Kernel based estimation & tracking techniques for distributed and modular sensor networks

Mengwei Sun¹, James R. Hopgood¹, Mike E. Davies¹, Ian K. Proudler²

¹University of Edinburgh ²University of Strathclyde

Background

Preliminaries

- Kernel Mean Embedding
- Kernel Kalman Filter
- □Adaptive Kernel Kalman Filter (AKKF)
- □AKKF applications
 - AKKF in Single-target Single-sensor Tracking
 - AKKF Multi-Sensor Fusion
 - AKKF Multi-target Tracking(MTT)

Background – Non-linear/non-Gaussian estimation

Dynamic state-space model (DSSM)

- Transition model: $\mathbf{x}_n = f(\mathbf{x}_{n-1}, \mathbf{u}_n)$
- Measurement model: $\mathbf{y}_n = h(\mathbf{x}_n, \mathbf{v}_n)$

□ Sequential Bayesian rule

• Prediction:
$$p(\mathbf{x}_n | \mathbf{y}_{1:n}) = \int p(\mathbf{x}_n | \mathbf{x}_{n-1}) p(\mathbf{x}_{n-1} | \mathbf{y}_{1:n-1}) d\mathbf{x}_{n-1}$$

• Update:
$$p(\mathbf{x}_n | \mathbf{y}_{1:n}) = \frac{p(\mathbf{y}_n | \mathbf{x}_n) p(\mathbf{x}_n | \mathbf{y}_{1:n-1})}{p(\mathbf{y}_n | \mathbf{y}_{1:n-1})}$$

□ Two families of sequential Bayesian filters

• Model-driven filters: DSM is given explicitly,

e.g., Kalman Filter (KF), Unscented Kalman Filter (UKF), Particle Filter (PF)

• Data-driven filters: DSM is unknown or partially known while the training data set is provided

Background – Model-driven filters:

□ Kalman filter (KF):

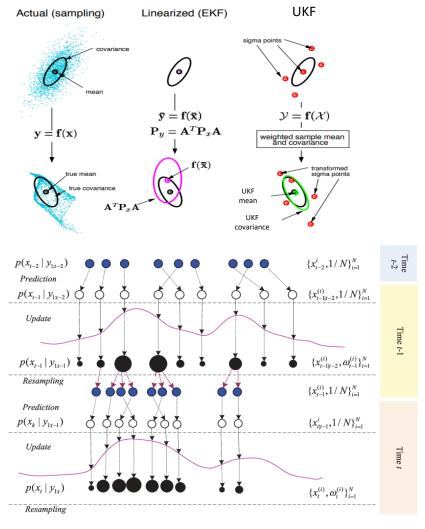
Optimal Bayesian solution for linear DSSMs

□Nonlinear systems

Extended KF (EKF) & unscented KF (UKF)

□Bootstrap particle filter (PF) ^[1]

Resampling is a necessary step, hard to parallelize



Background – Data-driven filters:

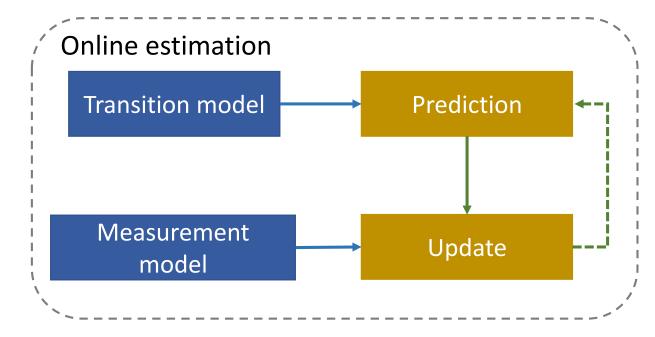
DSSMs are unknown or partially known, need to be inferred from prior training data

Existing methods

- Training data
- Off-line training to learn the unknown transition/measurement models
- On-line estimation

The performance limits

- Difficult to incorporate theoretical DSSM models
- Problems occur if target moves outside space defined by training data



[1] M. W. Sun, M. E. Davies, I. Proudler, J.R. Hopgood, "A Gaussian Process based Method for Multiple Model Tracking," SSPD2020, published.

