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Sparse detection in the chirplet transform:
application to FMCW radar signals

Fabien Millioz and Michael Davies

Abstract—This paper aims to detect and characterise a signal
coming from Frequency Modulation Continuous Wave radars.
The radar signals are made of piecewise linear frequency
modulations. The Maximum Chirplet Transform, a simplification
of the chirplet transform is proposed. A detection of the relevant
Maximum Chirplets is proposed based on iterative masking,
an iterative detection followed by window subtraction that does
not require the recomputation of the spectrum. This detection
is designed to provide a sparse subset of Maximum Chirplet
coefficients. The chirplets are then gathered into linear chirps
whose starting time, length, and chirprate are estimated. These
chirps are then gathered again back into the different Frequency
Modulation Continuous Wave signals, ready to be classified. An
illustration is provided on synthetic data.

Index Terms—LPI radar, FMCW radar, chirplet transform,
parameter estimation

I. INTRODUCTION

Low Probability of Intercept (LPI) Radars are a type of radar
designed to hide their emissions from hostile receivers. It aims
to see without being seen, which is critical on battlefields. This
goal may be achieved by several techniques, such as power
management, antenna side lobe reduction or frequency agility
[1].

This paper aims to detect and identify Frequency Modula-
tion Continuous Wave (FMCW) radars. This class of LPI radar
signals may be modelled by

r(t) =

N∑
n=1

An cos(2πfn(t)t+ φn), (1)

with fn(t) a piecewise linear function. In practice, some chirps
may be very short with a very high or very low chirprate,
and thus very difficult to handle. To extend the possibility of
the model, we consider both continuous and non-continuous
functions fn(t), to avoid the problem of very sharp chirps.

In the context of a radar interceptor, a sensor should detect
a signal s(t) coming from several LPI radars, embedded in a
white Gaussian noise n(t) of variance σ2

s(t) = n(t) +

I∑
i=1

ri(t) (2)

where I radars emit the signals ri(t).
Given such a model, the chirplet transform [2] seems to be a

natural tool to analyse the signal and several methods already
exist based on the chirplet transform. The matching-pursuit
(MP) based method [3] employed by Leveau et al. searches
for chirps in the signal and iteratively subtract them from the
signal. This technique was applied to the detection of radar
signals in [4]. The main drawback is the computations required

by the matching-pursuit framework making it impractical for
real time deployment. Here we are interested in a minimal
computation approach. Chirplet chains [5], [6] are based on
the search of a single best path in the time-frequency domain,
and are applied in the low Signal-to-Noise Ratio (SNR)
context of gravitational wave detection. Only one non-linear
chirp is detected in the signal, consequently this approach is
inappropriate for the multiple chirps of model (1). A more
general chirplet chain based on a parametric model is proposed
by Dugnal et al. [7], which uses local maxima to start chirplet
chains, and a single criterion based on the smoothness of the
frequency modulation. Other approaches to detec and estimate
the parameters of chirps exist, based for example on higher
order moments [8] or evolutionary algorithm [9]. However,
these methods have the same computational problems than
the MP methods.

For our problem, we have strong a priori information that
the chirps are piece-wise linear, and in a multi-signal case,
chirps may be crossing. This paper proposes a new algorithm
for detecting and estimating the parameters of the chirps
constituting multiple FMCW radars. This method is based on
the chirplet transform, presented in the section II. An approx-
imation of the chirplet transform is proposed, based on the
difference between the signal’s chirprate and the chirprate of
the analysing chirplet. However, the chirplet transform has one
more dimension than the usual time-frequency representation.
Compared to the Short Time Fourier Transform, the additional
dimension leads to more coefficients and spreads the signal’s
energy on more coefficients. More memory is required to deal
with the chirplet transform, and more coefficients are detected
as containing a part of the signal’s energy. Section III proposes
the Maximum Chirplet Transform, time-frequency representa-
tion based on the maximum over the chirprates of the chirplet
coefficients. The spectrum of a chirp in this representation is
studied, as well as the distribution of coefficients for noise only
data. A detection method, based on a single chirplet transform
followed by an iterative subtraction of chirp’s spectrum is
proposed, with the aim to detect as few relevant coefficients
as possible without recomputation of the chirplet transform
between the iterations.

The goal is then to amalgamate the chirplets coming from
a chirplet transform into different chirps, corresponding to
the instantaneous frequency lines fn(t) from the model (1).
To do this, section IV uses the output of the detection in
the Maximum Chirplet Transform. These detected coefficients
are gathered into chirps, using a time-frequency-chirprate
criterion. The case of chirps with a chirprate outside the range
analysed by the chirplet transform is also studied.

Finally, these chirps are amalgamated back into the signals,
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using a time-frequency proximity criterion. A result of the
complete algorithm is given on a synthetic signal imitating an
antenna receiving four FMCW radar signals, with Signal-to-
Noise ratio from -3dB to -18dB.

II. CHIRPLET TRANSFORM

The chirplet transform [2] Cx(t, f, c) of a signal x(t) is
determined by

Cx(t, f, c) =

∫ +∞

τ=−∞
x(t+ τ)φT (τ)e−j2π

c
2 τ

2

e−j2πfτdτ

(3)

with t, f are the time and frequency indices respectively,
φT (τ) a smoothing window of length T centred on time τ = 0
of maximum value 1.

The chirplet transform may be interpreted twofold. By
considering a chirped window φT,c(τ) = φT (τ)ej2π

c
2 τ

2

, the
chirplet transform has the same definition as the usual Short
Time Fourier Transform. A fast computation using a Fast
Fourier Transform algorithm is thus possible. On the other
hand, it may be interpreted as the projection of the signal x(t)
onto a set of atoms e−j2πfτ+ c

2 τ
2

, corresponding to chirplets
of different chirprates c, centred on time t and frequency f .

