms of moments etc.);

2. design of a parametric system model to produce a random signal with a specified
autocorrelation function or[PSDL This problem is known as signal modelling.

12.4 Parametric Pole-Zero Signal Models e

P

Parametric models describe a system with a finite number of parameters. Consider a system described New stide
by the following linear constant-coefficient difference equation:

P Q
x[n] = —Zakx[n—k]+2dkw[n—k] (M:4.1.21)
k=1 k=0

This rational transfer function was introduced in the first lecture, and the filter block diagram is shown
in Figure[I2.4] Taking z-transforms gives the system function:

X(z)  Spgdiz"
W(Z> B 1+ kazl ag 2k

» D(2) ngl(l — 227"
N =G M:4.1.23
A L0 ) (M:A129

This system has @ zeros, {zx, k € Q} where Q = {1,...,Q}, and P poles, {px, k € P}. Note that
poles and zeros at z = ( are not considered here. The term G is the system gain. It is assumed that
the polynomials A(z) and D(z) do not have any common roots.

H(z) = (M:4.1.22)

I8

12.4.1 Types of pole-zero models ]

There are three cases of interest as shown in Figure [12.5} New slide
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w(n) = w(n, ) b, | x(n)=x(n, Q)
—>» H@)=—— > b’
(0= 8(1) A@) P (") =———
’ (")
w(n) x(n)
——» H@=B@ —* |
P.(e") =|B(")

w(n) B(z) x(n)

T Oy BE

P.(€")

ZICH
Figure 12.5: Types of linear model; top to bottom, these are the [AR] and models.

All-pole model when () = 0. The input-output difference equation is given by:

P
x[n] = — Z ap x[n — k| + do w(n] (M:4.1.26)
k=1
This is commonly denoted as the AP(P) model.

All-zero model when P = (. The input-output relation is given by:
Q
z[n] =Y dywln — k] (M:4.1.25)
k=0

This is commonly denoted as the AZ(()) model.
Pole-zero model when P > 0 and () > 0.

This is commonly denoted as the PZ (P, () model, and if it is assumed to be causal,

is given by Equation M:4.1.21

If a parametric model is excited with[WGN] the resulting output signal has second-order moments
determined by the parameters of the model. These stochastic processes have special names in the
literature, and are known as:

a moving average (MA)) process when it is the output of an all-zero model;
an autoregressive (AR) process when it is the output of an all-pole model;

an autoregressive moving average (ARMA) process when it is the output of an pole-zero model;

each subject to a[WGN] process at the input.

The parametric signal model is usually specified by normalising dy = 1 and setting the variance of
the input to 02. The alternative is to specify o2 = 1 and leave d, arbitrary, but this isn’t quite as
elegant when it comes to deriving [pdfs. It is also important to stress that these models assume the

resulting processes are stationary, which is ensured if the corresponding systems are bounded-input,
bounded-output (BIBO) stable.
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12.4.2 All-pole Models

Assume an all-pole model of the form:
dy dy B dy
Alz) 1+ ZII;:I ay 2z HkP:1(1 —pezt)

where d is the system gain, and P is the order of the model.

H(z) = (M:4.2.1)

All-pole models are frequently used in signal processing applications since they are:

* mathematically convenient since model parameters can be estimated by solving a set of linear
equations, and

* they widely parsimoniously approximate rational transfer functions, especially resonant
systems.

There are various model properties of the all-pole model that are useful; these include:

1. the systems impulse response;
2. the somewhat inappropriate term called the autocorrelation of the impulse response;

3. and minimum-phase conditions.
Although the autocorrelation of the impulse response is useful to gain additional insight into aspects
of the all-pole filter, it is better to consider the autocorrelation function of an [AR] process (i.e. the

autocorrelation function of the output of an all-pole filter). However, for completeness, the details of
the autocorrelation of the impulse response is included in these notes.

12.4.2.1 Frequency Response of an All-Pole Filter

The all-pole model has form:
d d d
H(z) = —— = - o (M:4.2.1)
AR) 1+ Y akz ™t L (T —pe2?)
Therefore, its frequency response is given by:
, d d
H(e) = —— = ——————— (12.12)
L+ ane ™ Lo (1 —pee?)
When the poles are written in the form p;, = r,¢’“*, the frequency response can be written as:
, d
H(e) = 0 (12.13)

- ITL (0 rperitemen)

Hence, it can be deduced that resonances occur near the frequencies corresponding to the phase
position of the poles. When the system is real, the complex-poles occur in conjugate-pairs.

Hence, the of the output of an all-pole filter is given by:

(12.14)

2
P, (¢™) = o |H(e™)]” = G -

N Hkpzl |1 — T e*j(w*“’k”
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All-Pole Magnitude Frequency Response All-Pole Pole Positions

Im(z)

‘ ‘ ‘ ‘ 270
0 0.2 0.4 0.6 0.8 1
w/ T Re(z)
(a) Magnitude frequency response. (b) Positions of poles.

Figure 12.6: The frequency response and position of the poles in an all-pole system.

All-Pole Power Spectrum

101log, |Pxx(e"‘))|

0.2 0.4 0.6 0.8 1
w/ T

Figure 12.7: Power spectral response of an all-pole model.

where G = 0, dj is the overall gain of the system.

Consider the all-pole model with poles at positions:

{re} = {0.985,0.951,0.942,0.933}

= {rye*} where 12.15
{p} = {re ™"} {{Wk} — 271 x {270,550, 844, 1131} /2450; (1219

The pole positions and magnitude frequency response of this system is plotted in Figure [I2.6] For
comparison, the of the output of the system is shown in Figure

E

' 12.4.2.2 Impulse Response of an All-Pole Filter

Newslide — Recalling that the input-output difference equation for an all-pole filter is given by:

z[n] = — Z a x[n — k| + do w[n] (M:4.1.26)

P
k=1

then the impulse response, h[n], is the output when the input is a delta function, w[n| = d[n].
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The impulse response of the all-pole filter satisfies the equation:

hin] = =" ayhln — k] + dy 6[n] (M:4.2.3)

=1

ol

The derivation in [Manolakis:2000, page 157] is somewhat verbose; nevertheless, their approach is to
re-write the system function of the all-pole filter as:

H(2)+> apH(z) 27" = d (12.16)

and thus by taking the inverse z-transform gives the same result as above. If H (z) has its poles inside
the unit circle, then h[n] is a causal, stable sequence, and the system is minimum-phase.

Assuming causality, such that h[n] = 0, n < 0 then it follows h[—k] = 0, k& > 0, and therefore:

0 ifn <0
hln] = < dy ifn=20 (M:4.2.5)

— S0 Japhln— k] ifn>0
Thus, except for the value at n = 0, h[n] can be obtained recursively as a linearly weighted summation
of its previous values, {h[n — p|, p = {1,..., P}}. Thus, in this sense, h[n| can be predicted, for

n # 0, with zero error from the past P past values. Thus, the coefficients {a} are often referred to
as predictor coefficients.

Finally, note that a causal H (z) can be written as a one-sided z-transform, or infinite polynomial,
H(z) = > > h[n] z=". This representation implies that any finite-order, all-pole model can
be represented equivalently by an infinite number of zeros, and conversely a single zero can be
represented by an infinite number of poles. If the poles are inside the unit circle, then so are the
corresponding zeros, and vice-versa.

12.4.2.3 Autocorrelation of the Impulse Response

The autocorrelation of the system impulse response is given by:
ran(l) 2 h(l) * h*(— Z h(n) h*(n —1) (12.17)

Multiplying both side of EquationM:4.2.3|by h*[n — ¢] gives and summing over all n:
o0 P
O aph(n—k)h*(n—1) =dy Z h*(n —1)6(n) (M:4.2.14)
n=—o00 k=0 n=—o0o

where ap = 1. Interchanging the order of summations (as usual) in the left hand side (CHS)), and
setting n = n — k gives:

Zak Z h(h — (I —k)) = dy h* (=) (12.18)

N=—00
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which can also be written as
P
> aprin(l— k) = do h* (1) (M:4.2.15)
k=0

Since h(n) =0, n < 0, then h(—1) =0, [ > 0, and h(0) = d, then:

dO h*(—l) — kazl ag Thh(l — k‘) [ <0
ran(l) = < |do]?> — Sp_y ar ran(—F) 1=0 (12.19)
- 25:1 ag rhn(l — k) [>0

These are recursive relationships for rp,;,[¢] in terms of past values of the autocorrelation function.

It is also possible to write the autocorrelation in terms of the poles of the model, and to also investigate
the response of the model to an impulse train (harmonic) excitation. These are not considered in this
handout, but are detailed in [Manolakis:2000, Section 4.2].

12.4.2.4 All-Pole Modelling and Linear Prediction

A linear predictor forms an estimate, or prediction, [n], of the present value of a stochastic process
x[n] from a linear combination of the past P samples; that is:

P
zn| = —Zakx[n—k] (M:1.4.1)
k=1

The coefficients {a;} of the linear predictor are determined by attempting to minimise some function
of the prediction error given by:

e(n) = xz(n) — &(n) (M:1.4.2)
Usually the objective function is equivalent to mean-squared error (MSE), given by £ = > ¢*(n).

