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Background – Non-linear/non-Gaussian estimation
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 Two families of sequential Bayesian filters

• Model-driven filters: DSM is given explicitly, 

e.g., Kalman Filter (KF), Unscented Kalman Filter (UKF), Particle Filter (PF)

• Data-driven filters: DSM is unknown or partially known while the training data set is provided

 Dynamic state-space model (DSSM) 

• Transition model:               𝐱𝑛 = 𝑓(𝐱𝑛−1, 𝐮𝑛)

• Measurement model:       𝐲𝑛 = ℎ(𝐱𝑛, 𝐯𝑛)

 Sequential Bayesian rule

• Prediction: 𝑝 𝐱𝑛 𝐲1:𝑛 = 𝑝(𝒙𝑛|𝐱𝑛−1) 𝑝 𝐱𝑛−1 𝐲1:𝑛−1 𝑑𝐱𝑛−1

• Update:  𝑝 𝐱𝑛 𝐲1:𝑛 =
𝑝(𝐲𝑛|𝐱𝑛)𝑝(𝐱𝑛|𝐲𝟏:𝑛−1)

𝑝(𝒚𝑛|𝐲𝟏:𝑛−1)



Background – Model-driven filters: 

Kalman filter (KF): 

Optimal Bayesian solution for linear DSSMs

Nonlinear systems

Extended KF (EKF) & unscented KF (UKF)   

Bootstrap particle filter (PF) [1] 

Resampling is a necessary step, hard to parallelize

UKF

UKF 
mean

UKF 
covariance
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4[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking,” IEEE Trans. Signal Process, vol. 
50, no. 2, pp. 174–188, 2002
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DSSMs are unknown or partially known,
need to be inferred from prior training data

Background – Data-driven filters: 
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The performance limits
• Difficult to incorporate theoretical DSSM models

• Problems occur if target moves outside space

defined by training data

Existing methods
• Training data 
• Off-line training to learn the unknown 

transition/measurement models
• On-line estimation
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Transition model

Measurement 
model

Prediction

Update

Online estimation

[1] M. W. Sun, M. E. Davies, I. Proudler, J.R. Hopgood, "A Gaussian Process based Method for Multiple Model Tracking," SSPD2020, published.

[2] M. W. Sun, M. E. Davies, I. Proudler, J.R. Hopgood, "Maneuvering Multi-target Tracking Based on Gaussian Process Regression," IEEE Transactions on Aerospace and Electronic, submitted
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Preliminaries – Kernel mean embedding (KME)
State point 𝑥 is mapped into feature space

through a non-linear feature mapping 𝜙 𝑥 [1]

The kernel embedding approach represents a
probability distribution by an element in the
feature space

Empirical kernel estimator, given a sample set

• If 𝐱𝑖 are drawn from  𝑃(𝐱), 𝑤𝑖 = 1/𝑀.
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𝜇𝑋 =
𝑖=1

𝑀

𝑤𝑖𝜙𝐱 𝐱𝑖 = Φ𝐰

7[1] L. Song, K. Fukumizu, and A. Gretton, “Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models,” IEEE 
Signal Process. Mag., vol. 30, no. 4, pp. 98–111, 2013.



Preliminaries – Kernel mean embedding (KME)
The KME approach represents a conditional

distribution P(X|y) by an element in the feature space

Define a conditional operator 𝒞𝑋|𝑌 as the linear
operator in the feature space to estimate the
conditional distribution

Empirical kernel estimator: The estimate using the
𝒞𝑋|𝑌 is obtained as a linear regression on the kernel
weights based on the training data

• Non-uniform weights, positive/negative, different
from PFs
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Preliminaries – Kernel Kalman filter (KKF)
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 Non-linear estimation in data space

–> Linear way in kernel feature space

 Execute conventional KF in kernel

feature space

 Predict and update the kernel weight

mean and covariance

 Relying on the training data set
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[1] G. Gebhardt, A. Kupcsik, and G. Neumann , “The kernel Kalman rule,” Mach. Learn., pp. 2113–2157, 2019.
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Adaptive Kernel Kalman Filter (AKKF)
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Replace the still training data set with the 

updated particles/sigma points

Executed in both the data state space and 

kernel feature space
• The particles are propagated and updated in the

data space based on the DSM (similar to UKF &

PF)

• KME of predictive/posterior pdfs: Kernel weight

mean and covariance are predicted and updated

in the kernel feature space (similar to KKF way)

Three main steps: proposal, prediction, 

update, 

11[1] M. Sun, M. E. Davies, I. Proudler, and J. R. Hopgood, “Adaptive kernel Kalman filter,” in 2021 Sensor Signal Processing for Defence Conference (SSPD), 2021, pp. 1–5
[2] M. Sun, M. E. Davies, I. Proudler, and J. R. Hopgood, “Adaptive kernel Kalman filter,” IEEE Trans. Signal Process., submitted
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Adaptive Kernel Kalman Filter (AKKF)

