# Decision Theory 

João Mota

UDRC Summer School, 2023

Heriot-Watt University

## Decision theory

## Decision theory

Problem

## Decision theory



## Problem <br> We observe $\boldsymbol{X} \in \mathbb{R}^{d}$

## Decision theory



## Problem <br> We observe $\boldsymbol{X} \in \mathbb{R}^{d}$ <br> $\boldsymbol{X} \sim \mathbb{P}_{0}$

## Decision theory



> Problem
> We observe $\boldsymbol{X} \in \mathbb{R}^{d}$
> $\boldsymbol{X} \sim \mathbb{P}_{0} \quad$ or $\quad \boldsymbol{X} \sim \mathbb{P}_{1}$ ?

## Decision theory



> Problem
> We observe $\boldsymbol{X} \in \mathbb{R}^{d}$
> $\boldsymbol{X} \sim \mathbb{P}_{0} \quad$ or $\quad \boldsymbol{X} \sim \mathbb{P}_{1}$ ?

In classical decision theory, we know the distributions $\mathbb{P}_{0}$ and $\mathbb{P}_{1}$

## Decision theory



> Problem
> We observe $\boldsymbol{X} \in \mathbb{R}^{d}$
> $\boldsymbol{X} \sim \mathbb{P}_{0} \quad$ or $\quad \boldsymbol{X} \sim \mathbb{P}_{1}$ ?

In classical decision theory, we know the distributions $\mathbb{P}_{0}$ and $\mathbb{P}_{1}$
In machine learning, we have to estimate $\mathbb{P}_{0}$ and $\mathbb{P}_{1}$ from data

## Example in 1D: Spam

## Example in 1D: Spam



```
\N=に
acincasimumonembm
```





```
H0=entriath
```









```
arntmakly
-2+
```




```
* tomer
```


## Example in 1D: Spam



```
    N-n=
```







```
#NH=6
```





```
NN**-M"w-melmee
```





```
#n+matuly
```





```
0 tome
```



## Example in 1D: Spam

```
(a)
    \=n-m
```






```
#emetirime
```





```
m****=ww%/mbleet
```





```
manteatery
-manteram
```



$X \in \mathbb{R}$ : number of spam words in a message

## Example in 1D: Spam



```
```

    N=n=
    ```
```

```
```

    N=n=
    ```
```








```
```

O-2,

```
```

O-2,
ymy=u
ymy=u
um-mentat

```
```

um-mentat

```
```
















```
```

arntmatuly

```
```

```
```

arntmatuly

```
```






```
```

0 tome

```
```

```
```

0 tome

```
```

ancer

$X \in \mathbb{R}$ : number of spam words in a message


## Example in 1D: Spam

```
Montw
```






```
*=t/5
#y=0trymat
```










```
manteatery
```




$X \in \mathbb{R}$ : number of spam words in a message Null Hypothesis
$H_{0}$ : message isn't spam


## Example in 1D: Spam



$X \in \mathbb{R}$ : number of spam words in a message Null Hypothesis
$H_{0}$ : message isn't spam

## Alternative Hypothesis

$H_{1}$ : message is spam


## Signal vs Noise

## Signal vs Noise

Consider a test for detecting:
if given email is spam

## Signal vs Noise

Consider a test for detecting:
if given email is spam presence of aircraft in radar

## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

Probability


## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

Probability


## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

Probability


## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

Probability


## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

Probability


## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

Probability


Observation

## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image

Probability


Observation

## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image


## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image


## Signal vs Noise

Consider a test for detecting:
if given email is spam
if defendant is guilty
presence of aircraft in radar
presence of tumor in an image


## The Decision Tradeoff

## The Decision Tradeoff

| True hypothesis | Decide noise | Decide signal |
| :--- | :--- | :--- |
| noise |  |  |
| signal |  |  |

## The Decision Tradeoff

| True hypothesis | Decide noise | Decide signal |
| :--- | :--- | :--- |
| noise |  |  |
| signal |  |  |



## The Decision Tradeoff

| True hypothesis | Decide noise | Decide signal |
| :--- | :---: | :--- |
| noise | $\checkmark$ |  |
| signal |  |  |



## The Decision Tradeoff

| True hypothesis | Decide noise | Decide signal |
| :--- | :---: | :---: |
| noise | $\checkmark$ |  |
| signal |  | $\checkmark$ |



## The Decision Tradeoff

| True hypothesis | Decide noise | Decide signal |
| :--- | :---: | :---: |
| noise | $\checkmark$ | false alarm |
| signal |  | $\checkmark$ |



## The Decision Tradeoff

| True hypothesis | Decide noise | Decide signal |
| :--- | :---: | :---: |
| noise | $\checkmark$ | false alarm |
| signal | missed detection | $\checkmark$ |



## Improving the Tradeoff

## Improving the Tradeoff

Larger effect size


Better/more measurements


Where to place the decision boundary?


## Decision and loss functions



## Decision and loss functions

True label

$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

## Decision and loss functions

True label
$Y= \begin{cases}0, & \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$f(\boldsymbol{X})= \begin{cases}0 & , \text { if we decide } H_{0} \\ 1 & , \text { if we decide } H_{1}\end{cases}$

## Decision and loss functions

True label
Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Loss function $\ell:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}$

## Decision and loss functions

True label
Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Loss function $\ell:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R} \quad \ell(f(\boldsymbol{X}), Y)$

## Decision and loss functions

True label
Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Loss function $\ell:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R} \quad \ell(f(\boldsymbol{X}), Y)$
True hypothesis $\quad f(\boldsymbol{X})=0 \quad f(\boldsymbol{X})=1$
$H_{0}$ is true
$H_{1}$ is true

## Decision and loss functions

True label
Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Loss function $\ell:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R} \quad \ell(f(\boldsymbol{X}), Y)$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | $\ell(0,0)$ |  |
| $H_{1}$ is true |  |  |

## Decision and loss functions

True label
Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Loss function $\ell:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R} \quad \ell(f(\boldsymbol{X}), Y)$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | $\ell(0,0)$ | $\ell(1,0)$ |
| $H_{1}$ is true |  |  |

## Decision and loss functions

True label
Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Loss function $\ell:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R} \quad \ell(f(\boldsymbol{X}), Y)$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | $\ell(0,0)$ | $\ell(1,0)$ |
| $H_{1}$ is true | $\ell(0,1)$ |  |

## Decision and loss functions

True label
Decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$
$Y= \begin{cases}0 & , \text { if } H_{0} \text { is true } \\ 1, & \text { if } H_{1} \text { true }\end{cases}$

Loss function $\ell:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R} \quad \ell(f(\boldsymbol{X}), Y)$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | $\ell(0,0)$ | $\ell(1,0)$ |
| $H_{1}$ is true | $\ell(0,1)$ | $\ell(1,1)$ |

# Risk and Optimal Decision 

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

Risk:

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

Risk:

$$
R[f]:=\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

Risk:

$$
R[f]:=\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

where $\mathbb{E}_{\boldsymbol{X} Y}[\cdot]$ is the expectation with respect to $\boldsymbol{X}$ and $Y$

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

Risk:

$$
R[f]:=\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

where $\mathbb{E}_{\boldsymbol{X} Y}[\cdot]$ is the expectation with respect to $\boldsymbol{X}$ and $Y$

Optimal decision problem:

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

Risk:

$$
R[f]:=\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

where $\mathbb{E}_{\boldsymbol{X} Y}[\cdot]$ is the expectation with respect to $\boldsymbol{X}$ and $Y$

Optimal decision problem: Given $\ell$, find $f$ that minimizes the risk:

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

Risk:

$$
R[f]:=\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

where $\mathbb{E}_{\boldsymbol{X} Y}[\cdot]$ is the expectation with respect to $\boldsymbol{X}$ and $Y$

Optimal decision problem: Given $\ell$, find $f$ that minimizes the risk:

$$
\operatorname{minimize}_{f: \mathbb{R}^{d} \rightarrow\{0,1\}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

## Risk and Optimal Decision

Given decision function $f: \mathbb{R}^{d} \rightarrow\{0,1\}$ and loss $\ell:\{0,1\}^{2} \rightarrow \mathbb{R}$,

Risk:

$$
R[f]:=\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

where $\mathbb{E}_{\boldsymbol{X} Y}[\cdot]$ is the expectation with respect to $\boldsymbol{X}$ and $Y$

Optimal decision problem: Given $\ell$, find $f$ that minimizes the risk:

$$
\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

... infinite-dimensional problem
$\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]$

Recall that $f(\boldsymbol{X})$ and $Y$ are binary $\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]$

Recall that $f(\boldsymbol{X})$ and $Y$ are binary $\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]$

Conditioning on $\boldsymbol{X}$,

Recall that $f(\boldsymbol{X})$ and $Y$ are binary $\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]$

Conditioning on $\boldsymbol{X}$,

$$
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\mathbb{E}_{\boldsymbol{X}}\left[\mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}]\right]
$$

Recall that $f(\boldsymbol{X})$ and $Y$ are binary
Conditioning on $\boldsymbol{X}$,

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)] & =\mathbb{E}_{\boldsymbol{X}}\left[\mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}]\right] \\
& =\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

