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Aims and Objectives

Handout 1

Source Signal ,
¢.g. Clean Speech

Channel

¢.g. Room Acoustics

» Observed Signal

e.g. Reverberant Speech
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Aims and Objectives

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

@ Indirect time-difference of
arrival (TDOA)-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation

[ ]
generalised cross
correlation (GCC)

Processors
® Direct Localisation

Methods
® Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Receiver
(Mic Array)

Source localisation and blind source separation (BSS). An

example of topics using statistical signal processing.

|
Multiple Random Variables
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Obtaining the Latest Handouts

Walls

Sound
Aims and Objectives 4— and Other
@ Obtaining the Latest SOUI‘CB 3
Handouts Ob StaCIes

® Module Abstract

@ Introduction and Overview

® Description and Learning
Outcomes

@ Structure of the Module Observer

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

@ Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
’iffjjzjn““p"“e Power Source 2 Source 1
® Conclusions
Probability Theory Humans turn their head in the direction of interest in order
T to reduce inteference from other directions; joint detection,

localisation, and enhancement. An application of probability
and estimation theory, and statistical signal processing.

Multiple Random Variables

| EsStimation IHeory
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Obtaining the Latest Handouts

® This research tutorial is intended to cover a wide range of

Aims and Objectives

o aspects which cover the fundamentals of statistical signal
odule Abstract S
: i\fltroduction and Overview proce SS lng ¢

@® Description and Learning
Outcomes

i ® This tutorial is being continually updated, and feedback is
i P welcomed. The documents published on the USB stick may
o Sousia Losataion differ to the slides presented on the day.

Strategies
@ Geometric Layout

o e T e ® The latest version of this document can be obtained from the
o Eyperbolc Least Squares author, Dr James R. Hopgood, by emailing him at: at:

Error Function
® TDOA estimation methods

® GCC TDOA estimation
o e mai | t 0: ] anes. hopgood@d. ac. uk

Methods
@ Steered Response Power

Function

O Comsdtons (Update: The notes are no longer online due to the desire to
Probbility Theory maintain copyright control on the document.)

Scalar Random Variables

® Extended thanks are given to the many MSc students over the
past 12 years who have helped proof-read and improve these

Multiple Random Variables

| EsStimation I!ieory
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Module Abstract

Empirical G ian pdf

Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Empirical Probability Density

Localisation 60 70 80 90 100 110 120 130 140
@ Passive Target Localisation Data value
Methodology

® Source Localization

e This topic is covered in two related lecture modules:
@ Ideal Free-field Model

@ Indirect TDOA-based

Methods 1. Probability, Random Variables, and Estimation Theory, and

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

GCC TDOA estimation s 0 . .
Rt 2. Statistical Signal Processing,
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

-I'Eml'ﬁory

MonteCarlo
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Module Abstract

Empirical G ian pdf

Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

o
o
=]

o«
R

Empirical Probability Density
=] =]
o o
) a

Outcomes
@ Structure of the Module

@ Passive and Active Target

o
Q
N

=4
o
=2

o

Localisation 60 70 80 90 100 110 120 130 140
@ Passive Target Localisation Data value
Methodology

@® Source Localization

Strategies This topic is covered in two related lecture modules:

@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods 1. Probability, Random Variables, and Estimation Theory, and

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

GCC TDOA estimation s 0 . .
Rt 2. Statistical Signal Processing,
® Direct Localisation

Methods

Sl e R ®» Random signals are extensively used in algorithms, and are:

Function
@ Conclusions

Probabilty Theory ® constructively used to model real-world processes;

Scalar Random Variables

® described using probability and statistics.

