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• This presentation aims to provide an introductory level tutorial to
optimal and adaptive filtering of stochastic processes.

• The structures involved in optimal filtering problems (e.g., prediction,
interpolation etc.) and adaptive solutions are highlighted while technical
details of the theory are kept in a minimum.

• For example, for the sake of simplicity in technical discussions, we
assume real valued random processes, i.e., if x(n) is a random process

x∗(n) = x(n)

throughout the presentation.

• Therefore, complex conjugations are omitted where appropriate, and,
simplified mathematical expressions valid for the case of real valued
sequences are used, for example, in complex spectra representations
(Note that a real valued sequence has a complex valued transfer
function).

• This is a living document the latest version of which can be downloaded
from the UDRC Summer School 2017 website.

• Your feedback is always welcome.
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• This presentation starts by introducing the problem definition for optimal
filtering. Application examples follow this introduction.

• Wiener-Hopf equations are derived which characterise the solution of
the problem. Then, the Wiener filter is introduced for both infinite
impulse response (IIR) and finite impulse response FIR settings.
Wiener channel equalisation is explained with an example.

• Adaptive filtering is introduced as an online and iterative strategy to
optimal filtering. We emphasise that this strategy is useful especially
when the statistical moments relevant to solving the optimal filtering
problem are unknown and should be estimated from the incoming data
and a training sequence.

• We derive the recursive least squares (RLS) and the least mean square
(LMS) algorithms, and, compare them in an example. We provide
system configurations for various applications of adaptive (optimal)
filters.

• Finally, we give an overview of known signal detection in noise and
relate the “matched filtering” technique to optimal hypothesis testing in
a Bayesian sense.
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Figure 1: Optimal filtering scenario.

y(n): Observation related to a stationary signal of interest x(n).
h(n): The impulse response of an LTI estimator.
x̂(n): Estimate of x(n) given by

x̂(n) = h(n) ∗ y(n) =
∞∑

i=−∞
h(i)y(n − i).
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• We observe a stationary sequence y(n) which contains information on
a desired signal x(n) we would like to recover using these observations
(Fig. 1).

• The estimator we want to use is a linear time invariant (LTI) filter h
characterised by its impulse response h(n).

• The output of this estimator is given by the convolution of its input with
the impulse response h(n):

x̂(n) = h(n) ∗ y(n) =
∞∑

i=−∞

h(i)y(n − i). (1)
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Find h(n) with the best error performance:

e(n) = x(n)− x̂(n) = x(n)− h(n) ∗ y(n)

The error performance is measured by the mean squared
error (MSE)

ξ = E
[(

e(n)
)2
]
.
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• We would like to find h(n) that would generate an output as close to the
desired signal x(n) as possible when driven by the input y(n). Let us
define the estimation error by

e(n) = x(n)− x̂(n) (2)

• x̂(n) is stationary owing to that the estimator is LTI, and, its input y(n) is
stationary. Therefore, the error sequence e(n) is also stationary.

• Because e(n) is stationary, it can be characterised by the expectation of
its square at any time step n, or, the mean squared error (MSE):

ξ , E
[(

e(n)
)2
]

= E

[(
x(n)−

∞∑
i=−∞

h(i)y(n − i)
)2
]
. (3)
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The MSE is a function of h(n), i.e.,

h = [· · · ,h(−2),h(−1),h(0),h(1),h(2), · · · ]

ξ(h) = E
[(

e(n)
)2
]

= E
[(

x(n)− h(n) ∗ y(n)
)2
]
.

Thus, optimal filtering problem is

hopt = arg min
h
ξ(h)
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• Note that, the MSE is a function of the estimator impulse response.
This point becomes more clear after the error term e(n) is fully
expanded to its components.

ξ(h) = E
[(

e(n)
)2
]

= E
[
(x(n)− h(n) ∗ y(n))2

]
.

• It is useful to use a vector-matrix notation to cast the filter design
problem as an optimisation problem.

• Consider the impulse response as a vector, i.e.,

h = [· · · ,h(−2),h(−1),h(0),h(1),h(2), · · · ]T

.
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• Let x and e denote the desired signal vector and the error vector
constructed in a similar fashion, respectively. Then, e = x− Yh
expanded as

...
e(0)

e(1)

e(2)

e(3)

...


︸ ︷︷ ︸

,e

=



...
x(0)

x(1)

x(2)

x(3)

...


︸ ︷︷ ︸

,x

−



...
...

...
...

...
...

. . . y(0) y(−1) y(−2) y(−3) . . .

. . . y(1) y(0) y(−1) y(−2) . . .

. . . y(2) y(1) y(0) y(−1) . . .

. . . y(3) y(2) y(1) y(0) . . .

...
...

...
...

...
...


︸ ︷︷ ︸

,Y : Convolution (or, data) matrix of y which is Toeplitz.



...
h(0)

h(1)

h(2)

h(3)

...


︸ ︷︷ ︸

,h
(4)

• Optimal filtering problem is the problem of finding h that leads to the
minimum ξ. Equivalently, we want to solve the following optimisation
problem:

hopt = arg min
h
ξ(h). (5)
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• A mile stone in optimal linear estimation was a World War II-time
classified report by Norbert Wiener (1894–1964), a celebrated
American mathematician and philosopher. This report was published in
1949 as a monograph.

• The picture is the cover of one of the (300) original copies of this report
sold for $7200 by an auction house.

• A review of this book by J.W. Tukey published in the Journal of the
American Statistical Association in 1952 mentions that

...Wiener’s report... was followed by a host (at least a dozen to my
knowledge) of similarly classified “simplifications” or “explanations”
of the procedure...
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1) Prediction, interpolation and smoothing of signals

d = 1

I Prediction for anti-aircraft fire control.
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• Here, y(n) is the noisy measurements of a shifted version of the
desired signal x ′(n). The noise ω(n) is also stationary.

• If the shift d is a positive integer, then, the optimal filter hopt is the best
linear d-step predictor of x(n). For example, if d = 1, then, hopt is a
one-step predictor.

• If the shift is a negative integer, then, the optimal filter performs
smoothing. For example, if d = −1, hopt is the best linear one-lag
smoother.

• For a rational d , the optimal filter is an interpolator aiming to estimate
the (missing) sample between two consecutive data points. For
example, for d = −1/2, the optimal filter is an interpolator trying to
estimate the (missing) sample between x(n) and x(n − 1).

• Wiener’s work was (partly) motivated by the prediction problem for
anti-aircraft fire control. The aircraft’s bearing (and altitude) is tracked
manually, i.e., x(n) and y(n) = x(n) + ω(n) are collected. d is selected
in accordance with the flight time of anti-aircraft shells (which could be
> 20s) and the guns are pointed towards the predicted location.
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Application examples
1) Prediction, interpolation and smoothing of signals

d = −1 (smoothing) d = −1/2 (interpolation)

I Signal denoising applications, estimation of missing data points.
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• Linear predictive coding (LPC) of waveforms is another popular
application of optimal predictors. Here, hopt is used as an encoding of
x(n). Non-zero hopt (n) values provide a lossy compression of x(n), in
this respect.