There is also a direct link to the Fractional Fourier Trans-
form Xα(u), defined as

Xα(u) =
√

1− j cotϕ

∫
x(τ)ejπ(τ2 cotϕ−2uτ cscϕ+u2 cotϕ)dτ

(4)

=
√

1− j cotϕ ejπu
2 cotϕ

∫
x(τ)ej2π

cotϕ
2 τ2

e−j2πuτ cscϕdτ

(5)

with ϕ = πα
2 . The chirplet transform is equal to a short

time fractional Fourier transform, with a chirp parameter
c = − cotϕ

2 and the frequency f = u cscϕ, up to a factor of
proportionality

√
1− j cotϕejπu

2 cotϕ, depending on the frac-
tional Fourier transform parameter. Consequently, the methods
proposed in this paper could also be applied to fractional
Fourier Transform as well as to the chirplet transform.

A. Stationary phase approximation

Consider a single linear chirp x(t)

x(t) = Aej2π(f0t+
c0
2 t

2). (6)

Its chirplet transform is

Cx(t, f, c) =

∫ +∞

τ=−∞
AφT (τ)ej2π(f0(t+τ)+

c0
2 (t+τ)2) . . .

e−j2π
c
2 τ

2

e−j2πfτdτ (7)

=

∫ +∞

τ=−∞
AφT (τ)ej2π(τ2(c0/2−c/2)) . . .

ej2π(τ(f0−f+c0t)+f0t+c0/2t
2)dτ (8)

=

∫ +∞

τ=−∞
AφT (τ)ejψ(τ)dτ (9)

We consider here cases where c0 − c 6= 0, the case c0 = c
leading to the classical Fourier transform.

The integrals of the form (9) can be approximated by the
stationary phase approximation [10] if AφT (τ) > 0 and ψ(τ)
are both C1, and if AφT (τ) varies slowly compared to the
oscillations controlled by the phase ψ(τ). In this case, negative
and positive values of ejψ(τ) tend to cancel each other, except
near points where the phase is stationary. To determine these
points, we search for the time τ0 such that the derivative of
the phase is zero:

ψ̇(τ0) = 0 (10)
2π (τ0(c0 − c) + f0 − f + c0t) = 0 (11)

τ0 =
f − f0 − c0t

c0 − c
(12)

Given that ψ̈(τ0) = 2π(c0 − c), this stationary point is non-
degenerate. In the general case, the phase can be approximated
by a Taylor expansion. In the case of linear chirps (1), the
Taylor expansion leads to the exact result

ψ(τ) = ψ(τ0) + (τ − τ0)2 ψ̈(τ0)

2
(13)

More generally, the stationary phase approximates equation
(9) by

Cx(t, f, c) ≈ AφT (τ0)ejτ0
∫ +∞

τ=−∞
ej(τ−τ0)2

ψ̈(τ0)
2 dτ. (14)

With the change of variables

u2 = (τ − τ0)2 ψ̈(τ0)

2
, (15)

dτ =

√
2

ψ̈(τ0)
du, (16)

approximation (14) becomes

Cx(t, f, c) ≈ AφT (τ0)ejψ(τ0)

√
2

ψ̈(τ0)

∫ +∞

u=−∞
eju

2

du. (17)

Using the Fresnel integral∫ +∞

−∞
eju

2

du =

√
π

2
+ j

√
π

2
, (18)

the chirplet transform is approximated by

Cx(t, f, c) ≈ AφT (τ0)ejψ(τ0)

√
2

ψ̈(τ0)
(1 + j)

√
π

2
(19)

Inserting the values of τ0 and ψ̈(τ0) leads to

Cx(t, f, c) ≈ A
√

1

c0 − c
φT

(
f − (c0t+ f0)

c0 − c

)
ec
′f2+f ′f+Φ′ ,

(20)

c′ =
−π
c0 − c

, (21)

f ′ =
2π

c0 − c
(f0 + c0t) , (22)

Φ′ =
−π
c0 − c

(f0 + c0t)
2

+ f0t+
c0
t2

+
π

4
(23)
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The approximation holds for positive and smooth analysis win-
dows φT (τ). In this case, the phase of the chirplet transform
of a windowed chirp (20) has the same behaviour as a time
chirp. At a given time t, the spectrum has the shape of the
analysis window φT (τ) dilated by a scaling factor c0 − c and
centred on the frequency f0 + c0t. For symmetric window, it
can be rewritten:

φT

(
c0t+ f0 − f

c0 − c

)
= φ|c0−c|T (f − (c0t+ f0)) (24)

The specific case of the rectangular windows leads to
an exact result based on Fresnel integrals, which can be
approximated in the same way as smooth windows [11].

B. Discrete chirplet transform

With a sampling step δt, the discretization of signal (6) is

x[m] = x(t = mδt) = Aej2π(k0m+
d0
2 m

2) (25)

where k0 = f0δt and d0 = c0δ
2
t are the reduced frequency

and chirprate respectively.
The discrete version of the chirplet transform (3) is

C[n, k, d] =

+M∑
m=−M

x[n+m]φM [m]e−j2π
1
2
l
Ldmaxm

2

e−j2πm
k
K ,

(26)

with n, k are the time and frequency indices respectively, K
the number of frequencies. The chirprate is d = l

Ldmax, with
a chirprate index l ranging from from −L to +L, leading to
2L + 1 different chirprates. The discrete smoothing window
φM [m] has 2M + 1 points. Note that contrary to k which is
the frequency bin index, the signal frequency k0 is a reduced
frequency. The corresponding frequency index k0K is not
bound to be an integer. Compared to the continuous case, two
parameters have to be chosen for the chirprate discretization:
the maximal chirprate dmax, which can be chosen a priori of
the analysed signal, and the chirprate step 2dmax

2L+1 .
To simplify the notations, we only consider in the following

the norm of C[n, k, d].
The discretization of the (20) leads to

|C[n, k, d]| ≈ A

√
1

|d0 − d|
φ|d0−d|MK [k − (k0 + d0n)K]

(27)

However, for very small |d0−d|, the chirplet transform may
be better approximated by the Fourier transform of a wave:

|C[n, k, d]| ≈ A|ΦM [k − (k0 + d0n)K]| (28)

where ΦM [k] is the discrete Fourier transform of φM [m].
The expression (k0 +d0n)K is a non-integer frequency index
corresponding to the central frequency of the signal x[m]
windowed at time n. Note that the maximum of ΦM [k] is
ΦM [0] =

∑
φM [m].