Multiple Random Variables

-I'Eml'ﬁory
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Module Abstract

Empirical G ian pdf

o
o
5]

Aims and Objectives
@ Obtaining the Latest

o

o

=]
T

Handouts
® Module Abstract

@ Introduction and Overview

o
o
a

<)
R

o
=
@

@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Empirical Probability Density

o
Q
N

=4
o
=2

o

Localisation 60 70 80 90 100 110 120 130 140
@ Passive Target Localisation Data value

Methodology
® Source Localization
Suategies ® Their properties are estimated by assumming:
@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods ® an infinite number of observations or data points;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation $» time-invariant statistics.
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

-I'Eml'ﬁory

MonteCarlo
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Module Abstract

Empirical G ian pdf

o
o
5]

Aims and Objectives
@ Obtaining the Latest

o

o

=]
T

Handouts
® Module Abstract

@ Introduction and Overview

o
o
a

<)
R

o
=
@

@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Empirical Probability Density

o
Q
N

=4
o
=2

o

Localisation 60 70 80 90 100 110 120 130 140
@ Passive Target Localisation Data value

Methodology
® Source Localization
Suategies ® Their properties are estimated by assumming:
@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods ® an infinite number of observations or data points;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation ® time-invariant statistics.

® GCC Processors
@ Direct Localisation

Methods
O ® In practice, these statistics must be estimated from
* Conclusons finite-length data signals in noise.
Probability Theory

Scalar Random Variables

Multiple Random Variables

-I'Eml'ﬁory

MonteCarlo
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Module Abstract

Empirical G ian pdf

Aims and Objectives
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

o

o

=]
T

o«
R

Empirical Probability Density
=] =]
o o
) a

Outcomes
@ Structure of the Module

@ Passive and Active Target

o
Q
N

=4
o
=2

o

Localisation 60 70 80 90 100 110 120 130 140
@ Passive Target Localisation Data value
Methodology

@® Source Localization

Strategies ® Their properties are estimated by assumming:

@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods ® an infinite number of observations or data points;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation $» time-invariant statistics.
® GCC Processors
@ Direct Localisation

Methods

O ® In practice, these statistics must be estimated from
* Conclusons finite-length data signals in noise.
Probability Theory

Scalar Random Variables ® Module investigates relevant statistical properties, how they
are estimated from real signals, and how they are used.

Multiple Random Variables

-I'Eml'ﬁory
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Introduction and Overview

White noise signal
T T T

Transfer Function for Gramophone Horn x10* Correlated noise signal
. T T T T T T T

T
— Measured Response
—  AR(68) model

Aims and Objectives of
@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview

o
Gain (dB)
] |

noise measurement

|

noise measurement
o

® Description and Learning 25!

Outcomes
@ Structure of the Module

@ Passive and Active Target sl

. . . I I . . I I . . . . . . . . . . . . 15 . I 1 I I I 1 I I
Locahsatlon 0 50 100 150 200 250 300 350 400 450 500 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 50 100 150 200 250 300 350 400 450 500

. . . time Frequency (Hz) time.
@ Passive Target Localisation

Methodology . o
® Source Localization Source Signal > Channel » Observed Signal

Strategies e.g. Clean Speech e.g. Room Acoustics e.g. Reverberant Speech
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Biror Funcion Signal processing is concerned with the modification or

® TDOA estimation methods

® GCC TDOA estimation manipulation of a signal, defined as an

® GCC Processors

® Direct Localisaion information-bearing representation of a real process, to

Methods

S s Lo the fulfillment of human needs and aspirations.

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory

MonteCarlo
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
Alms and Objectives implementation, and applications of statistical signal

@ Obtaining the Latest

Handouts process:i_ng.

® Module Abstract
® Introduction and Overview

@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

-I'Bml'ﬁory

MonteCarlo
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,

Alms and Objectivs implementation, and applications of statistical signal
@ Obtaining the Latest .
° ﬁz(l)rcll?l(l):ibstract process:lng'

@ Introduction and Overview
@ Description and Learning
Outcomes

o Structure of the Module Module Objectives At the end of these modules, a student should

@ Passive and Active Target

Localisation be able tO have:

@ Passive Target Localisation
Methodology
@ Source Localization

Stategies 1. acquired sufficient expertise in this area to understand and

@ Geometric Layout

o ldeal Free field Model implement spectral estimation, signal modelling,

® Indirect TDOA-based

Methods parameter estimation, and adaptive filtering techniques;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,