• Signal denoising applications benefit from hopt designed for smoothing.

• Interpolation is used when estimating missing data points.
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2) System identification

Figure 2: System identification using a training sequence t(n) from an
ergodic and stationary ensemble.

Echo cancellation in full
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• The optimal filtering framework can be used to solve system
identification problems.

• Here, the system to be identified is g(n). First, a training sequence t(n)
is generated to drive the system. t(n) is an instance from an
independent and identically distributed (i.i.d) process, e.g., a white
noise sequence. Thus, its time averages matches its ensemble
averages (first and second order moments).

• The output of the system to this input is used as the desired signal in
the optimal filtering problem.

• The optimal filter h(n) that produces an output x̂(n) which is closest to
x(n) when driven by t(n) will be the best linear time invariant
approximation of g(n).

• One application of this design setting is echo cancellation in full duplex
data transmission. For example, line modems including v.32 (ITU-T
recommendation v.32 –https://www.itu.int/rec/T-REC-V.32-199303-I/en )
identify the “echo path” during the modem hand-shake protocol. Echo
cancellation involves synthesising the echo signal and subtraction from
the receiver front-end signal, thereby isolating the signal transmitted
from the remote modem.
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• The optimal filtering framework can be used to solve system
identification problems.

• Here, the system to be identified is g(n). First, a training sequence t(n)
is generated to drive the system. t(n) is an instance from an
independent and identically distributed (i.i.d) process, e.g., a white
noise sequence. Thus, its time averages matches its ensemble
averages (first and second order moments).

• The output of the system to this input is used as the desired signal in
the optimal filtering problem.

• The optimal filter h(n) that produces an output x̂(n) which is closest to
x(n) when driven by t(n) will be the best linear time invariant
approximation of g(n).

• One application of this design setting is echo cancellation in full duplex
data transmission. For example, line modems including v.32 (ITU-T
recommendation v.32 –https://www.itu.int/rec/T-REC-V.32-199303-I/en )
identify the “echo path” during the modem hand-shake protocol. Echo
cancellation involves synthesising the echo signal and subtraction from
the receiver front-end signal, thereby isolating the signal transmitted
from the remote modem.
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3) Inverse System identification

Figure 3: Inverse system identification using x(n) as a training sequence.

I Channel equalisation in digital communication systems.
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• The optimal filtering framework can be used to find the inverse of a
system: In the block diagram, the system to be inverted is g(n) which
models, for example, a channel that distorts the desired signal x(n).
The receiver side observes y(n), which is a noisy version of the
distorted signal.

• We would like to design a filter h(n) which mitigates effects of g(n) and
rejects the noise ω(n) optimally, in order to restore x(n).

• To do that, a training sequence t(n) which is known at both the
transmitter and receiver ends drives the channel. This sequence is an
instance from an ergodic and stationary ensemble, i.e., t(n) is randomly
generated such that its time statistics match the ensemble averages
of x(n).

• Thus, the receiver side can find the estimation error e(n) corresponding
to any h by

e(n) = x(n)− x̂(n) = x(n)− t(n)

• The h(n) that minimises this error is the best linear inverse system.
Therefore, the optimal filter design framework can be used for finding
inverse systems.
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• In a telecommunications context, the channel inverse is known as the
“equaliser.”

• In the figure, the time-frequency plot of the transmission line signal
during the hand-shake of two v.32 modems is seen (source:
http://www.windytan.com).

• At the right hand side of the figure, both modems send scrambled data
to each other (the time window in the blue and red boxes, respectively)
allowing the receiver side to find the channel inverse. The data
sequence is known at both sides and described in the International
Telecommunications Union (ITU) standard recommendation v.32.
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Optimal solution: Normal equations
Consider the MSE ξ(h) = E

[
(e(n))2

]
The optimal filter satisfies ∇ξ(h)|hopt = 0. Equivalently, for all
j = . . . ,−2,−1,0,1,2, . . .

∂ξ

∂h(j)
= E

[
2e(n)

∂e(n)

∂h(j)

]
= E

[
2e(n)

∂
(
x(n)−

∑∞
i=−∞ h(i)y(n − i)

)
∂h(j)

]

= E
[
2e(n)

∂ (−h(j)y(n − j))

∂h(j)

]
= −2E [e(n)y(n − j)]

Hence, the optimal filter solves the “normal equations”

E [e(n)y(n − j)] = 0, j = . . . ,−2,−1,0,1,2, . . .
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• The optimisation problem for finding the optimal filter has an objective
function – the MSE of estimation–, which is quadratic in the unknowns.

• Hence, a unique solution exists which can be characterised by the
gradient of the objective - the vector of partial derivatives of the
objective with respect to the unknowns. At the optimal point, the
gradient equals to the zero vector.

• In the first step, the differentiation is moved into the expectation since
expectation is a linear operator. In the following steps, well known rules
of differentiation are used.

• Note that, we can evaluate the gradient for any given h, and the error
e(n) inside the expectation corresponds to the chosen filter h.
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• In order to find the optimal filter, we use its characterisation through its
gradient, i.e., the optimal filter solves the set of equations

E [e(n)y(n − j)] = 0, j = . . . ,−2,−1,0,1,2, . . .

which are known as “the normal equations.”
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Optimal solution: Wiener-Hopf equations

The error of hopt is orthogonal to its observations, i.e., for all j ∈ Z

E [eopt (n)y(n − j)] = 0

which is known as “the principle of orthogonality”.

Furthermore,

E [eopt (n)y(n − j)] = E

[(
x(n)−

∞∑
i=−∞

hopt (i)y(n − i)

)
y(n − j)

]

= E [x(n)y(n − j)]−
∞∑

i=−∞

hopt (i)E [y(n − i)y(n − j)] = 0

Result (Wiener-Hopf equations)
∞∑

i=−∞
hopt (i)ryy (i − j) = rxy (j)
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• Because the optimal filter solves the normal equations, its error eopt (n)
satisfies the statistical orthogonality condition with the input variables
y(n − j) for j = . . . ,−2,−1,0,1,2, . . ..

• The geometric interpretion of the normal equations follows the
statistical norm of the desired signal expressed in terms of the optimal
estimate and the associated error:

〈x(n), x(n)〉 , E
[
(x̂(n))2]

= E
[
(x̂opt (n) + eopt (n))2]

= E
[
(x̂opt (n))2 + 2x̂opt (n)eopt (n) + (eopt (n))2]

= E
[
(x̂opt (n))2]+ E

[
(eopt (n))2]

+2
∞∑

i=−∞

hopt (i) E [eopt (n)y(n − i)]︸ ︷︷ ︸
=0 by the principle of orthogonality

= E
[
(x̂opt (n))2]+ E

[
(eopt (n))2]

= 〈x̂opt (n), x̂opt (n)〉+ 〈eopt (n),eopt (n)〉. (6)

• Thus, the optimal estimate and the associated error are orthogonal and
follow a Pythagorean relation with the desired signal x(n).
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• We expand the optimal error term eopt (n) inside the expection.