Hence, the prediction error can be written as:

P
e(n) =z(n) —&(n) = z(n) + Z apx(n — k) (M:4.2.50)
k=1
* Thus, the prediction error is equal to the excitation of the all-pole model; e(n) = w(n). Clearly,
finite impulse response (FIR) linear prediction and all-pole modelling are closely related.

e Many of the properties and algorithms developed for either linear prediction or all-pole
modelling can be applied to the other.

* To all intents and purposes, linear prediction, all-pole modelling, and [AR| processes (discussed
next) are equivalent terms for the same concept.

12.4.2.5 Autoregressive Processes

While all-pole models refer to the properties of a rational system containing only poles,[ARlprocesses
refer to the resulting stochastic process that occurs as the result of[WGN|being applied to the input of
an all-pole filter.
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As such, the same input-output equations for all-pole models still apply although, in this case, the[AR]
process refers to x[n], whereas all-pole modelling would refer to the system itself, as defined by the
linear difference equation and the parameters {ay}.

Thus: -
zln] = — Z apz[n — k] + wn], wn] ~N (0, 02) (M:4.2.52)
k=1

The process is valid only if the corresponding all-pole system is stable. The autoregressive
output, z[n], is a stationary sequence with a mean value of zero, p, = 0.

The autocorrelation sequence (ACS)) can be calculated in a similar approach to finding the output
autocorrelation and cross-correlation for linear systems.

Multiply the difference Equation [M:4.2.52|through by z*(n — [) and take expectations to obtain:

»
Faa(l) + Y arraa(l = k) = 1y (1) (M:4.2.54)
k=1

Observing that z[n] cannot depend on future values of w(n] since the system is causal, then 7, [¢] =
E [w[n] x*[n — £]] is zero if | > 0, and o2 if £ = 0.

Thus, forl = {0, 1, ..., P} gives:

T2 (0) + a1 70n(—1) + -+ ap 1 (—P) = 02, (12.20)
Tee(1) +a1722(0) + -+ aprp(—P+1)=0 (12.21)
: (12.22)

Tex(P) + a1 7pe(P—1) 4+ apr,(0) =0 (12.23)

This can be written in matrix-vector form (noting that r,,[¢] = r}_[—/] and that the parameters {ay;}
are real) as:

(o [0) I S D | I 1 o

2|1 210 . * P -1 0

NSO I 2
rolPl rlP—1] - w0 | |ap 0

These Yule-Walker equations have an identical form to the normal equations which are a result of
analysing linear prediction. The differences are minor, but the interested reader can find out more in
[Therrien:1992, Chapter 8]. It is important to note that the Yule-Walker equations are linear in the
parameters ay, and there are several different efficient methods for solving them. Details, again, can
be found in [Therrien: 1992, Chapters 8 and 9].

12.4.2.6 Autocorrelation Function from parameters

In the previous section, an expression for calculating the coefficients given the autocorrelation
values was given. But what if the [ARI coefficients are known, and it is desirable to calculate the
autocorrelation function given these parameters. A formulation is given here. Assume that an [ARI
process is real, such that the Yule-Walker equations become:

722(0) rez(l) oo ree(P) 1 o2

Tpz(1 T2z (0 e (P —1 a 0
( ) ( ) ) ( ) ) a=b where a= .1 and b=

rzx(P) TJ::L’(P - 1) T Tm(o) ap 0
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To generate the autocorrelation values from the parameters, it is desirable to obtain an equation

of the form Ar = b, where [r,;(0) -+ 74,(P)] T and the matrix A and vector b are functions of
the parameters {ay.} and the input variance o2 . Write the Yule-Walker equations as:
1 0 ---0 0 1 --- 0 0o 0 --- 1
@ [0 ar e |D T T ake @ |© T lazb
P P | P
0 --- 0 1 0 --- 1 0 1 --- 0 0
(12.25)

By defining the P x P matrix Ip;, with ones on the kth diagonal away from the leading diagonal, and
zero elsewhere, then it follows:

P
> (pi1kd) roa(k) =b (12.26)
k=0

Next defining the vector &;, = Ip,1 ), a and the matrix [ay --- ap], then the matrix-vector equation

Ar=D>b (12.27)

has been obtained. In low-order cases, it might be more straightforward to explicitly compute the
autocorrelation functions by writing out the Yule-Walker equations.

All-pole models therefore have the unique property that the model parameters are completely
specified by the first P + 1 autocorrelation coefficients via a set of linear equations, as given by
the equation A r = b. An alternative way of writing this is:

2
‘;w 7 (0)

e (12.28)
0 T2z (P)

Thus, the mapping of the model parameters to the autocorrelation coefficients is reversible and unique.
This correlation matching of all-pole models is quite remarkable, and is not shared by all-zero
models, and is true for pole-zero models only under certain conditions.

Example 12.1 (Calculating Autocorrelation Functions of All-Pole Model). Given the parameters
ai, a1, and ay, of a second-order all-pole model, compute the autocorrelation values 7., (k) for {k =
0,1,2}.

SOLUTION. Using the results above, it follows that:

1 00 1 010 1 0 01 1 O'ﬁ)
r2(0) |0 1 0] |ar| +72(1) [1 0 1| |ar| +72(2) [0 O O] |az| = |0 (12.29)
0 0 1] [as 0 1 0Of (a9 1 0 0f |asg 0
or,
1 a; as| |722(0) o2
ap 14+a, O re(1)| =] 0 (12.30)
ag ay 1] [74(2) 0

Although you could try a direct version to solve this, a slightly more ad-hoc approach quickly yields
a solution in this case, and is related to Gaussian elimination. Multiplying the second row by a; and
the last row by a,, and then subtracting them both from the first row gives:

1—a?—a2 —2a1a5 0] [7..(0) o2
a? ar(l14+az) 0| |re(1)]| =

0
a3 a as as| |7z(2) 0

(12.31)
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It can thus be seen that the first two equations for r,,(0) and r,,(1) do not depend on r,,(2) and
therefore, by inverting the 2 by 2 matrix, this gives:

7"9:96(0) o 1 Cll(l +Cl2) 2@1 as 0'121] (12 32)
Tox(1)] a1 (14 a)(1 —a? — a?) + 2a3 ay —a? 1—a?—d3| |0 '
o2 1
= 270y | — (12.33)
(1—af —a3) + T2 L7 Thas
Moreover,
1 722 (0) o2 a2
rea(2) = —— [a3  ay ag] { } = . — ay (12.34)
- rW] (1 - at - a) + el AL+
In summary,
T22(0) o2 1a1
Tx:t(l) = (1 — w2> N Qa% . a; 1+as (1235)
me<2) ay a3 1+asz 1_,'_;2 — a2 ]
12.4.3 All-Zero models =

Whereas all-pole models can capture resonant features of a particular [PSD] it cannot capture nulls in V"

the frequency response. These can only be modelled using a pole-zero or all-zero model.

The output of an all-zero model is the weighted average of delayed versions of the input signal. Thus,
assume an all-zero model of the form:

Q
wln] = dywln — k] (M:4.3.1)
k=0
where () is the order of the model, and the corresponding system function is given by:
Q
H(z)=D(z)=) dpz* (M:4.3.2)
k=0

Similar to the relationship between all-pole models and processes, all-zero models refer to
the properties of a rational system containing only zeros, while processes refer to the resulting
stochastic process that occurs as the result of being applied to the input of an all-zero filter.

All-zero models are difficult to deal with since, unlike the Yule-Walker equations for the all-pole
model, the solution for model parameters given the autocorrelation functions involves solving
nonlinear equations, which becomes quite a complicated task.

12.4.3.1 Frequency Response of an All-Zero Filter C i
The all-zero model has form: New slide
Q Q
H(z) = D(z) = de 27k = d, H (1—z27") (12.36)
k=0 k=1
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All-Zero Model Magnitude Frequency Response All-Zero Model Zero Positions
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(a) Magnitude frequency response. (b) Positions of zeros.

Figure 12.8: The frequency response and position of the zeros in an all-zero system.

where {z;} are the zeros of the all-zero model. Therefore, its frequency response is given by:
H(e™) =Y "de ™ =do [T (1= 2z e) (12.37)
k=0 k=1

When the zeros are written in the form z;, = 7,¢/“*, then the frequency response can be written as:

Q
() = [ (1= o) 1239
k=1

Hence, it can be deduced that troughs or nulls occur near frequencies corresponding to the phase
position of the zeros. When the system is real, the complex-zeros occur in conjugate-pairs.

Hence, the of the output of an all-zero filter is given by:

Q
Poo(e) = o2 |H() [P = G T] |1 — rpe 7m0 (12.39)
k=1

where G = o, dy is the overall gain of the system. Consider the all-zero model with zeros at positions:

{re} = {0.985,1,0.942,0.933}

12.40
{wr} = 27 x {270,550, 844, 1131} /2450; ( )

{2} = {rre’*} where {

The zero positions and magnitude frequency response of this system is plotted in Figure [I2.8] For
comparison, the power spectral density of the output of the system is shown in Figure Note that
one of the zeros is on the unit circle, and that the frequency response at this point is zero.

12.4.3.2 Impulse Response

The impulse response of an all-zero model is an [FIR]system with impulse response:

d, 0<n<
h(n) = sns@ (12.41)
0  elsewhere
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All-Zero Model Power Spectrum
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Figure 12.9: Power spectral response of an all-zero model.

12.4.3.3 Autocorrelation of the Impulse Response

Following a similar line to that shown for all-pole models, the autocorrelation of the impulse response
of an all-zero system can be found.