[2] M. W. Sun, M. E. Davies, I. Proudler, J.R. Hopgood, "Maneuvering Multi-target Tracking Based on Gaussian Process Regression," IEEE Transactions on Aerospace and Electronic, submitted

Background

Preliminaries

- Kernel Mean Embedding
- Kernel Kalman Filter
- Adaptive Kernel Kalman Filter (AKKF)
- **AKKF** applications
 - AKKF in Single-target Single-sensor Tracking
 - AKKF Multi-Sensor Fusion
 - AKKF Multi-target Tracking(MTT)

Preliminaries – Kernel mean embedding (KME)

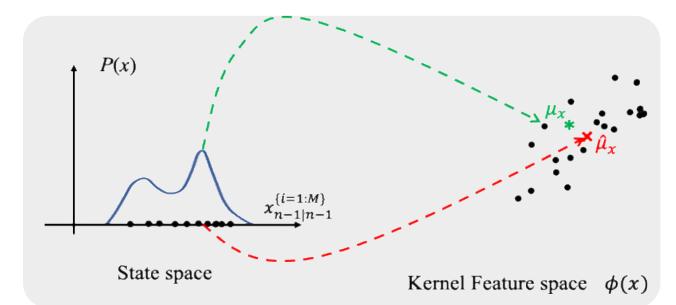
State point x is mapped into feature space through a non-linear feature mapping $\phi(x)^{[1]}$

□The kernel embedding approach represents a probability distribution by an element in the feature space

$$\mu_X := \mathbb{E}_X \left[\phi_{\mathbf{x}}(X) \right] = \int_X \phi_{\mathbf{x}}(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$

Empirical kernel estimator, given a sample set $\mu_X = \sum_{i=1}^{M} w_i \phi_{\mathbf{x}}(\mathbf{x}_i) = \Phi \mathbf{w}$

• If \mathbf{x}_i are drawn from $P(\mathbf{x})$, $w_i = 1/M$.



^[1] L. Song, K. Fukumizu, and A. Gretton, "Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models," IEEE 7 Signal Process. Mag., vol. 30, no. 4, pp. 98–111, 2013.

Preliminaries – Kernel mean embedding (KME)

The KME approach represents a conditional distribution P(X|y) by an element in the feature space

$$\mu_{X|\mathbf{y}} := \mathbb{E}_{X|\mathbf{y}} \left[\phi_{\mathbf{x}}(X) \right] = \int_{\mathcal{X}} \phi_{\mathbf{x}}(\mathbf{x}) p(\mathbf{x}|\mathbf{y}) d\mathbf{x}.$$

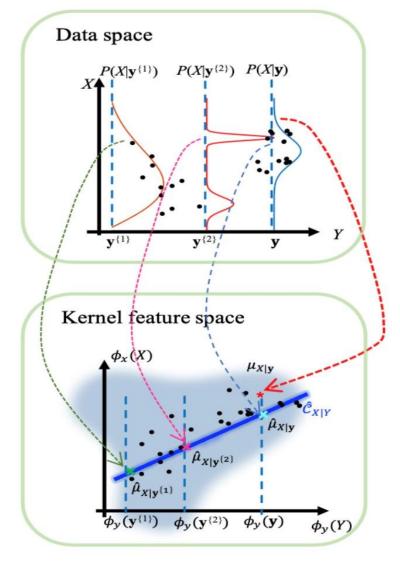
Define a conditional operator $C_{X|Y}$ as the <u>linear</u> <u>operator</u> in the feature space to estimate the conditional distribution

$$\mu_{X|\mathbf{y}} = C_{X|Y}\phi_{\mathbf{y}}(\mathbf{y})$$

Empirical kernel estimator: The estimate using the $C_{X|Y}$ is obtained as a linear regression on the kernel weights based on the **training data**

$$\hat{\mu}_{X|\mathbf{y}} = \hat{C}_{X|Y}\phi(\mathbf{y}) = \Phi\left(G_{\mathbf{y}\mathbf{y}} + \kappa I\right)^{-1} \Upsilon^{\mathrm{T}}\phi_{\mathbf{y}}(\mathbf{y}) \equiv \Phi \mathbf{w}.$$

Non-uniform weights, positive/negative, different from PFs

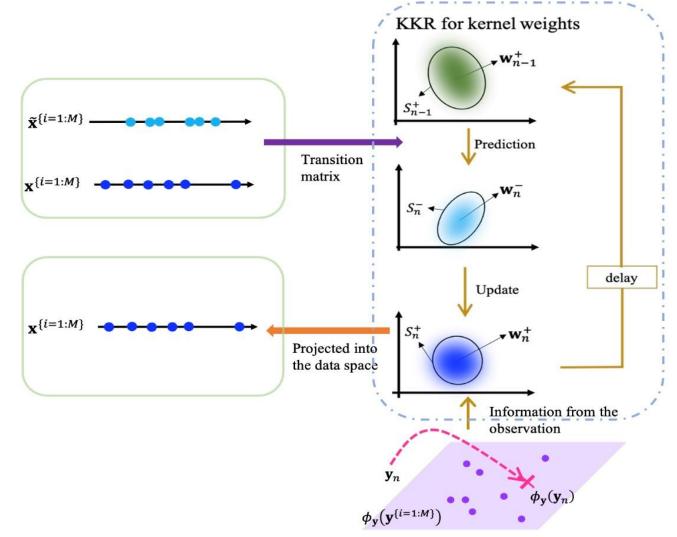


University Defence Research Collaboration (UDRC) Signal Processing in the Information Age