• After distributing y(n− j) over the summation, and, using the linearity of
the expectation operator, we obtain the last line which equals to zero by
the principle of orthogonality.
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• We obtain the Wiener-Hopf equations after carrying the summation
term to the right hand side of the equation above and realising that

rxy (j) = E [x(n)y(n − j)]

and
ryy (i − j) = E [y(n − i)y(n − j)]

• Note that we consider real valued sequences throughout this
presentation and omit complex conjugations above.

• When the equalities above are used together with the symmetricity of
auto-correlation ryy (n) = ryy (−n), the Weiner-Hopf equations can be
written simply as

hopt (n) ∗ ryy (n) = rxy (n)

where we have the convolution of the optimal filter with the
auto-correlation function of the observations on the left hand side, and,
the cross-correlation sequence on the right hand side.



Optimal Filtering Optimal solution: Wiener-Hopf equations

The Wiener filter

Wiener-Hopf equations can be solved indirectly, in the complex
spectral domain:

hopt (n) ∗ ryy (n) = rxy (n)↔ Hopt (z)Pyy (z) = Pxy (z)

Result (The Wiener filter)

Hopt (z) =
Pxy (z)

Pyy (z)

The optimal filter has an infinite impulse response (IIR), and, is
non-causal, in general.
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• We have not placed any constraints on the optimal filter so as to
guarantee an impulse repsonse which can be finitely parameterised.

• Therefore, it is more convenient to consider an indirect characterisation
of the optimal impulse response provided by the complex spectral
domain (or, the z-transform domain).

• Let us consider the z-transform domain representation of the
Wiener-Hopf equations.

• The multiplication of Hopt (z) with the power spectral density (PSD) of
the input equals to the complex spectra of the cross-correlation
sequence.
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• The optimal filter is obtained in the complex spectral domain by the
division of the cross-correlation complex spectra with the PSD of the
input.

• The impulse response hopt (n) can be found, in principle, using the
inverse z-transform:

hopt (n) =
1

2πj

∮
C

Hopt (z)zn−1dz. (6)
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• The region of convergence (ROC) of Hopt (z) is not necessarily the outer
region of a circle centered at the origin. Correspondingly, hopt (n) is not
necessarily a right sided (causal) sequence.

• We assume that the processes we consider are regular, hence, the
ROC of Hopt (z) contain the unit circle on the z-plane. Correspondingly,
hopt (n) is a stable sequence.

• For a process to be regular, its PSD P(z = ejω) should not have
extended regions along ω where it is zero.

• For the case, it can be shown that P(z) can be factorised as

P(z) = σ2Q(z)Q∗(1/z∗)

where Q(z) is a minimum-phase (causal) sequence and Q∗(1/z∗) is its
anti-causal counterpart.

• The task of identification of Q(z) given P(z) (and σ2) is referred to as
“spectral factorisation”.



Optimal Filtering Optimal solution: Wiener-Hopf equations

Causal Wiener filter

We project the unconstrained solution Hopt (z) onto the set of
causal and stable IIR filters by a two step procedure:
First, factorise Pyy (z) into causal (right sided) Qyy (z), and
anti-causal (left sided) parts Q∗yy (1/z∗), i.e.,
Pyy (z) = σ2

y Qyy (z)Q∗yy (1/z∗).
Select the causal (right sided) part of Pxy (z)/Q∗yy (1/z∗).

Result (Causal Wiener filter)

H+
opt (z) =

1
σ2

y Qyy (z)

[
Pxy (z)

Q∗yy (1/z∗)

]
+
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• The “unconstrained” solution of the optimal filtering problem can be
projected onto the space of causal IIR filters in a two step procedure.

• First, the causal and anti-causal factors of Pyy (z) are identified. This
factorisation splits the optimal filter as a cascade of two filters; one
causal system followed by a non-causal one.

• The causal filter is then characterised by Hopt,1(z) = 1
σ2

y Qyy (z)
.

• The second system has a non-causal impulse response (both left and
right sided) with comlex spectra Hopt,2(z) =

Pxy (z)
Q∗yy (1/z∗) .

• Let hopt,2(n) denote the corresponding sequence.

• In order to find the projection of the optimal filter onto the space of
causal IIR filters, the second filter is selected as the right sided part of
hopt,2(n), i.e., h′opt,2(n) = hopt,2(n), for n = 0,1,2, . . . and h′opt,2(n) = 0,
otherwise.

• This is often carried out in the spectral domain using partial fraction
expansion.
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FIR Wiener-Hopf equations

h0h -1Nh

)

(n)

1

n(y

Σ
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sequence
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. . .

x{ }

received

z-1 z-1 z-1

Figure 4: A finite impulse response (FIR) estimator.

Wiener-Hopf equations for the FIR optimal filter of N taps:

Result (FIR Wiener-Hopf equations)∑N−1
i=0 hopt (i)ryy (i − j) = rxy (j), for j = 0,1, ...,N − 1.
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• Finite impulse response (FIR) filters are stable.

• FIR filters are causal without loss of generality, in that, they can always
be cascaded to a delay line z−d to have a causal overall response,
where d is the length of the left sided part of the FIR impulse response.

• It is helpful for the designer to restrict the optimisation problem such
that the space of LTI systems is constrained to the space of FIR filters
as they naturally admit a finite parameterisation – N unknowns for an
N-tap FIR filter.
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FIR Wiener Filter

FIR Wiener-Hopf equations in vector-matrix form.
ryy (0) ryy (1) . . . ryy (N − 1)

ryy (1) ryy (0) . . . ryy (N − 2)

...
...

...
...

ryy (N − 1) ryy (N − 2) . . . ryy (0)


︸ ︷︷ ︸
,Ryy : Autocorrelation matrix of y(n) which is Toeplitz.


h(0)

h(1)

...
h(N − 1)


︸ ︷︷ ︸

,hopt

=


rxy (0)

rxy (1)

...
rxy (N − 1)


︸ ︷︷ ︸

,rxy

Result (FIR Wiener filter)

hopt = R−1
yy rxy .
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• FIR Wiener-Hopf equations specify a system of N equations in N
unknowns.

• In order to solve this system, it is useful to consider the corresponding
algebraic form.

• In this presentation, we assume real valued stationary processes. In
the case of complex valued stationary processes, rxy has r∗xy (l) for
l = 0,1,2, ...,N − 1 in its fields.

• Similarly Ryy is conjugate transpose symmetric (or, Hermitian
symmetric). For example, the first column of Ryy has
ryy (0), r∗yy (1), . . . , r∗yy (N − 1) in its fields.



Optimal Filtering Optimal solution: Wiener-Hopf equations

FIR Wiener Filter

FIR Wiener-Hopf equations in vector-matrix form.
ryy (0) ryy (1) . . . ryy (N − 1)

ryy (1) ryy (0) . . . ryy (N − 2)

...
...

