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5 SRREY Course topics

=Machine learning problem
= Examples
» Problem formulation
» Learning scenarios
=Basic linear machines
= Nearest neighbour classifier
= Perceptron
= Sparse representation based classifier
=Nonlinear extensions
» Kernel methods
» Multilayer neural networks
* Deep neural networks

*Dimensionality reduction
=Classifier design issues
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P SURREY  Rest of the course

Training deep neural networks

(DNN) } Muhammad Rana
m Advanced DNN
m Recurrent neural networks } _

. . . Fei Yan
m Deep learning libraries
= Anomaly detection in graphs Radek Marik
& SURREY Introduction

= Machine Learning is a field of study concerned
with the development of algorithms that can learn
from and make predictions on data

= The aim of machine learning is to give
computers the ability to learn (find solutions to
problems) without being explicitly programmed

m Applications span a vast range of problems.
Biometrics Object detect Target detect Bridge detection

»




© e Typical machine
SURREN learning tasks

»To generate response to input data so as to
achieve required functionality
=Examples include
» Regression (predict output given input)
» Classification (predict class membership)
» Cluster assignment (associate input to
data structure)
= Detection (detect a specific object)
= Anomaly detection (identification of input
as an outlier)

W &ikREy  Examples of regression

m Simple linear regression
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m Multivariate regression
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SURREY Examples of classification

m Linear classification

m Detection

m Anomaly detection

ey General statement of the
machine learning problem

m Mathematically, the machine is realising an
appropriate function

y =Z(x,W)

" X..... D dimensional input
Y. d dimensional output
= W..... parameters




UNIVERSITY OF

RREY Machine training

m Pre-requisites
= Training set X = {X1,......, XN}

= Ground truth target values Z = {Zl, ..... , ZN}

= Form of function % (architecture)
m Objective function (error measure)
» Procedure for updating |}/

Z
X F(x, W) Y
error signal
SURREY Learning scenarios

Supervised (target set available)

Non supervised (target set unavailable)

m clustering

Semi-supervised (some training data labelled)
Transfer learning

m Supervised learning in the source domain

m Target domain different from the source domain
= Only unlabelled data available in the target domain




UNIVERSITY OF

SURREY Basic linear machine

m Function % is linear, namely
y = Wx

where W is a d x D matrix of parameters

_ uy'{' -
Yi
[ ] y = X
Ya
UNIVERSITY OF Similarity based

SURREY classification

o Nearest Neighbour classifier labels patterns based on
similarity, gauged in terms of distance

o Squared Euclidean distance between x and x; is given as

(x—x) (x—x)=x"x—2x"x + ijxj

o The distance between x and x; minimal when x”

@ scalar product xij gauges similarity

@ other notions of similarity can be defined, e.g. cosing ®

similarity, Gaussian kernel, subjective grading

(10)

X; is maximal
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RREY NN classifier machine

= N... number of training samples
m D... dimensionality of each sample

NN
D X
m Augment the result by input
layer
= m Compute scalar products for all
training samples
= Min
UNIVERSITY OF . - -
SURREY Learning objectives
m Linear classifier )
o Class 2
&
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Class 1

m Support vector machine

'.;vt?.( +b=1
wix4+b=0
.‘..."4.._wa +b=-1
F(x) = Z w; 2 (XJ-TX) +b

j (support vectors)




- Sparse representation
W SURREY  classification (SRC)

o Let X =[xi,......xp] be training data matrix

@ Reconstruct an unknown sample y as

y = Xa
where a is a vector of coefficients
@ Premise: for a sample yew;, we would expect the
reconstruction to be constituted by training samples from

class i, i.e. vector a should be sparse (all entries for samples
from other classes should be zero)

@ The solution has to be regularised by imposing a minimum
norm on a

¥ SURREY SRC

o By imposing sparsity on the reconstruction solution, we should
be able to identify the class of y
o This can be achieved by using /; and solving

argmin|fal|;  s.ty=Xa (7)