Alms and Objectivs implementation, and applications of statistical signal
@ Obtaining the Latest .
° ﬁz(l)r(fl(l):ibstract proceSS]'ng°

@ Introduction and Overview
@ Description and Learning
Outcomes

o Structure of the Module Module Objectives At the end of these modules, a student should

@ Passive and Active Target

Localisation be able tO have:

@ Passive Target Localisation
Methodology
@ Source Localization

Stategies 1. acquired sufficient expertise in this area to understand and

@ Geometric Layout

o ldeal Free field Model implement spectral estimation, signal modelling,

® Indirect TDOA-based

Methods parameter estimation, and adaptive filtering techniques;

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

el 2. developed an understanding of the basic concepts and
® Direct Localsation methodologies in statistical signal processing that provides
© Steeted Response Power the foundation for further study, research, and application

@ Conclusions

to new problems.

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

-I'Bml'ﬁory

MonteCarlo
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Structure of the Module

Aims and Objectives

@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview
@ Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module
@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

These topics are:

Tmatl €0ty

MonteCarlo
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Structure of the Module

Aims and Objectives

@ Obtaining the Latest

Handouts ]_ .
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes 2
@ Structure of the Module °

@ Passive and Active Target

Localisation
@ Passive Target Localisation 3
L]

Methodology
@® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

These topics are:

review of the fundamentals of probability theory;
random variables and stochastic processes;

principles of estimation theory;

Tmatl €0ty

MonteCarlo

- p. 8/120



Structure of the Module

Aims and Objectives

@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview
@ Description and Learning

Outcomes 2
@ Structure of the Module °

@ Passive and Active Target

Localisation
@ Passive Target Localisation 3
L]

Methodology
@® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model 4 o
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

These topics are:

random variables and stochastic processes;
principles of estimation theory;

Bayesian estimation theory;

Tmatl €0ty

MonteCarlo
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation

® GCC Processors

® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

@ Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation
® GCC Processors

& Direct Localisacion 6. linear systems with stationary random inputs, and linear
OIiLTCrZ:nResponse Power Sys tem mo dels;

@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

@ Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation
® GCC Processors

& Direct Localisacion 6. linear systems with stationary random inputs, and linear
OIiLTCrZ:HResponse Power Sys tem mo dels;

@ Conclusions

Probability Theory 7

. signal modelling and parametric spectral estimation;

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Structure of the Module

These topics are:

Aims and Objectives
@ Obtaining the Latest

Handouts 1. review of the fundamentals of probability theory;

® Module Abstract
® Introduction and Overview

@ Description and Learning

Outcomes 2. random variables and stochastic processes;

@ Structure of the Module
@ Passive and Active Target
Localisation
@ Passive Target Localisation
Methodology 3
@ Source Localization

. principles of estimation theory;

Strategies
® Geometric Layout ° ° °
o ldeal Free feld Model 4. Bayesian estimation theory;
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Brror Funcion 5. review of Fourier transforms and discrete-time systems;

® TDOA estimation methods
® GCC TDOA estimation
® GCC Processors

& Direct Localisacion 6. linear systems with stationary random inputs, and linear
OIiLTCrZ:HResponse Power Sys tem mo dels;

@ Conclusions

Probability Theory 7

. signal modelling and parametric spectral estimation;

Scalar Random Variables

Muliple Random Variabes 8. an application investigating the estimation of sinusoids in
i noise, nn'rpprfnrming the Fourier transform
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Aims and Objectives

Passive and Active Target Localisation

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

A number of signal processing problems rely on knowledge of
the desired source position:

1. Tracking methods and target intent inference.
2. Mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in
speech enhancement).

4. Camera steering for audio-visual BSS (including Robot
Audition).

5. Speech diarisation.

Tmatl €0ty

MonteCarlo
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Passive Target Localisation Methodology

Sensors
(microphones)
Aims and Objectives x,[7] x,[n] X3[I’l] x,[n]
@ Obtaining the Latest A
Handouts

® Module Abstract
® Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
@ Source Localization Direct
Strategies
@ Geometric Layout
@ Ideal Free-field Model Source
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function

® TDOA estimation methods Ideal free-ﬁeld mOdel.