...
...

ryy (N − 1) ryy (N − 2) . . . ryy (0)


︸ ︷︷ ︸
,Ryy : Autocorrelation matrix of y(n) which is Toeplitz.


h(0)

h(1)

...
h(N − 1)


︸ ︷︷ ︸

,hopt

=


rxy (0)

rxy (1)

...
rxy (N − 1)


︸ ︷︷ ︸

,rxy

Result (FIR Wiener filter)

hopt = R−1
yy rxy .
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Optimal Filtering Optimal solution: Wiener-Hopf equations

MSE surface
MSE is a quadratic function of h

ξ(h) = hT Ryyh− 2hT rxy + E
[
(x(n))2

]
∇ξ(h) = 2Ryyh− 2rxy
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Figure 5: For a 2-tap Wiener filtering example: (a) the MSE surface, (b)
gradient vectors.
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• The MSE can be found as

ξ(h) = hT Ryy h− 2hT rxy + E
[
(x(n))2] (7)

which can be written in the following quadratic form:

ξ(h) = (h− hopt )
T Ryy (h− hopt ) + ξ(hopt )

ξ(hopt ) = E
[
(x(n))2]− hT

optrxy

(8)

• As ξ(h) is a quadratic function of h, it is smooth (its gradient is defined
for all values of h) and has a unique minimum.

• In the case of 2-dimensional h, equal MSE lines are ellipses whose
centre is the optimal filter vector and axes are along the eigenvectors of
Ryy . The major and minor semi-axis lengths are specified by the
eigenvalues.
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Example: Wiener equaliser
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Figure 6: (a) The Wiener equaliser. (b) Alternative formulation.
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• In this example, we consider optimal filtering for inverse system
identification.

• A white random signal x(n) is transmitted through a communication
channel which distorts the signal with the transfer function C(z).

• The receiver front-end receives noisy versions of the distorted signal.

• The goal of the equaliser is to optimally denoise the received signal
y(n) and mitigate the effects of distortion.
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Wiener equaliser
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Figure 7: Channel equalisation scenario.

For notational convenience define:

x ′(n) = x(n − d)

e′(n) = x(n − d)− x̂(n − d) (9)

Label the output of the channel filter as y ′(n) where

y(n) = y ′(n) + η(n)
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• Let us define the desired signal as a delayed version of x(n). Hence,
the estimation error at time n will be e′(n) as defined above.

• The channel output without noise is also a sequence with distinct
properties, so, we will label it as y ′(n).
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Wiener equaliser
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Figure 7: Channel equalisation scenario.
Wiener filter

hopt = Ryy
−1rx ′y (10)

The (i , j)th entry in Ryy is

ryy (j − i) = E [y(j)y(i)]

= E
[
(y ′(j) + η(j))(y ′(i) + η(i))

]
= ry ′y ′(j − i) + σ2

ηδ(j − i)

↔ Pyy (z) = Py ′y ′(z) + σ2
η
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• Let us find the fields of the input autocorrelation matrix Ryy and the
cross correlation vector rx ′y .
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Wiener equaliser
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Figure 7: Channel equalisation scenario.
Wiener filter

hopt = Ryy
−1rx ′y (10)

The (i , j)th entry in Ryy is

ryy (j − i) = E [y(j)y(i)]

= E
[
(y ′(j) + η(j))(y ′(i) + η(i))

]
= ry ′y ′(j − i) + σ2

ηδ(j − i)

↔ Pyy (z) = Py ′y ′(z) + σ2
η
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• The input autocorrelation of the equaliser is the sum of the
autocorrelation of the channel output and that of the noise sequence.

• Since the noise sequence is white, its autcorrelation is Dirac’s delta
function weighted by the variance of the noise. The corresponding
complex spectra equals to this variance for all z.
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Wiener equaliser
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Figure 7: Channel equalisation scenario.

Remember y ′(n) = c(n) ∗ x(n)

↔ ry ′y ′ = c(n) ∗ c(−n) ∗ rxx (n)↔ Py ′y ′(z) = C(z)C(z−1)Pxx (z)

Consider a white data sequence x(n), i.e.,

rxx (n) = σ2
xδ(n)↔ Pxx (z) = σ2

x .

Then, the complex spectra of the autocorrelation sequence of
interest is

Pyy (z) = Py ′y ′(z) + σ2
x = C(z)C(z−1)σ2

x + σ2
η
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• Let us find the autocorrelation of the channel output in terms of that of
the channel input x(n) and the channel transfer function.
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Wiener equaliser
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Figure 7: Channel equalisation scenario.
Wiener filter

hopt = Ryy
−1rx ′y (11)

The (j)th entry in rx ′y is

rx ′y (j) = E
[
x ′(n)y(n − j)

]
= E

[
x(n − d)(y ′(n − j) + η(n − j))

]
= rxy ′(j − d)

↔ Px ′y (z) = Pxy ′(z)z−d (12)
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• We have found the complex spectra of the sequence that specifies Ryy .

• Now, let us consider rx ′y .
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Figure 7: Channel equalisation scenario.
Wiener filter

hopt = Ryy
−1rx ′y (11)

The (j)th entry in rx ′y is

rx ′y (j) = E
[
x ′(n)y(n − j)

]
= E

[
x(n − d)(y ′(n − j) + η(n − j))

]
= rxy ′(j − d)

↔ Px ′y (z) = Pxy ′(z)z−d (12)
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• We have found the complex spectra of the sequence that specifies rx ′y
in terms of Pxy ′ .

• Next, we specify this cross correlation sequence.
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Wiener equaliser
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Figure 7: Channel equalisation scenario.

Remember y ′(n) = c(n) ∗ x(n)

↔ rxy ′ = c(−n) ∗ rxx (n)↔ Pxy ′(z) = C(z−1)Pxx (z)

Then, the complex spectra of the cross correlation sequence of
interest is

Px ′y (z) = Pxy ′(z)z−d = σ2
x C(z−1)z−d
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• We have found the complex spectra of the sequence of concern, in
terms of the input auto-correlation and the channel transfer function.
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Wiener equaliser
Suppose that c = [c(0) = 0.5, c(1) = 1]T ↔ C(z) = (0.5 + z−1)

Then,

Pyy (z) = C(z)C(z−1)σ2
x + σ2

η = (0.5 + z−1)(0.5 + z)σ2
x + σ2

η

Px ′y (z) = σ2
x C(z−1)z−d = (0.5z−d + z−d+1)σ2

x

Suppose that d = 1, σ2
x = 1, and, σ2

η = 0.1

ryy (0) = 1.35, ryy (1) = 0.5, and ryy (2) = 0
rx ′y (0) = 1, rx ′y (1) = 0.5, and rx ′y (2) = 0

The Wiener filter is obtained as

hopt =


1.35 0.5 0

0.5 1.35 0.5
0 0.5 1.35



−1  1

0.5
0

 =

 0.69
0.13
−0.05


The MSE is found as ξ(hopt ) = σ2

x − hT
optrx ′y = 0.24.
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• Since we have found all the required quantities that specify Wiener FIR
filter in terms of the complex spectra of the input autocorrelation and
the transfer function, we can solve the optimal filtering problem for any
selection of these functions.