............. —=m




¥ SURREY SRC algorithm

Q Solve

argmin||a||ls  s.t.|ly — Xa|| <€ (8)
@ Let a; be vector a with all entries associated with samples
from class j # i set to zero, and compute the residual
ri(y) = |ly — Xail|2 (9)
© assign y — wj if ri(y) = min;r(y)

o Relationship to the k-NN classifier

o k-NN classifier minimises the distances to y
e in addition, SRC involves pairwise interactions of residual error
vectors

m Solution to be found for every test sample

¥ SURREY The effect of norm
/ fa—= T s —
=/, norm of a = [ay, ...., aq) —m
d
1
6, =13 lap)s |
J=1
nly ... counts the number of nonzero elements
ly ... induces sparsity
Oy ... length of vector a Jasa s
"A
loo ... selects arg max; a; L At N
Al
A A




¥ SURREY Nonlinear separation

Geometric viewpoint of the pattern recognition problem

El class [0}

sy Overlapping classes

m Class boundaries may be nonlinear

- class o)
D class ©,
. class @

= Classes may be overlapping @
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SURREY Kernel SVM

m Scalar product replaced by a kernel function

k(xj ) X)
for example, a radial basis function

F(x) = Z w;zik(x;,x) +b

j (support vectors)
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UNIVERSITY OF

SURREY Neural networks

m Perceptron

w,
— Y
= Deep neural Node expansion
network motivation
@ ¢ Ensemble
& Generate

different terms

22
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SURREY Neural networks

function function

inputs  Weights  Netinput  Activation m Activation function

= sigmoid
output m rectified linear
= tanh

m softplus
= radial basis
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UNIVERSITY OF

SURREY Essence of machine learning

m Defining the structure of the approximation of
function . %

m Making the computation of .%# robust

m Finding the values of the unknown parameters
to achieve the desired objectives (system
behaviour)
= Avoiding local optima

m Promoting the ability of the solution to generalise to
unseen data
m Key measure
e Dimensionality reduction
e Training set management
e Ensembles (dropouts) o

12



UNIVERSITY OF

SURREY  Classifier design issues

m System architecture m Training data usage
m # of layers m training/testing
m connectivity m evalutaion
m role of layer = augmentation
s dropouts e Mirroring
= Activation function . Rondom samoiing
m Objective function * Perturbation
= primary objective m Learning process and
= constraints its parameters
m parameters to be learned s Epoch
m regularisation of solution m Learning rate
= metric m Greedy learning
m fusion »s

UNIVERSITY OF

SURREY Primary objective function

m Choice very important, as it induces
different learning properties

m Examples
m Classification error
= Mean squared error [y — Z]T[y — 17

m Cross entropy m )
— > i1 Yjlog z;
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HSURREY  Dimensionality reduction

= Motivation - reduce over fitting

m Scope
» Redundancy
= Irrelevant content
= Hierarchical relations - from local
to global
m Implications on architecture
m # of relevant features is low

m At lower layers only local filters are
needed: restricted connectivity

= translation invariance -

27
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SURREY Convolutional neural network

m Basic CNN architecture

Decision layer

——

Laf 228 ﬂ output

[} J
T
convolution layers '
Fully connected

layer
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1, ey E(lzngensmnallty reduction -

Principal component analysis (PCA): an orthogonal basis
transformation

Transform correlated variables into uncorrelated ones
(principal components)

@ Can be used for dimensionality reduction

@ The underlying aim is to find bases V and transformed
variables y so that in expectation |x — Vy|2 is minimal subject

to VIV =1
Retains as much variance as possible when reducing
dimensionality

5 SURREY How PCA works

e Given m centred vectors: X = [x1,X2, -+, Xpn]
o X: D x N data matrix

@ The squared fitting error averaged over the training set
tr{[X — WTX]T[X — vwWTX]}
@ This can be rearranged as
tr{[ XX —XTwvwTX]}

@ The solution to the constrained optimisation problem is a
system of eigenvectors and eigenvalues satisfying

XXTV_-VA=0

e Note C = XX T is the D x D covariance matrix
@ Diagonal matrix A: eigenvalues

15



~ __ _ Mapping data to [ow
BURREY  dimensional feature space

Given V=[vy, V,,....vV4], the d-dimensional feature
vector in the PCA space is given by

y = VT X
dimensionality d chosen to retain a certain
fraction of variance T

d<D Distribution of
d<=N eigenvalues

Example of eigenvectors

b SURREY Kernelising PCA

e Premultiplying eq (1) by data matrix X7 gives
X" XXV -XTVA=0 (2)