Preliminaries – Kernel Kalman filter (KKF)

□ Non-linear estimation in data space

- -> Linear way in kernel feature space
- Execute conventional KF in kernel feature space
- Predict and update the kernel weight mean and covariance
- **Relying on the training data set**



[1] G. Gebhardt, A. Kupcsik, and G. Neumann, "The kernel Kalman rule," Mach. Learn., pp. 2113–2157, 2019.

Background

Preliminaries

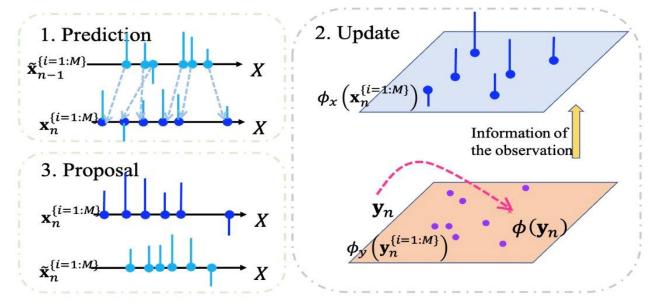
- Kernel Mean Embedding
- Kernel Kalman Filter

Adaptive Kernel Kalman Filter (AKKF)

AKKF applications

- AKKF in Single-target Single-sensor Tracking
- AKKF Multi-Sensor Fusion
- AKKF Multi-target Tracking(MTT)

- Replace the still training data set with the updated particles/sigma points
- Executed in both the data state space and kernel feature space
 - The particles are propagated and updated in the data space based on the DSM (similar to UKF & PF)
 - KME of predictive/posterior pdfs: Kernel weight mean and covariance are predicted and updated in the kernel feature space (similar to KKF way)
- Three main steps: proposal, prediction,



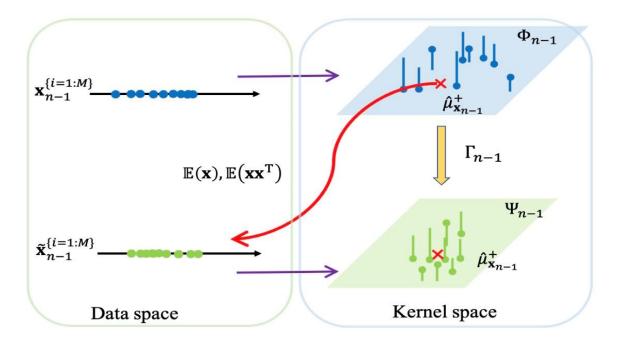
Embedding the Posterior Distribution at time *n*-1

 $\hat{\boldsymbol{\mu}}_{\mathbf{x}_{n-1}}^{+} = \boldsymbol{\Phi}_{n-1}\mathbf{w}_{n-1}^{+},$

 Generated proposal particles to capture the diversity of the non-linearity (c.f. sigma points generation)

$$\tilde{\mathbf{x}}_{n-1}^{\{i=1:M\}} \sim \mathcal{N}\left(\mathbb{E}\left(\mathbf{x}_{n-1}\right), \operatorname{Cov}\left(\mathbf{x}_{n-1}\right)\right),$$

- For convenience, draw from Gaussian distribution
- Note, due to weighting, this is not a Gaussian approximation
- Instead, adaptive change of kernel spaces



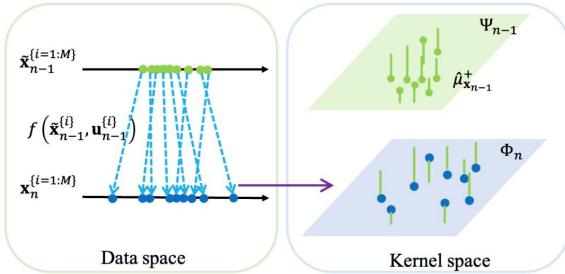
□ Prediction from Time n-1 to Time n

(predict step of KF)

- Predictive particles: propagate proposal particles through the transition function
- New kernel space Φ_n
- Empirical predictive KME by calculating conditional operator