 Embedding the Posterior Distribution at time n-1 
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• Generated proposal particles to capture the
diversity of the non-linearity (c.f. sigma points
generation)

• For convenience, draw from Gaussian
distribution

• Note, due to weighting, this is not a Gaussian
approximation

• Instead, adaptive change of kernel spaces



Prediction from Time n−1 to Time n 

(predict step of KF)

• Predictive particles: propagate proposal particles through 
the transition function

• New kernel space Φ𝑛

• Empirical predictive KME by calculating conditional 
operator 

• Predictive kernel weight mean and covariance
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Adaptive Kernel Kalman Filter (AKKF)
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Update at Time n (correct step of KF)

• Observation particles

• Kernel Kalman gain calculation

• Update kernel weight mean and covariance
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Adaptive Kernel Kalman Filter (AKKF)
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AKKF in Single-target Single-sensor Tracking

• Constant velocity (CV) motion

• Bearing-only measurement model:  

16



• Average LMSE obtained for 1000 random realizations
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AKKF in Single-target Single-sensor Tracking
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AKKF in Single-target Single-sensor Tracking
• Tracking performance (LMSE) benchmark 

is −3.0 (PF with 1e4 particles)

Filter Computation time (s)

PF 0.35

GPF 0.35

AKKF - quadratic 0.035

AKKF - quartic 0.0075

AKKF - Gaussian 0.45
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AKKF Multi-Sensor Fusion

� �

Dynamic state-space model (DSSM)
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• Motion model  

• Measurement model  – BOT 
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AKKF Multi-Sensor Fusion

Centralized fusion Semi-Decentralized fusion 

Filters Messages from 
sensors to FC

Messages from 
FC to sensors

Centralized
fusion

Measurements,
measurement 
models

None

Semi-
decentralized 
fusion

Local posterior 
kernel weight 
vector and matrix

State particles, 
global prior 
kernel weight 
vector and matrix

21

[1] M. Sun, M. E. Davies, I. Proudler, and J. R. Hopgood, “Adaptive Kernel Kalman Filter Multi-Sensor Fusion,” in 24th International Conference on Information Fusion(Fusion2021), pp. 1-8. 
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AKKF Multi-Sensor Fusion – Centralized fusion

 Sensor nodes: the signals from the target are 
received by sensors

 The FC node: 

• Measurements from different sensors are combined 

as a global observation vector

• Process AKKF in three steps: prediction, update, 

proposal

22
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AKKF Multi-Sensor Fusion – Centralized fusion

 Requirements

• FC: necessary processing power and calculation 

capacity

• Transmit power of sensor nodes 

• Transmission bandwidth from sensors to the FC

23
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AKKF Multi-Sensor Fusion– Semi-decentralized fusion

 FC: broadcasts the prior kernel weight vector, matrix,
and the global state particles to sensors

 Sensor: The posterior weight vector and covariance
matrix are calculated at each sensor

 FC: Global posterior kernel weight vector and covariance
matrix: weighted Kullback–Leibler average[1]

[1]“Kullback–leibler average, consensus on probability densities, and dis-tributed state estimation with guaranteed stability,”Automatica, vol. 50,no. 3, pp. 707–718, 2014
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Modular approach to multi-sensor networks

Advantages:

• Reduced computation at the FC

• Reduced transmit power at the sensors 

• Reduced forward bandwidth

25

AKKF Multi-Sensor Fusion– Semi-decentralized fusion
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AKKF Multi-Sensor Fusion
 DSSM

• The different angular resolutions

are modelled by adding different

amount of noise to the exact

bearing

Discussion of simulation results
• Fusion helps all three filters
• D-fusion performance is as good as C-fusion AKKF

Trajectory 

PF AKKF GPF

26
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• Benchmark: Centralized fusion-based PF
with 2000 particles

• AKKF has improved performance/robustness
with lower number of particle

• Semi-decentralized fusion–based AKKF
achieves almost good performance as
centralized fusion–based AKKF

Number of particle
R

M
SE

AKKF Multi-Sensor Fusion
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• Fix number of targets with
clutter and missing alarm

• Data association: belief
propagation outside kernel
space
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AKKF Multi-target tracking(MTT) – Known number of 
targets 
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 DSSM
• Constant-velocity (CV) motion model
• Measurement model

Pd = 1;
M = 50;

Pd = 0.6;
M = 50;

 Benchmark
• PF with 2000 particles, no missing

or false alarms, prior data
association

 AKKF
• Quartic kernel based
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AKKF Multi-target tracking(MTT) – Known number of targets 
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Summary
• Kernel mean embedding: Solve Non-linear estimation in high dimensional

kernel space using linear ways

• AKKF: apply KF into kernel spaces with adaptively updated particles & kernel
spaces

• Extend the application of AKKF into multi-sensor multi-target tracking systems

Advantages
• Nonlinear, non-Gaussian filter for Bayesian tracking

- Incorporation of theoretical models

• Lower computation complexity

- Remove resample

- Smaller particle number requirement

Conclusion
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