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods ® Most passive target localisation (PTL) techniques rely on the

@ Steered Response Power

o Conclusions fact that an impinging wavefront reaches one sensor before it
reaches another.

s[n]

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Passive Target Localisation Methodology

Sensors
(microphones)
Aims and Objectives x,[7] x,[n] X3[I’l] x,[n]
@ Obtaining the Latest A
Handouts

® Module Abstract
® Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
@ Source Localization Direct
Strategies
@ Geometric Layout
@ Ideal Free-field Model Source
@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function

® TDOA estimation methods Ideal free-ﬁeld mOdel.

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods ® Most PTL techniques rely on the fact that an impinging

@ Steered Response Power

. wavefront reaches one sensor before it reaches another.

s[n]

Probability Theory

® Most PTL algorithms are designed assuming there is no
multipath or reverberation present, the free-field assumption.

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Aims and Objectives

Source Localization Strategies

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
@® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)

of a beamformer:

® location estimate derived directly from a filtered, weighted,

and sum version of the signal data;

Tmatl €0ty

MonteCarlo
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Aims and Objectives

Source Localization Strategies

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

@ Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

® location estimate derived directly from a filtered, weighted,
and sum version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

® any localisation scheme relying upon an application of the
signal correlation matrix;

Tmatl €0ty

MonteCarlo
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

Aims and Objectives
@ Obtaining the Latest

tndous 1. those based on maximising the steered response power (SRP)
@ Introduction and Overview Of a beamformer:

@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

ot ® location estimate derived directly from a filtered, weighted,

@ Passive Target Localisation . .
 Nedodology and sum version of the signal data;

Strategies
@ Geometric Layout

® idel Frce feld Mo 2. techniques adopting high-resolution spectral estimation

® Indirect TDOA-based

Methods concepts:

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation

8 SeC Processors ® any localisation scheme relying upon an application of the
e signal correlation matrix;

Function
@ Conclusions

3. approaches employing TDOA information:

Probability Theory

Scalar Random Variables

e Random Vil ® source locations calculated from a set of TDOA estimates
measured across various combinations of sensors.
-I'EMOW
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Geometric Layout

7, Targets Ol .Sensors
(sound sources) (microphones)
Aims and Objectives

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies W
® Geometric Layout . N 2 [n] @ X2 X
@ Ideal Free-field Model
® Indirect TDOA-based

Methods Geometry assuming a free-field model.

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation Suppose there iS a:

® GCC Processors
@ Direct Localisation
Methods

o Stcered Response Power ® sensor array consisting of N nodes located at positions
Function .
e Conclusions m; € R>, fori € {0,..., N — 1},

Probability Theory

® M talkers (or targets) at positions x;, € R?, for
ke{o,...,M —1}.

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory
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Geometric Layout

7, Targets Ql .Sensors
(sound sources) (microphones)
Aims and Objectives

@ Obtaining the Latest

Handouts
® Module Abstract

® Introduction and Overview

® Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology

@ Source Localization
Strategies s =

® Geometric Layout ; S5 [n] @ X,

@ Ideal Free-field Model

@ Indirect TDOA-based ° o
Methods Geometry assuming a free-field model.

® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA esimtion The TDOA between the sensor node at position m; and m; due

® GCC Processors

L TR to a source at x; can be expressed as:

Methods
@ Steered Response Power

Function
® Conclusions X o m.;| — |X b = m.
T(mz-, mj7Xk>éTi'(Xk): ‘ z‘ ‘ J‘

Probability Theory C

Scalar Random Variables

where c is the speed of the impinging wavefront.