Recall that $f(\boldsymbol{X})$ and $Y$ are binary
Conditioning on $\boldsymbol{X}$,

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)] & =\mathbb{E}_{\boldsymbol{X}}\left[\mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}]\right] \\
& =\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

If $f(x)=0$,

Recall that $f(\boldsymbol{X})$ and $Y$ are binary

Conditioning on $\boldsymbol{X}$,

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)] & =\mathbb{E}_{\boldsymbol{X}}\left[\mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}]\right] \\
& =\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

If $f(x)=0$,
$\mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\ell(0,0) \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})+\ell(0,1) \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})$

Recall that $f(\boldsymbol{X})$ and $Y$ are binary

Conditioning on $\boldsymbol{X}$,

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)] & =\mathbb{E}_{\boldsymbol{X}}\left[\mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}]\right] \\
& =\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

If $f(x)=0$,
$\mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\ell(0,0) \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})+\ell(0,1) \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})$
If $f(x)=1$,

Recall that $f(\boldsymbol{X})$ and $Y$ are binary

## $\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]$

Conditioning on $\boldsymbol{X}$,

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)] & =\mathbb{E}_{\boldsymbol{X}}\left[\mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}]\right] \\
& =\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

If $f(x)=0$,
$\mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\ell(0,0) \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})+\ell(0,1) \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})$
If $f(x)=1$,
$\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\ell(1,0) \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})+\ell(1,1) \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})$

## Optimal decision

## Optimal decision

$$
f(\boldsymbol{x})=0 \quad \text { if } \quad \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
$$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is
$f(\boldsymbol{x})= \begin{cases}1 & \text { if } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\ 0 & \text { otherwise }\end{cases}$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is
$f(\boldsymbol{x})= \begin{cases}1 & \quad \begin{array}{l}H_{1} \\ 0\end{array} \\ \text { otherwise }\end{cases}$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is
$f(\boldsymbol{x})= \begin{cases}1 & \frac{H_{1}}{1} \\ 0 & \text { if } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{H_{0}}{\ell(0,0)-\ell(1,0)} \mathbb{l ( 1 , 1 ) - \ell ( 0 , 1 )} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\ 0 & \text { otherwise }\end{cases}$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

$$
f(\boldsymbol{x})= \begin{cases} & \begin{array}{l}
H_{1} \\
1
\end{array} \\
\text { if } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
0 & \text { otherwise }\end{cases}
$$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

$$
f(\boldsymbol{x})= \begin{cases}1 & \begin{array}{l}
H_{1} \\
1
\end{array} \\
0 & \text { otherwise } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
0 & \left.\frac{H_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right) \mathbb{P}\left(H_{1}\right) \mid}{f_{\boldsymbol{X}}(\boldsymbol{x})} \right\rvert\, \text { Bayes rule }\end{cases}
$$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

$$
\begin{array}{r}
f(\boldsymbol{x})= \begin{cases}\begin{array}{l}
H_{1} \\
1
\end{array} & \begin{array}{l}
\text { if } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
0
\end{array} \\
\text { otherwise }\end{cases} \\
\left.\frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right) \mathbb{P}\left(H_{1}\right)}{f_{\boldsymbol{X}}(\boldsymbol{x})} \right\rvert\, \text { Bayes rule }
\end{array}
$$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

$$
\begin{aligned}
& f(\boldsymbol{x})=\left\{\begin{aligned}
& \begin{array}{l}
H_{1} \\
1
\end{array} \begin{array}{l}
\text { if } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
0
\end{array} \\
& \text { otherwise }
\end{aligned}\right. \\
& \left.\frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right) \mathbb{P}\left(H_{1}\right)}{f_{\boldsymbol{X}}(\boldsymbol{x})} \right\rvert\, \text { Bayes rule }
\end{aligned}
$$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

$$
\left.\begin{aligned}
& f(\boldsymbol{x})= \begin{cases}H_{1} \\
1 & \text { if } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
0 & \text { otherwise }\end{cases} \\
& \frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right) \mathbb{P}\left(H_{1}\right) \mid}{f_{\boldsymbol{X}}(\boldsymbol{x})}
\end{aligned} \right\rvert\, \text { Bayes rule } \quad \begin{aligned}
& \left.\frac{f_{\boldsymbol{X} \mid H_{0}}\left(\boldsymbol{x} \mid H_{0}\right) \mathbb{P}\left(H_{0}\right)}{f_{\boldsymbol{X}}(\boldsymbol{x})} \right\rvert\,
\end{aligned}
$$

likelihood ratio test

$$
\begin{aligned}
& f(\boldsymbol{x})=1 \quad \text { if } \quad \frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(\boldsymbol{x} \mid H_{0}\right)} \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)} \\
& \mathcal{L}(\boldsymbol{x})
\end{aligned}
$$

## Optimal decision

$$
\begin{array}{lll}
f(\boldsymbol{x})=0 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]<\mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \\
f(\boldsymbol{x})=1 & \text { if } & \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}] \geq \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]
\end{array}
$$

Rearranging, the optimal decision is

$$
\left.\begin{aligned}
& f(\boldsymbol{x})= \begin{cases}H_{1} \\
1 & \text { if } \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
0 & \text { otherwise }\end{cases} \\
& \frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right) \mathbb{P}\left(H_{1}\right) \mid}{f_{\boldsymbol{X}}(\boldsymbol{x})}
\end{aligned} \right\rvert\, \text { Bayes rule } \quad \begin{aligned}
& \left.\frac{f_{\boldsymbol{X} \mid H_{0}}\left(\boldsymbol{x} \mid H_{0}\right) \mathbb{P}\left(H_{0}\right)}{f_{\boldsymbol{X}}(\boldsymbol{x})} \right\rvert\,
\end{aligned}
$$

likelihood ratio test

$$
\begin{aligned}
& f(\boldsymbol{x})=1 \quad \text { if } \quad \frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(\boldsymbol{x} \mid H_{0}\right)} \geq \frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)} \\
& \\
& \mathcal{L}(\boldsymbol{x}): \text { likelihood ratio }
\end{aligned}
$$

## Likelihood ratio test

```
f:\mp@subsup{\mathbb{R}}{}{d}->{0,1}
```


## Likelihood ratio test

```
f:\mp@subsup{\mathbb{R}}{}{d}->{0,1}
```

The decision that minimizes the risk in a binary hypothesis test is

## Likelihood ratio test

The decision that minimizes the risk in a binary hypothesis test is

$$
f(\boldsymbol{x})=\mathbb{1}_{\{\mathcal{L}(\boldsymbol{x}) \geq \eta\}}(\boldsymbol{x})
$$

## Likelihood ratio test

```
f::\mp@subsup{\mathbb{R}}{}{d}->{0,1}
```

The decision that minimizes the risk in a binary hypothesis test is

$$
f(\boldsymbol{x})=\mathbb{1}_{\{\mathcal{L}(\boldsymbol{x}) \geq \eta\}}(\boldsymbol{x})
$$

- Indicator function of set $\mathcal{S}: \quad \mathbb{1}_{\mathcal{S}}(s)= \begin{cases}1 & , \text { if } s \in \mathcal{S} \\ 0 & \text { if } s \notin \mathcal{S}\end{cases}$


## Likelihood ratio test

The decision that minimizes the risk in a binary hypothesis test is

$$
f(\boldsymbol{x})=\mathbb{1}_{\{\mathcal{L}(\boldsymbol{x}) \geq \eta\}}(\boldsymbol{x})
$$

- Indicator function of set $\mathcal{S}: \quad \mathbb{1}_{\mathcal{S}}(s)= \begin{cases}1, & \text { if } s \in \mathcal{S} \\ 0 & , \text { if } s \notin \mathcal{S}\end{cases}$
- Likelihood ratio:

$$
\mathcal{L}(\boldsymbol{x})=\frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(\boldsymbol{x} \mid H_{0}\right)}
$$

## Likelihood ratio test

The decision that minimizes the risk in a binary hypothesis test is

$$
f(\boldsymbol{x})=\mathbb{1}_{\{\mathcal{L}(\boldsymbol{x}) \geq \eta\}}(\boldsymbol{x})
$$

- Indicator function of set $\mathcal{S}: \quad \mathbb{1}_{\mathcal{S}}(s)= \begin{cases}1 & , \text { if } s \in \mathcal{S} \\ 0 & \text { if } s \notin \mathcal{S}\end{cases}$
- Likelihood ratio:

$$
\mathcal{L}(\boldsymbol{x})=\frac{f_{\boldsymbol{X} \mid H_{1}}\left(\boldsymbol{x} \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(\boldsymbol{x} \mid H_{0}\right)}
$$

- Decision threshold:

$$
\eta=\frac{\ell(1,0)-\ell(0,0)}{\ell(0,1)-\ell(1,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}
$$

## Example in $\mathbb{R}$

## Example in $\mathbb{R}$

$$
H_{0}: X=W
$$

$$
H_{1}: X=c+W
$$

## Example in $\mathbb{R}$

$$
\begin{array}{rlrl}
H_{0}: & X=W & H_{1}: X=c+W \\
& \text { no aircraft/tumor/spam } & & \\
& \text { innocent defendant } & &
\end{array}
$$