Theorem 12.2. The autocorrelation sequence of the impulse response of an all-zero system is:

Q—1
- djped; 0< /1<
il =Y hln] h¥ln — (] = ,20 wred 0SE<C (M:4.3.4)
n=-00 0 (> Q

and 75, [—{] = rp[¢] for all L.

PROOF. The autocorrelation sequence of the impulse response of an all-zero system is given by the
discrete-time convolution:

ranll) =Y hln] h*n — 1] (1242)
Considering the term h[n],
d, 0<n<
hln] = == @ (12.43)
0  otherwise
or, in otherwords, i(n) = 0 when n < 0 and n > (). Hence Equation [12.42|becomes:
Q
rnll] =Y dy b — (] (12.44)
n=0
Moreover, the lower-limit is constrained since
d; 0<n—-/¢<
B — ) = e S —<@ (12.45)
0 otherwise

or, in otherwords, h*[n —[] = 0 if n < ¢ and when n > () + £. Assuming that ¢ > 0, the second
condition is already met by the upper-limit in Equation Therefore, Equation [12.44] becomes:

Q
rnll] = dndyy (12.46)
n=~{
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By substituting kK = n — ¢, such that when n = {¢, Q}, k = {0, Q — ¢}, then:

Q—¢
runll] = dyyedy,  for £ >0 (12.47)

k=0

Clearly this expression is equal to zero if ¢ > (). Therefore, using the result from the previous handout
that 5, [¢] = 77, [—/], it follows:

Q-1
> dpsed: 0<(0<
Thill] = Z hin] h*[n — (] = k;) peedy 0<0<Q (M:4.3.4)
n=-—00 0 0> Q U

and 75, [—{] = rp[¢] for all £.

12.4.3.4 Moving-average processes

As an analogy with Section[12.4.2.3] a[MAlprocess refers to the stochastic process that is obtained at
the output of an all-zero filter when a[WGN] sequence is applied to the input.
Thus, a[MAlprocess is an AZ(()) model with dy = 1 driven by That is,
Q
z[n] = wln| + Z dywln — k], wn] ~N (0, o) (M:4.3.9)
k=1

The output z[n] has zero-mean, and variance of

Q
ol =02 |1+ |dk|2] (12.48)
k=1
The autocorrelation sequence and are given by:
Q—t
recll] = ohrmnll) = 05 depdy,  for0<(<Q (12.49)
k=0

and is zero for £ > Q, with r,,[(] = r*_[—{], where dy = 1, and also where P,,(e7) = o2 | D(e/*)|’.

The fact that r,.[¢(] = 0 if the samples are more than () samples apart, means that they are therefore
uncorrelated. An alternative derivation for the autocorrelation sequence for an [MAI process is given
in the following section, Section[12.4.3.5]

12.4.3.5 Autocorrelation Function for MA| Process

As stated in the previous section, using the results for the statistics of a stationary signal passed
through a linear system, then the autocorrelation sequence for a process is given by 7., [(] =
o2 runll], where rp,[f] is given by Equation For completeness, this section gives an
alternative derivation from first principles.

Multiplying the difference equation, Equation M:4.3.1} through by z*[n — ¢] and taking expectations
gives:

Q
k=0



12.4. Parametric Pole-Zero Signal Models 419

Similarly, post-multiplying by w*[n — ¢] gives:

Q 2
o2dy 0<0<Q
xwg = d wwg_k = v 12.51
Faull kZ:O kTl ) {0 otherwise ( )

$ince 7y, [f] = 02 6(¢). Recalling that 7, [¢] = r*,[—/], then:

2dr, 0<—1<
Fuall] = {”w v 0s—lse (12.52)
0 otherwise
with the limit 0 < —/ < () being equivalent to —@) < ¢ < (. Consequently,
2 dx 0<k—1<
Twell — k] = {Jw k=t - @ (12.53)
0 otherwise
Considering ¢ > 0, the autocorrelation sequence for an[MA] process is thus:
Q Q—t
raall) = 00, Y didy =00 Y diyidy (12.54)
k=t k=0

for 0 < ¢ < @, and zero for ¢ > . Using the relationship r,.[—¢] = 7% _,[¢] gives the [ACS] for all
values of /.

Unlike[ARImodels, is is not possible to solve for the model parameters using linear algebra techniques.
It requires the solution of highly nonlinear equations, and is therefore more difficult than dealing with
process. This, hence, is one reason why many algorithms in statistical signal processing prefer to
use all-pole models over all-zero models.

re

12.4.4 Pole-Zero Models N,

Finally, the most general of [CTT parametric signal models is the pole-zero model which, as the V" /ide

name suggests, is a combination of the all-pole and all-zero models, and can therefore model both
resonances as well as nulls in a frequency response.

The output of a causal pole-zero model is given by the recursive input-output relationship:
P Q

wln) = =Y arzln — K+ dewn — k] (M:4.4.1)
= k=0

k=1

where it is assumed that the model orders P > 0 and > 1. The corresponding system function is
given by:
D(z) _ Yilodiz

H(z) = = (12.55)
S Y5 R e
12.4.4.1 Frequency Response of an Pole-Zero Model C j
The pole-zero model can be written as New slide
D Q 1 — -1
H(z) = G) _ gl =) (12.56)

AG) IR (L -

June 28, 2021 — 08 : 40




420 Linear Signal Models

Pole-Zero Model Magnitude Frequency Response Pole and Zero Positions
! ‘ ‘ ‘ ‘ 0 1 Poles
1%0 0899 o Zeros
06
BYor o o4 N
02
= e
E 18 e 0
o B : * )
2100 il ", /330
240 * 300
; ; / ] 270
0 0.2 0.4 0.6 0.8 1
w/ T Re(z)
(a) Magnitude frequency response. (b) Positions of poles and zeros.

Figure 12.10: The frequency response and position of the poles and zeros in an pole-zero system.

where {p;} and {z;} are the poles and zeros of the model. Therefore, its frequency response is:

Q _ —Jjw
H(e™) = dy Hj;:l (1= ze”™) (12.57)
[li=1 (1 —pre?v)
As before, it can be deduced that troughs or nulls occur at frequencies corresponding to the phase
position of the zeros, while resonances occur at frequencies corresponding to the phase of the poles.
When the system is real, the complex-poles and complex-zeros occur in conjugate-pairs.

The [PSD| of the output of a pole-zero filter is given by:

w2
:GZnglyl_zke / ’

Po(e) = o3y | H(e™)| ‘ (12:58)
| } HkP:1 11— pk 6_]w|2
where G' = 0, dy is the overall gain of the system.
Consider the pole-zero model with poles at positions:
, = 10.925,0.951,0.942,0.933
{pp} = {rpe’*} where {re} { ’ ’ ’ } (12.59)
{wr} = 21 x {270,550, 844, 1131} /2450;
and zeros at:
: = {1,0.855
{zx} = {rp&“*} where {rd L Y (12.60)
{wp} = 2w x {700, 1000} /2450;

The pole and zero positions, and the magnitude frequency response of this system is plotted in
Figure while the [PSDI of the output of the system is shown in Figure Note again that
one of the zeros lies on the unit-circle, and therefore at the corresponding frequency, the frequency
response is zero.

12.4.4.2 Impulse Response

The impulse response of a causal pole-zero filter can be obtained from Equation by
substituting w(n) = 6(n) and x(n) = h(n), such that:
P
h(n)==> aph(n—k)+d,, n>0 (M:4.4.2)

k=1
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Pole-Zero Model Power Spectrum

10log, |Pxx(e“*’)|

_80 i i i i
0 0.2 0.4 0.6 0.8 1

w/ T

Figure 12.11: Power spectral response of an pole-zero model.

where d,, = 0 forn > @ and n < 0, and h(n) = 0 for n < 0. Hence, writing this explicitly as:

0 n <0
h(n) =< — le;l arh(n—k)+d, 0<n<Q (12.61)
— S0 aph(n — k) n>0

it can be seen that the impulse response obeys a linear prediction equation for n > (). Thus, given
h(n) for 0 < n < P + @, the all-pole parameters {a;} can be calculated by using the P equations
specified by @ +1 < n < P + Q. Given the {ax}’s, it is then possible to compute the all-zero
parameters from Equation using the equations for 0 < n < . Thus, it is clear that the first
P + () + 1 values of the impulse response completely specify the pole-zero model.

12.4.4.3 Autocorrelation of the Impulse Response

Multiplying both sides of Equation by h*(n — 1) and summing over all n gives:

Zh Yh*(n —1) Zak Zhn— Vit(n —1) + Zdh*n—l (12.62)

n=—oo n=—oo n=—oo

Using the definition for 7, [¢] and noting that h*[n — ¢] = 0 for n — [ < 0 then:
P Q
rnll) = = agrnll = K]+ dy h*n — (] (M:4.4.6)
k=1 =

Since the impulse response h[n| is a function of the parameters {ax}’s and {dy}’s, then this set of
equations is nonlinear in terms of these parameters. However, noting that the right hand side
of this equation is zero for [ > (), then:

P
Zak rhhw — /{7] = —Thh[g] , (> Q (1263)
k=1

This equation, unlike Equation [M:4.4.6] is linear in the all-pole parameters {ay}’s. Therefore, given
the autocorrelation of the impulse response, the all-pole parameters can be calculated by solving
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Equation|12.63|forl € {Q + 1, ..., Q + P} to give:

Thn(Q) (@ —1) o r(Q@+1-P)| | Thi(Q + 1)
Thh(c? +1) Thh:(Q) - Thn(Q + 2—P) CL:2 _ Thh(Q: +2) (M:4.4.8)
Q@+ P-1) mQ+P-2 - (@ | lan] @+ P)
or, alternatively,
Ry,a=—-rp,, (M:4.4.9)

The matrix Ry, in Equation M:4.4.9| is a non-Hermitian Toeplitz matrix; it can be solved using a
variety of linear algebra techniques.