• An example channel response is given in the slide.

• The solution follows trivially from our previous derivations.
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Adaptive filtering - Introduction
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Figure 8: FIR adaptive filtering configuration.

For notational convenience, define
y(n) , [y(n), y(n − 1), . . . , y(n − N + 1)]T , h(n) , [h0, h1, . . . , hN−1]T

The output of the adaptive filter is

x̂(n) = hT (n)y(n)

Optimum solution
hopt = R−1

yy rxy
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• In our previous treatment, the optimal filter design was an offline
procedure. The filter works in an open-loop fashion, without any
mechanism to compansate for any changes in the second order
statistics used for design, during its operation.

• Adaptive filters provide a feedback mechanism to adjust the filter to the
actual working conditions. Hence, they are closed-loop systems.

• They can be viewed as strategies to find the optimal filter online, in an
iterative fashion, during the operation of the filter.



Adaptive filtering Recursive Least Squares Adaptation

Recursive least squares
Minimise cost function

ξ(n) =
n∑

k=0

(x(k)− x̂(k))2 (13)

Solution
Ryy (n)h(n) = rxy (n)

LS “autocorrelation” matrix

Ryy (n) =
n∑

k=0

y(k)yT (k)

LS “cross-correlation” vector

rxy (n) =
n∑

k=0

y(k)x(k)
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• In optimal filtering, we considered MSE as the cost function to be
minimised.

• Let us choose a cost function which does not involve expectations and
can be computed using the desired signal -or, the training sequence-
x(n) and its estimates x̂(n).

• The sum of squared error terms over time (13) is such a cost function.

• Let us use the notation e(n) = [e(0),e(1), . . . ,e(n)]T . It can easily be
seen that ξ(n) = ‖e(n)‖2 = e(n)T e(n).

• The LS “autocorrelation” matrix and “cross-correlation” vector can be
found after expanding the error vector in the form given in Eq.(4), and,
taking the gradient of this expression with respect to h(n):

e = x− Yh

∇heT e = −2xT Y + 2YT Yh

• Moreover, if the signals involved are ergodic (i.e., if the time averages
and the ensemble averages are the same), then

ξ(h) = E
[
(e(n))2] = lim

N→∞

1
N + 1

N∑
k=0

(x(k)− x̂(k))2.
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Recursive least squares
Recursive relationships

Ryy (n) = Ryy (n − 1) + y(n)yT (n)

rxy (n) = rxy (n − 1) + y(n)x(n)

Substitute for rxy

Ryy (n)h(n) = Ryy (n − 1)h(n − 1) + y(n)x(n)

Replace Ryy (n − 1)

Ryy (n)h(n) =
(

Ryy (n)− y(n)yT (n)
)

h(n − 1) + y(n)x(n)

Multiple both sides by R−1
yy (n)

h(n) = h(n − 1) + R−1
yy (n)y(n)e(n)

e(n) = x(n)− hT (n − 1)y(n)
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• Let us consider the recursive relationships that will allow us to derive
online update rules for the filter coefficients.



Adaptive filtering Recursive Least Squares Adaptation

Recursive least squares

Recursive relationships

Ryy (n) = Ryy (n − 1) + y(n)yT (n)

Apply Sherman-Morrison identity

R−1
yy (n) = R−1

yy (n − 1)−
R−1

yy (n − 1)y(n)yT (n)R−1
yy (n − 1)

1 + yT (n)R−1
yy (n − 1)y(n)
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• The inverse of the autocorrelation matrix at time n can further be found
in terms of the previous inverse, and the current observation vector.

• Sherman-Morrison identity gives the inverse of a matrix which can be
written as the sum of a matrix with a vector outer product.



Adaptive filtering Recursive Least Squares Adaptation

Summary

Recursive least squares (RLS) algorithm:

1: Ryy (0) = 1
δ IN with small positive δ . Initialisation 1

2: h(0) = 0 . Initialisation 2
3: for n = 1,2,3, . . . do . Iterations
4: x̂(n) = hT (n − 1)y(n) . Estimate x(n)
5: e(n) = x(n)− x̂(n) . Find the error

6: R−1
yy (n) = 1

α

(
R−1

yy (n − 1)− R−1
yy (n−1)y(n)yT (n)R−1

yy (n−1)
α+yT (n)R−1

yy (n−1)y(n)

)
. Update the inverse of the autocorrelation
matrix

7: h(n) = h(n− 1) + R−1
yy (n)y(n)e(n) . Update the filter

coefficients
8: end for
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• The steps of the resulting algorithm are given above.
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Stochastic gradient algorithms

MSE contour - 2-tap example:
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Figure 9: Method of steepest descent.
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• Another approach that would iteratively converge to the optimal filter
would draw from the descent directions approaches in the optimisation
literature.

• A well known procedure - steepest descent - starts with an initial point
and moves along the inverse direction of the gradient at that point in
order to find the minimiser of a function.
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Steepest descent
MSE contour - 2-tap example:
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1h
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The gradient vector

∇h(n) =

[
∂ξ

∂h(0)
,
∂ξ

∂h(1)
, . . . ,

∂ξ

∂h(N − 1)

]T
∣∣∣∣∣
h=h(n)

= 2Ryyh(n)−2rxy
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• Let us assume that we can evaluate the gradient of the MSE for any
FIR filter h.

• In this case, we can find the optimal filter coefficients, nevertheless, let
us try to consider the steepest descent procedure in order to start with
an initial filter and iteratively converge to the optimal one.

• In this respect, let us consider n as the iteration counter –not as the
time index – for now.



Adaptive filtering Least Mean Square Algorithm

Steepest descent
MSE contour - 2-tap example:
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Update initial guess in the direction of steepest descent:

h(n + 1) = h(n)− µ∇h(n)

Step-size µ.
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• At each iteration n, we move along the inverse direction of the MSE
gradient.

• One way to perform this move is to make a line search along that
direction using, for example, the golden section search, in order to
solve a 1-D optimisation problem.

λ∗ = arg min
λ
ξ(h(n)− λ∇h(n))

• However, this would bring an additional computational cost. Instead, let
us select a fixed step size µ and use it as the optimal step size λ∗ = µ.
We will show that, under certain conditions, this selection still results
with convergence to the optimal point.
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Steepest descent

MSE contour - 2-tap example:
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Convergence of steepest descent
MSE contour - 2-tap example:
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h(n + 1) = h(n)− µ∇h(n)
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• Because the MSE is a quadratic function of the filter coefficients, equal
MSE contours are multidimensional elliptic structures (for example, for
the 3-dimensional case, ellipsoids). The eigenvectors of the
autocorrelation matrix specify the principle axes, and the eigenvalues
specify how stretched these surfaces are.