Figure 1 illustrates the accuracy of the Fourier and sta-
tionary phase approximations. We consider the special case
k0 = d0 = 0 and A = 1, and look at the maximal value
of |C[n, k, d]| = |C[0, 0, d]| for M = 1000. The blue and

green curves are the values approximated by (28) and (27)
respectively, the red curve is the value of |C[0, 0, d]|.

The transition from approximation (27) to (28) corresponds
to the value of |d0 − d| such that these two approximations
are equal.

A|ΦM [k − (k0 + d0n)K]| =√
1

|d0 − d|
φ|d0−d|MK [k − (k0 + d0n)K] (29)

|d0 − d| =
1

ΦM [0]2
= ∆d0 (30)

Consequently, the spectrum of the chirp signal (25) will be
approximated by:

|C[n, k, d]| ≈


A|ΦM [k − (k0 + d0n)K]|

if |d0 − d| < 1
ΦM [0]2 = 1

(
∑
m φM [m])2

A
√

1
|d0−d|φ|d0−d|MK [k − (k0 + d0n)K]

otherwise.
(31)

The energy of the chirplet coefficient is maximal if |d0 −
d| < 1

(
∑
m φM [m])2 . Consequently, by choosing the param-

eters of the chirplet transform are such that chirprate step
∆d = dmax

L is less than 2∆d0 = 2
(
∑
m φM [m])2 , we are assured

to get at least a chirplet coefficient corresponding to the first
approximation, and consequently with the highest possible
energy, for any chirp signal.

This chirplet step depends on the energy of the analysing
window φM [m], which is non-normalized: its maximum value
is 1. Longer windows have higher energy, and thus need a
smaller chirplet step to achieve good detection. This result
confirms the intuitive idea that long windows are able to dis-
tinguish smaller differences of chirprates than short windows.

III. MAXIMUM CHIRPLET TRANSFORM

To simplify the detection problem, we define the Maximum
Chirplet Transform (MCT) D[n, k] at a given time-frequency
point [n, k], containing all maxima of the square modulus of
the chirplet coefficients along the chirprates

D[n, k] = max
d
|C[n, k, d]|2. (32)

Our aim is to use the MCT to provide a representation
through which we can detect chirp-like signals. Direct de-
tection in the MCT leads to a wide spectral window, as
detailed below. To mitigate this problem we propose selecting
significant coefficients through an iterative selection strategy,
reminiscent of MP.

A similar approach is proposed in [12], called peak-picked
Chirp Fourier transform (ppCFT). At each time n, the value of
the chirprate leading to the maximum peak is identified, and
the associated coefficients are selected to form the ppCFT at
time n. This approach leads to narrow spectral window, equal
to the spectral window of a stationary wave, but can handle
only a single chirp.
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Fig. 1. Blue: approximated value of |C[0, 0, d]| with approximation (28), valid for small values of |d− d0|. Green: approximated value of |C[0, 0, d]| with
approximation (27), valid for large values of |d − d0|. Red: computed value of |C[0, 0, d]|. The first approximation is valid up to d = 1

ΦM [0]2
, while the

second is valid after. For too large values of c such that cT > 1
δt

a spectral aliasing appears. The right figure is a zoom of the left figure near the transition
between the two approximations.
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Fig. 2. Illustration of the determination of the upper-bound spectral window Φu[k] (35). The set of spectral windows coming from different values of the
chirprate parameter of the chirplet transform is plotted in different colours. At each frequency bin, the upper-bound spectral window correspond to the highest
point, plotted in bold black.

A. Spectral window of the MCT

The spectral window of the MCT, denoted ΦMCT (f) in the
continuous case, is the magnitude spectrum corresponding to
a single chirplet. It is defined by using approximation (31)

ΦMCT (f) = max
{
|ΦT (f)|,max

c

{
|c−1/2φT (f/c))|

}}
(33)

At a given f , the second member of the parenthesis is
found by solving d

dc |c
−1/2φT (f/c))| = 0. Unfortunately, this

equation does not have a closed form solution in the general
case.

In the discrete case, frequency and chirprate are discrete,

and the chirprates are bounded by dmax. The spectral window
is consequently easily computable. However, in the general
case the spectral window at discrete time n is centred on the
frequency-chirprate location [k0 + d0n, d0] whose values are
not bound to the discrete values of the chirplet transform.
We will consider instead an upper-bound spectral window,
denoted Φu[k], centred on the frequency 0, such that for any
MCT magnitude spectrum, the upper-bound spectral window
normalized and centred on the highest MCT value is greater
or equal to the MCT spectrum generated from an associated
chirplet at the time and frequency.

The size of the widest window is determined when the value
of the analysed signal’s chirprate d0 is equal to d0 = ±dmax.
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Fig. 3. Comparison of the upper-bound spectral window with two different MCT spectral windows, for a small chirprate step ∆d. In green, the upper-bound
spectral window, computed for a Hanning window of 1023 points, 2048 frequency bins and 51 different chirprates from −10−4 to +10−4. Left in blue, the
MCT spectrum of a chirp with chirprate equal to the maximum chirprate 10−4. The MCT spectrum is close to the upper-bound spectral window, but always
less than or equal to. Right in blue, the MCT spectrum of a pure wave (chirprate zero). The MCT spectrum is narrower than in the previous case.