Given the all-pole parameters, it then falls to solve Equation for the all-zero parameters
{dy}’s. This is somewhat involved, but they can be found using spectral factorisation. The details
are omitted from this handout, but can be found in [Therrien:1992, Section 9.1, page 509] or
[Manolakis:2000, Page 178].

12.4.4.4 Autoregressive Moving-Average Processes

As with the all-pole and all-zero models, the corresponding random process associated with a
pole-zero model is the process. This is the output of a pole-zero model, when the input
of the system is driven by Hence, a causal ARMA] model with model orders P and @ is

defined by:
P

Q
xn| = —Zak z[n — k] + wn| —I—dew[n—k] (M:4.4.15)

where w(n) ~ N (0, ¢2), the model-orders are P and (), and the full set of model parameters are
{62, a1, ...,ap,dy, ..., dg}. The output has zero-mean and variance that can be shown to equal:

P
02 =— Z ap 7o (k) + 02
k=1

Q
L+ dy h(kz)] (M:4.4.16)
k=1

where h[n] is the impulse response of the pole-zero filter.

Finally, the autocorrelation function for the output is given by:

P
rea(l) = — Zak ree(l — k) + 02
k=1

Q
1+ dyh*(n— z)] (12.64)
n=l

where it has been noted that dy = 1.

12.5 Estimation of Model Parameters from Data

The Yule-Walker equations introduced earlier in this handout provide an approach for finding the
model parameters for an[AR] process. Although a valid technique, there are two implicit assumptions
that limit its use for practical problems. These assumptions are:

¢ That the order, P, of the model is known.

* That the correlation function, 7, [¢], is known.
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If these two conditions are met then, using the Yule-Walker equations, the model parameters, ay, can
be found exactly. Unfortunately, in most practical situations, neither of these conditions is met.

From a theoretical perspective, the first assumption that the model order is known is less of an issue
than the second assumption. This is since if a larger model order than the true model order is chosen,
then the excess parameters will theoretically be zero. In practice, choosing the models order is not that
straightforward, and there are numerous methods for model order estimation. Model order selection
criteria include names such as final prediction error (EPE), Akaike’s information criterion (AIC),
minimum description length (MDL)), Parzen’s criterion autoregressive transfer function and
B-Information criterion (BIC). There is not time in this course to discuss these techniques, although
there are plenty of tutorial papers in the literature, as well as being covered by many text books.

The second assumption leads to both theoretical and practical problems since, if the correlation
function is not known, it must be estimated from the data. This brings up the following questions:

1. If the correlation function is estimated, how good is the resulting estimate for the model
parameters, in a statistical sense?

2. Why estimate the correlation function at all when it is the model parameters that need to be
estimated?

3. What is the best procedure for this problem?

12.5.1 parameter estimation

Suppose that a particular realisation of a process that is to be modelled as an process is given. It
is possible to estimate the correlation function as a time-average from the realisation, assuming that
the process is time-ergodic, and then use these estimates in the Yule-Walker equations. The method
described in this chapter effectively estimates the[AR] parameters in this way, although the problem is
not formulated as such. Two common data-oriented methods, known as the autocorrelation method
and the covariance method, are presented in this section and the next section. A description of these
methods begins with the autocorrelation method.

Suppose linear prediction is used to model a particular realisation of a random process as accurately
as possible. Thus, suppose a linear predictor forms an estimate, or prediction, [n], of the present
value of a stochastic process z[n] from a linear combination of the past P samples; that is:

P
zn] ==Y arzn— k| (M:1.4.1)
k=1
Then the prediction error is given by:
P
e[n] = z[n] — &[n] = x[n] + Y _ axx[n — K] (M:4.2.50)
k=1

Note that this is different to the [WGN sequence that drives a linear system to generate an
autoregressive random process; the difference is that here, the prediction error is the difference
between the actual value and the predicted value of a particular realisation of a random process.

Writing Equation [M:4.2.50|for n € {ny, ..., ng}, in matrix-vector form:

elny] x[ng] zny—1] zn;—=2] -+ zn;— P] a
e[m'—i- 1] _ x[nl.—k 1] N x[n;] x[m.— 1 - zng —.P + 1] | a2 (12.65)
elngl | x[np] j \x[nF— 1] znp—=2] -+ zngp— P | Lar
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which can hence be written as:
e=x+Xa (12.66)

The parameters a can now be estimated using any of the parameter estimation techniques discussed
above. Here, the least-squares estimate (LSE) is used. Thus, noting that:

ng

J(a)=> e’ln]=e"e (12.67)
= (x+Xa)" (x+Xa) (12.68)
=x"x+2x"Xa+a’X"Xa (12.69)

where it has been noted that a” X”x = x? X a. Hence, differentiating with respect to a and
setting to zero gives the a,

0 0
a (b"a) =b and a (a"Ba) = (B+B")a (12.70)

The reader is invited to derive these results. Hence,

0J(a)
Oa

=2X"x+2X"X a (12.71)

where it has been noted that the matrix XX is symmetric. Setting this to zero, and rearranging
noting that X’ X is of full rank, gives the

apsp = — (X7X) T X" x (12.72)
Defining N, = ng — ny + 1, the least-squares (LS)) error is then given by:

J(asp) =x" (Ty, - X (X'X) 7' X") x (12.73)
=x" (x+ Xagsg) (12.74)

Observe the similarity of these results with those of the linear [LS]formulation. In fact, this derivation
is identical to the [LS] formulation with the matrix H replaced by X! There are two different methods
which result from different choices of n; and ny. These are called the autocorrelation method
and the covariance method. However, as mentioned in [Therrien:1991], these terms do not bear
any relation to the statistical meanings of these terms, and so they should not be confused with the
statistical definitions. The names for these methods are unfortunate, but have found a niche in signal
processing, and are unlikely to be changed.

12.5.2 Autocorrelation Method

In the autocorrelation method, the end points are chosen as n; = 0 and np = N + P — 1. Thus,
the filter model runs over the entire length of the data, predicting some of the early points from
zero valued samples, and predicting P additional zero values at the end. Since this method uses zeros
for the data outside of the given interval, it can be thought of as applying a rectangular window to the
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data. For this method, the (N + P) x P data matrix X has the specific structure:

0 0 0
(0] 0 0
x[1] z[0] 0
oP—1] [P -2 (0]
X=| zP zP-1] - z[1] (T:9.112)
x[N.— 1] x[N:— 2] z[N :— P]
0 [N — 1] z[N — P + 1]
o 0 o aN-1 |

When formed into the product X” X, this data matrix produces a Toeplitz correlation matrix;
consequently, the normal equations may be solved very efficiently, for example using the Levinson
recursion. Moreover, the matrix X” X is strictly positive definite, and thus a valid correlation matrix.

12.5.3 Covariance Method

An alternative method is to choose n; = P and ny = N — 1. With this method, no zeros are either
predicted, or used in the prediction. In other words, the limits are chosen so that the data that the [AR]
filter operates on always remain within the measured data; no window is applied. For this method,
the (N — P) x P data matrix has the specific form:

z[P—1] z[P-2] - z[0]
< _ z[P] z[P-1] --- x[1] .
- - 3 (T:9.113)
oN=2] 2[N=3] - 2[N—P—1]

A variation of this method called the prewindowed covariance method chooses n; = 0 and np =
N —1, and results in a data matrix that consists of the first NV rows of Equation Moreover, the
postwindowed covariance method chooses n; = P and np = N + P — 1. In the autocorrelation
method, the data is said to be both prewindowed and postwindowed.

With the covariance method, or the prewindowed covariance method, the resulting correlation matrix
is positive semidefinite, but it is not Toeplitz. Thus, the Yule-Walker equations are more difficult to
solve. Moreover, the resulting [ARl model may not be stable, since the poles corresponding to the
estimated parameters may not lie within the unit circle. Nevertheless, unstable cases rarely seem
to occur in practice, and the covariance method is often preferred because it makes use of only the
measured data. This avoids any bias in the estimation of the filter coefficients.

Example 12.2 ( [Therrien:1991, Example 9.6, Page 539]). It is desired to estimate the parameters
of a second-order model for the sequence {z[n|}; = {1, —2, 3, —4, 5} by using both the

autocorrelation and covariance methods.

SOLUTION. Applying both methods as requested:
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Autocorrelation Method The data matrix can be obtained from Equation [I:9.112] and is given by:

0 0 0 0]
Z[0] 0 10
z[1]  x[0] -2 1
X =22 2] =]3 -2 (12.75)
z[3] z[2] -4 3
z[4] x[3] 5 —4
0 z[4]] [0 5]

Hence, it can be shown that:

0 0

1 0

-2 1

v [01 -2 3 -4 5 0 B
XX_{O 0 1 o 3 4|3 2 (12.76)

4 3

5 —4

_0 5_.

