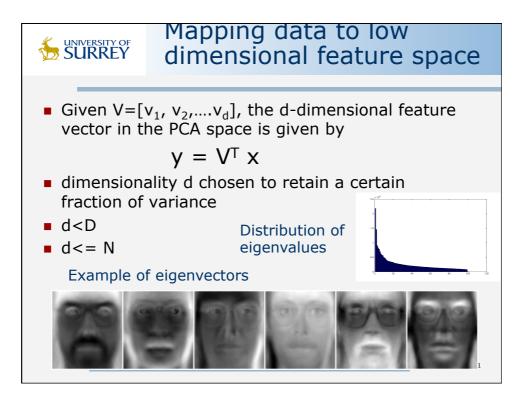
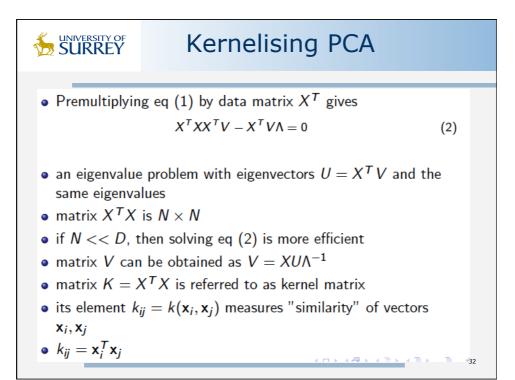
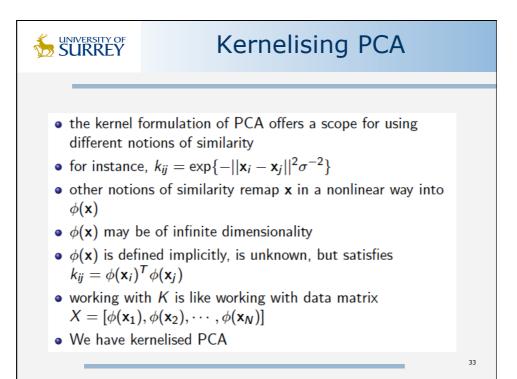


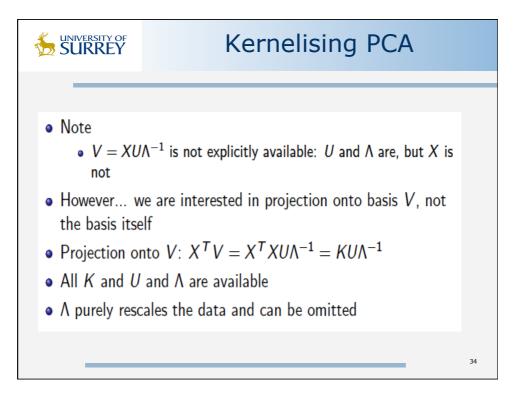
• Given *m* centred vectors:
$$X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]$$

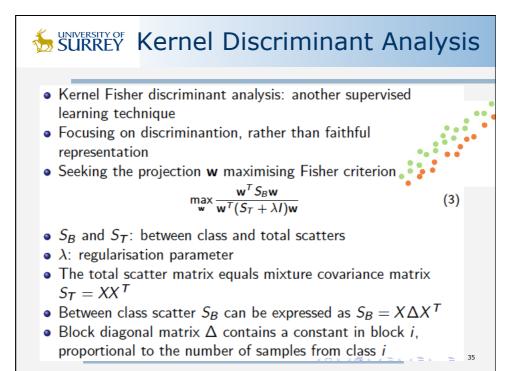
• $X: D \times N$ data matrix
• The squared fitting error averaged over the training set
 $tr\{[X - VV^TX]^T[X - VV^TX]\}$
• This can be rearranged as
 $tr\{[X^TX - X^TVV^TX]\}$
• The solution to the constrained optimisation problem is a system of eigenvectors and eigenvalues satisfying
 $XX^TV - V\Lambda = 0$
• Note $C = XX^T$ is the $D \times D$ covariance matrix
• Diagonal matrix Λ : eigenvalues