## Example in $\mathbb{R}$

$$
\begin{aligned}
& H_{0}: X=W \\
& \text { no aircraft/tumor/spam } \\
& \text { innocent defendant }
\end{aligned}
$$

$$
\begin{aligned}
H_{1}: & X=c+W \\
& \text { aircraft/tumor/spam } \\
& \text { guilty defendant }
\end{aligned}
$$

## Example in $\mathbb{R}$

$$
\begin{aligned}
H_{0}: & X=W \\
& \text { no aircraft/tumor/spam } \\
& \text { innocent defendant }
\end{aligned}
$$

$$
\begin{aligned}
H_{1}: & X=c+W \\
& \text { aircraft/tumor/spam } \\
& \text { guilty defendant }
\end{aligned}
$$

$$
W \sim \mathcal{N}(0,1)
$$

## Example in $\mathbb{R}$

$$
\begin{aligned}
& H_{0}: \quad X=W \\
& \text { no aircraft/tumor/spam } \\
& \text { innocent defendant } \\
& H_{1}: \quad X=c+W \\
& \text { aircraft/tumor/spam } \\
& \text { guilty defendant } \\
& W \sim \mathcal{N}(0,1) \\
& f_{W}(w)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}}
\end{aligned}
$$

## Example in $\mathbb{R}$

$$
\begin{aligned}
H_{0}: & X=W \\
& \text { no aircraft/tumor/spam } \\
& \text { innocent defendant }
\end{aligned}
$$

$H_{1}: \quad X=c+W$ aircraft/tumor/spam guilty defendant

$$
W \sim \mathcal{N}(0,1) \quad f_{W}(w)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}}
$$



## Example in $\mathbb{R}$

Assume

## Example in $\mathbb{R}$

## Assume

- $c=1$


## Example in $\mathbb{R}$

## Assume

- $c=1$
- Loss values

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | 0 | 1 |
| $H_{1}$ is true | 25 | 0 |

## Example in $\mathbb{R}$

## Assume

- $c=1$
- Loss values

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :---: | :--- |
| $H_{0}$ is true | 0 | 1 |
| $H_{1}$ is true | 25 | 0 |

- Base rates: $\mathbb{P}\left(H_{0}\right)=0.95$
$\mathbb{P}\left(H_{1}\right)=0.05$


## Example in $\mathbb{R}$

## Assume

- $c=1$
- Loss values

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :---: | :--- |
| $H_{0}$ is true | 0 | 1 |
| $H_{1}$ is true | 25 | 0 |

- Base rates: $\mathbb{P}\left(H_{0}\right)=0.95$
$\mathbb{P}\left(H_{1}\right)=0.05$

Compute the decision threshold

## Example in $\mathbb{R}$

Decision threshold occurs for

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\mathcal{L}(x)
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\mathcal{L}(x)=\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\mathcal{L}(x)=\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\mathcal{L}(x)=\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}=\exp \left(x-\frac{1}{2}\right)
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\begin{aligned}
\mathcal{L}(x) & =\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}=\exp \left(x-\frac{1}{2}\right) \\
\eta & =\frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}
\end{aligned}
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\begin{aligned}
\mathcal{L}(x) & =\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}=\exp \left(x-\frac{1}{2}\right) \\
\eta & =\frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{0-1}{0-25} \cdot \frac{0.95}{0.05}
\end{aligned}
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\begin{aligned}
\mathcal{L}(x) & =\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}=\exp \left(x-\frac{1}{2}\right) \\
\eta & =\frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{0-1}{0-25} \cdot \frac{0.95}{0.05} \simeq 0.76
\end{aligned}
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\begin{aligned}
\mathcal{L}(x) & =\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}=\exp \left(x-\frac{1}{2}\right) \\
\eta & =\frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{0-1}{0-25} \cdot \frac{0.95}{0.05} \simeq 0.76
\end{aligned}
$$

The decision threshold is then

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\begin{aligned}
\mathcal{L}(x) & =\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}=\exp \left(x-\frac{1}{2}\right) \\
\eta & =\frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{0-1}{0-25} \cdot \frac{0.95}{0.05} \simeq 0.76
\end{aligned}
$$

The decision threshold is then

$$
x-\frac{1}{2}=\log 0.76
$$

## Example in $\mathbb{R}$

Decision threshold occurs for

$$
\mathcal{L}(x)=\eta \quad \Longleftrightarrow \quad \log \mathcal{L}(x)=\log \eta
$$

with

$$
\begin{aligned}
\mathcal{L}(x) & =\frac{f_{X \mid H_{1}}\left(x \mid H_{1}\right)}{f_{X \mid H_{0}}\left(x \mid H_{0}\right)}=\frac{\exp \left(-\frac{(x-1)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)}=\exp \left(x-\frac{1}{2}\right) \\
\eta & =\frac{\ell(0,0)-\ell(1,0)}{\ell(1,1)-\ell(0,1)} \cdot \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{0-1}{0-25} \cdot \frac{0.95}{0.05} \simeq 0.76
\end{aligned}
$$

The decision threshold is then

$$
x-\frac{1}{2}=\log 0.76 \quad \Longleftrightarrow \quad x \simeq 0.23
$$

## Example in $\mathbb{R}$

| $c=1$ |
| :--- |
| True hypothesis |
| $H_{0}$ is true |
| $H_{1}$ is true |
| $\mathbb{P}\left(H_{0}\right)=0$ |
| $\mathbb{P}\left(H_{1}\right)=0.95$ |

## Example in $\mathbb{R}$

| $c=1$ |  |  |
| :--- | :---: | :--- |
| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| $H_{0}$ is true | 0 | 1 |
| $H_{1}$ is true | 25 | 0 |
| $\mathbb{P}\left(H_{0}\right)=0.95$ |  |  |
| $\mathbb{P}\left(H_{1}\right)=0.05$ |  |  |



## Example in $\mathbb{R}$

| $c=1$ |
| :--- |
| True hypothesis |
| $H_{0}$ is true |
| $H_{1}$ is true |
| $\mathbb{P}\left(H_{0}\right)=0$ |
| $\mathbb{P}\left(H_{1}\right)=0.95$ |



## Particular cases

## Particular cases

Recall the problem:

$$
\operatorname{minimize}_{f: \mathbb{R}^{d} \rightarrow\{0,1\}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

## Particular cases

Recall the problem:

$$
\operatorname{minimize}_{f: \mathbb{R}^{d} \rightarrow\{0,1\}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Expected value is w.r.t. joint distribution $\mathbb{P}_{\boldsymbol{X} Y}$

## Particular cases

Recall the problem:

$$
\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Expected value is w.r.t. joint distribution $\mathbb{P}_{\boldsymbol{X} Y}$

When class $Y \in\{0,1\}$ is viewed as a parameter of $\mathbb{P}_{\boldsymbol{X} Y}$ to estimate,

## Particular cases

Recall the problem:

$$
\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Expected value is w.r.t. joint distribution $\mathbb{P}_{\boldsymbol{X} Y}$

When class $Y \in\{0,1\}$ is viewed as a parameter of $\mathbb{P}_{\boldsymbol{X} Y}$ to estimate,

- Maximum a posteriori (MAP)
- Maximum likelihood (ML)
can be seen as likelihood ratio tests


## Maximum a posteriori (MAP)

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0 \quad$ and $\quad \ell(1,0)=\ell(0,1)=1$.

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

If $f(x)=0$,

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\begin{aligned}
& \quad \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
& \text { If } f(\boldsymbol{x})=0, \quad \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})
\end{aligned}
$$

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\begin{aligned}
& \qquad \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
& \text { If } f(\boldsymbol{x})=0, \quad \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \\
& \text { If } f(\boldsymbol{x})=1 \text {, }
\end{aligned}
$$

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\begin{aligned}
& \qquad \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
& \text { If } f(\boldsymbol{x})=0, \quad \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \\
& \text { If } f(\boldsymbol{x})=1, \quad \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})
\end{aligned}
$$

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

If $f(\boldsymbol{x})=0, \quad \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})$
If $f(\boldsymbol{x})=1, \quad \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

So, select $f(\boldsymbol{x})=1$ if

## Maximum a posteriori (MAP)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$. Then,

$$
\mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]=\int_{\mathbb{R}^{d}} \mathbb{E}_{Y}[\ell(f(\boldsymbol{X}), Y) \mid \boldsymbol{X}=\boldsymbol{x}] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

If $f(\boldsymbol{x})=0, \quad \mathbb{E}_{Y}[\ell(0, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})$
If $f(\boldsymbol{x})=1, \quad \mathbb{E}_{Y}[\ell(1, Y) \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})
$$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underset{\text { posterior }}{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}
$$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underset{\text { posterior }}{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}
$$

This is a likelihood ratio test, because

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underset{\text { posterior }}{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}
$$

This is a likelihood ratio test, because

$$
\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})
$$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underset{\text { posterior }}{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}
$$