 $p(\mathbf{x}_n|\mathbf{x}_{n-1},\mathbf{y}_{1:n-1})\mapsto \hat{\mu}_{\mathbf{x}_n}^- = \hat{C}_{\mathbf{x}_n|\mathbf{x}_{n-1}}\hat{\mu}_{\mathbf{x}_{n-1}}^+ = \Phi_n \mathbf{w}_n^-.$

• Predictive kernel weight mean and covariance $\mathbf{w}_n^- = (K_{\tilde{\mathbf{x}}\tilde{\mathbf{x}}} + \lambda_{\tilde{K}}I)^{-1} K_{\tilde{\mathbf{x}}\mathbf{x}}\mathbf{w}_{n-1}^+ = \Gamma_{n-1}\mathbf{w}_{n-1}^+.$ $S_n^- = \tilde{S}_{n-1}^+ + V_n.$



Update at Time *n* (correct step of KF)

Observation particles

 $\mathbf{y}_n^{\{i\}} = h(\mathbf{x}_n^{\{i\}}, \mathbf{v}_n^{\{i\}}),$

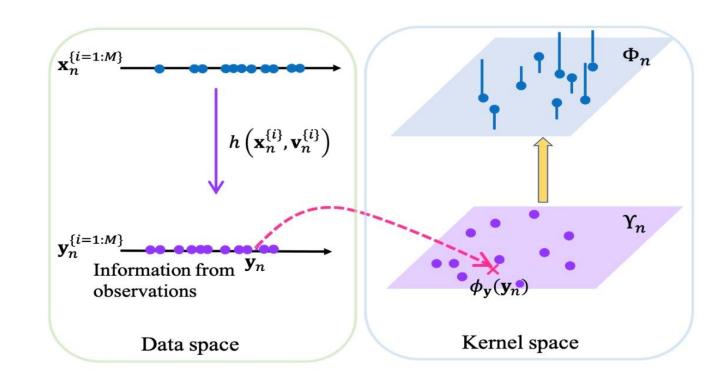
• Kernel Kalman gain calculation

$$\hat{\boldsymbol{\mu}}_{\mathbf{x}_n}^+ = \hat{\boldsymbol{\mu}}_{\mathbf{x}_n}^- + \boldsymbol{Q}_n \left[\phi_{\mathbf{y}}(\mathbf{y}_n) - \hat{\boldsymbol{C}}_{\mathbf{y}_n | \mathbf{x}_n} \hat{\boldsymbol{\mu}}_{\mathbf{x}_n}^- \right],$$

= $\Phi_n \mathbf{w}_n^+ = \Phi_n \mathbf{w}_n^- + \boldsymbol{Q}_n \left[\phi(\mathbf{y}_n) - \hat{\boldsymbol{C}}_{\mathbf{y}_n | \mathbf{x}_n} \hat{\boldsymbol{\mu}}_{\mathbf{x}_n}^- \right],$

Update kernel weight mean and covariance

 $\mathbf{w}_n^+ = \mathbf{w}_n^- + Q_n \left(G_{:,\mathbf{y}_n} - G_{\mathbf{y}\mathbf{y}}\mathbf{w}_n^- \right).$ $S_n^+ = S_n^- - Q_n G_{\mathbf{y}\mathbf{y}}S_n^-.$



Background

Preliminaries

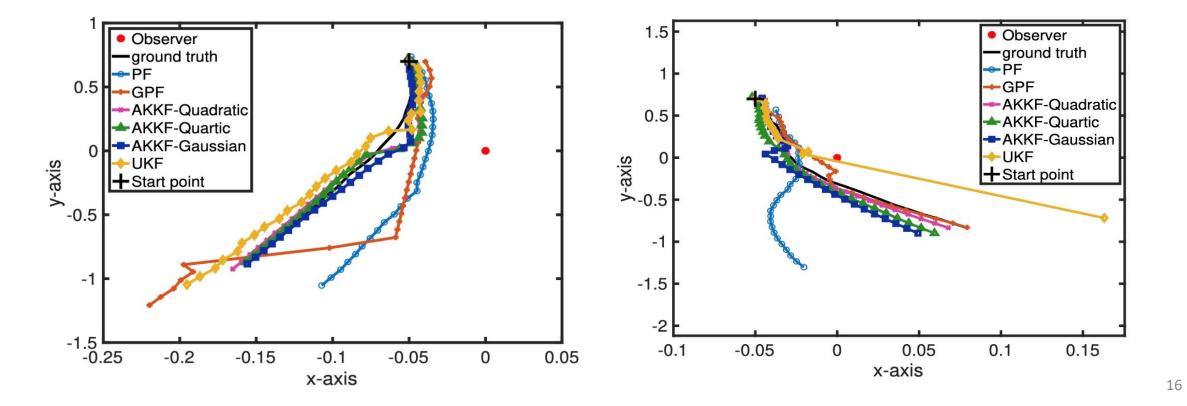
- Kernel Mean Embedding
- Kernel Kalman Filter
- □Adaptive Kernel Kalman Filter (AKKF)