55 —40

:{_40 55} (12.77)

Note that the matrix is Toeplitz. The least squares Yule-Walker equations can then be
found by solving:

apsp = — (XTX) 7 X" x (12.78)
oh
-2
55 —40]7'[01 —2 3 -4 5 0o]|°
T {—40 55 ] {o 0 1 -2 3 —4 5] _54 (12.79)
0
- O -
Solving these equations gives:
22 0.8140
arss = 23845] ~ { (12.80)
L—% 0.1193
The [LS]error is then given by:
J(apsg) = x' (x + Xagsg) = 25.54 (12.81)
Hence, the prediction error variance is estimated as:
J (aLSE) 25.54
2
= = = 3.64 12.82

Covariance Method Next, apply the covariance method to the same problem. Since the filter
stays entirely within the data, the error is evaluated from n = 2 to n = 4. The data
matrix is therefore:

X=|z2] 2[l]| =|3 -2 (12.83)
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Notice that, in this data matrix, not all the the data has been used, since x[4] does not
appear. Hence, the correlation matrix is given by:

-2 1
rv [-2 3 —4 [29 —20
X X—[l 9 3 3 2| = 90 14 (12.84)
-4 3
This matrix is not Toeplitz. The estimate is therefore:
apsp = — (XTX) " X x (12.85)
-1 3
29 =20 -2 3 -4 2
T [—20 14 } [ 1 -2 3 } _54 B [1] (12.86)
Moreover, the [LSlerror is then given by:
J(arsp) = x' (x +Xagsg) =0 (12.87)
Hence, the prediction error variance is estimated as:
J 0
2= Jase) 0 _, (12.88)

© N 3

Evidently, this filter predicts the data perfectly. Indeed, if the prediction error, e[n], is
computed over the chosen range n = 2 to n = 4, it is found to be zero at every point.
The price to be paid for this perfect prediction, however, is an unstable [AR| model.
The transfer function for this[ARImodel can be written as:

1 1

H(z) = = 12.89
(2) 1422714272 (14 2z71)2 ( D)
which has a double pole at z = —1. Therefore, a bounded-input into this filter can

potentially produce an unbounded-output. Further, any errors in computation of the
model coefficients can easily put a pole outside of the unit circle.
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New slide

Application: Passive Target Localisation

This handout discusses a general problem of passive target localisation. Using the techniques
described throughout this tutorial, it should now be possible to appreciate many of the techniques
used in this problem.

13.1 Introduction

 This research tutorial is intended to cover a wide range of aspects which link acoustic source
localisation and blind source separation (BSS)). It is written at a level which assumes
knowledge of undergraduate mathematics and signal processing nomenclature, but otherwise
should be accessible to most technical graduates.

KEYPOINT! (Latest Slides). Please note the following:

* This tutorial is being continually updated, and feedback is welcomed. The documents published
on the USB stick may differ to the slides presented on the day. In particular, there are likely to
be a few typos in the document, so if there is something that isn’t clear, please feel free to email
me so I can correct it (or make it clearer).

¢ The latest version of this document can be found online and downloaded at:

http://mod-udrc.org/events/2016—summer—school

* Thanks to Xionghu Zhong and Ashley Hughes for borrowing some of their diagrams from their
dissertations.

E

New slide

13.1.1 Structure of the Tutorial

¢ Recommended Texts

430
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13.1. Introduction

\‘Z\ Noise == )
‘. %_oxl

Receiver
(Mic Array)

Source 2 -

Figure 13.1: Source localisation and blind source separation (BSS)).

Walls
<4— and other
obstacles
Observer
\

&

Source 1

Figure 13.2: Humans turn their head in the direction of interest in order to reduce interference from

other directions; joint detection, localisation, and enhancement.
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DIGITAL SIGNAL PROCESSING

RECOGNITION

i

Microphone b R

Speec Arrays

Processing

Benesty

Sondhi
Huang
Editors

Springer

(a) [Huang:2008] (b) [DiBiase:2001] (c) [Wolfel:2009]

Figure 13.3: Recommended book chapters and the references therein.

* Conceptual link between [AST]and

* Geometry of source localisation.

* Spherical and hyperboloidal localisation.

¢ Estimating time-difference of arrivals (TDOAE).
* Steered beamformer response function.

* Multiple target localisation using

¢ Conclusions.

F-— | 13.2 Recommended Texts

New slide * Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and Source Localization,” in

Springer Handbook of Speech Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp.
1043-1063, , Springer, 2008.

* Chapter 8: DiBiase J. H., H. F. Silverman, and M. S. Brandstein, “Robust Localization in
Reverberant Rooms,” in Microphone Arrays by M. Brandstein and D. Ward, pp. 157-180, ,
Springer Berlin Heidelberg, 2001.

* Chapter 10 of Wolfel M. and J. McDonough, Distant Speech Recognition, Wiley, 2009.

IDENTIFIERS - Hardback, ISBN13: 978-0-470-51704-8

Some recent PhD thesis on the topic include:
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* Zhong X., “Bayesian framework for multiple acoustic source tracking,” Ph.D. thesis, University
of Edinburgh, 2010.

e Pertila P., “Acoustic Source Localization in a Room Environment and at Moderate Distances,”
Ph.D. thesis, Tampere University of Technology, 2009.

* Fallon M., “Acoustic Source Tracking using Sequential Monte Carlo,” Ph.D. thesis, University
of Cambridge, 2008.

it

13.3 Why Source Localisation? i

A number of blind source separation techniques rely on knowledge of the desired source New slide
position, for example:

1. Look-direction in beamforming techniques.
2. Camera steering for audio-visual (including Robot Audition).

3. Parametric modelling of the mixing matrix.

Equally, a number of multi-target acoustic source localisation techniques rely on This
tutorial will look at the connections and dependencies between and and discuss how they
can be used together. The tutorial will cover some classical well known techniques, as well as some
recent advances towards the end.

In particular, the following topics will be considered in detail:

* hyperboloidal based localisation methods;

. estimation methods;

* steered response power (SRP) based localisation methods;

 computationally efficient [SRP| methods such as stochastic region contraction (SRC));

» multi-target detection and localisation using [BSS] algorithms such as degenerate unmixing
estimation technique (DUET);

13.4 Methodology —

gt

* In general, most techniques rely on the fact that an impinging wavefront reaches one New slide
acoustic sensor before it reaches another.

* Most algorithms are designed assuming there is no reverberation present, the free-field
assumption; the performance of each method in the presence of reverberation will be considered
after the techniques have been introduced.

* Typically, this acoustic sensor is a microphone; this tutorial will primarily consider
omni-directional pressure sensors, and therefore many of the techniques discussed will rely
on the fact there is a between the signals at different microphones.
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Sensors
(microphones)

x[n] xz&n] x,[n] - x,[n]

Direct
paths

Sound
Source

s(n]

Figure 13.4: Ideal free-field model.

Figure 13.5: An uniform linear array (ULA]) of microphones.
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Figure 13.6: An acoustic vector sensor.

* Other measurement types include:

— range difference measurements;
— interaural level difference;
— joint[I'DOAIland vision techniques.

* Another sensor modality might include acoustic vector sensors (AVSK) which measure both air
pressure and air velocity. Useful for applications such as sniper localisation.

[E)

13.4.1 Source Localization Strategies —

This section is based on New slide
DiBiase J. H., H. F Silverman, and M. S. Brandstein, “Robust Localization in
Reverberant Rooms,” in Microphone Arrays by M. Brandstein and D. Ward, pp. 157-180,
, Springer Berlin Heidelberg, 2001.

Existing source localisation methods can loosely be divided into three generic strategies:
1. those based on maximising the [SRP| of a beamformer;

* location estimate derived directly from a filtered, weighted, and sum version of the signal
data received at the sensors.

2. techniques adopting high-resolution spectral estimation concepts (see Stephan Weiss’s talk);

* any localisation scheme relying upon an application of the signal correlation matrix.

3. approaches employing information.
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; } Targets Sensors
@ (sound sources) C)I (microphones)

(1] @ m, x,[n] @ m,

Figure 13.7: Geometry assuming a free-field model.

e source locations calculated from a set of estimates measured across various
combinations of microphones.

Spectral-estimation approaches See Stephan Weiss’s talk :-)

[TDOAFbased estimators Computationally cheap, but suffers in the presence of noise and
reverberation.

[SBE approaches Computationally intensive, superior performance to [TDOAlbased methods.
However, possible to dramatically reduce computational load.

13.4.2 Geometric Layout
Suppose there is a:

e sensor array consisting of N microphones located at positions m; € R3, fori € {0,..., N—1},
and

M talkers (or targets) at positions x;, € R3, fork € {0,..., M — 1}.

The [[DOAI| between the microphones at position m; and m; due to a source at X, can be expressed

as:
X — my| — [x; — m,|

T (m;, mj, x;) = Ty, (x3) = | (13.1)

c
where c is the speed of sound, which is approximately 344 m/s. More precisely, in air, the speed of
sound is given by:

c=3314+0.60 m/s (13.2)

where O is the temperature in Centigrade or Celsius. Hence, for instance, at a temperature of 21
Celsius, then ¢ = 344 m/s.