This is a likelihood ratio test, because

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
\Longleftrightarrow & f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right) \cdot \mathbb{P}\left(H_{1}\right) \geq f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right) \cdot \mathbb{P}\left(H_{0}\right)
\end{aligned}
$$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underset{\text { posterior }}{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}
$$

This is a likelihood ratio test, because

$$
\begin{array}{cc} 
& \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
\Longleftrightarrow & f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right) \cdot \mathbb{P}\left(H_{1}\right) \geq f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right) \cdot \mathbb{P}\left(H_{0}\right) \\
\Longleftrightarrow & \frac{f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right)} \geq \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}
\end{array}
$$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underset{\text { posterior }}{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}
$$

This is a likelihood ratio test, because

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
\Longleftrightarrow & f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right) \cdot \mathbb{P}\left(H_{1}\right) \geq f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right) \cdot \mathbb{P}\left(H_{0}\right) \\
\Longleftrightarrow & \mathcal{L}(\boldsymbol{x})=\frac{f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right)} \geq \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}
\end{aligned}
$$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underset{\text { posterior }}{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}
$$

This is a likelihood ratio test, because

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
\Longleftrightarrow & f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right) \cdot \mathbb{P}\left(H_{1}\right) \geq f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right) \cdot \mathbb{P}\left(H_{0}\right) \\
\Longleftrightarrow & \mathcal{L}(\boldsymbol{x})=\frac{f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right)} \geq \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\eta
\end{aligned}
$$

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underbrace{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}_{\text {posterior }}
$$

This is a likelihood ratio test, because

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
\Longleftrightarrow & f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right) \cdot \mathbb{P}\left(H_{1}\right) \geq f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right) \cdot \mathbb{P}\left(H_{0}\right) \\
\Longleftrightarrow & \mathcal{L}(\boldsymbol{x})=\frac{f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right)} \geq \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\eta
\end{aligned}
$$

Recall that MAP rule minimizes probability of incorrect decision:

So, select $f(\boldsymbol{x})=1 \quad$ if $\quad \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})$

That is,

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \underbrace{\mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})}_{\text {posterior }}
$$

This is a likelihood ratio test, because

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) \geq \mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x}) \\
\Longleftrightarrow & f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right) \cdot \mathbb{P}\left(H_{1}\right) \geq f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right) \cdot \mathbb{P}\left(H_{0}\right) \\
\Longleftrightarrow & \mathcal{L}(\boldsymbol{x})=\frac{f_{\boldsymbol{X} \mid H_{1}}\left(x \mid H_{1}\right)}{f_{\boldsymbol{X} \mid H_{0}}\left(x \mid H_{0}\right)} \geq \frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}=\eta
\end{aligned}
$$

Recall that MAP rule minimizes probability of incorrect decision:
$\mathbb{P}($ error $)=\mathbb{P}\left(f(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f(\boldsymbol{X})=0, H_{1}\right)$

## Maximum Likelihood (ML)

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$
And $\mathbb{P}\left(H_{0}\right)=\mathbb{P}\left(H_{1}\right)=\frac{1}{2}$

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$
And $\mathbb{P}\left(H_{0}\right)=\mathbb{P}\left(H_{1}\right)=\frac{1}{2}$

The optimal decision (MAP) is

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$
And $\mathbb{P}\left(H_{0}\right)=\mathbb{P}\left(H_{1}\right)=\frac{1}{2}$

The optimal decision (MAP) is

$$
f(\boldsymbol{x})=\underset{i}{\arg \max } \mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x})
$$

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$
And $\mathbb{P}\left(H_{0}\right)=\mathbb{P}\left(H_{1}\right)=\frac{1}{2}$

The optimal decision (MAP) is

$$
\begin{aligned}
f(\boldsymbol{x}) & =\underset{i}{\arg \max } \mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x}) \\
& =\underset{i}{\arg \max } \frac{f_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid Y=i) \cdot \mathbb{P}(Y=i)}{f_{\boldsymbol{X}}(\boldsymbol{x})}
\end{aligned}
$$

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$
And $\mathbb{P}\left(H_{0}\right)=\mathbb{P}\left(H_{1}\right)=\frac{1}{2}$

The optimal decision (MAP) is

$$
\begin{array}{rlrl}
f(\boldsymbol{x}) & =\underset{i}{\arg \max } & \mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x}) & \\
& =\underset{i}{\arg \max } \frac{f_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid Y=i) \cdot \mathbb{P}(Y=i)}{f_{\boldsymbol{X}}(\boldsymbol{x})} & & \text { (Bayes rule) } \\
& =\underset{i}{\arg \max } f_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid Y=i) & \left(\mathbb{P}(Y=i)=\frac{1}{2}\right)
\end{array}
$$

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$
And $\mathbb{P}\left(H_{0}\right)=\mathbb{P}\left(H_{1}\right)=\frac{1}{2}$

The optimal decision (MAP) is

$$
\begin{array}{rlrl}
f(\boldsymbol{x}) & =\underset{i}{\arg \max _{i}} & \mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x}) & \\
& =\underset{i}{\arg \max _{i}} \frac{f_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid Y=i) \cdot \mathbb{P}(Y=i)}{f_{\boldsymbol{X}}(\boldsymbol{x})} & \quad \text { (Bayes rule) } \\
& =\underset{i}{\arg \max ^{2}} f_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid Y=i) & \left(\mathbb{P}(Y=i)=\frac{1}{2}\right)
\end{array}
$$

maximum likelihood

## Maximum Likelihood (ML)

Consider $\ell(0,0)=\ell(1,1)=0$ and $\ell(1,0)=\ell(0,1)=1$
And $\mathbb{P}\left(H_{0}\right)=\mathbb{P}\left(H_{1}\right)=\frac{1}{2}$

The optimal decision (MAP) is

$$
\begin{array}{rlrl}
f(\boldsymbol{x}) & =\underset{i}{\arg \max _{i}} & \mathbb{P}(Y=i \mid \boldsymbol{X}=\boldsymbol{x}) & \\
& =\underset{i}{\arg \max _{i}} \frac{f_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid Y=i) \cdot \mathbb{P}(Y=i)}{f_{\boldsymbol{X}}(\boldsymbol{x})} & \quad \text { (Bayes rule) } \\
& =\underset{i}{\arg \max ^{2}} f_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid Y=i) & \left(\mathbb{P}(Y=i)=\frac{1}{2}\right)
\end{array}
$$

maximum likelihood

This corresponds to a likelihood ratio test with $\eta=1$

## Types of errors and successes

## Types of errors and successes

Table of probabilities
True hypothesis $\quad f(\boldsymbol{X})=0 \quad f(\boldsymbol{X})=1$
$H_{0}$ is true
$H_{1}$ is true

## Types of errors and successes

## True Positive Rate (TPR)

Table of probabilities
True hypothesis $\quad f(\boldsymbol{X})=0 \quad f(\boldsymbol{X})=1$
$H_{0}$ is true
$H_{1}$ is true

## Types of errors and successes

True Positive Rate (TPR)<br>power, sensitivity, recall

Table of probabilities
True hypothesis $\quad f(\boldsymbol{X})=0 \quad f(\boldsymbol{X})=1$
$H_{0}$ is true
$H_{1}$ is true

## Types of errors and successes

## True Positive Rate (TPR) <br> power, sensitivity, recall

Table of probabilities
True hypothesis $\quad f(\boldsymbol{X})=0 \quad f(\boldsymbol{X})=1$
$H_{0}$ is true
$H_{1}$ is true TPR

## Types of errors and successes

## True Positive Rate (TPR)

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

power, sensitivity, recall

Table of probabilities
True hypothesis $\quad f(\boldsymbol{X})=0 \quad f(\boldsymbol{X})=1$
$H_{0}$ is true
$H_{1}$ is true TPR

## Types of errors and successes

True Positive Rate (TPR)<br>$\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)$<br>power, sensitivity, recall<br>False Positive Rate (FPR)<br>type I error, false alarm

Table of probabilities
True hypothesis $\quad f(\boldsymbol{X})=0 \quad f(\boldsymbol{X})=1$
$H_{0}$ is true
$H_{1}$ is true TPR

## Types of errors and successes

True Positive Rate (TPR)<br>$\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)$<br>power, sensitivity, recall<br>False Positive Rate (FPR)<br>type I error, false alarm

Table of probabilities

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | FPR |  |
| $H_{1}$ is true | TPR |  |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | FPR |  |
| $H_{1}$ is true | TPR |  |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm

## True Negative Rate (TNR)

specificity

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | FPR |  |
| $H_{1}$ is true | TPR |  |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm
True Negative Rate (TNR)
specificity

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR |
| $H_{1}$ is true |  | TPR |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm
True Negative Rate (TNR) specificity

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

$$
\mathrm{TNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{0}\right)
$$

Table of probabilities

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR |
| $H_{1}$ is true |  | TPR |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm
True Negative Rate (TNR) specificity

False Negative Rate (FNR)
type II error, missed detection

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

$$
\mathrm{TNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{0}\right)
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR |
| $H_{1}$ is true |  | TPR |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm
True Negative Rate (TNR) specificity