AKKF applications

- AKKF in Single-target Single-sensor Tracking
- AKKF Multi-Sensor Fusion
- AKKF Multi-target Tracking(MTT)

AKKF in Single-target Single-sensor Tracking

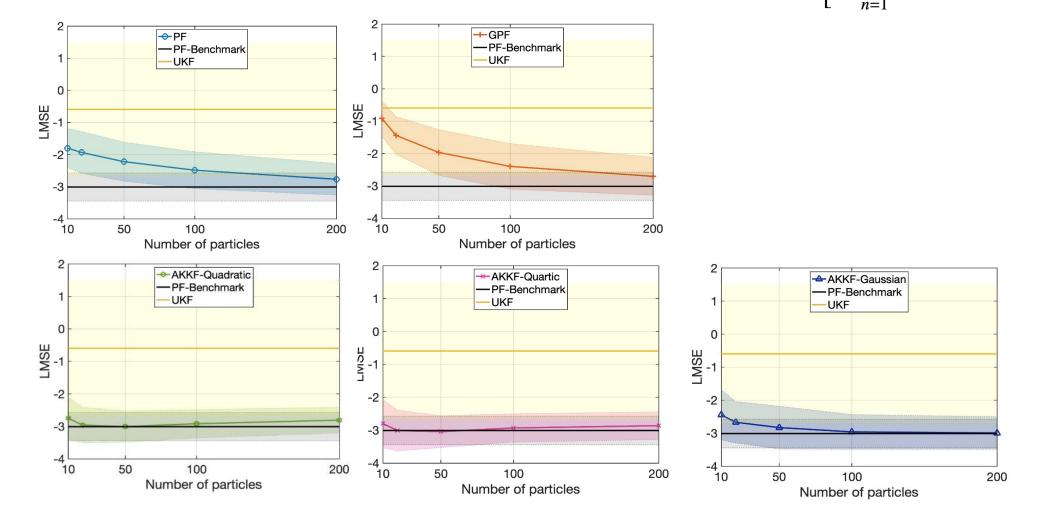
- Constant velocity (CV) motion
- Bearing-only measurement model: $y_n = \tan^{-1}(\frac{\eta_n}{\xi_n}) + v_n$.



University Defence Research Collaboration (UDRC) Signal Processing in the Information Age

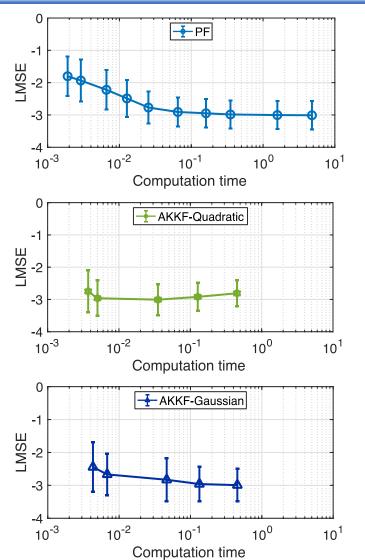
AKKF in Single-target Single-sensor Tracking

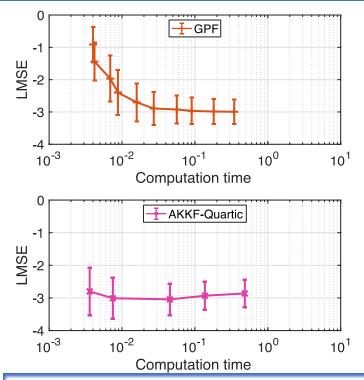
• Average LMSE obtained for 1000 random realizations LMSE = $\log \left[\frac{1}{N} \sum_{n=1}^{N} \sqrt{(\xi_n - \hat{\xi}_n)^2 + (\eta_n - \hat{\eta}_n)^2} \right]$



University Defence Research Collaboration (UDRC) Signal Processing in the Information Age

AKKF in Single-target Single-sensor Tracking





Tracking performance (LMSE) benchmark is −3.0 (PF with 1e4 particles)

Filter	Computation time (s)
PF	0.35
GPF	0.35
AKKF - quadratic	0.035
AKKF - quartic	0.0075
AKKF - Gaussian	0.45