Multiple Random Variables
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Aims and Objectives

Ideal Free-field Model

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
@ Source Localization
Strategies
@ Geometric Layout
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@ Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

® In an anechoic free-field environment, the signal from source
k, denoted si(t), propagates to the i-th sensor at time ¢ as:

Lk (t) = Ok Sk(t — Tik:) + bzk (t)
where b;;(t) denotes additive noise.
® Note that, in the frequency domain, this expression becomes:
Xk (w) = o Sk (w) e IWTik 4 B (cu)

® The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.
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Ideal Free-field Model

® In an anechoic free-field environment, the signal from source
Aims and Objectives k, denoted si(t), propagates to the i-th sensor at time ¢ as:

@ Obtaining the Latest

Handouts
® Module Abstract

® Introduction and Overview t _ t b t

® Description and Learning 'CC’Lki ( ) - alk Skﬁ ( o T’Lkﬁ) —|_ 1k ( )
Outcomes

@ Structure of the Module

o Pithe ot where b;;(t) denotes additive noise.

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strtegies ® Note that, in the frequency domain, this expression becomes:

@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based _ ,] W Tik
Methods ;(Zk (CU) — O[Zk; Sk; (w) e ! + B’Lk? (w)
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

e s ® The additive noise source is assumed to be uncorrelated with
[ ) TOCESSOrs .
e bicc Lot the source and noise sources at other sensors.

Methods

@ Steered Response Power
Function

® Condlusions ® The TDOA between the i-th and j-th sensor is given by:
Probability Theory
Scalar Random Variables T’L]k — T’Lk - T]k‘ — T (mz, mj7 Xk)

Multiple Random Variables
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Aims and Objectives
@ Obtaining the Latest

o ® Typically, TDOAs are extracted using the GCC function, or an

® Module Abstract
® Inttoduction and Overview adaptive eigenvalue decomposition (AED) algorithm.
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables
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Aims and Objectives

Indirect TDOA-based Methods

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
Sensor.
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Aims and Objectives

Indirect TDOA-based Methods

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
Sensor.

® The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Aims and Objectives
@ Obtaining the Latest

o ® Typically, TDOAs are extracted using the GCC function, or an

® Module Abstract

 Introduction and Overview adaptive eigenvalue decomposition (AED) algorithm.

@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive Target Localisation
Strategies SenSOr.

S Do s o ® A hypothesised spatial position of the target can be used to
e predict the expected TDOAs (or corresponding range) at the

@ Source Localization

@ Geometric Layout

@ Ideal Free-field Model

ndirect OA-based . .
iy ® The error between the measured and hypothesised TDOAs is
® Hyperbolic Least Squares . . .

Error Function then minimised.

® TDOA estimation methods
® GCC TDOA estimation
® GCC Processors

® Direct Localsation ® Accurate and robust TDOA estimation is the key to the
© Stecred Response Pover effectiveness of this class of PTL methods.

@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

| EsStimation I!ieory

- p. 14/120

MonteCarlo



Aims and Objectives

Indirect TDOA-based Methods

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
® Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
Sensor.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.

® An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Aims and Objectives

Hyperbolic Least Squares Error Function

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization
Strategies
@ Geometric Layout
@ Ideal Free-field Model
@ Indirect TDOA-based

Methods
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Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

® If a TDOA is estimated between two sensor nodes 7 and 7,
then the error between this and modelled TDOA is

€i(Xk) = Tijr — T (m;, m;, Xg)

® The total error as a function of target position

® Unfortunately, since 7' (m;, m,, X ) is a nonlinear function of
X1, the minimum least-squares estimate (LSE) does not
possess a closed-form solution.
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Aims and Objectives

TDOA estimation methods

@ Obtaining the Latest

Handouts
® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

@ Passive and Active Target

Localisation
@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout

@ Ideal Free-field Model
® Indirect TDOA-based

Methods
@ Hyperbolic Least Squares

Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

® computationally efficient, and hence short decision delays;

® perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC

Al and Ofjeetees function and the adaptive eigenvalue decomposition (AED)
[ ) ﬁe(l)rclli(l): E:bstract alg Orithm O

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

SE GCC algorithm most popular approach assuming an ideal

Localisation

@ Passive Target Localisation fre e - ﬁ e ]_ d mOVe ]_

Methodology
® Source Localization

Strategies

S ® computationally efficient, and hence short decision delays;
deal Free-fie ode

: leirelzt TDﬁOzlAd-li\:s:dl
Methods

S T — ® perform fairly well in moderately noisy and reverberant
Error Function .
® TDOA estimation methods environme nts .