False Negative Rate (FNR)
type I/ error, missed detection

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

$$
\mathrm{TNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{0}\right)
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR |
| $H_{1}$ is true | FNR | TPR |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm
True Negative Rate (TNR)

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

specificity
False Negative Rate (FNR)
type II error, missed detection

$$
\operatorname{TNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{0}\right)
$$

$$
\mathrm{FNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{1}\right)
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR |
| $H_{1}$ is true | FNR | TPR |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm
True Negative Rate (TNR)

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

specificity
False Negative Rate (FNR)
type II error, missed detection

$$
\operatorname{TNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{0}\right)
$$

$$
\mathrm{FNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{1}\right)
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR $\boldsymbol{\alpha}$ |
| $H_{1}$ is true | FNR | TPR |

## Types of errors and successes

True Positive Rate (TPR)
power, sensitivity, recall
False Positive Rate (FPR)
type I error, false alarm
True Negative Rate (TNR)

$$
\operatorname{TPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{1}\right)
$$

$$
\mathrm{FPR}=\mathbb{P}\left(f(\boldsymbol{X})=1 \mid H_{0}\right)
$$

specificity
False Negative Rate (FNR)
type II error, missed detection

$$
\operatorname{TNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{0}\right)
$$

$\mathrm{FNR}=\mathbb{P}\left(f(\boldsymbol{X})=0 \mid H_{1}\right)$

Table of probabilities

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR $^{\boldsymbol{\alpha}}$ |
| $H_{1}$ is true | FNR | TPR |

## Other measures

## Other measures

Previous measures don't account for base rates: $\mathbb{P}\left(H_{0}\right), \mathbb{P}\left(H_{1}\right)$

## Other measures

Previous measures don't account for base rates: $\mathbb{P}\left(H_{0}\right), \mathbb{P}\left(H_{1}\right)$
That is, they are suitable when $\mathbb{P}\left(H_{0}\right) \simeq \mathbb{P}\left(H_{1}\right)$

## Other measures

Previous measures don't account for base rates: $\mathbb{P}\left(H_{0}\right), \mathbb{P}\left(H_{1}\right)$
That is, they are suitable when $\mathbb{P}\left(H_{0}\right) \simeq \mathbb{P}\left(H_{1}\right)$

## Alternatives

## Other measures

Previous measures don't account for base rates: $\mathbb{P}\left(H_{0}\right), \mathbb{P}\left(H_{1}\right)$
That is, they are suitable when $\mathbb{P}\left(H_{0}\right) \simeq \mathbb{P}\left(H_{1}\right)$

## Alternatives

Precision: $\quad \mathbb{P}\left(H_{1} \mid f(\boldsymbol{X})=1\right)$

## Other measures

Previous measures don't account for base rates: $\mathbb{P}\left(H_{0}\right), \mathbb{P}\left(H_{1}\right)$
That is, they are suitable when $\mathbb{P}\left(H_{0}\right) \simeq \mathbb{P}\left(H_{1}\right)$

## Alternatives

Precision: $\quad \mathbb{P}\left(H_{1} \mid f(\boldsymbol{X})=1\right)=\frac{\mathrm{TPR} \cdot \mathbb{P}\left(H_{1}\right)}{\mathrm{TPR} \cdot \mathbb{P}\left(H_{1}\right)+\mathrm{FPR} \cdot \mathbb{P}\left(H_{0}\right)}$

## Other measures

Previous measures don't account for base rates: $\mathbb{P}\left(H_{0}\right), \mathbb{P}\left(H_{1}\right)$
That is, they are suitable when $\mathbb{P}\left(H_{0}\right) \simeq \mathbb{P}\left(H_{1}\right)$

## Alternatives

Precision: $\quad \mathbb{P}\left(H_{1} \mid f(\boldsymbol{X})=1\right)=\frac{\mathrm{TPR} \cdot \mathbb{P}\left(H_{1}\right)}{\mathrm{TPR} \cdot \mathbb{P}\left(H_{1}\right)+\mathrm{FPR} \cdot \mathbb{P}\left(H_{0}\right)}$
$\boldsymbol{F}_{1}$-score: harmonic mean between precision and recall (TPR):

## Other measures

Previous measures don't account for base rates: $\mathbb{P}\left(H_{0}\right), \mathbb{P}\left(H_{1}\right)$
That is, they are suitable when $\mathbb{P}\left(H_{0}\right) \simeq \mathbb{P}\left(H_{1}\right)$

## Alternatives

Precision: $\quad \mathbb{P}\left(H_{1} \mid f(\boldsymbol{X})=1\right)=\frac{\mathrm{TPR} \cdot \mathbb{P}\left(H_{1}\right)}{\mathrm{TPR} \cdot \mathbb{P}\left(H_{1}\right)+\mathrm{FPR} \cdot \mathbb{P}\left(H_{0}\right)}$
$\boldsymbol{F}_{1}$-score: harmonic mean between precision and recall (TPR):

$$
F_{1}=\frac{2}{\frac{1}{\mathbb{P}\left(H_{1} \mid f(\boldsymbol{X})=1\right)}+\frac{1}{\mathrm{TPR}}}
$$

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR $^{\boldsymbol{\alpha}}$ |
| $H_{1}$ is true | FNR | TPR |


| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR $^{\boldsymbol{\alpha}}$ |
| $H_{1}$ is true | FNR | TPR |

$\alpha$ and $\beta$ are in conflict:

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR $^{\boldsymbol{\alpha}}$ |
| $H_{1}$ is true | FNR | TPR |

$\alpha$ and $\beta$ are in conflict:

- $\alpha \downarrow \Longrightarrow \beta \uparrow$ : and vice-versa

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR $^{\boldsymbol{\alpha}}$ |
| $H_{1}$ is true | FNR | TPR |

$\alpha$ and $\beta$ are in conflict:

- $\alpha \downarrow \Longrightarrow \beta \uparrow$ : and vice-versa
- Both can decrease only by observing more data

| True hypothesis | $f(\boldsymbol{X})=0$ | $f(\boldsymbol{X})=1$ |
| :--- | :--- | :--- |
| $H_{0}$ is true | TNR | FPR $^{\boldsymbol{\alpha}}$ |
| $H_{1}$ is true | FNR | TPR |

$\alpha$ and $\beta$ are in conflict:

- $\alpha \downarrow \Longrightarrow \beta \uparrow$ : and vice-versa
- Both can decrease only by observing more data

It turns out that likelihood ratio tests are Pareto optimal

## Neyman-Pearson Lemma

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.)

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.) with FPR and FNR

$$
\alpha=\mathbb{P}\left(f(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta=\mathbb{P}\left(f(\boldsymbol{x})=0 \mid H_{1}\right)
$$

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.) with FPR and FNR

$$
\alpha=\mathbb{P}\left(f(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta=\mathbb{P}\left(f(\boldsymbol{x})=0 \mid H_{1}\right)
$$

Then, there exists an LRT decision rule $f_{\mathrm{LRT}}(\boldsymbol{x})$ with

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.) with FPR and FNR

$$
\alpha=\mathbb{P}\left(f(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta=\mathbb{P}\left(f(\boldsymbol{x})=0 \mid H_{1}\right)
$$

Then, there exists an LRT decision rule $f_{\text {LRT }}(\boldsymbol{x})$ with

$$
\alpha_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=0 \mid H_{1}\right)
$$

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.) with FPR and FNR

$$
\alpha=\mathbb{P}\left(f(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta=\mathbb{P}\left(f(\boldsymbol{x})=0 \mid H_{1}\right)
$$

Then, there exists an LRT decision rule $f_{\text {LRT }}(\boldsymbol{x})$ with

$$
\alpha_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=0 \mid H_{1}\right)
$$

such that

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.) with FPR and FNR

$$
\alpha=\mathbb{P}\left(f(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta=\mathbb{P}\left(f(\boldsymbol{x})=0 \mid H_{1}\right)
$$

Then, there exists an LRT decision rule $f_{\text {LRT }}(\boldsymbol{x})$ with

$$
\alpha_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=0 \mid H_{1}\right)
$$

such that

$$
\alpha \leq \alpha_{\mathrm{LRT}} \quad \Longrightarrow \quad \beta \geq \beta_{\mathrm{LRT}}
$$

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.) with FPR and FNR

$$
\alpha=\mathbb{P}\left(f(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta=\mathbb{P}\left(f(\boldsymbol{x})=0 \mid H_{1}\right)
$$

Then, there exists an LRT decision rule $f_{\text {LRT }}(\boldsymbol{x})$ with

$$
\alpha_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=0 \mid H_{1}\right)
$$

such that

$$
\begin{array}{lll}
\alpha \leq \alpha_{\mathrm{LRT}} & \Longrightarrow & \beta \geq \beta_{\mathrm{LRT}} \\
\beta \leq \beta_{\mathrm{LRT}} & \Longrightarrow & \alpha \geq \alpha_{\mathrm{LRT}}
\end{array}
$$

## Neyman-Pearson Lemma

## Theorem

Let $f(\boldsymbol{x})$ be a decision rule (det. or prob.) with FPR and FNR

$$
\alpha=\mathbb{P}\left(f(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta=\mathbb{P}\left(f(\boldsymbol{x})=0 \mid H_{1}\right)
$$