Background

Preliminaries

- Kernel Mean Embedding
- Kernel Kalman Filter
- □ Adaptive Kernel Kalman Filter (AKKF)

AKKF applications

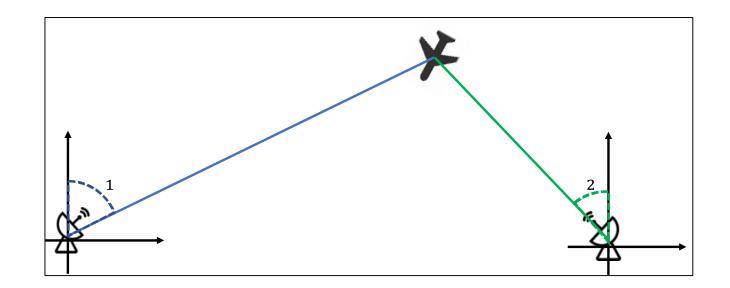
- AKKF in Single-target Single-sensor Tracking
- AKKF Multi-Sensor Fusion
- AKKF Multi-target Tracking(MTT)

AKKF Multi-Sensor Fusion

Dynamic state-space model (DSSM)

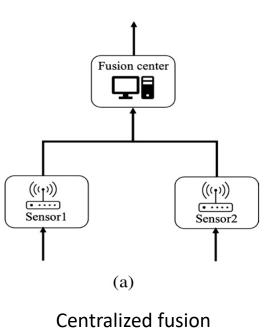
- Motion model
- Measurement model BOT

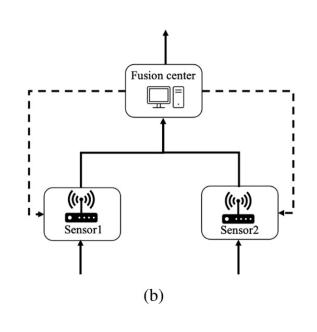
$$y_{n,k} = \tan^{-1}(\frac{\eta_n - \eta_k}{\xi_n - \xi_k}) + v_{n,k}.$$



AKKF Multi-Sensor Fusion

Filters	Messages from sensors to FC	Messages from FC to sensors
Centralized fusion	Measurements, measurement models	None
Semi- decentralized fusion	Local posterior kernel weight vector and matrix	State particles, global prior kernel weight vector and matrix





Semi-Decentralized fusion

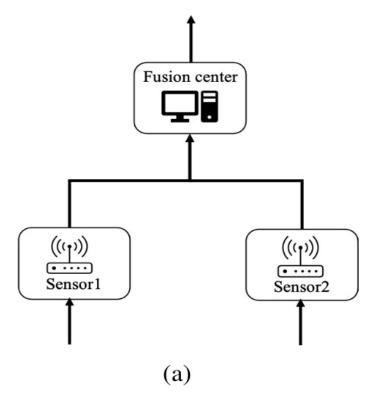
[1] M. Sun, M. E. Davies, I. Proudler, and J. R. Hopgood, "Adaptive Kernel Kalman Filter Multi-Sensor Fusion," in 24th International Conference on Information Fusion(Fusion2021), pp. 1-8.

AKKF Multi-Sensor Fusion – Centralized fusion

Sensor nodes: the signals from the target are received by sensors

The FC node:

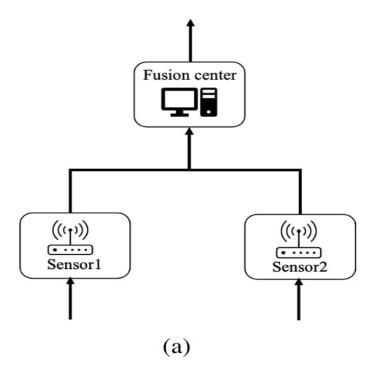
- Measurements from different sensors are combined as a global observation vector
- Process AKKF in three steps: prediction, update, proposal



AKKF Multi-Sensor Fusion – Centralized fusion

Requirements

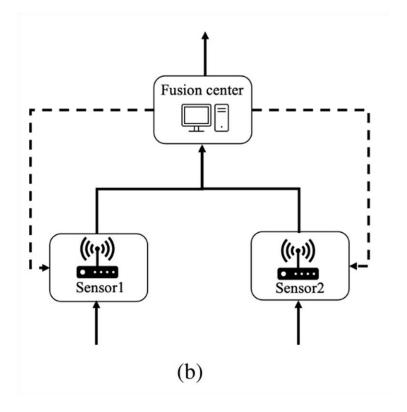
- FC: necessary processing power and calculation capacity
- Transmit power of sensor nodes
- Transmission bandwidth from sensors to the FC