® GCC TDOA estimation
® GCC Processors
® Direct Localisation

Methods However, GCC-based methods

@ Steered Response Power

Function
@ Conclusions

® fail when multipath is high;

Probability Theory
Sealar Rendom Vaiables ® focus of current research is on combating the effect of
Multiple Random Variables mu1tip ath o
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC

Al and Ofjeetees function and the adaptive eigenvalue decomposition (AED)
[ ) ﬁe(l)rclli(l): E:bstract alg Orithm O

@ Introduction and Overview
@ Description and Learning

Outcomes
@ Structure of the Module

SE AED Algorithm Approaches the TDOA estimation approach from a

ocalisation . . . o
e Fasov Target Localsaton different point of view from the traditional GCC method.

Methodology
® Source Localization

Strategies

S ® adopts a multipath rather than free-field model;

@ Ideal Free-field Model
® Indirect TDOA-based
Methods

o Hyperbolic Least Squares ® computationally more expensive than GCC;

Error Function
® TDOA estimation methods

® GCC TDOA estimation
S GaaProcessors ® can fail when there are common-zeros in the channel.

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables
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Outcomes
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@ Passive Target Localisation

Methodology
® Source Localization

Strategies
@ Geometric Layout
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Methods
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Error Function
® TDOA estimation methods

® GCC TDOA estimation
® GCC Processors
@ Direct Localisation

Methods
@ Steered Response Power

Function
@ Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

® The TDOA estimate between two microphones 7 and j

Tij = arg MAX Ty, /]

® The cross-correlation function is given by
o [é] _ JT_-—l ((I) (eijs) Paclcvg (eijs))
where the cross-power spectral density (CPSD) is given by

lem <€ijS) —F [Xl (ejWTS) X2 <€ijs>]
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The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

® The TDOA estimate between two microphones 7 and j
Tij = argmaxry, o /]

¢

® The cross-correlation function is given by
Pz, 0] = F 1 (@ (77%) Pyyay (€797%))
where the CPSD is given by
Pz, (6797°) =E [ X3 (297%) X3 (e7975)]
® For the free-field model, it can be shown that:

LPpz (W) = —jwT (m;, mj;, Xg)
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Processor Name

Frequency Function

Cross Correlation

PHAT

Roth Impulse Response

SCOT

Eckart

(e77)

Hannon-Thomson or ML

Vorzs (€747%) |

. . 2
Peras (77| (1= Py, (€747)[)

where v,, ., (e/“%+) is the normalised CPSD or coherence
function

Multiple Random Variables
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GCC Processors
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o ideal Free-field Model Normal cross-correlation and GCC-phase

® Indirect TDOA-based

Methods transform (PHAT) (GCC-PHAT) functions for a frame of

@ Hyperbolic Least Squares

Error Function SpeeCh .
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Methods
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® Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

® However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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The steered beamformer (SBF) or SRP function is a measure of
correlation across all pairs of microphone signals for a set of
relative delays that arise from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to
spatial position xj such that 7, = |Xx — m,|:

2

N
S (}A() — / Z Wp (eijs) Xp (eijs) ejw ol dw

Q p=l

d
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The SBF or SRP function is a measure of correlation across all

pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position xj such that 7, = |Xx — m,|:

S(:?c):/

Q

N
Z W, (e7“7%) X, (e77%) /¥ 7rk| duw

p=1

p=1
N
p=1

q=1
N
q=1

2
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Steered Response Power Function
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Methods
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3
2
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2
Error Function _ di / -
® TDOA estimation methods y—coordinate/m 1

® GCC TDOA estimation 0 0
® GCC Processors
® Direct Localisation

s SBF response from a frame of speech signal. The integration

® Steered Response Power

o Conclusions frequency range is 300 to 3500 Hz. The true source position is
at [2.0,2.5|m. The grid density is set to 40 mm.