Then, there exists an LRT decision rule $f_{\text {LRT }}(\boldsymbol{x})$ with

$$
\alpha_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=1 \mid H_{0}\right) \quad \beta_{\mathrm{LRT}}=\mathbb{P}\left(f_{\mathrm{LRT}}(\boldsymbol{x})=0 \mid H_{1}\right)
$$

such that

$$
\begin{array}{lll}
\alpha \leq \alpha_{\mathrm{LRT}} & \Longrightarrow & \beta \geq \beta_{\mathrm{LRT}} \\
\beta \leq \beta_{\mathrm{LRT}} & \Longrightarrow & \alpha \geq \alpha_{\mathrm{LRT}}
\end{array}
$$

And the same relations hold with strict inequalities $(<,>)$

## Proof

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):


## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right) \mathbb{P}\left(H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right) \mathbb{P}\left(H_{1}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right)}_{\alpha_{\text {MAP }}} \mathbb{P}\left(H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right) \mathbb{P}\left(H_{1}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right)}_{\alpha_{\mathrm{MAP}}} \mathbb{P}\left(H_{0}\right)+\underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right)}_{\beta_{\text {MAP }}} \mathbb{P}\left(H_{1}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right)}_{\alpha_{\mathrm{MAP}}} \mathbb{P}\left(H_{0}\right)+\underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right)}_{\beta_{\mathrm{MAP}}} \mathbb{P}\left(H_{1}\right) \\
= & \alpha_{\mathrm{MAP}} \mathbb{P}\left(H_{0}\right)+\beta_{\mathrm{MAP}} \mathbb{P}\left(H_{1}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right)}_{\alpha_{\mathrm{MAP}}} \mathbb{P}\left(H_{0}\right)+\underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right)}_{\beta_{\mathrm{MAP}}} \mathbb{P}\left(H_{1}\right) \\
= & \alpha_{\mathrm{MAP}} \mathbb{P}\left(H_{0}\right)+\beta_{\mathrm{MAP}} \mathbb{P}\left(H_{1}\right) \\
\leq & \mathbb{P}\left(\operatorname{error}_{f}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right)}_{\alpha_{\mathrm{MAP}}} \mathbb{P}\left(H_{0}\right)+\underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right)}_{\beta_{\mathrm{MAP}}} \mathbb{P}\left(H_{1}\right) \\
= & \alpha_{\mathrm{MAP}} \mathbb{P}\left(H_{0}\right)+\beta_{\mathrm{MAP}} \mathbb{P}\left(H_{1}\right) \\
\leq & \mathbb{P}\left(\operatorname{error}_{f}\right)=\mathbb{P}\left(f(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f(\boldsymbol{X})=0, H_{1}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right)}_{\alpha_{\mathrm{MAP}}} \mathbb{P}\left(H_{0}\right)+\underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right)}_{\beta_{\mathrm{MAP}}} \mathbb{P}\left(H_{1}\right) \\
= & \alpha_{\mathrm{MAP}} \mathbb{P}\left(H_{0}\right)+\beta_{\mathrm{MAP}} \mathbb{P}\left(H_{1}\right) \\
\leq & \mathbb{P}\left(\operatorname{error}_{f}\right)=\mathbb{P}\left(f(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f(\boldsymbol{X})=0, H_{1}\right) \\
= & \alpha \mathbb{P}\left(H_{0}\right)+\beta \mathbb{P}\left(H_{1}\right)
\end{aligned}
$$

## Proof

- $f_{\text {MAP }}(\boldsymbol{x})$ minimizes probability of error over all rules (det. and prob.):

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{error}_{\mathrm{MAP}}\right) \\
= & \mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0, H_{1}\right) \\
= & \underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=1 \mid H_{0}\right)}_{\alpha_{\mathrm{MAP}}} \mathbb{P}\left(H_{0}\right)+\underbrace{\mathbb{P}\left(f_{\mathrm{MAP}}(\boldsymbol{X})=0 \mid H_{1}\right)}_{\beta_{\mathrm{MAP}}} \mathbb{P}\left(H_{1}\right) \\
= & \alpha_{\mathrm{MAP}} \mathbb{P}\left(H_{0}\right)+\beta_{\mathrm{MAP}} \mathbb{P}\left(H_{1}\right) \\
\leq & \mathbb{P}\left(\operatorname{error}_{f}\right)=\mathbb{P}\left(f(\boldsymbol{X})=1, H_{0}\right)+\mathbb{P}\left(f(\boldsymbol{X})=0, H_{1}\right) \\
= & \alpha \mathbb{P}\left(H_{0}\right)+\beta \mathbb{P}\left(H_{1}\right)
\end{aligned}
$$

That is, $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$


## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\quad \mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$


## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

- Thus,

$$
\left(\alpha-\alpha_{\mathrm{LRT}}\right) \frac{\eta}{\eta+1}+\left(\beta-\beta_{\mathrm{LRT}}\right) \frac{1}{\eta+1} \geq 0
$$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

- Thus,

$$
\left(\alpha-\alpha_{\mathrm{LRT}}\right) \underbrace{\frac{\eta}{\eta+1}}_{>0}+\left(\beta-\beta_{\mathrm{LRT}}\right) \frac{1}{\eta+1} \geq 0
$$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

- Thus,

$$
\left(\alpha-\alpha_{\mathrm{LRT}}\right) \underbrace{\frac{\eta}{\eta+1}}_{>0}+\left(\beta-\beta_{\mathrm{LRT}}\right) \underbrace{\frac{1}{\eta+1}}_{>0} \geq 0
$$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

- Thus,

$$
\left(\alpha-\alpha_{\mathrm{LRT}}\right) \underbrace{\frac{\eta}{\eta+1}}_{>0}+\left(\beta-\beta_{\mathrm{LRT}}\right) \underbrace{\frac{1}{\eta+1}}_{>0} \geq 0
$$

- Therefore,


## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

- Thus,

$$
\left(\alpha-\alpha_{\mathrm{LRT}}\right) \underbrace{\frac{\eta}{\eta+1}}_{>0}+\left(\beta-\beta_{\mathrm{LRT}}\right) \underbrace{\frac{1}{\eta+1}}_{>0} \geq 0
$$

- Therefore,

$$
\alpha \leq \alpha_{\mathrm{LRT}} \quad \Longrightarrow \quad \beta \geq \beta_{\mathrm{LRT}}
$$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

- Thus,

$$
\left(\alpha-\alpha_{\mathrm{LRT}}\right) \underbrace{\frac{\eta}{\eta+1}}_{>0}+\left(\beta-\beta_{\mathrm{LRT}}\right) \underbrace{\frac{1}{\eta+1}}_{>0} \geq 0
$$

- Therefore,

$$
\begin{array}{lll}
\alpha \leq \alpha_{\mathrm{LRT}} & \Longrightarrow & \beta \geq \beta_{\mathrm{LRT}} \\
\beta \leq \beta_{\mathrm{LRT}} & \Longrightarrow & \alpha \geq \alpha_{\mathrm{LRT}}
\end{array}
$$

## Proof

- $\left(\alpha-\alpha_{\text {MAP }}\right) \mathbb{P}\left(H_{0}\right)+\left(\beta-\beta_{\text {MAP }}\right) \mathbb{P}\left(H_{1}\right) \geq 0$
- $f_{\mathrm{MAP}}(\boldsymbol{x})$ is characterized by $f_{\mathrm{MAP}}(\boldsymbol{x})=1$ if $\mathcal{L}(\boldsymbol{x}) \geq \eta=\frac{\mathbb{P}\left(H_{0}\right)}{\mathbb{P}\left(H_{1}\right)}$
- Selecting $\eta>0$ such that

$$
\mathbb{P}\left(H_{0}\right)=\frac{\eta}{\eta+1} \quad \mathbb{P}\left(H_{1}\right)=\frac{1}{\eta+1},
$$

we have $f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)=f_{\mathrm{MAP}}(\boldsymbol{x})$

- Thus,

$$
\left(\alpha-\alpha_{\mathrm{LRT}}\right) \underbrace{\frac{\eta}{\eta+1}}_{>0}+\left(\beta-\beta_{\mathrm{LRT}}\right) \underbrace{\frac{1}{\eta+1}}_{>0} \geq 0
$$

- Therefore,

$$
\begin{array}{lll}
\alpha \leq \alpha_{\mathrm{LRT}} & \Longrightarrow & \beta \geq \beta_{\mathrm{LRT}} \\
\beta \leq \beta_{\mathrm{LRT}} & \Longrightarrow & \alpha \geq \alpha_{\mathrm{LRT}}
\end{array}
$$

## Receiver Operating Characteristic (ROC)

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta$ :

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))$

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\text {LRT }}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$


## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\text {LRT }}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$


## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\text {LRT }}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$


## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$


Neyman-Pearson implies Pareto optimality

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$


Neyman-Pearson implies Pareto optimality

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$


Neyman-Pearson implies Pareto optimality

## Receiver Operating Characteristic (ROC)

Consider a likelihood ratio test with threshold $\eta: f_{\mathrm{LRT}}(\boldsymbol{x} ; \eta)$
For each $\eta$, there is a pair $(\alpha(\eta), 1-\beta(\eta))=(\operatorname{FPR}(\eta), \operatorname{TPR}(\eta))$