AKKF Multi-Sensor Fusion–Semi-decentralized fusion

- □ FC: broadcasts the prior kernel weight vector, matrix, and the global state particles to sensors
- □ Sensor: The posterior weight vector and covariance matrix are calculated at each sensor
- □ FC: Global posterior kernel weight vector and covariance matrix: weighted Kullback–Leibler average^[1]

$$(S_n^+)^{-1} = \sum_{k=1}^K \omega_k (S_{n,k}^+)^{-1},$$
$$(S_n^+)^{-1} \mathbf{w}_n^+ = \sum_{k=1}^K \omega_k (S_{n,k}^+)^{-1} \mathbf{w}_{n,k}^+.$$



AKKF Multi-Sensor Fusion–Semi-decentralized fusion

Modular approach to multi-sensor networks

Advantages:

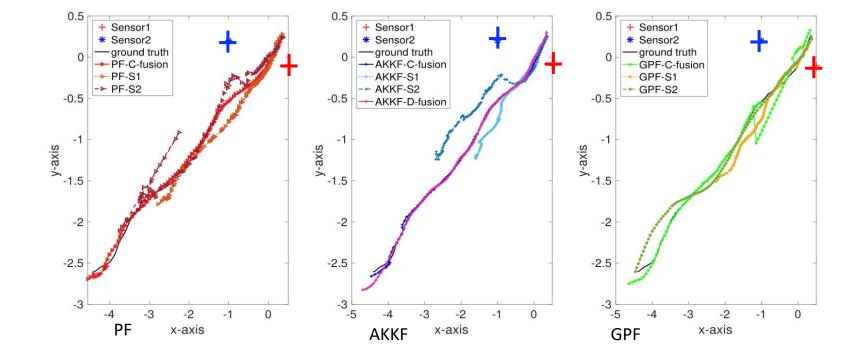
- Reduced computation at the FC
- Reduced transmit power at the sensors
- Reduced forward bandwidth

AKKF Multi-Sensor Fusion

DSSM

 $\mathbf{x}_{n} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x}_{n-1} + \begin{bmatrix} 0.5 & 0 \\ 1 & 0 \\ 0 & 0.5 \\ 0 & 1 \end{bmatrix} \mathbf{u}_{n},$ $y_{n,k} = h_{k}(\mathbf{x}_{n}, v_{n,k}) = \tan^{-1}(\frac{\eta_{n} - \eta_{k}}{\xi_{n} - \xi_{k}}) + v_{n,k}.$

• The different angular resolutions are modelled by adding different amount of noise to the exact bearing



Discussion of simulation results

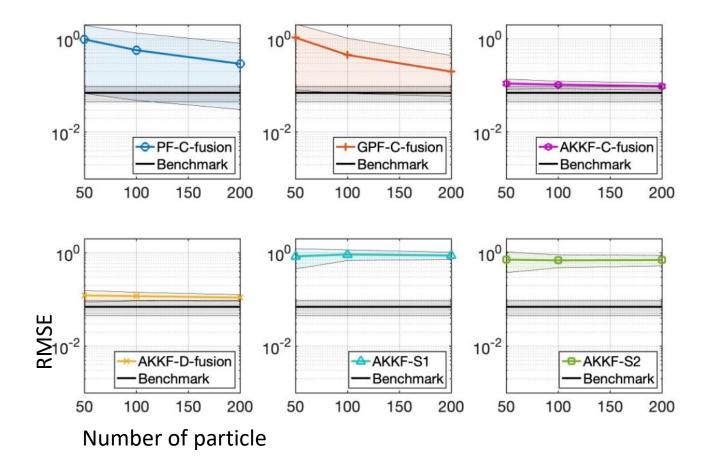
- Fusion helps all three filters
- D-fusion performance is as good as C-fusion AKKF

Trajectory

AKKF Multi-Sensor Fusion

RMSE =
$$\sqrt{\frac{\sum_{n=1}^{N} (\xi_n - \hat{\xi}_n)^2 + (\eta_n - \hat{\eta}_n)^2}{N}}$$

- Benchmark: Centralized fusion-based PF with 2000 particles
- AKKF has improved performance/robustness with lower number of particle
- Semi-decentralized fusion-based AKKF achieves almost good performance as centralized fusion-based AKKF