For such a signal, the most distant chirplets getting some signal
energy, whose chirprates are d = −d0, are as far as k0± |d−
d0|M−1

2 = k0 ± dmaxM . This value gives the half-length of
the spectral window Φu[k]. Consequently, when considering a
generic signal arbitrarily set to k0 = d0 = 0, the maximum
analysing chirprate is 2dmax.

First, we assume that the chirprate step is small enough to
get at least one chirplet coefficient in the first approximation of
(31). In this case, the upper-bound spectral window Φu[k] is
approximated by taking at each frequency k the maximum
between the spectral window |ΦM [k]| and the set of Di

chirped spectral windows
√

1
|di|φ|di|MK [k] whose sizes are

integer values.

Φu[k] = max
(

ΦM [k],max
di

√
1
|di|φ|di|MK [k]

)
, (34)

1
ΦM [0]2 ≤ di ≤ 2dmax, such that |di|MK ∈ N (35)

Note that the highest value of a local maxima of a spectrum
is achieved when the discrete frequency of a wave corresponds
exactly to a frequency bin, that is k0 = n1

K , with n1 an integer.
On the other hand, the highest values for the points near this
local maxima, that is points belonging to the lobes of the
spectral window, are achieved when the discrete frequency of
a wave is k0 = n1+0.5

K . The closest point to the maximum
will have approximately the same value. Consequently, odd
window sizes, that are windows centred on a frequency bin,
never give maximum values on a frequency different from the
window centre and thus can be discarded from the computa-
tion.

Figure 2 illustrates the design of this spectral window,
limited on the right part of this window. On each frequency
bin, the highest value over all possible windows is selected to
make the upper-bound spectral window.

Figure 3 compares the upper-bound spectral window with
the actual MCT window in two cases of chirplet transform. In

these two cases, the upper-bound spectral window is indeed
higher that the MCT spectral window.

In the undesirable case of a large chirprate step ∆d > 2∆d0,
the maximal energy of the chirplets depends on the signal’s
chirprate. In the worst case, the signal’s chirprate is halfway
between two discrete chirprates of the chirplet transform,
leading to smaller but wider spectral window, corresponding
to a value of |d0 − d| = ∆d/2 in approximation (31). The
upper-bound spectral window is computed following equation
(35), but with chirprate di such that ∆d/2 ≤ di ≤ 2dmax.

As shown on figure 4, the upper-bound spectral window is
much wider and decreases much more slowly than the upper-
bound spectral window coming from the small chirprate step.
Consequently, this window is a bad approximation when the
signal’s chirprate is close to a discrete chirprate of the chirplet
transform. This illustrates the need to select ∆d ≤ 2∆d0.

B. Detection in the MCT

The goal of this section is to select a set of significant time-
frequency coefficients in order to enable subsequent estimation
of the signal’s chirps. Additionally, we try to select as few
coefficients as possible, to limit the computation needed for
the chirp estimation presented in the next section.

A first step in the selection of chirplet coefficients is
to determine whether a time-frequency coefficient contains
significant signal energy, called hypothesis H1, or not, the
hypothesis H0.

The Maximum Chirplet transform coefficients (32) are cho-
sen among squared modulus chirplet coefficients, representing
the coefficients’ energy. A chirplet correlated with the signal
should lead to a chirplet coefficient of higher energy than
chirplet coefficients containing noise only, and so should the
MCT coefficient. In other words, the hypothesis test for a
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Fig. 4. Comparison of the upper-bound spectral window with two different MCT spectral windows, for a high chirprate step ∆d. In green, the upper-bound
spectral window, computed for a Hanning window of 1023 points, 2048 frequency bins and 5 different chirprates from −10−4 to +10−4. Left in blue,
the MCT spectrum has a chirprate of 1.25× 10−5, leading to a very poor MCT spectrum. However, the peak of the upper-bound spectral window follows
correctly the MCT spectrum. Right in blue, the MCT spectrum of a chirp with chirprate equal to 5 × 10−5, corresponding to a chirprate of the chirplet
transform. When adjusting the upper-bound spectral window to the maximal value of the MCT spectrum, the upper-bound spectral window has a very large
peak and a very high tail, leading to poor frequency and poor resolutions.

single chirplet is solved by selecting an appropriate detection
threshold t. If the MCT coefficient is below this threshold it
is assumed to contain noise energy only.

In the hypothesis H0, the chirplet coefficient contains Gaus-
sian noise of variance σ2 only, and consequently has a circular
complex Gaussian distribution, and its square modulus has a
χ2 distribution with two degrees of freedom. Consequently,
D[n, k] is the maximum of 2L+ 1 random variables having a
χ2 distribution with two degrees of freedom.

We assume here that at a given time-frequency location
[n, k], all chirplet coefficients C[n, k, d] are independent. Un-
der this assumption, which is studied in next section, the order
statistics [13] leads to the distribution of D[n, k] for noise only
of fD[n,k],H0

fD[n,k],H0
(x) = (2L+ 1)

(
1− e−

−x
2σ2

)2L 1

2σ2
e−
−x
2σ2 (36)

In this paper, the detection strategy chosen is a Neyman-
Pearson approach. With a chosen probability of false alarm
pfa, the threshold t is such that

t / P (D[n, k]H0
> t) = pfa (37)

t = −σ2 ln
(

1− (1− pfa)
1

2L+1

)
(38)

This threshold depends on the noise level σ2, which must
be estimated. To do this, we can use a noise level estimation
based on the spectral kurtosis of the minimal statistics [14].
This estimation is not discussed in this paper, and we consider
in the following that the noise level is known. In order to avoid
a large number of false detections we choose a low probability
of false alarm, e.g. pfa = 10−5.

At this stage we might be tempted to perform detection by
a direct thresholding of all the MCT coefficients. This would
lead to a set of detected points S = {[n, k] : D[n, k] > t}.

However, due to the large width of the MCT spectral window,
this will result in a large number of additional false alarms in
the neighborhood of actual significant coefficients, particularly
in high signal-to-noise (SNR) scenarios. To avoid this phe-
nomenon we propose a computationally efficient interference
cancellation strategy, detailed next.