Neyman-Pearson implies Pareto optimality

## Example

## Example



## Example



## Example



## Example



$$
f_{X \mid H_{0}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

$$
f_{X \mid H_{1}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}}
$$

Likelihood ratio test:

## Example



Likelihood ratio test:

$$
\mathcal{L}(x)=\frac{f_{X \mid H_{1}}(x)}{f_{X \mid H_{0}}(x)} \geq \eta
$$

## Example



$$
f_{X \mid H_{0}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}} \quad f_{X \mid H_{1}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}}
$$

Likelihood ratio test:

$$
\mathcal{L}(x)=\frac{f_{X \mid H_{1}}(x)}{f_{X \mid H_{0}}(x)} \geq \eta \quad \Longleftrightarrow \quad x \geq \frac{c}{2}+\frac{\sigma^{2}}{c} \log \eta
$$

## Example



Likelihood ratio test:

$$
\mathcal{L}(x)=\frac{f_{X \mid H_{1}}(x)}{f_{X \mid H_{0}}(x)} \geq \eta \quad \Longleftrightarrow \quad x \geq \frac{c}{2}+\frac{\sigma^{2}}{c} \log \eta=: \gamma
$$

## Example

## Example

$\operatorname{TPR}(\eta)$

## Example

$\operatorname{TPR}(\eta)=\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)$

## Example

$$
\operatorname{TPR}(\eta)=\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x
$$

## Example

$$
\begin{aligned}
\operatorname{TPR}(\eta) & =\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\int_{\frac{\gamma-c}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z
\end{aligned}
$$

## Example

$$
\begin{aligned}
\operatorname{TPR}(\eta) & =\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\int_{\frac{\gamma-c}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z \\
& =Q\left(\frac{\gamma-c}{\sigma}\right)
\end{aligned}
$$

## Example

$$
\begin{aligned}
\operatorname{TPR}(\eta) & =\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\int_{\frac{\gamma-c}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z \\
& =Q\left(\frac{\gamma-c}{\sigma}\right)
\end{aligned} \quad\left[Q(x):=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{z^{2}}{2}} \mathrm{~d} z\right] \quad \text {. }
$$

## Example

$$
\begin{array}{rlr}
\operatorname{TPR}(\eta) & =\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\int_{\frac{\gamma-c}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z & \\
& =Q\left(\frac{\gamma-c}{\sigma}\right) & {\left[Q(x):=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{z^{2}}{2}} \mathrm{~d} z\right]} \\
& =Q\left(\frac{\log \eta}{c / \sigma}-\frac{c / \sigma}{2}\right) &
\end{array}
$$

## Example

$$
\begin{array}{rlr}
\operatorname{TPR}(\eta) & =\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\int_{\frac{\gamma-c}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z & \\
& =Q\left(\frac{\gamma-c}{\sigma}\right) & {\left[Q(x):=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{z^{2}}{2}} \mathrm{~d} z\right]} \\
& =Q\left(\frac{\log \eta}{c / \sigma}-\frac{c / \sigma}{2}\right) \\
& =Q\left(\frac{\log \eta}{\operatorname{SNR}}-\frac{\text { SNR }}{2}\right)
\end{array}
$$

## Example

$$
\begin{array}{rlrl}
\operatorname{TPR}(\eta) & =\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x & \\
& =\int_{\frac{\gamma-c}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z & & \\
& =Q\left(\frac{\gamma-c}{\sigma}\right) & & {\left[Q(x):=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{z^{2}}{2}} \mathrm{~d} z\right]} \\
& =Q\left(\frac{\log \eta}{c / \sigma}-\frac{c / \sigma}{2}\right) & & {\left[\text { SNR }:=\frac{c}{\sigma}\right]}
\end{array}
$$

$$
\begin{array}{rlrl}
\operatorname{TPR}(\eta) & =\mathbb{P}\left(X \geq \gamma \mid H_{1}\right)=\int_{\gamma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-c)^{2}}{2 \sigma^{2}}} \mathrm{~d} x & \\
& =\int_{\frac{\gamma-c}{\sigma}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z & & \\
& =Q\left(\frac{\gamma-c}{\sigma}\right) & & {\left[Q(x):=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{z^{2}}{2}} \mathrm{~d} z\right]} \\
& =Q\left(\frac{\log \eta}{c / \sigma}-\frac{c / \sigma}{2}\right) & & {\left[\text { SNR }:=\frac{c}{\sigma}\right]}
\end{array}
$$

Similarly,

$$
\operatorname{FPR}(\eta)=\mathbb{P}\left(X \geq \gamma \mid H_{0}\right)=\cdots=Q\left(\frac{\log \eta}{\operatorname{SNR}}+\frac{\mathrm{SNR}}{2}\right)
$$

## Example

ROC curve for different values of SNR

## Example

ROC curve for different values of SNR


## Example

ROC curve for different values of SNR


## Example

ROC curve for different values of SNR


## Example

ROC curve for different values of SNR


## Example

ROC curve for different values of SNR


## Example

ROC curve for different values of SNR


## Properties of ROC curves

## Properties of ROC curves

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Properties of ROC curves

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

Property 2: TPR $\geq$ FPR

## Properties of ROC curves

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

Property 2: TPR $\geq$ FPR

Property 3: The ROC curve is concave

## Proofs

## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

- When $\eta \rightarrow+\infty$,


## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

- When $\eta \rightarrow+\infty$,

$$
f(x)=\mathbb{1}_{\mathcal{L}(\boldsymbol{x}) \geq \eta}(\boldsymbol{x})
$$

## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

- When $\eta \rightarrow+\infty$,

$$
f(x)=\mathbb{1}_{\mathcal{L}(\boldsymbol{x}) \geq \eta}(\boldsymbol{x})=0
$$

## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

- When $\eta \rightarrow+\infty$,

$$
f(x)=\mathbb{1}_{\mathcal{L}(\boldsymbol{x}) \geq \eta}(\boldsymbol{x})=0
$$

for any $\boldsymbol{x}$

## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

- When $\eta \rightarrow+\infty$,

$$
f(x)=\mathbb{1}_{\mathcal{L}(\boldsymbol{x}) \geq \eta}(\boldsymbol{x})=0
$$

for any $\boldsymbol{x}$
Then, $(\operatorname{FPR}(+\infty), \operatorname{TPR}(+\infty))=(0,0)$

## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

- When $\eta \rightarrow+\infty$,

$$
f(x)=\mathbb{1}_{\mathcal{L}(\boldsymbol{x}) \geq \eta}(\boldsymbol{x})=0
$$

for any $\boldsymbol{x}$
Then, $(\operatorname{FPR}(+\infty), \operatorname{TPR}(+\infty))=(0,0)$

- Similarly, $(\operatorname{FPR}(-\infty), \operatorname{TPR}(-\infty))=(1,1)$


## Proofs

Property 1: $(0,0)$ and $(1,1)$ are in the ROC curve

## Proof:

- When $\eta \rightarrow+\infty$,

$$
f(x)=\mathbb{1}_{\mathcal{L}(\boldsymbol{x}) \geq \eta}(\boldsymbol{x})=0
$$

for any $\boldsymbol{x}$
Then, $(\operatorname{FPR}(+\infty), \operatorname{TPR}(+\infty))=(0,0)$

- Similarly, $(\operatorname{FPR}(-\infty), \operatorname{TPR}(-\infty))=(1,1)$


## Proofs

## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

Property 2: $\quad$ TPR $\geq$ FPR
Proof:

## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

Property 2: $\quad$ TPR $\geq$ FPR

## Proof:

- For any achievable $\alpha>0$,


## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

Property 2: $\quad$ TPR $\geq$ FPR

## Proof:

- For any achievable $\alpha>0$, we can always find a randomized rule s.t.

$$
\mathrm{TPR}=\mathrm{FPR}=\alpha
$$

## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

Property 2: $\quad$ TPR $\geq$ FPR

## Proof:

- For any achievable $\alpha>0$, we can always find a randomized rule s.t.

$$
\mathrm{TPR}=\mathrm{FPR}=\alpha
$$

- By the Neyman-Pearson lemma,


## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

Property 2: $\quad$ TPR $\geq$ FPR

## Proof:

- For any achievable $\alpha>0$, we can always find a randomized rule s.t.

$$
\mathrm{TPR}=\mathrm{FPR}=\alpha
$$

- By the Neyman-Pearson lemma, if an LRT has $\mathrm{FPR}^{\star}=\alpha$,


## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

Property 2: $\quad$ TPR $\geq$ FPR

## Proof:

- For any achievable $\alpha>0$, we can always find a randomized rule s.t.

$$
\mathrm{TPR}=\mathrm{FPR}=\alpha
$$

- By the Neyman-Pearson lemma, if an LRT has $\mathrm{FPR}^{\star}=\alpha$, then its $\mathrm{TPR}^{\star} \geq \alpha$