The distance from the target at x;, to the sensor located at m; will be defined by D;;, and is called the
range. It is given by the expression

Dy, = x5 — my| (13.3)
Hence, it follows that .
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13.4.3 Ideal Free-field Model =

* In an anechoic free-field acoustic environment, as depicted in Figure [I3.4] the signal from New stide
source k, denoted by s (), propagates to the i-th sensor at time ¢ according to the expression:

where b;;(t) denotes additive noise. Note that, in the frequency domain, this expression is given
by:
Xir (W) = ayp, S (W) €797k 4+ By (w) (13.6)

On the assumption of geometrical room acoustics, which assumes high frequencies, a point
sound source of single frequency w, at position x; in free space, emits a pressure wave
Pix,,m,),+(w) at time ¢ and at position m,:

exp [jw(r/c —1)]

P(xk.,mi)(wa t):PO ,

(13.7)

where c is the speed of sound, ¢ € R is time, and r = |x; — m;|, which can be seen to equate
to Dzk‘

* The additive noise source is assumed to be uncorrelated with the source signal, as well as the
noise signals at the other microphones.

* The [IDOAlbetween the i-th and j-th microphone is given by:

Tijk = Tik — Tjk = T(mz, mj, Xk) (138)

13.4.4 [TDOA|and Hyperboloids e

It is important to be aware of the geometrical properties that arise from the relationship given New slide
in Equation[I3.1}

T (my, my, x;) = 2= 0l = X~ (13.9)
C

* This defines one half of a hyperboloid of two sheets, centered on the midpoint of the
microphones, v;; = % A generic diagram for the hyperboloid of twosheets is shown

in Figure[I3.8]and Equation [I3.13] Equivalently, as shown in Sidebar 23}

(Xk — Vij)T Vij (Xk — Vij) =1 (1310)
where
L — Syl m, — m,
T = cT(mi, mj, Xk), V,‘j = W and l’l’ij = TJ (1311)

* For source with a large source-range to microphone-separation ratio, the hyperboloid may be
well-approximated by a cone with a constant direction angle relative to the axis of symmetry.
The corresponding estimated direction angle, ¢;; for the microphone pair (3, j) is given by

b — cos~! (CT(“’“’ m;, Xk)) (13.12)

jm; — my|
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Figure 13.8: Hyperboloid of two sheets

KEYPOINT! (Hyperboloid of two sheets). General expression for a Hyperboloid of two sheets is
given by:
2 2 2
”f_2+?/_+z_2:_1 (13.13)
a c

d

An example of the resulting hyperboloid for a typical case is shown in Figure [I3.9] where the

two-dimensional (2-D)) equation is simplified in Sidebar [24] This case is for a microphone separation

of d = 0.1, and a time-delay of 7;; = 4%.

1€

— | 13.5 Indirect[TDOAFbased Methods

New slide

KEYPOINT! (Executive Summary). This section considers techniques which employ [TDOA

information directly. The section is broadly split into two sections; localising the source given
TDOAS, followed by techniques for estimating [TDOAS.

This is typically a two-step procedure in which:

* Typically, are extracted using the generalised cross correlation (GCC) function, or an
adaptive eigenvalue decomposition (AED)) algorithm.

* A hypothesised spatial position of the target can be used to predict the expected (or
corresponding range) at the microphone.

* The error between the measured and hypothesised is then minimised.
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Sidebar 23 Hyperboloids

Consider again Equation[I3.1] but change the coordinate system to the center of the microphone pairs,
such that:

xkzx—i—w (13.14)
such that:
m; —m; m; — m;
Xk—mi:x—T] and Xk—mjzx—{—TJ (13.15)
N—— ~——
i p

The normalised{TDOA| which o« = c7;j;is the actual multiplied by the speed of sound
(equivalent to a range) across these two microphones can then be expressed as

a=|x—p|l—|x+ pl (13.16)

To show this is a hyperboloid, consider multiplying both sides by |x — | + |x + u| and dividing by
7 such that:

1
[ — pf + x4 pl = = (x = gl + et pel) (= o] =[x+ ) (13.17)
1
== (x—nl = x+pl) (13.18)
4 T
X — p + |x+ p| = —— = (13.19)

Adding Equation[13.16|and Equation [I3.19| gives:

4 T
2x —p|=a— HX (13.20)
Squaring both sides again gives:
1
4xTx —8pu x +4p"p = o — 8u’x + —SXT[,LT[,LTX (13.21)
o
T T R
X' X+ p .U’:Z‘{'?X npx (13.22)
4 o?
xT (13 — @NNT) X=-= M (13.23)
finally giving:
Iy — Spp’
x'Vx =1 where V= a2a—||2 (13.24)
T M
4

which is the equation of an arbitrary orientated hyperboloid. The principal directions of the
hyperboloid are the eigenvectors of the matrix V. Since V is rank-one, it is straightforward to show

that the axis of symmetry is g = 3.
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Sidebar 24 Hyperboloids Example

Continuing from the derivation in Sidebar 23] suppose the microphones are at positions m; =

[4 0 O}T andm; = [-2 0 O}T such that pp = [4 0 O}T. Hence, Equation |13.24|becomes:

I, — 2 pup?
V — % (13.25)
e |N’
d2
£ 00
1 4 |1
=———<I3—— {0 00 (13.26)
T “1o 00
s [1-% 00
=———| 0 10 (13.27)
a? — d?
0 01
This then gives the equation of the hyperboloid as:
x'Vx =1 (13.28)
1-2 0 0 2 p
a? —d
x| 0" 1 o0lx=2 - (13.29)
0 01
(1 = —2) 2yt + 2 =2 (13.30)
o 4
2 2 2
oyt (13.31)

()" 1@=a

Note that the maximum [TDOA]|will occur when the source is on the line through the two microphones,
and outside of the microphones. In this case, the maximum observed delay will be 7;; = %l or = d.
Hence, d> — a? > 0.

Writing 72 = y2 + 22, which are points in the 2 — y plane on circles of radius r, this can alternatively

be written as:
2 2
d? — o? — | =1 (13.32)

«

ﬁ
Il
|

There is no solution for x < %
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Possible source locations as function of TDOA

—— Hyperboloid /
Cone approximation

©
-

0.05+

O 1 v 1
-0.04 -0.02 0 0.02 0.04

Distance along x-axis from centre of microphone pair, x

:,5
=
"
[ay]
~
<
=
=
o
o=
o]
-~
—~
=
Qo
(@)
—
—
QL
o}
o0
—
—
)
o
—
<
5]
O
o
—
I~
+—
12!
A

Figure 13.9: Hyperboloid, for a microphone separation of d = 0.1, and a time-delay of 7;; = ﬁ.

 Accurate and robust estimation is the key to the effectiveness of this class of
methods.

* An alternative way of viewing these solutions is to consider what spatial positions of the target
could lead to the estimated

In the following subsections, two key error functions are considered which can be optimised in a
variety of methods.

)

13.5.1 Spherical Least Squares Error Function -

ew slide

KEYPOINT! (Underlying Idea). Methods using the least squares error (LSE) function relate the
distance or range to a target, relative to each microphone, in terms of the range to a coordinate origin
and the time-difference of arrival (TDOA)) estimates at each microphone.

* Suppose the first microphone is located at the origin of the coordinate system, such that mgy =
T
[0 0 0] .

* The range from target k to sensor ¢ can be expressed as the range from the target to the first
sensor plus a correction term:

Di, = Doy, + Dig, — Doy, (13.33)
= Rs + ¢ Ty (xx) (13.34)

where Ry, = |xj| is the range to the first microphone which is at the origin. This is shown in

Figure(13.10
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Figure 13.10: Range and relationship.

¢ In practice, the observations are the A an erefore, given R, these ranges can be
In practice, the ob t the [TDOAk and therefore, g Ry, th g b

considered the measurement ranges.

Of course, knowing R is half the solution, but it is just one unknown at this stage. The
measurements can be as

~ ~

Dy = Ry + ¢ Ty (13.35)

The source-sensor geometry states that the target lies on a sphere centered on the corresponding
sensor. Hence,

D% = |x;, — my|? (13.36)
=X} X}, — 2m] x;, + m] m; (13.37)
= R? - 2m! x;, + R? (13.38)

where R; = |my]| is the distance of the i-th microphone to the origin.

Define the spherical error function for the ith-order-microphone as the difference between
the squared measured range and the squared spherical modelled range values. Using
Equation and Equation [I3.38] this spherical error function can be written as:

<D§k . ka> (13.39)
{ (RS + ci}o)z — (R? —2m] x;, + Rf)} (13.40)
T

~ 1 ~
=m/xic+ R Do+ 5 <c27;% - Rf) (13.41)



13.5. Indirect TDOAlbased Methods 443

» Concatenating the error functions for each microphone gives the expression:

€ = Ax; — (b — Rypdy) (13.42)
—_—
Vi

=[A d;] || by (13.43)

N—— Rsk

Sk
0y
where
mOT TOO 1 C2TDQO — R%
A= : ,d=c : , bp=- : (13.44)
my_, T(N—I)O C2T(2N—1)0 - Ry,

* The least-squares estimate can then be obtained by forming the sum-of-squared errors
term using J = € €; which simplifies to:

J(x1) = (Axy — (by — Ry di))" (Axy — (b — Ry dy)) (13.45a)

* Note that as Ry, = |xx|, these parameters aren’t in fact independent. Therefore, the problem to
be solved can either be formulated as:

- anonlinear least-squares problem in x;, as described by Equation [13.453]

— a linear minimisation subject to quadratic constraints:
0, = arg min (8465 — be)" (Sk0r — by) (13.46)
subject to the constraint
0.A0,=0 where A = diag[l, 1, 1, —1] (13.47)
The constraint 8, A 6, = 0 is equivalent to
2+ Yl + 2 =R (13.48)

where (Zsk, Ysk, 2sk) are the Cartesian coordinates of the source position.