• With a fixed step size µ, the distance from the optimal point decreases,
provided that µ is smaller than the inverse of the largest eigenvalue.
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Stochastic gradient algorithms

A time recursion:

h(n + 1) = h(n)− µ∇̂h(n)

The exact gradient:

∇h(n) = −2E
[
y(n)(x(n)− y(n)T h(n))

]
= −2E [y(n)e(n)]

A simple estimate of the gradient

∇̂h(n) = −2y(n + 1)e(n + 1)

The error
e(n + 1) = x(n + 1)− h(n)T y(n + 1) (15)
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• Stochastic gradient algorithms replace the gradient in gradient descent
procedures with a “noisy” estimate.

• The simplest guess of the gradient would ignore the expectation and
use the instantenous values of the variables involved.
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The Least-mean-squares (LMS) algorithm:

1: h(0) = 0 . Initialisation
2: for n = 1,2,3, . . . do . Iterations
3: x̂(n) = hT (n − 1)y(n) . Estimate x(n)
4: e(n) = x(n)− x̂(n) . Find the error
5: h(n) = h(n − 1) + 2µy(n)e(n) . Update the filter
coefficients

6: end for
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• The resulting algorithm is known as the least mean square (LMS)
algorithm.

• The steps of the algorithm are as given.



Adaptive filtering Least Mean Square Algorithm

LMS block diagram
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Figure 10: Least mean-square adaptive filtering.
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• LMS algorithm admits a computational structure convenient for
hardware implementations.
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Convergence of the LMS
MSE contour - 2-tap example:
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• Because the gradient in the steepest descent is replaced with its noisy
estimate in the LMS algorithm, the study of its convergence behaviour
slightly different from that for the steepest descent algorithm.
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Eigenvalue ratio (EVR)
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Figure 11: Eigenvectors, eigenvalues and convergence: (a) the relationship
between eigenvectors, eigenvalues and the contours of constant MSE; (b)
steepest descent for EVR of 2; (c) EVR of 4.
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Comparison of RLS and LMS
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Figure 12: Adaptive system identification configuration.

Error vector norm

ρ(n) = E
[
(h(n)− hopt )

T (h(n)− hopt )
]
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• In this example, we would like to identify the unknown system. Its
impulse response is, hence, the optimal solution.

• The noise shaping filter allows us to change the EVR by colorating the
white noise at its input.

• It is often than not the case that we can only have noisy measurements
from the system to be identified. The additive white noise in the block
diagram is used to model this aspect.
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Comparison: Performance
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Figure 13: Covergence plots for N = 16 taps adaptive filtering in the system
identification configuration: EVR = 1 (i.e., the impulse response of the noise
shaping filter is δ(n)).
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Figure 14: Covergence plots for N = 16 taps adaptive filtering in the system
identification configuration: EVR = 11.
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Comparison: Performance
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Figure 15: Covergence plots for N = 16 taps adaptive filtering in the system
identification configuration: EVR (and, correspondingly the spectral coloration
of the input signal) progressively increases to 68.
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Comparison: Complexity

Table: Complexity comparison of N-point FIR filter algorithms.

Algorithm Implementation Computational load

class

multiplications adds/subtractions divisions

RLS fast Kalman 10N+1 9N+1 2

SG LMS 2N 2N −

BLMS (via FFT) 10log(N )+8 15log(N )+30 −
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Adaptive filtering Applications

Applications

Adaptive filtering algorithms can be used in all application areas of
optimal filtering.
Some examples:

I Adaptive line enhancement
I Adaptive tone suppression
I Echo cancellation
I Channel equalisation

Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 45 / 69



Adaptive filtering Applications

(a)

x n(^ )

y(n

(ne

(nx) )

)

unknown

system

adaptive

lter
Σ

(b)

^(n)

e

Σ
unknown

system

adaptive

lter

(n)x(n)yx

(n)

(c)

(n)
delay

adaptive

lter
Σ

y
(n)x ^ (n)x

e(n)

Figure 16: Adaptive filtering configurations: (a) direct system modelling; (b)
inverse system modelling; (c) linear prediction.
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Adaptive line enhancement
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Figure 17: Adaptive line enhacement: (a) signal spectrum; (b) system
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Adaptive predictor
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Adaptive tone suppression
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Figure 18: Adaptive tone suppression: (a) signal spectrum; (b) system
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Adaptive noise whitening
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Figure 19: Adaptive noise whitening: (a) input spectrum; (b) system
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Adaptive filtering Applications

Echo cancellation

A typical telephone connection

Telephone A Telephone B

two−wire
line

earpiece

transmitter

microphone

receiver

hybrid

transformer

hybrid

transformer

transmitter

receiver

Hybrid transformers to route signal paths.
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Adaptive filtering Applications

Echo cancellation (contd)

Echo paths in a telephone system

near end echo

far end echo
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Near and far echo paths.
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Adaptive filtering Applications

Echo cancellation (contd)
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Echo cancellation (contd)
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Figure 20: Application of adaptive echo cancellation in a telephone handset.
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Adaptive filtering Applications

Channel equalisation
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Figure 21: Adaptive equaliser system configuration.

Simple channel
y(n) = ±h0 + noise

Decision circuit

if y(n) ≥ 0 then x(n) = +1 elsex(n) = −1

Channel with intersymbol interference (ISI)

y(n) =
2∑

i=0

hix(n − i) + noise
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Channel equalisation
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Figure 22: Decision directed equaliser.

Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 56 / 69



Optimal signal detection Application examples and optimal hypothesis testing

Optimal signal detection - Introduction

Example: Detection of gravitational waves

Figure 23: Gravitational waves from a binary black hole merger (left, Uni.

of Birmingham, Gravitational Wave Group), LIGO block diagram (middle), expected
signal (right) Abbot et. al.,“Observation of gravitational waves from a binary black hole merger”, Phys. Rev.

Let., Feb. 2016..
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• Our discussion so far, has been on optimal estimation of signals.

• In some applications, one needs to test the hypothesis that a (known)
signal x(n) exists in the measured signal y(n).

• y(n) consists of either only a stochastic component in the absence of
x(n), or, a stochastic component together with x(n).
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Optimal signal detection - Introduction

Example: Detection of gravitational waves

Figure 23: Gravitational waves from a binary black hole merger (left, Uni.

of Birmingham, Gravitational Wave Group), LIGO block diagram (middle), expected
signal (right) Abbot et. al.,“Observation of gravitational waves from a binary black hole merger”, Phys. Rev.

Let., Feb. 2016..
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• An example is the detection of gravitational waves. This has been
recently succeeded by an international consortium of scientists affiliated
with LIGO (Laser Interferometer Gravitational-Wave Observatory) – an
achievement which is likely to be recognised with a Nobel Prize in
Physics– is a problem that involves optimal signal detection.

• Briefly, Einstein’s general theory of relativity predicts the existence of
graviational waves: Objects with large masses bend the gravitational
field around them and if they accelerate – as in the case of a binary
black hole merger – waves will be propagated (Fig.23, left pane).

• These waves will cause contractions/expansions in the space and will
induce a particular signal at the photo-detector in the setup in Fig.23.
This signal captures the difference in the distance two identical light
beams (originated from the same source) travel in different directions.