C. Iterative masking

To avoid this over-selection of coefficients, we introduce an
iterative masking approach that can be viewed as a conser-
vative and computationally efficient variant of MP. At each
iteration, the highest MCT spectrum coefficient is selected.
The upper-bound spectral window (35) centred on this point
is subtracted from the MCT spectrum, thereby guaranteeing
to remove the energy associated with a detected chirplet at
that time frequency point. A new iteration is then run over
the residual spectrum. The iterations stop when all spectrum
coefficients are below the detection threshold t. Contrary to
the Matching Pursuit approach, the spectrum does not need to
be re-computed at each iteration.

Figure 5 shows the first three iterations of such a detec-
tion scheme on a test signal. Only a single coefficient is
selected for each chirp, without an important loss of frequency
resolution. Note that interferences between close chirps may
lead to values higher than the upper-bound spectral window
of the highest chirp. These interferences are associated with
neighboring chirps and are subsequently reduced through the
subtraction of the upper bound spectral window for the second
peak.

The use of this iterative masking leads to a loss of detection
range, that depends on the chirprate of the detected chirplet.
When the signal’s chirprate is equal to the maximal chirprate
of the chirplet transform, the MCT spectral window is identical
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Fig. 5. Illustration of the iteration detection algorithm. Up left, MCT spectrum of a test example with a Gaussian noise of variance σ2 = 1. In green the
upper-bound spectral window centred on the highest points of the spectrum. In red the detection threshold t. Up right, the MCT spectrum at the second
iteration. The negative values are set to zero for a better visualisation. The third iteration is given on bottom left, the negative values are again set to zero.
At each iteration, the MCT spectrum can be understood as an approximation of the MCT spectrum of the remaining chirps only. As a comparison with the
approximation at the second iteration (up left), the MCT spectrum of the two last chirps only is given on bottom right.

to the upper-bound spectral window (cf Fig. 3, left). Conse-
quently, the spectral subtraction does not remove inappropriate
spectral energy. On the other hand, in the worst case the
signal’s chirprate is 0, and the MCT spectral window is
narrower than the upper-bound spectral window. More spectral
energy than required is removed, which will lead to a loss of
detection. The worst case detection loss is quantified by the
difference between the two curves on the right hand side of
Fig. 3 (we will always choose a small enough chirprate step to
avoid the case illustrated in Fig. 4). For clarity the difference
is plotted on dB scale in Fig. 6. The worst case detection
loss has two main regimes. The main lobe can be considered
as a resolution loss that will suppress the selection of other
chirplets that are close in frequency. The maximum loss here
is -8dB and has a width of 5 frequency bins. In the side lobes
the detection loss is significantly lower reaching a maximum
of -11dB. Thus within these limits we can expect the iterative
masking to provide robust detection.

D. Correlation in the MCT

This section investigates the correlation between chirplet
coefficients C[n, k, d] at a given time-frequency location [n, k],
and the validity of the distribution of D[n, k] for noise only
(36). To do this, we consider the Kolmogorov-Smirnov test
[15], which is a non parametric test comparing a sample with
a distribution of reference. Given the empirical distribution
Fn(x) of n observations Xj , the Kolmogorov-Smirnov statis-
tic KSn(x) is defined as

KSn = sup
n
|Fn(x)− F (x)|, (39)

with F (x) the cumulative distribution function of reference.
The distribution of Kolmogorov K is

K = sup
t∈[0,1]

|B(t)| (40)

with B(t) the Brownian bridge. Its cumulative distribution
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Fig. 7. Left, values of the Kolmogorov-Smirnov Statistic comparing the distribution of the maximum chirplet transform at a given time-frequency location
[n, k] and the distribution coming from independent coefficients (36), for different parameters. The black line shows the level for which the null hypothesis
is rejected. At a given window’s size, there is a threshold value of the chirprate step ∆d = dmax

L
leading to a good approximation of the maximum chirplet

distribution. The vertical lines correspond to the maximal chirprate step 2∆d0 (30) assuring good detection. Right, values of the Kolmogorov-Smirnov Statistic
for ∆d = 2∆d0, for different number of chirprates. This statistic is independent of the number of chirprates for a given chirprate step.

function is

P(K ≤ α) = 1− 2

∞∑
i=1

(−1)i−1e−2i2α2

(41)

Under the null hypothesis, the Kolmogorov-Smirnov statistics
converges such that

√
nKSn −→

n→∞
sup
t
|B(F (t))| (42)

The Kolmogorov-Smirnov test rejects the null hypothesis with
a probability of false alarm α if

√
nKSn > Kα, with P(K ≤ Kα) = 1− α (43)

In practice, the convergence (42) is a good approximation for
n > 100, and Kα is approximated by 1.358 for α = 5%.

In our case, we want to check if the distribution of the
Maximum Chirplet coefficient D[n, k] is the same as the one
coming from uncorrelated chirplet coefficients (36), which
is the null hypothesis, or not. The cumulative distribution
function F (x) derives from (36)

F (x) =
(

1− e−
−x
2σ2

)(2L+1)

(44)

This distribution is compared with the distribution of the
D[n, k] at n = 1 and at the normalised frequency 0.25,
computed over 1000 realisations of noise, for different size
of windows 2M + 1, different maximum chirprates dmax and
different number of chirplets 2L + 1. The key parameters
are the window’s length and the chirprate step, defined as
∆d = dmax

L . The KS statistics KSn are shown on figure 7
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Fig. 8. Influence of the correlation between chirplet coefficients on the cumulative distribution function of the maximum chirplet. The empirical cumulative
distribution functions are plotted for 1000 realisations of noise. The correlated coefficients comes from a chirplet transform with a window’s length of 4095,
15 chirprates and a chirprate step of ∆d0. The uncorrelated coefficients are sets of 15 independent Gaussian noise realisations.

for different values of M . When the chirprate step increases,
the KS statistic decreases down to a value where the null
hypothesis is not rejected anymore. The step size at which
the null hypothesis is no longer rejected is smaller for longer
windows.