Background

Preliminaries

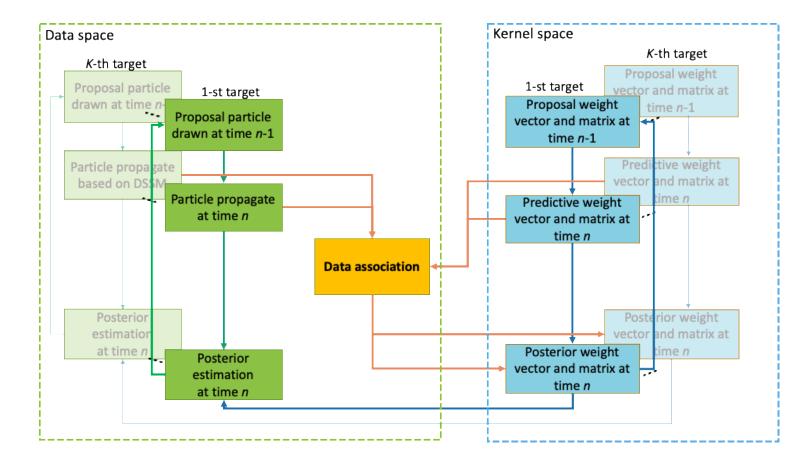
- Kernel Mean Embedding
- Kernel Kalman Filter
- □Adaptive Kernel Kalman Filter (AKKF)

AKKF applications

- AKKF in Single-target Single-sensor Tracking
- AKKF Multi-Sensor Fusion
- AKKF Multi-target Tracking(MTT)

AKKF Multi-target tracking(MTT) – Known number of targets

- Fix number of targets with clutter and missing alarm
- Data association: belief propagation outside kernel space



University Defence Research Collaboration (UDRC) Signal Processing in the Information Age

AKKF Multi-target tracking(MTT) – Known number of targets

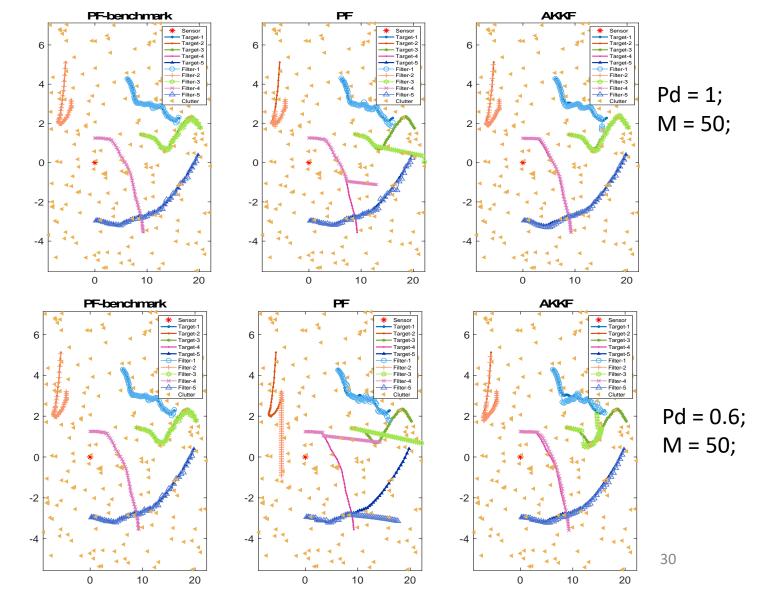
- Constant-velocity (CV) motion model
- Measurement model

$$h(\mathbf{x}_{t,k}) = \begin{bmatrix} r_{t,k} \\ \phi_{t,k} \end{bmatrix} = \begin{bmatrix} \sqrt{\xi_{t,k}^2 + \eta_{t,k}^2} \\ \tan^{-1}(\xi_{t,k}, \eta_{t,k}) \end{bmatrix} + \mathbf{v}_{t,k}.$$

Benchmark

 PF with 2000 particles, no missing or false alarms, prior data association

Quartic kernel based



Background

Preliminaries

- Kernel Mean Embedding
- Kernel Kalman Filter
- □Adaptive Kernel Kalman Filter (AKKF)
- □AKKF applications
 - AKKF in Single-target Single-sensor Tracking
 - AKKF Multi-Sensor Fusion
 - AKKF Multi-target Tracking(MTT)

Conclusion

Summary

- Kernel mean embedding: Solve Non-linear estimation in high dimensional kernel space using linear ways
- AKKF: apply KF into kernel spaces with adaptively updated particles & kernel spaces
- Extend the application of AKKF into multi-sensor multi-target tracking systems

Advantages

- Nonlinear, non-Gaussian filter for Bayesian tracking
 - Incorporation of theoretical models
- Lower computation complexity
 - Remove resample
 - Smaller particle number requirement

Thank You For Your Attention

msun@ed.ac.uk