• The expected signal in the case of a binary black hole merger is on the
right pane in Fig.23.
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Optimal signal detection
Signal detection as 2-ary (binary) hypothesis testing:

H0 : y(n) = η(n)

H1 : y(n) = x(n) + η(n) (16)

In a sense, decide which of the two possible ensembles y(n) is
generated from.
Finite length signals, i.e.,

n = 0,1,2, ...,N − 1

Vector notation

H0 : y = η

H1 : y = x + η
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• Let us introduce a mathematical statement of the optimal detection
problem as statistical hypothesis testing:

• When the variable we would like to estimate takes values from a
countable and finite set, the problem setting is referred to as a
hypothesis testing problem. For M possible values of the variable, we
have a M-ary hypothesis testing problem. A binary hypothesis testing
problem in which case M = 2 is referred to as a detection problem.

• Let us consider the detection problem in (16). In a sense, we are asked,
of two possible ensembles, which one generated the observations y(n).
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Optimal signal detection
Example (radar): In active sensing, x(t) is the probing waveform
subject to design.

y(n) = a0x(n − n0) + a1x(n − n1) + · · ·+ η(n) (17)
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Figure 24: Probing waveform x(n) and returns from the surveillance
region constituting y(n).

A similar problem also arises in digital communications.
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• In active sensing applications such as radar and sonar surveillance,
x(n) is a waveform transmitted by the sensor for probing the
surveillance region.

• A typical choice of x(n) is the chirp waveform (which has a very similar
form with the expected waveform in the gravitational-wave detection
example).

• For different selection of x(n), the performance of the system in terms
of, for example, accuracy, bandwidth and processing requirements
differ. “Waveform design” has been one of the hot research topics in
signal processing for active sensing (e.g., radar/sonar).

• The reflections from the objects in the surveillance region results with a
superposition of scaled and time shifted versions of x(n) with additive
noise at the receiver front-end. The scaling factors are related to the
properties of the reflectors. Time shifts of the pulse returns encode the
distance of the reflectors.

• If x(n) is transmitted multiple times with a silent period in between,
there will also be a phase shift between consecutive pulse returns from
the same reflector the magnitude of which is related to the (approach)
speed (and equals to the doppler angular frequency).
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Optimal signal detection
Example (radar): In active sensing, x(t) is the probing waveform
subject to design.

y(n) = a0x(n − n0) + a1x(n − n1) + · · ·+ η(n) (17)
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A similar problem also arises in digital communications.
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• A similar problem also arises in digital communications, where the
waveform x(n) is used to encode a binary stream · · · ,a−1,a0,a1, · · ·
where ak ∈ {0,1}. The received signal is given by

y(n) =
∑

k

ak x(n − kN) + η(n) (18)

• This signal is divided into consequtive time windows of length N and
the binary hypothesis test is applied to each window to decide on
whether ak = 0 or ak = 1.

• In other words, for recovering ak ,
y = [y(kN), y(kN + 1), ..., y(kN + N − 1)]T is used in the following test:

H0(ak = 0) : y = η

H1(ak = 1) : y = x + η
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Bayesian hypothesis testing
Consider a random variable H with H = H(ζ) and H ∈ {H0,H1}.
The measurement ȳ = y(ζ) is a realisation of y.
The measurement model specifies the likelihood pY|H(ȳ |H)

Find the probabilities of H = H1 and H = H0 based on the
measurement vector ȳ .
Decide on the hypothesis with the maximum a posteriori
probability:

Find the maximum a-posteriori (MAP) estimate of H.

Ĥ = arg max
H∈{H0,H1}

PH|y(H|ȳ) (19)

where the a posterior probability of H is given by

PH|y(Hi |ȳ) =
pY|H(ȳ |Hi )PH(Hi )

pY|H(ȳ |H0)PH(H0) + pY|H(ȳ |H1)PH(H1)
(20)

for i = 0,1.
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• Let us introduce a mathematical statement of hypothesis testing, by first
introducing a decision variable H which takes values from the set of
possible hypothesis {H0,H1}.

• Next, we model H as a random variable H. For the case, given an
experiment outcome ζ from the sample space S (see, Chp.3 in the
Statistical Signal Processing lecture notes by Dr. James Hopgood ) a
measurement and a hypothesis is realised as ȳ = y(ζ) and H = H(ζ).

• The measurement model specifies the likelihood pY|H(ȳ |H) which is
defined even if H is non-random.

• Equivalently, we specify a joint probability model with the density
function py,H(ȳ ,H) where ȳ and H are realisations of the random
variables y and H, respectively.

• Because pY,H(ȳ ,H) = pY|H(ȳ |H)PH(H), this model implies that the
events that H = H0 and H = H1 have probabilities associated with
them, a priori to the observation of the measurements. We can select
these probabilities, i.e., P(H = H0) and P(H = H1), respectively, as
design parameters.

• Hypothesis testing in a Bayesian framework then involves finding a
posteriori probabilities of the hypothesis.
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Bayesian hypothesis testing
Consider a random variable H with H = H(ζ) and H ∈ {H0,H1}.
The measurement ȳ = y(ζ) is a realisation of y.
The measurement model specifies the likelihood pY|H(ȳ |H)

Find the probabilities of H = H1 and H = H0 based on the
measurement vector ȳ .
Decide on the hypothesis with the maximum a posteriori
probability:
Find the maximum a-posteriori (MAP) estimate of H.

Ĥ = arg max
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• The decision Ĥ is an estimate of H which is the (a posteriori) most
probable hypothesis.

• The numerator in the right hand side (RHS) of Eq.(20) is the
multiplication of the measurement likelihood with the a priori probability
of the hypothesis Hi . The denominator is a scaling factor which is the
same for all Hi . It can be found using the total probability rule.

• It can be shown that the MAP detection rule in Eq.(19) minimises the
total probability of error given by

Pe = P(Ĥ = H1|H = H0) + P(Ĥ = H0|H = H1)

where the first term on the RHS is known as the probability of false
alarms (or, false positives) and the second term as the probability of
missed detections.

• Different detection rules can be found by using different models and
performance criteria. In any case, exactly the same measurement
likelihoods would be used. For example, a non-random model for H
leads to the following maximum likelihood detector:

Ĥ = arg max
H∈{H0,H1}

py|H(ȳ |H)
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Bayesian hypothesis testing: The likelihood ratio test

MAP decision rule:

Ĥ = arg max
H∈{H0,H1}

P(H|ȳ)

MAP decision as a likelihood ratio test:

p(H1|ȳ)
Ĥ=H1
>
<

Ĥ=H0

p(H0|ȳ)

p(ȳ |H1)P(H1)
H1
>
<
H0

p(ȳ |H0)P(H0)

p(ȳ |H1)

p(ȳ |H0)

H1
>
<
H0

P(H0)

P(H1)
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• Finding the maximum of the a posteriori probabilities can be expressed
as a likelihood ratio test.