Figure 8 shows the influence of correlations on the
cumulative distribution function of the maximum chirplet
coefficient. In presence of correlation between the chirplet
coefficients at a given time-frequency location, the cumulative
distribution function increases faster than without correlation.
The black line indicates the value F (x) = 0.95. Its
intersection between the green and blue curves indicates a
detection threshold corresponding to a probability of false
alarm of 5%. With correlated coefficients, this threshold is
lower. In other words, the detection threshold described in
section III-B leads to a higher probability of false alarm than
expected when chirplets coefficients are correlated.

In conclusion, the distribution (36) is a good approximation
of the maximum chirplet coefficient distribution in the case
of long windows associated with high enough chirprate step.
In case of correlation, the detection threshold of section III-B
leads to a higher probability of false alarm than expected.

IV. ALGORITHM

The previous section detects a set of maximum chirplet
coefficients, associated with their corresponding chirprate. The
next goal is to gather these chirplets into different signals,
while limiting the computational cost, i.e. limiting the chirplet
transform redundancy.

A. Gathering into chirps

First, we aim to gather the set of detected chirplets into
a small set of chirps in a real time framework, these chirps
corresponding to each linear part of the analysed signal mod-
elled by (2). Each chirp is characterised by four parameters:

for all selected chirplet coefficients do
for all created chirps do

if current chirplet ∈ current chirp then
Associate the time-frequency location of the chirplet
coefficient to the chirp;
Estimate the chirp’s parameters with a linear regres-
sion from all associated time-frequency locations;

else
Create a new chirp with parameters defined by the
selected chirplet;

end if
end for

end for

the starting point ns, the end point ne, the initial frequency
ki at time ns and the chirprate dr.

For all selected chirplet coefficients, from the smallest time
index and frequency index to the highest indices, we check
if the chirplet coefficients fit in an existing chirp, and update
that chirp’s parameters with the new coefficient. Otherwise, we
create a new chirp, whose starting point and end point are the
first and last points of the window associated with the chirplet
coefficient. The chirprate is set to the chirplet’s chirprate, and
the initial frequency is deduced from the central frequency of
the chirplet and its chirprate. The algorithm is summarised as
follows: The conditions for associating a chirplet coefficient,
centred on time index n and frequency index k with a chirprate
d, to a chirp are:
* time condition, the chirp and the chirplet overlap:

ns ≤ n ≤ ne + δn (45)

* chirprate condition, the chirplet and the chirps have approx-
imately the same chirprate:

|d− dr| ≤ δd (46)
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* frequency condition, the central frequency of the chirplet is
located on the chirp:

|ki + dr(n− ni)− k| ≤ δk (47)

Each selected chirplet is associated to only one chirp. In other
words, chirplets located at the crossing of two chirps can be
linked to only one of these chirps, and the other chirp will miss
this coefficient. Moreover, the detection step may miss some
signal coefficients. Consequently, the gathering process must
be designed to be tolerant enough to be able to link chirplets
that are non-consecutive in time.

Finally, some chirplet coefficients may be wrongly selected,
due to noise induced false alarms, or interferences between the
crossing chirps. Such a chirplet will not be gathered into the
signal’s chirp and will lead to a single false alarm chirplet.
Therefore, in a postprocessing step, we remove chirps of
length equal to the length of a single chirplet, in order to
remove these false alarms.

1) Choice of the parameters: There are two sets of
parameters that must be defined: the first one, related to
the chirplet transform, and the second one related to the
gathering into chirps. In addition, a probability of false alarm
to determine the detection threshold is required.

The chirplet transform is related to the Short Time Fourier
Transform, with an additional parameter, the chirprate. Con-
sequently, the choice of the window’s length, the overlap
between consecutive windows and the zero padding depends
on the usual criteria related to the STFT.

As seen in section II-B, the key parameter to achieve good
detection is the chirprate step ∆d, which must be less than
or equal to twice ∆d0 = (

∑
φM [n])

−2. Let us consider that
a priori we are able to bound the signals’ chirprates by the
MCT maximum chirprate dmax. With dmax fixed, reducing
the redundancy of the chirplet transform requires us to re-
duce the number of different chirprates. In order to maintain
∆d ≤ 2∆d0 we must choose a small analysis window. On the
other hand, a small window will have difficulties in dealing
with crossing chirps, and will detect more chirplets than longer
windows, leading to a more error prone gathering step.

Experience with signals provided by the Defence Science
and Technology Laboratory (DSTL) led to a choice of
M = 4095 and a maximum chirprate dmax = 2.10−6.1

For these parameters a chirprate step satisfying ∆d ≤ 2∆d0

leads to 11 different chirprates. In addition, to minimize
computation, we consider no overlap between consecutive
windows or zero padding.

The parameters of the chirp gathering, the three thresholds
δn, δk and δd, are chosen with respect to the parameters of
the chirplet transform. A correctly detected chirplet associated
with one of the signals chirps will have a chirprate close to
the signal’s true chirprate within the resolution of the chirprate
discretization. The chirprate threshold is therefore set to the
chirprate discretization size with a small tolerance factor, δd =
1.5∆d.

1Due to the sensitive nature of the signals we are unable to present our
analysis of these signals here.

The detection step selects only a single coefficient at each
time-frequency location. Consequently, some coefficients may
be missing near crossing chirps. The time threshold, δn, is the
key parameter which allows the correct association of closely
disconnected chirplets into a single chirp. To allow for chirp
crossings we permit two consecutive chirplets to be missing by
setting the time threshold to three times the distance between
consecutive chirplets, δn = 3M .