@ an eigenvalue problem with eigenvectors U = X7V and the
same eigenvalues

matrix XTX is N x N

if N << D, then solving eq (2) is more efficient
matrix V can be obtained as V = XUA~!
matrix K = XT X is referred to as kernel matrix

its element kjj = k(x;, x;) measures "similarity” of vectors
Xi, Xj

-
i

o k,'j:X Xj
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& SURREY Kernelising PCA

o the kernel formulation of PCA offers a scope for using
different notions of similarity

o for instance, kj = exp{—||x; — xj||?0 2}

@ other notions of similarity remap x in a nonlinear way into
b(x)

@ ¢(x) may be of infinite dimensionality

e ¢(x) is defined implicitly, is unknown, but satisfies
ki = ¢(xi)T ¢(%)

o working with K is like working with data matrix
X = [6(x1), o(x2), -+, é(xn)]

@ We have kernelised PCA

33

b SURREY Kernelising PCA
o Note
o V = XUALis not explicitly available: U and A are, but X is
not

o However... we are interested in projection onto basis V/, not
the basis itself

o Projection onto V: XTV = XTXUA™! = KUN!
o All K and U and A are available
o A purely rescales the data and can be omitted

34
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HSURREY Kernel Discriminant Analysi

@ Kernel Fisher discriminant analysis: another supervised

learning technique p
e Focusing on discriminantion, rather than faithful e ‘
representation S o
@ Seeking the projection w maximising Fisher criterion = » ¢
T ®
maxw—SBw. (3)

w wT (St +A)w

o Sg and St: between class and total scatters

@ \: regularisation parameter

@ The total scatter matrix equals mixture covariance matrix
Sr=XXT

@ Between class scatter Sg can be expressed as Sg = XAX T

@ Block diagonal matrix A contains a constant in block i/,
proportional to the number of samples from class

B

SURREY KDA

o Expressing w = Xa, and substituting for Sg, we can kernelise
Fisher criterion as
max aTXTXAX X — max a’KAKa (4)
o aTXT(XXT +ADXa & aT (K2 + A\K)a

@ The maximisation leads to an eigenvalue problem
AKa — k(K +A)a=0 (5)

18



wweor  EX@aMmples of DNN feature
SURR .
extraction approaches

m Auto-encoder: find features that can regenerate
the input %Feature layer

Learning objective
«» output=input

- [Ivs |1 o] -

m Extracting representation that outputs similar/
dissimilar features for similar/dissimilar inputs

|m@ 7 | || siamese m@@ | I tripple loss

network

m@@“ ligs |1
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eremer Learning and generalisation
enhancements

m Residual network
- vanishing
gradient problem

= Node dropout

identity

N Srivastava et al., Dropout: A simple way to
prevent neural networks from overfitting,
JMLR 2014

41




¥ SURREY Metric learning

e The underlying assumption in pattern recognition is that
similar patterns belong to the same class.

e This is the premise behind Nearest Neighbour methods

e Also Gaussian classifier assign patterns to their classes
based on similarity (distance from the class mean)

o However, the choice of metric used for measuring dis-
tances is critical
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SURREY Metric learning

m Desired properties of metric

o In general, we would like our metric d(x;,x;) to reflect
the notion of similarity, i.e.

da(xi,x;) =small <t, similar pair
da(x;,x;) =large >t; dissimilar pair

(13)

where threshold ¢ is small, and ¢; is large
o Let metric da(x;,x;) be parameterised as

dA(Xi,Xj) = (Xi — Xj)TA(Xi — Xj) (14)
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SURREY Problem formulation

e Thus the metric learning problem can be formulated as

ming [tr(AAg") —log |AAGY]

st tr[A(x; —x;)(xi —x;)T] <ts (4,5)eS

t‘l’[A(Xi — xj)(x,- — Xj)T] Z tl (Z])GD
(17)
o As there may not exist a feasible solution, the optimisa-
tion problem can be relaxed using slack variables &.(; ;)
These replace the constraint ¢, for the (i, j) pair indexed
by ¢(i,7), where 1 < ¢ < ng for the similar pairs, and

ng + 1 < ¢ < n for the dissimilar pair.
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