13.5.1.1 Two-step Spherical LSE| Approaches

re

ew slide

KEYPOINT! (Constrained least-squares). To avoid solving either a nonlinear or a constrained
least-squares problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in x; assuming the range to the target, Ry, is known;

2. and then solving for Ry given an estimate of x;, in terms of (. . 0.) R.

This approach is followed in the spherical intersection (SX) and spherical interpolation (SI)
estimators as shown below.
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* In both approaches, the range estimate is assumed known, so that the can be expressed as:

J(x) =€l'e; = (Axp, —vi)" (Axy —vy) (13.49)

)

Assuming an estimate of R, denoted by }?Sk, this can be solved as
%= Alv, = Al (b~ Rydy)  where AT=[ATA]AT  (1350)
Note that A is the pseudo-inverse of A.

Again, recall that the only observations are the TDOAk, {7}y, € {0, N — 1}}, and that while R,y is
assumed known, clearly it is an unknown parameter. The differences between the following spherical
estimation techniques essentially reduce to how the unknown range is dealt with. These are covered
in the following subsections.

To

- 13.5.1.2 Spherical Intersection Estimator

Newslide  This method uses the physical constraint that the range R, is the Euclidean distance to the target.
« Writing R, = X} X, it follows that:
o ~ T T o
R = (bk - Rskdk) ATTAT (bk - Rskdk) (13.51)

which can be written as the quadratic:

R + bRy +c=0 (13.52)
where the individual terms follow through expanding Equation [I3.51] These terms are given
by:

a=1-|A'd|*, b=2bATTATd,, and ¢=—|Alb|’ (13.53)

* The unique, real, positive root of Equation [13.52]is taken as the estimator of the source
range. Hence, the estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.

ie

- 13.5.1.3 Spherical Interpolation Estimator

Newslide  The [ST| estimator again uses the spherical function, but rather than using the physically intuitive
solution of constraining the target range relative to the origin to be the actual distance so that R, =
|x|, it is estimated in the least-squares sense.

Consider again the spherical error function:
€l — AXk — (bk — Rsk dk) (1354)
Substituting the from Equation [13.50]into this expression gives:

e = A[ATA] " AT (bk - }?skdk) ~ (by — Ry, dy) (13.55)
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Defining the projection matrix as Py = Iy — A [ATA] ~" AT then this may be written as:
€r = R Pady — Paby (13.56)
Minimising the using the normal equations gives:
Ry = (df P4 Pady) " dTPLP b, (13.57)

However, the projection matrix is symmetric and idempotent, such that Py = P} and PAP, =
P A. This means that the sum-of-squared errors simplifies to:

Ra, = (df Padi)” dIP4by (13.58)

or alternatively, since the quantity in the inverse is a scaler,

dIP b,
Ry, = =+ (13.59)
" AT Pady
Substituting back into the for the target position given in Equation gives the final estimator:
diPa
X, = A" ([ Iy —dy—2—— | b 13.60
X ( N k df PL dk) k ( )

This approach is said to perform better, but is computationally slightly more complex than the
estimator.

13.5.1.4 Other Approaches

o

st

There are several other approaches to minimising the spherical [LSE|l function defined in New slide

Equation [13.45]

* In particular, the linear-correction solves the constrained minimization problem using
Lagrange multipliers in a two stage process.

* For further information, see: Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and
Source Localization,” in Springer Handbook of Speech Processing by J. Benesty, M. M. Sondhi,
and Y. Huang, pp. 1043-1063, , Springer, 2008.

13.5.2 Hyperbolic Least Squares Error Function

re

KEYPOINT! (Underlying Concept). Suppose that for each pair of microphones ¢ and j, a
corresponding to source k is somehow estimated, and this is denoted by 7;;,. One approach to ASL is
to minimise the total error between the measured and the predicted by the geometry
given an assumed target position.

e Ifa is estimated between two microphones 7 and j, then the error between this and
modelled TDOAlis given by Equation[13.1

€ij(Xx) = Tijp — T (my, my, xy) (13.61)

where the error is considered as a function of the source position xj.
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Figure 13.11: Quadruple sensor arrangement and local Cartesian coordinate system.

* The total error as a function of target position
N
J(xk) =Y > (e — T (my, my, xi,))° (13.62)

i=1 j£i=1

* Unfortunately, since 7' (m;, m;, Xy,) is a nonlinear function of xy, the minimum [LSEl does not
possess a closed-form solution.

“" 13.5.2.1 Linear Intersection Method

New slide

KEYPOINT! (Underlying Concept). The linear intersection (LI) algorithm works by utilising a
sensor quadruple with a common midpoint, which allows a bearing line to be deduced from the
intersection of two cones which approximate the hyperboloid. The spatial position that minimises
the distance between these bearing lines a the point of nearest intersection is considered the target

position.

* Given the bearing lines, it is possible to calculate the points s;; and sj; on two bearing lines
which give the closest intersection as illustrated in Figure [I3.12] This is basic gemoentry, and
for a detailed analysis, see [Brandstein:1997].

* The trick is to note that given these points s;; and s;;, the theoretical TDOAL 7" (m;;, my;, s;5),
can be compared with the observed ['DOA|

This will then lead to a weighted location estimate, where the weights are related to the
likelihood of the target position given the observed [[DOA




e

New slide
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Figure 13.12: Calculating the points of closest intersection.

13.5.3 estimation methods

Two key methods for estimation are using the [GCC function and the algorithm.

IGCC(lalgorithm most popular approach assuming an ideal free-field movel. It has the advantages
that
* computationally efficient, and hence short decision delays;

 perform fairly well in moderately noisy and reverberant environments.
However, IGCClbased methods

* fail when room reverberation is high;

* focus of current research is on combating the effect of room reverberation.
AEDI Algorithm Approaches the estimation approach from a different point of view from the
traditional [GCO method.
* adopts a reverberant rather than free-field model;

 computationally more expensive than [GCC}

e can fail when there are common-zeros in the room impulse response (RIR).

Note that both methods assume that the signals received at the microphones arise as the result of a
single source, and that if there are multiple sources, the signals will first need to be separated into
different contributions of the individual sources.

[E)

13.5.3.1 [GCC estimation -

The [GCQ algorithm proposed by Knapp and Carter is the most widely used approach to [TDOA]"*" ¢
estimation.
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» TheTDOAlestimate between two microphones 7 and j is obtained as the time lag that maximises
the cross-correlation between the filtered versions of the microphone outputs:

T;; = arg MAX T2,z 1] (13.63)

where the signal received at microphone i is given by x;[n|, and where x; should not be confused
with the location of the source k, which is denoted by x;, = [z, Yk, 2x]”.

* The cross-correlation function is given by

Tora, [0) = F ' (W0, (¢7°)) (13.64)
=F 1 (@ (e™") Pyyay (/7)) (13.65)
— / * Uy (e77%) €7 dw (13.66)
7
= / U D (47 Py, (¢17) 09T (13.67)

Ts

where the cross-power spectral density is given by

Pora, (¢7) = E [ Xy (%) X, (") ] (13.68)

The can be estimated in a variety of means. The choice of the filtering term or frequency
domain weighting function, ® (e/“7*), leads to a variety of different [GCC| methods for
estimation. In Section [[3.5.3.3], some of the popular approaches are listed, but only one is
covered in detail, namely the phase transform (PHAT).

13.5.3.2 [CPSD!for Free-Field Model

For the free-field model in Equation and Equation it follows that for ¢ # j the in
Equation [I3.68]is given by:

P, (W) =E[X; (w) X; (w)] (13.69)
=E [(ai Sk (w) €77 + By, (w)) (aju Sk (w) e7™ + By, (w))] (13.70)
= qpajpe @ Tmem xR 116, (w)[?] (13.71)

where E [By;, (w) Bjx (w)] = 0 and E [Bj; (w) Sk (w)] = 0 due to the noise being uncorrelated with
the source signal and noise signals.

* In particular, note that it follows:
Z‘Pxixj (W) = —jwT (my, mj;, x;) (13.72)

In otherwords, all the [IIDOAI information is conveyed in the phrase rather than the amplitude
of the This therefore suggests that the weighting function can be chosen to remove the
amplitude information.

These equations can be converted to discrete time as appropriate.
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T9

o 13.5.3.3 [GCdProcessors

New slide

[PHAT is considered in detail.