The frequency threshold δk is not set to the frequency
resolution of the chirplet transform. We want to be able to
gather chirplets distant up to δn from the chirp. Given the
uncertainty of the chirprate δd, the furthest chirplet from a
chirp candidate to the gathering with this chirp will have
a frequency uncertainty equals to δnδd. This frequency
uncertainty leads to a much higher frequency uncertainty than
the frequency resolution of the transform. Consequently, we
set the frequency threshold to match this uncertainty, that is
δk = δdδn.

The last parameter is probability of false alarm, to define
a detection threshold. The chirplet’s parameters lead to a
correlation between the chirplet coefficient at a given time-
frequency location, and thus will lead to a higher probability
of false alarm than expected. Consequently, a low probability
of false alarm is chosen, pfa = 10−5.

B. Results

Figure 9 shows the result of the algorithm on a synthetic
signal made of 6 signals containing 53 chirps of the same
amplitude A. The SNR, defined as 10 log10(A

2

σ2 ), is -3dB.
The chirplet is computed with a Gaussian window of 4095
points at 4096 computed frequencies. 11 discrete chirprates
are computed, from −2.10−6 to 2.10−6, such that the chirprate
step ∆d = 4.10−7 is less than twice the critical chirprate step,
2∆d0 ≈ 4.77.10−7.

Among the 53 linear chirps, 9 are very short, less than 5000
points associated with a chirprate of very high absolute value.
In order to maintain a manageable maximum chirprate these
chirps are discarded and treated as discontinuities which are
allowed in our signal model (2).

190 chirps are created from 3124 selected chirplets coef-
ficients. All false alarm chirplets are isolated and are set in
a single chirp. The post-processing removes the 146 chirps
made of only one chirplet, leading to the correct detection of
the 44 chirps existing in the analysed signal.

The errors on the estimated starting points and end points
are all smaller than the window’s length of the chirplet
transform, and the error of the estimated frequency smaller
than the frequency step. Thanks to the linear regression, the
chirprates are very accurately estimated: the highest relative
error on the chirprates is 0.15%.

With the same parameters, the results are unchanged for
SNR down to -21dB.

C. Extension: chirprate out of bounds

The proposed algorithm supposes that the maximal chirprate
of the signal’s chirps is known. However, in certain prac-
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Fig. 9. Up left, spectrogram of the synthetic signal to analyse, made of 6 piece-wise linear signals of same amplitude. The SNR is -3dB. Up right, zoom on
the selected chirplets. Down left, results of the gathering of selected chirplets. False alarms are mainly located on very quickly decreasing chirps. The black
box indicates the area of the zoom of the up right figure. Down right, the estimated chirps with the false-alarm chirps removed by the post-processing.

tical cases, the maximal chirprate of the signal being ana-
lyzed may not be known and may be outside of the range
[−dmax,+dmax]. Two problems then occur. First, according
to the approximation (31), the energy obtained by a chirplet of
chirprate dmax from a signal with a chirprate d1 > dmax will
be reduced by a factor 1

|d0−d| , and consequently is less likely
to be detected in low SNR. Second, the gathering algorithm
will not be able to create chirps with such a chirprate, due to
the frequency condition (47).

If d1 were known we could increase dmax, at the cost
of more chirprate parameters of the chirplet transform, and
thus a more expensive computational cost. Here we consider
a modification of the algorithm presented in (IV-A), that
has the same computational cost and is able to gather the
chirplets with chirprates outside of the expected bounds into
chirps, at the cost of the lower ability to detect these chirplets.

Two modifications are necessary in order to enable the
detection and estimation of chirps with extreme chirprates.

First, assume that we have a created chirp with a chirprate
d1 > dmax + δd. Selected chirplet coefficients will not have
a high enough chirprate to fulfil the chirprate condition (46).
Instead we propose a new chirprate condition that applies a
saturation on the chirp’s chirprate:

|d−max(−dmax,min(dmax, dr))| ≤ δd (48)

The second problem is that a chirp whose chirprate is
outside of the range [−dmax,+dmax] is impossible to create
since a new chirp’s estimated chirprate is taken from a chirplet
and cannot correspond to its actual chirprate. This leads to
the wrong frequency condition. A more flexible frequency
condition for chirplets with extreme chirprates is given by:

dr = dmax & ki + dr(n− ni) > k − δk (49)
dr = −dmax & ki + dr(n− ni) < k + δk (50)

Using this new frequency condition allows us to match
chirplets whose chirprate are limited to the range
[−dmax, dmax] to newly created chirps. Grouping a second
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Fig. 10. Results for the gathering the selected chirplets with the extended algorithm (section IV-C) in the extreme case using only 3 distinct chirprates,
−4.10−7, 0, 4.10−7, and a maximum MCT chirprate much less than the actual signal chirprates (2.10−6). Top row, SNR is -3dB: results are similar to
those in figure 9. Lower row, SNR is -21dB. As expected, chirplets with extreme chirprates are poorly detected and consequently oorly gathered into chirps.
Others chirps are not affected.

chirplet permits the estimation step to determine the relevant
chirprate outside of the range [−dmax,+dmax]. This new
frequency condition allows the creation of a new chirp with
an appropriate chirprate, but it cannot be used to associate
a new chirplet to an existing chirp whose chirprate is out
of range. In this case the old frequency condition (47) is
appropriate To this end we only apply the new frequency
condition (50) to newly created chirps. For any chirp that
is composed of more than one chirplet the old frequency
condition is used. Moreover, a stricter time condition is
coupled with the new frequency condition, to permit this
gathering only for consecutive windows, and avoid grouping
chirplets at a single time index, which could create a chirp
with an infinite chirprate. However, new false alarms chirps
made of two chirplets with very different frequencies may
appear. The post processing is now set to remove chirps of
size less than or equal to twice the chirplet’s length, at the
cost of the risk of removing very small signal’s chirps.