## Proofs

Consider two decision rules (omitting dependence on $\eta$ ):

$$
\left(\mathrm{FPR}^{(1)}, \mathrm{TPR}^{(1)}\right),\left(\mathrm{FPR}^{(2)}, \mathrm{TPR}^{(2)}\right)
$$

Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. $1-p$

$$
(\mathrm{FPR}, \mathrm{TPR})=\left(p \mathrm{FPR}^{(1)}+(1-p) \mathrm{FPR}^{(2)}, p \mathrm{TPR}^{(1)}+(1-p) \mathrm{TPR}^{(2)}\right)
$$

Property 2: $\quad$ TPR $\geq$ FPR

## Proof:

- For any achievable $\alpha>0$, we can always find a randomized rule s.t.

$$
\mathrm{TPR}=\mathrm{FPR}=\alpha
$$

- By the Neyman-Pearson lemma,
if an LRT has $\mathrm{FPR}^{\star}=\alpha$, then its $\mathrm{TPR}^{\star} \geq \alpha$


## Proofs

## Property 3: The ROC curve is concave

## Proof:

## Proofs

## Property 3: The ROC curve is concave

## Proof:

- Consider two achievable points in the ROC diagram:

$$
\left(\operatorname{FPR}\left(\eta_{1}\right), \operatorname{TPR}\left(\eta_{1}\right)\right) \quad \text { and } \quad\left(\operatorname{FPR}\left(\eta_{2}\right), \operatorname{TPR}\left(\eta_{2}\right)\right)
$$

## Proofs

Property 3: The ROC curve is concave

## Proof:

- Consider two achievable points in the ROC diagram:

$$
\left(\operatorname{FPR}\left(\eta_{1}\right), \operatorname{TPR}\left(\eta_{1}\right)\right) \quad \text { and } \quad\left(\operatorname{FPR}\left(\eta_{2}\right), \operatorname{TPR}\left(\eta_{2}\right)\right)
$$

- For any $0 \leq t \leq 1$, we can form a randomized rule such that

$$
\begin{equation*}
\left(t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)\right) \tag{1}
\end{equation*}
$$

## Proofs

Property 3: The ROC curve is concave

## Proof:

- Consider two achievable points in the ROC diagram:

$$
\left(\operatorname{FPR}\left(\eta_{1}\right), \operatorname{TPR}\left(\eta_{1}\right)\right) \quad \text { and } \quad\left(\operatorname{FPR}\left(\eta_{2}\right), \operatorname{TPR}\left(\eta_{2}\right)\right)
$$

- For any $0 \leq t \leq 1$, we can form a randomized rule such that

$$
\begin{equation*}
\left(t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)\right) \tag{1}
\end{equation*}
$$

- By the Neyman-Pearson lemma, if an LRT has

$$
\operatorname{FPR}^{\star}=t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right),
$$

## Proofs

Property 3: The ROC curve is concave

## Proof:

- Consider two achievable points in the ROC diagram:

$$
\left(\operatorname{FPR}\left(\eta_{1}\right), \operatorname{TPR}\left(\eta_{1}\right)\right) \quad \text { and } \quad\left(\operatorname{FPR}\left(\eta_{2}\right), \operatorname{TPR}\left(\eta_{2}\right)\right)
$$

- For any $0 \leq t \leq 1$, we can form a randomized rule such that

$$
\begin{equation*}
\left(t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)\right) \tag{1}
\end{equation*}
$$

- By the Neyman-Pearson lemma, if an LRT has

$$
\begin{aligned}
& \operatorname{FPR}^{\star}=t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), \quad \text { then } \\
& \operatorname{TPR}^{\star} \geq t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)
\end{aligned}
$$

## Proofs

Property 3: The ROC curve is concave

## Proof:

- Consider two achievable points in the ROC diagram:

$$
\left(\operatorname{FPR}\left(\eta_{1}\right), \operatorname{TPR}\left(\eta_{1}\right)\right) \quad \text { and } \quad\left(\operatorname{FPR}\left(\eta_{2}\right), \operatorname{TPR}\left(\eta_{2}\right)\right)
$$

- For any $0 \leq t \leq 1$, we can form a randomized rule such that

$$
\begin{equation*}
\left(t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)\right) \tag{1}
\end{equation*}
$$

- By the Neyman-Pearson lemma, if an LRT has

$$
\begin{aligned}
& \operatorname{FPR}^{\star}=t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), \quad \text { then } \\
& \operatorname{TPR}^{\star} \geq t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)
\end{aligned}
$$

Thus, the ROC curve is above (1)

## Proofs

Property 3: The ROC curve is concave

## Proof:

- Consider two achievable points in the ROC diagram:

$$
\left(\operatorname{FPR}\left(\eta_{1}\right), \operatorname{TPR}\left(\eta_{1}\right)\right) \quad \text { and } \quad\left(\operatorname{FPR}\left(\eta_{2}\right), \operatorname{TPR}\left(\eta_{2}\right)\right)
$$

- For any $0 \leq t \leq 1$, we can form a randomized rule such that

$$
\begin{equation*}
\left(t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)\right) \tag{1}
\end{equation*}
$$

- By the Neyman-Pearson lemma, if an LRT has

$$
\begin{aligned}
& \operatorname{FPR}^{\star}=t \operatorname{FPR}\left(\eta_{1}\right)+(1-t) \operatorname{FPR}\left(\eta_{2}\right), \quad \text { then } \\
& \operatorname{TPR}^{\star} \geq t \operatorname{TPR}\left(\eta_{1}\right)+(1-t) \operatorname{TPR}\left(\eta_{2}\right)
\end{aligned}
$$

Thus, the ROC curve is above (1)

## Example: SARS-CoV-2 Tests

## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)

## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)

TPR


## Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)
Detection of $\lg G, \lg M$, or $\lg G / \lg M$ antibodies at days 8-14, 15-21, 22-35 (95\% CI)


Deeks et al, Antibody tests for identification of current and past infection with SARSCoV2, Cochrane Database of Systematic Reviews, Issue 6, 2020

## Looking Ahead: Empirical Risk Minimization

## Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

$$
\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

## Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

$$
\operatorname{minimize}_{f: \mathbb{R}^{d} \rightarrow\{0,1\}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Assumed known $f_{\boldsymbol{X} \mid H_{i}}\left(\boldsymbol{x} \mid H_{i}\right)$ and $\mathbb{P}\left(H_{i}\right)$

## Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

$$
\operatorname{minimize}_{f: \mathbb{R}^{d} \rightarrow\{0,1\}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Assumed known $f_{\boldsymbol{X} \mid H_{i}}\left(\boldsymbol{x} \mid H_{i}\right)$ and $\mathbb{P}\left(H_{i}\right)$
What if they are unknown?

## Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

$$
\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Assumed known $f_{\boldsymbol{X} \mid H_{i}}\left(\boldsymbol{x} \mid H_{i}\right)$ and $\mathbb{P}\left(H_{i}\right)$
What if they are unknown?

Empirical Risk Minimization (ERM):

## Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

$$
\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Assumed known $f_{\boldsymbol{X} \mid H_{i}}\left(\boldsymbol{x} \mid H_{i}\right)$ and $\mathbb{P}\left(H_{i}\right)$
What if they are unknown?

Empirical Risk Minimization (ERM):

$$
\operatorname{minimize}_{f: \mathbb{R}^{d} \rightarrow\{0,1\}} \frac{1}{T} \sum_{t=1}^{T}\left[\ell\left(f\left(\boldsymbol{x}_{t}\right), y_{t}\right)\right]
$$

## Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

$$
\underset{f: \mathbb{R}^{d} \rightarrow\{0,1\}}{\operatorname{minimize}} \mathbb{E}_{\boldsymbol{X} Y}[\ell(f(\boldsymbol{X}), Y)]
$$

Assumed known $f_{\boldsymbol{X} \mid H_{i}}\left(\boldsymbol{x} \mid H_{i}\right)$ and $\mathbb{P}\left(H_{i}\right)$
What if they are unknown?

Empirical Risk Minimization (ERM):

$$
\operatorname{minimize}_{f: \mathbb{R}^{d} \rightarrow\{0,1\}} \frac{1}{T} \sum_{t=1}^{T}\left[\ell\left(f\left(\boldsymbol{x}_{t}\right), y_{t}\right)\right]
$$

Assumption: we observe $T$ samples $\left\{\left(\boldsymbol{x}_{t}, y_{t}\right)\right\}_{t=1}^{T}$

## Conclusions

## Conclusions



## Conclusions

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

## Conclusions

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)


MAP and ML as particular cases

## Conclusions

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)


MAP and ML as particular cases
Optimality (Neyman-Pearson lemma)

## Conclusions

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)


MAP and ML as particular cases
Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

## Conclusions

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)


MAP and ML as particular cases
Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

## Conclusions

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)


MAP and ML as particular cases
Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

## References

## References



PREDICTIONS,
AND ACTIONS
M. Hardt, B. Recht

Patterns, Predictions, and Actions
Princeton University Press, Oct, 2022

## References


M. Hardt, B. Recht

Patterns, Predictions, and Actions
Princeton University Press, Oct, 2022