Probability Theory
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Multiple Random Variables
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Steered Response Power Function
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Conclusions

To fully appreciate the algorithms in PTL, we need:

Aims and Objectives
@ Obtaining the Latest

Handous 1. Signal analysis in time and frequency domain.

® Module Abstract

@ Introduction and Overview
@ Description and Learning

Outcomes 2. Least Squares Estimation Theory.

@ Structure of the Module
@ Passive and Active Target

Localisation
@ Passive Target Localisation

N 3. Expectations and frequency-domain statistical analysis.
Source Localization

.Strategies

® Geometric Layout . .

o ldeal Free feld Model 4. Correlation and power-spectral density theory.

® Indirect TDOA-based

Methods
@ Hyperbolic Least Squares

Error Function 5. And, of course, all the theory to explain the above!

® TDOA estimation methods
® GCC TDOA estimation

® GCC Processors

® Direct Localisation

Methods
@ Steered Response Power

Function
® Conclusions

Probability Theory

Scalar Random Variables

Multiple Random Variables
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Handout 2
Probability Theory
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Aims and Objectives

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
® Axiomatic Definition

@ Set Theory

® Properties of Axiomatic
Probability

@ The Real Line

® Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

How many water taxis are there in Venice?
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Probability Theory
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g o, s ¥ P A g » P .
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How does your answer change when you see more taxis?
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Aims and Objectives

Introduction

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
® Axiomatic Definition

® Set Theory

® Properties of Axiomatic
Probability

@ The Real Line

® Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

® this might include radar detection, signal detection,
anomaly detection, parameter estimation, ...

® By considering fundamentals such as the probability of

individual events, we can develop a probabilistic framework

for analysing signals.

® [t is observed that certain averages approach a constant value

as the number of observations increases; and that this value
remains the same if the averages are evaluated over any
sub-sequence specified before the experiment is performed.
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Introduction

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox
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Classical Definition
® Axiomatic Definition

® Set Theory

® Properties of Axiomatic
Probability

@ The Real Line

® Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

If an experiment is performed n times, and the event A
occurs n 4 times, then with a high degree of certainty, the
relative frequency 74 /n is close to Pr (A), such that:

Pr(A)

Y
Y

nA

n

provided that n is sufficiently large.

Note that this interpretation and the language used is all very

imprecise.
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Estimation Theory
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For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determine a priori without actual experimentation. It

is given by the ratio:

where:

® N is the total number of outcomes,

® and N, is the total number of outcomes that are favourable to

the event A, provided that all outcomes are equally probable.
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Consider a circle C' of radius r; what is the probability p that the

length /¢ of a randomly selected cord AB is greater than the
length, /3, of the inscribed equilateral triangle?

@

Bertrand’s paradox, problem deﬁnltlon.
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Different selection methods.

1. In the random midpoints method, a cord is selected by
choosing a point M anywhere in the full circle, and two
end-points A and B on the circumference of the circle, such

S

that the resulting chord AB through these chosen points has

M as its midpoint.
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Different selection methods.

In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

21r 1

- p. 25/120



Aims and Objectives

Bertrand’s Paradox

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
® Axiomatic Definition

® Set Theory

® Properties of Axiomatic
Probability

@ The Real Line

® Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

VAN

Different selection methods.

1. Finally, in the random radius method, a radius of the circle is
chosen at random, and a point on the radius is chosen at
random. The chord AB is constructed as a line perpendicular
to the chosen radius through the chosen point.

There are thus three different but reasonable solutions to the

SAIN

e-problem.Which one-is-valid?
] 4 V CALLGA o

UGALLL
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1. The term equally probable in the definition of probability is

making use of a concept still to be defined!
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. The definition can only be applied to a limited class of

problems.

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the

probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.
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1. The term equally probable in the definition of probability is

making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the

probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.