Processor Name \

Frequency Function

Cross Correlation 1
1
[PHAT] —_—
|P:c1x2 (erTs)
Roth 1 Ise R 1 1
oth Impulse Response , or .
P P Py (GWTS) Py (eJWTS)
1
, .
\/wal (BWTS) Pryyzy (GJwTS)
Py, (™7
Eckart ik ( )

Pryny (€7475) Py, (eijs)

‘%1%2 (€JUJT.5)

Hannon-Thomson or ML

| Pryay (€7475)

)

( B h/xlrz (eijS)

where 7, (€7“7*) is the normalised or coherence function is given by

lem (ijTS )

Va2 (erTs) —

The PHATHGCC approach can be written as:

\/Pmm (e74T%) Py,

(5T)

Fava, [ = /T B (577) Pypyy (¢777) €7 do

Ts

=0({Ty + LPyyq, (/"

) 1 P
/_7r m| T1T2
= /TS j(£wT+ZPz112(ejWTS)) dw

(ej“TS) |ejLPx1x2 (e7s) T g,

)

d(lTs — T (m;, mj, x))

The most common choices for the (GCC|weighting term are listed in the table below. In particular, the

(13.73)

(13.74)

(13.75)

(13.76)

(13.77)
(13.78)

* In the absence of reverberation, the (GCCHPHAT] (GCC-PHAT]) algorithm gives an impulse at a
lag given by the divided by the sampling period.

13.5.3.4 Adaptive Eigenvalue Decomposition

)

ew slide

KEYPOINT! (Underlying Concept). The [AED] algorithm adopts the real reverberant rather than
free-field model. The [AED] algorithm actually amounts to a blind channel identification problem,
which then seeks to identify the channel coefficients corresponding to the direct path elements.
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Figure 13.13: Normal cross-correlation and (GCC-PHAT! functions for a frame of speech.
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(a) -PHATl in a reverberant (b) -PHAT] in a noisy environment,
environment, p = 08. The ground SNR = 0 dB.

truth of TDOA is 0.64 ms.
Figure 13.14: The effect of reverberation and noise on the can lead to poor

estimates.
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Figure 13.15: A typical room acoustic impulse response.
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Early reflections Late reflections time

Figure 13.16: Early and late reflections in an[AIRL

* Suppose that the acoustic impulse response (AIR]) between source k and i is given by h[n]
such that

Tigln| = i hix[n —m] sg[m] + bix[n] (13.79)

m=—00

then the [ITDOAIbetween microphones ¢ and j is:
Tin = {arg max |hik[£]]} - {arg max yhjkw]y} (13.80)
This assumes a minimum-phase system, but can easily be made robust to a non-minimum-phase

system.

* Reverberation plays a major role in[ASL] and

* Consider reverberation as the sum total of all sound reflections arriving at a certain point in a
room after room has been excited by impulse.

Trivia: Perceive early reflections to reinforce direct sound, and can help with speech intelligibility. It
can be easier to hold a conversation in a closed room than outdoors
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Reflected Paths

Sqund
Source

Figure 13.17: In an infinitely long cylindrical tube, the reverberant energy is greater than the energy
contained in the sound travelling along a direct path, thus demonstrating the nonminimum-phase
properties of room acoustics.

* Room transfer functions are often nonminimum-phase since there is more energy in the
reverberant component of the than in the component corresponding to sound travelling
along a direct path.

* Therefore AEDI will need to consider multiple peaks in the estimated [AIR]

&

~ | 13.6 Direct Localisation Methods

New stide * Direct localisation methods have the advantage that the relationship between the measurement
and the state is linear.
* However, extracting the position measurement requires a multi-dimensional search over the
state space and is usually computationally expensive.
o 13.6.1 Steered Response Power Function
New slide

KEYPOINT! (Underlying Concept). The steered beamformer (SBE) or function is a measure
of correlation across all pairs of microphone signals for a set of relative delays that arise from a
hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a spatial position X, such that
Tpk = |X — m,|, using the notation in Equation|13.8] is given by:

S(x):/

Q

2

N
> W, (e477) X, (7470) 97| dw (13.81)
p=1

Expanding and rearranging the order of integration and summation gives:

N N
S(x) = /ZZWp (/1) Wi (e97%) X, (e797%) X (e/7%) e ok —~ar) g, (13.82)

o p=lg=1
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Figure 13.18: response from a frame of speech signal. The integration frequency range is 300
to 3500 Hz (see Equation 13.84)). The true source position is at [2.0, 2.5]m. The grid density is set to
40 mm.

Figure 13.19: An example video showing the changing as the source location moves.

Taking expectations of both sides and setting ®,,, (¢/“7+) = W, (e?“T+) W (e/“T*) gives

N N
E[SE)]=> ) / D,y (71%) Py, (e717) ek duy (13.83)
Q

p=1 ¢=1

N N N N
-y MESS i — mif — [ — | 13.84
- Tz, x; [quk’] = Tz, z; c ( . )
1

p=1 ¢=1 p=1 ¢=

In other words, the[SRPlis the sum of all possible pairwise[GCC functions evaluated at the time delays
hypothesised by the target position. This is discussed in Section |13.6.2

13.6.2 Conceptual Intepretation of r

Equation [13.84] gives an elegant conceptual intepretation of the function. Given a candidate New slide
spatial position Xy, the corresponding at microphones ¢ and j can be calculated using
Equation|13.9
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Figure 13.20: (GCC-PHAT] for different microphone pairs.

X — my| — [X; — my|

T(rni, mj, )A(k) =

(13.85)
c

Since the function in Equation |13.84]is a linear combination of the -PHAT! functions, then
if X, is correct, then the -PHAT] functions should return a large peak. If X, is incorrect, then
the [GCC-PHAT] functions return smaller values, and therefore the function in Equation [13.84]is
smaller.

&

13.7 Algorithm

New slide

KEYPOINT! (Summary). The [DUET] algorithm is an approach to [BSS that ties in neatly to [ASLL
Under certain assumptions and circumstances, it is possible to separate more than two sources using
only two microphones.

. is based on the assumption that for a set of signals xy[t], their time-frequency
representations (TERk) are predominately non-overlapping. This condition is referred to as
W-disjoint orthogonality (WDOQJ), and can be stated as follows:

Sp(w, t) Sy (w, t) =0Vp # ¢, Vi, w (13.86)
The[WDO|property is clearly shown in Figure[I3.21] where the spectrograms of clean speech mixtures

are sparse and disjoint. For two speech signals, the product of the corresponding spectrograms is zero
at the most area on the time-frequency (TF) domain.
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Figure 13.21: W-disjoint orthogonality of two speech signals. Original speech signal (a) s;[t] and
(b) s2[t]; corresponding [STETE (c) |S; (w, t)| and (d) |.S2 (w, t)]; (e) product of the two spectrogram
|Sl (W, t) SQ (W, t)|
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Figure 13.22: Tllustration of the underlying idea in DUETL

Consider taking then, a particular [TE-bin, (w, t), where source p is known to be active. The two
received signals at microphones ¢ and j in that [[F}-bin can be written in the [TE-domain as:

Xz'p (w, t) = Qyp €7ijip Sp (CL), t) -+ Bz ((,LJ, t)

. (13.87)
Xip(w, t) = aje ™ S (w, t) + B (w, t)
Taking the ratio of these expressions and ignoring the noise terms gives:
Xi ) t 7 T
Hyy (w0, 1) & 2@ D) Qip o, (13.88)

Xip(w, 1) ajp

where, again, 7;;,, is the of the signal contribution due to source p between microphones 7 and

VE

KEYPOINT! (Which [TF-bins belong to which source?). Of course, which [TE-bins belong to
which source is unknown, as the source signal and spectrum is unknown. However, if the magnitude
and phase terms of the ratio in Equation [13.88| are histogrammed over all [TE-bins, peaks will occur a
distinct magnitude-phase positions, each peak corresponding to a different source.

Hence,

1 i
Tijp = - arg Hpp (w, t), and z? = |Hip (w, t)]| (13.89)
jp

This leads to the essentials of the DUET| method which are:

1. Construct the [TH representation of both mixtures.
2. Take the ratio of the two mixtures and extract local mixing parameter estimates.

3. Combine the set of local mixing parameter estimates into /N pairings corresponding to the true
mixing parameter pairings.
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Figure 13.23: [DUET] for multiple sources.

4. Generate one binary mask for each determined mixing parameter pair
MTE-bins which yield that particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the mixtures.

6. Return each demixed [TFRIto the time domain.

13.7.1 Effect of Reverberation and Noise

corresponding to the

A number of papers have analysed the validity of the property, and anechoic speech often
satisfies this. However, while the [TFRl of speech is very clear in this case, the [[FR]I becomes smeared

due to revebereration and noise.

13.7.2 Estimating multiple targets

The underlying idea is shown in Figure [I3.25]and Figure [13.26]

13.8 Further Topics

* Reduction in complexity of calculating [SRP. This includes and hierarchical searches.

* Multiple-target tracking (see Daniel Clark’s Notes)

* Simultaneous (self-)localisation and tracking; estimating sensor and target positions from a

moving source.
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Figure 13.24: The [TERI is very clear in the anechoic environment but smeared around by the
reverberation and noise.
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Figure 13.25: Flow diagram of the DUET-GCC approach. Basically, the speech mixtures are
separated by using the DUET in the TF domain, and the PHAT-GCC is then employed for the
spectrogram of each source to estimate the TDOAs.
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Figure 13.26: GCC function from DUET approach and traditional PHAT weighting. Two sources
are located at (1.4,1.2)m and (1.4, 2.8)m respectively. The GCC function is estimated from the first
microphone pair (microphone 1 and microphone 2). The ground truth [IIDOAS are 0.95 ms.
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Figure 13.27: Acoustic source tracking and localisation.

e Joint and [BSSI

» Explicit signal and channel modelling! (None of the material so forth cares whether the signal
is speech or music!)

» Application areas such as gunshot localisation; other sensor modalities; diarisation.
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