• Note that, these likelihoods are specified by the uncertainties in relating
H to the measurement values ȳ , and, hence the same likelihoods will
be used for decision rules under different criteria.

• For example, the aforementioned maximum likelihood detector can
equivalently be realised by testing the likelihood against 1.

• This is equivalent to using non-informative a priori probabilities in a
Bayesian test, i.e., P(H0) = P(H1) = 0.5.



Optimal signal detection Additive white and coloured noise

Bayesian hypothesis testing - AWGN Example

Example: Detection of deterministic signals in additive white
Gaussian noise:

H0 : y = η

H1 : y = x + η

where x is a known vector, η ∼ N (.; 0, σ2I).
The likelihoods are specified by the noise distribution:

p(ȳ |H1)

p(ȳ |H0)

H1
>
<
H0

P(H0)

P(H1)

N (ȳ ; x, σ2I)
N (ȳ ; 0, σ2I)

H1
>
<
H0

P(H0)

P(H1)
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• In the case of additive noise, the likelihoods involved in the decision rule
are specified by the noise distribution.

• For the Gaussian noise example, the hypothesis testing problem is
equivalent to deciding on whether ȳ is distributed by a Gaussian
distribution with mean and covariance that equals to the noise, or, a
Gaussian distribution with mean that equals to the signal to be
detected.
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Detection of deterministic signals - AWGN (contd)
The numerator and denominator of the likelihood ratio are

p(ȳ |H1) = N (ȳ − x; 0, σ2I)

=
1

(2πσ2)N/2

N−1∏
n=0

exp
{
− (ȳ(n)− x(n))2

2σ2

}

=
1

(2πσ2)N/2 exp

{
− 1

2σ2

(
N−1∑
n=0

(ȳ(n)− x(n))2

)}
(21)

Similarly
p(ȳ |H0) = N (ȳ ; 0, σ2I)

=
1

(2πσ2)N/2 exp

{
− 1

2σ2

(
N−1∑
n=0

(ȳ(n))2

)}
(22)

Therefore

p(ȳ |H1)

p(ȳ |H0)
= exp

{
1
σ2

(
N−1∑
n=0

(ȳ(n)x(n)− 1
2

x(n)2)

)}
(23)
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Detection of deterministic signals - AWGN (contd)

Take the logarithm of both sides of the likelihood ratio test

log exp

{
1
σ2

(
N−1∑
n=0

(ȳ(n)x(n)− 1
2

x(n)2)

)}
H1
>
<
H0

log
P(H0)

P(H1)

Now, we have a linear statistical test

N−1∑
n=0

ȳ(n)x(n)
H1
>
<
H0

σ2 log
P(H0)

P(H1)
+

1
2

N−1∑
n=0

x(n)2

︸ ︷︷ ︸
,τ :Decision threshold
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• The optimal operation for detecting x(n) under white Gaussian noise
reduces to testing magnitude of a linear operation on the input stream
ȳ(n) agains a threshold.

• This linear operation finds the evaluation of the cross-correlation of the
ȳ(n) with the signal of interest x(n) for zero-lag.

• An equivalent operation is filtering the input stream ȳ(n) with a linear
time-invariant system that has a time inversed version of x(n) as its
impulse response. When the output of this filter is sampled at the length
of x(n), the output will be the optimal decision variable we aim to
compute.

• This filter matches x(n) in that it produces the optimal decision variable
for detection x(n) under AWGN, and, is known as the matched filter.

• In other words, the matched filter is the optimal filter for detecting a
known signal under AWGN.
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Detection of deterministic signals - AWGN (contd)

Matched filtering for optimal detection:
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• In active sensing applications, the existence of time shifted versions of
the waveform x(n) is often found by matched filtering followed by
sampling with a pulse-width period.

• The decision variable sequence is then thresholded to test the
existence of reflectors at different ranges (i.e., distances from the
receiver).
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Detection of deterministic signals under coloured
noise

For the case, the noise sequence ρ(n) has an auto-correlation
function rν [l] different than rν [l] = σ2

η × δ[l], and,

H0 : y = ν

H1 : y = x + ν
ν ∼ N

.; 0, Cν =



rν (0) rν (−1) . . . rν (−N + 1)

rν (1) rν (0) . . . rν (−N + 2)

.

.

.
.
.
.

.

.

.
.
.
.

rν (N − 1) rν (N − 2) . . . rν (0)





Whitening 

lter 

Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 66 / 69

• In the case that the noise is non-white, i.e., its autocorrelation sequence
is not a scaled version of Dirac’s delta function, the previous results do
not apply immediately.

• Nevertheless, the linearity and commutativity of LTI systems can be
used to show that, we can still use the results for detection under white
noise if we use a “whitening filter” as a pre-processing stage.

• Note that, in this case, the signal to be detected will be the convolution
of the whitening filter with the original signal x(n).

• Design of a whitening filter is an optimal filtering problem and was
discussed in this presentation in both offline and adaptive settings.

• Thus, the solution to this problem draws from all the methods we have
presented throughout.
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Detection of deterministic signals - coloured noise ex.
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(upper left) Noise (amplitude) spectral density. (upper right) Abstract, Abbot et. al., Phys. Rev. Let., Feb. 2016.. (lower left)

Matched filter outputs: Best MF (blue) and the expected MF (purple). (lower right) Measurement, reconstructed and noise signals

around the detection.
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• An example to coloured noise is the background in the detector signal
used in the LIGO (Abbot et. al., Phys. Rev. Let., Feb. 2016).

• Them aplitude (square root of the power) spectral density of the noise
is given in the upper-left pane. Note that, there is a countable number
of “line spectra” which are “predictable” components of the background.
The cup-shaped spectra is the stochastic component of the
background.

• More details on processing can be found in Section IV of the following
document:

IV. GSTLAL ANALYSIS

The GstLAL [88] analysis implements a time-domain

matched f lter search [6] using techinques that were devel-

oped to perform the near real-time compact-object binary

searches [7, 8]. To accomplish this, the data s(t) and templates

h(t) are each whitened in the frequency domain by dividing

them by an estimate of the power spectral density of the de-

tector noise. An estimate of the stationary noise amplitude

spectrum is obtained with a combined median–geometric-

mean modif cation of Welch’s method [8]. This procedure

is applied piece-wise on overlapping Hann-windowed time-

domain blocks that are subsequently summed together to yield

a continuous whitened time series sw(t). The time-domain

whitened template hw(t) is then convolved with the whitened

data sw(t) to obtain the matched-f lter SNR time series ρ(t)
for each template. By the convolution theorem, ρ(t) obtained
in this manner is the same as the ρ(t)

GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

(Dated: March 4, 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave

Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results

of a matched-f lter search using relativistic models of compact-object binaries that recovered GW150914 as the

most signif cant event during the coincident observations between the two LIGO detectors from September 12

to October 20, 2015. GW150914 was observed with a matched f lter signal-to-noise ratio of 24 and a false alarm

rate estimated to be less than 1 event per 203000 years, equivalent to a signif cance greater than 5
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