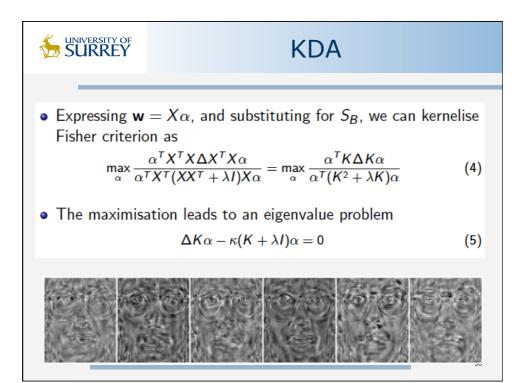


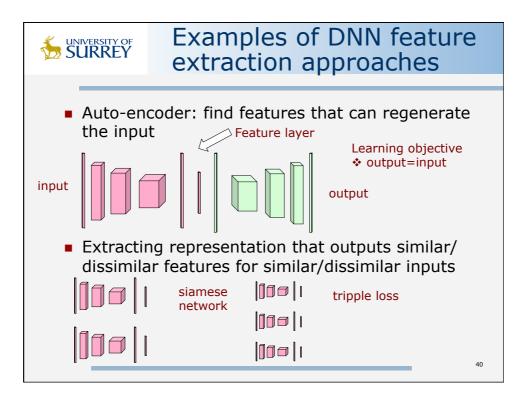


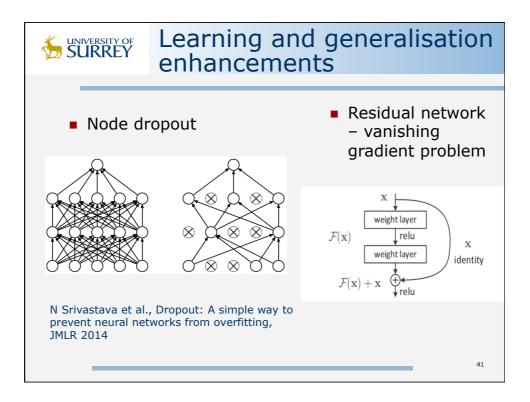


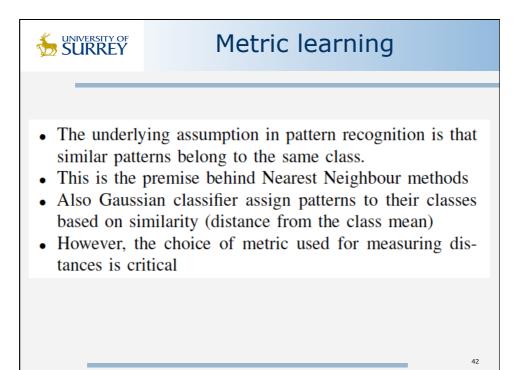


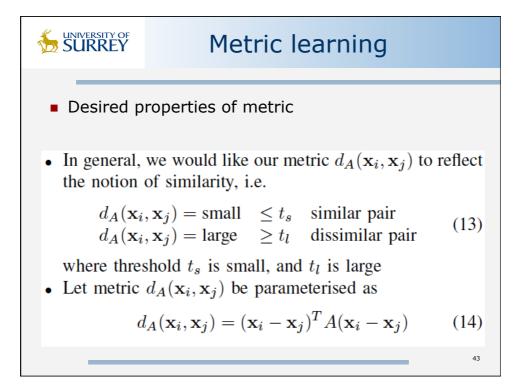












♦ SURREY Problem formulation Problem formulation Thus the metric learning problem can be formulated as min_A [tr(AA₀⁻¹) - log |AA₀⁻¹|] s.t. tr[A(x_i - x_j)(x_i - x_j)^T] ≤ t_s (i, j) ∈S tr[A(x_i - x_j)(x_i - x_j)^T] ≥ t_l (i, j) ∈D (17) As there may not exist a feasible solution, the optimisation problem can be relaxed using slack variables ξ_{c(i,j)} These replace the constraint t_x for the (i, j) pair indexed by c(i, j), where 1 ≤ c ≤ n_S for the similar pairs, and n_S + 1 ≤ c ≤ n for the dissimilar pair.