A final issue concerns the MCT spectrum. A signal with
a chirprate higher than dmax will have a MCT spectrum
larger than the computed upper-bound spectral window (35).
Therefore the upper-bound spectral window will be overly
narrow and we can expect an increase in the selection of
incorrect chirplets in the case of a high SNR.

Figure 10 shows the result of this new algorithm on the syn-
thetic signal used in previous section. The maximal chirprate is
now dmax = 4.10−7. Decreasing the maximal chirprate while
keeping the same chirprate step allows us to use fewer different
chirprates in the chirplet transform to achieve a good detection,
in this case only 3 different chirprates. On top, the SNR is
-3dB. All chirplets coefficients are accurately detected, and
the chirp gathering leads to the same result than the previous
one. However, for a low SNR=-21dB shown on bottom, some
chirps are poorly detected and thus do not lead to the correct
chirps.

In summary, these changes permit, with the same parameters
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of chirplet transform, to gather chirplets into chirps with a
chirprate out of the range [−dmax, dmax], but at the cost of
more false alarm chirps, and without improving the detection
of chirplets with high chirprates.

D. Gathering into signals

The final step is to gather the chirps back into signals. Here,
we assume that the detection and gathering into chirps lead to
an accurate result, as for example shown on figure 9.

The signals are Frequency Modulation Continuous Wave
signals, and thus are continuous. The end of a linear chirp
belonging to a given signal should be close to the beginning
of the signal’s next chirp. However, a difficulty occurs when
the signal includes very short chirps associated with a very
extreme chirprates, which are not detected since the detected
signal is no longer continuous.

The goal is to associate each chirp’s end (except those
located at the end of the signal) to the beginning of another
chirp, with the constraint that the beginning of a chirp may be
associated to only one chirp. To do this, we first compute all
the distances di,j between the end point [nej , kej ] of the jth

chirp and beginning point [nbi, kbi] of the ith chirp

di,j =

√
1

N2
(nej − nbi)2 +

1

K2
(kej − kei)2, (51)

with N and K the number of time and frequency bins,
respectively. The normalisation is used to give the same weight
to the time and frequency dimensions, independently from the
chirplet transform’s parameters. Each chirp j is associated to
the chirp i leading to the smallest distance di,j .

It is possible to have a single chirp j0 associated to several
chirps ik. In this case, we favour the connections between
beginning and end points which are supposed to be strictly
identical. This is done by keeping the connections such that
the distance di,j is below a threshold td

td =

√(
M

N

)2

(Mdmax)2 (52)

This threshold corresponds to the highest distance possible at
a chirp transition, given the time uncertainty of length M .

All chirps which are still connected with a previous one are
removed from the pool of available chirps, and a new time-
based criterion is selected to connect the remaining chirps

d′i,j = |nej − nbi|. (53)

We assume here that the end of a chirp is close to the beginning
of a new one, independently of their respective frequency.
Given that the chirplets are quite small compared to the chirps’
lengths, the probability that two chirps’ end are detected at the
same time bin are low.

Figure 11 illustrates the reconstructed signals. Each recon-
structed signal is plotted in different colour, corresponding
indeed to the different FMCW signals. Note that no infor-
mation about the periodicity of the chirps, nor their chirprates
have been used. Such information should however be useful
to discriminate the signal if some ambiguity remains after the

time criterion, and would also be important for classifying the
type of radar.

This method avoids the expensive search for all possible
combinations (i, j) and selecting the result minimising all the
distances.

V. CONCLUSION

We have presented in this paper an efficient algorithm
for detecting and estimating linear chirps, in a context of
LPI radars made of frequency modulation waves. First, the
chirplet transform has been investigated, and an approxima-
tion proposed. A simpler time-frequency representation has
been proposed, called Maximum Chirplet Transform (MCT),
selecting the chirplet of highest energy at each time-frequency
location. Using the approximation of the chirplet transform,
the MCT spectrum of a chirp has been studied, leading to
the definition of a window enclosing such a spectrum for any
signal’s chirprate.

The signal detection in the MCT has been proposed, with
the goal of selecting as few relevant coefficients as possible.
The chirp spectrum, centred on the highest energy points of
the MCT spectrum is iteratively subtracted from this spectrum,
until all spectrum points are below a detection threshold
determined by a Neyman-Pearson approach. In this way, we
do not need to recompute the MCT spectrum at each iteration,
in contrast to MP techniques. This approach relies on the
knowledge of the distribution of MCT coefficients containing
noise only, which is known only when the chirplet coefficients
at a given time-frequency location are uncorrelated. This
correlation has been studied, and it has been observed that
the coefficients are correlated when the chirprate step of the
chirplet transform is low.

The second step of the algorithm gathers the detected
coefficients into linear chirps with criteria based on time,
frequency and chirprate, and estimates the chirp’s parameters
with a linear regression from the gathered coefficients. A post-
processing step removes ”false alarm” chirps created with
wrongly selected coefficients in the first step. This algorithm
has been illustrated on a synthetic signal imitating 4 FMCW
radars, leading to a very good reconstruction of the chirps for
Signal-to-Noise Ratio down to -21dB.

An extension of this algorithm have been proposed, allowing
the detection of chirps with a chirprate out of the scope of the
chirplet transform parameters, lowering the critical choice of
the maximum chirprate of the chirplet transform. The main
advantage is to reduce the importance of the choice of the
maximum chirprate of the chirplet transform, and detecting
unexpected chirps.

The detected chirps have been then gathered back into
the FMCW signals constituting the analysed signal, using a
criterion based on the time-frequency proximity of the starting
and ending points of the detected chirps. This algorithm has
shown very good results on the simulated data provided by
the Defence Science and Technology Laboratory (agency of
the United Kingdom Ministry of Defence).

We finally note that the underlying detection process could
be easily adapted to incorporate other chirp profiles, e.g.
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Fig. 11. Result of the gathering into signals of the chirps from figure 9. Each signal is correctly reconstructed, plotted in different colours.

quadratic chirps, as well as the detection and separation of
pulse radar signals .
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