3D Mapping and Autonomous Navigation of Legged Robots

UDRC Themed Meeting on Autonomous Systems Wednesday November 24th, 2021

Building Blocks for Autonomy

- Odometry
- Local mapping
- Locomotion
- Simultaneous Localisation and Mapping (SLAM)
- Safe path planning

What makes an environment extreme?

- Uneven, slippery, unstable, terrain
- Difficult communication
- . Scarce or missing illumination
- Ill-constrained geometries (long tunnels)

DARPA Subterranean Challenge

FLYABILITY

Science and Technology

UNIVERSITY OF CALIFORNIA

Odometry

21

Proposed Approach

Factor graph framework fusing:

- IMU
- Visual features
- Lidar features (planes & lines)
- Leg Odometry
- ICP registration (optional)

The tight fusion of all sensor modalities allows for kinematic and inertial biases to be estimated online

Factor Graph Formulation

System Overview

Key features

Multi-sensor fusion via factor graphs

Novel lidar-camera synchronization

Unified tracking and optimization

Extensive field experiments

Technical motivation

Visual-inertial or lidar-inertial:

- Smoothing-based methods
- Fail in well-known scenarios
- Most lidar tracking is frame-to-frame

Lidar-visual-inertial:

- Filter-based or loosely coupled
- High computational requirements
- Hard-switching between modalities

Unified approach:

Directly detect and track landmarks from vision and lidar for multiple frames

- Joint optimization of all sensor modalities
- Lightweight, sparse approach
- Natural handling of degeneracy by partial constraints

Performance in Challenging Environments

VILENS outperforms LOAM^[1] by 85% translation and 67% rotation

No loop closures No mapping (in contrast to LOAM^[1])

[1] Khattak et al. "Complementary Multi-Modal Sensor Fusion for Resilient Robot Pose Estimation in Subterranean Environments", ICUAS, 2020.

Handling Degeneracy

- Unified approach avoids hard switching and enables use of partial constraints.
- Visual degradation Example:
 - Auto-exposure event moving between sunlight and shade.
 - Other methods would detect a degenerate scenario and "hard switch" to remove visual measurements.

11

Multi-Camera Odometry

CCFT & SFS Example

Features Matched

Feature selected

Feature not selected

Key challenge: narrow space + texture less walls + door opening

ORB-Slam Comparison

Local mapping

Perceptive Controller* (RLOC)

* Gangapurwala et al., T-RO 2021(preprint)

SLAM

Solution Overview

Two subsystems:

- VILENS odometry
- Global lidar SLAM

VILENS provides an initial guess for the SLAM module

The SLAM module "bends" the map when a loop closure is found

Computation Time:

• Processed in real-time using ROS

Pose Graph-based LIDAR SLAM

Approach: Keep map as a graph of places we've been, detect places, reshape map for consistency

Ramezani, Milad, Georgi Tinchev, Egor Iuganov, and Maurice Fallon. "Online LiDAR-SLAM for Legged Robots with Robust Registration and Deep-Learned 22 Loop Closure." IEEE International Conference on Robotics and Automation (ICRA), 2020.

A common sensor payload

- · All computation performed onboard
- . 360 Field of View Lidar
- . One or more stereo cameras
- Battery powered
- Public dataset released at IROS 2020

ori-drs.github.io/newer-college-dataset/

M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala and M. Fallon, **"The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth"** 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 4353-4360,

HILTI SLAM Challenge

- Best Academic Participant
- Real-Time solution (no long post-processing)
- No "overfitting" assumption
- Same configuration for all sequences

LEADERBOARD

- Ground truth from surveying station
- Point scoring based on error from
- each ground truth point (e.g. 10 points for error below 1 cm)

Chernobyl – Control Room for Reactor 4

Led by Prof. Tom Scott (Bristol). We provided mapping.

Spot batteries didn't arrive ... all mapping done handheld instead

Chernobyl – Reactor Hall 3

Presentation by Prof. Tom Scott: <u>https://tinyurl.com/chernobyl-bristol</u> Video on Chernobyl Youtube Challenge: <u>https://www.youtube.com/chernobylnpp</u>

Chernobyl – Buriakivka Vehicle Graveyard

Storage location for vehicles used in 1986 emergency efforts including the German Joker robot

Bristol are looking at longitudinal radiation monitoring and localization of radiation sources

Safe Path Following

Navigation and Planning

- The mesh is obtained automatically from a point cloud of the environment
- The planner assigns a gait (walk/trot) to each mesh region and...
- ... minimizes the total time/energy to goal

Shorter path but slower (walks most of the time)

Longer path but faster

Multi-controller multi-objective locomotion planning for legged robots. Brandao, Havoutis, Fallon, RAL 2020

Graph-based exploration planner

Local graphs finds path through free space

Global graph:

- Manages exploration frontiers
- Decides on promising corridors Considers mission time budget

Safe Visual Teach & Repeat

mcamurri@robots.ox.ac.uk

ori.ox.ac.uk/labs/drs