3. If the number of possible outcomes is infinite, then some other

measure of infinity for determining the classical probability
ratio is needed, such as length, or area. This leads to
difficulties, as discussed in Bertrand’s paradox.
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Axiomatic Definition

The axiomatic approach to probability is based on the following

Aims and Objectives three postulates and on nothing else:

Probability Theory

@ Introduction 1
@ Classical Definition of

. The probability Pr (A) of an event A is a non-negative number
N Ju— assigned to this event:

@ Difficulties with the

Classical Definition
@ Axiomatic Definition

® Set Theory PI‘ (A) Z O
® Properties of Axiomatic
Probability.
« Condiionl prbabily 2. Defining the certain event, S, as the event that occurs in

every trial, then the probability of the certain event equals 1,

Scalar Random Variables

such that:

Multiple Random Variables

Estimation Theory PI‘ ( S) _ 1
MonteCarlo
N — 3. If the events A and B are mutually exclusive, then the

probability of one event or the other occurring separately is:

Pr(AUB)=Pr(A)+ Pr(B)
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Unions and Intersections

AUB=BUA,

AB = BA,

(AB)C = A(BC),

Unions and intersections are
commutative, associative, and distributive, such that:

(AUB)UC =AU (BUC()

A(BUC)=ABUAC
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Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

AUB=BUA, (AUB)UC=AU((BUC(C)
AB=BA, (AB)C=A(BC), ABUC)=ABUAC

Complements The complement A of a set A C S is the set
consisting of all elements of S that are not in A. Note that:

AUA=S and ANnA=AA= {0}
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Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

AUB=BUA, (AUB)UC=AU((BUC(C)
AB=BA, (AB)C=A(BC), ABUC)=ABUAC

Complements The complement A of a set A C S is the set
consisting of all elements of S that are not in A. Note that:

AUA=S and ANnA=AA= {0}

Partitions A partition U of a set S is a collection of mutually
exclusive subsets A; of S whose union equations S

o

i=

A; =8, AiﬂAj:{@}, 1£ ) = U:[Al,,An]
1
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De Morgan's Law Using Venn diagrams, it is relatively

straightforward to show

AUB=ANB=AB

and ANB=AB=AUB
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De Morgan's Law Using Venn diagrams, it is relatively

straightforward to show

AUB=ANB=AB and ANnB=AB=AUB

As an application of this, note that:

AU BC
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therefore:

Pr(0) =0

Complements Since AU A = S and AA = {0}, then
Pr(AUA) =Pr(A) +Pr(A) =Pr(S) =1, such that:

Pr(A) =1—Pr(A)

Impossible Event The probability of the impossible event is 0, and
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Impossible Event The probability of the impossible event is 0, and

therefore:
Pr(0) =0

Complements Since AU A = S and AA = {0}, then
Pr(AUA) =Pr(A) +Pr(A) =Pr(S) =1, such that:

Pr(A) =1—Pr(A)

Sum Rule The addition law of probability or the sum rule for
any two events A and B is given by:

Pr(AUB)=Pr(A)+Pr(B)—-Pr(ANBDB)
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Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write A U B and B as the union of two mutually
exclusive events.

® First, note that

AUB=(AUA)(AUB) =AU (AB)

and that since A (AB) = (A A) B = {0}B = {0}, then A and

A B are mutually exclusive events.
® Second, note that:
B=(AUA)B=(AB)U (AB)

and that (AB) N (AB) = AAB = {0} B = {0} and are
therefore mutually exclusive events.
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Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr(AUB) =Pr(AU(AB)) =Pr(A4)+Pr(AB)
Pr(B) =Pr ((AB)U(AB)) =Pr(AB)+Pr(AB)

Eliminating Pr (Z B) by subtracting these equations gives the
desired result:

Pr(AUB) —Pr(B)=Pr(AU (AB)) =Pr(4)—Pr(4AB) O
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Example (Sum Rule). Let A and B be events with probabilities

Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.
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Example (Sum Rule). Let A and B be events with probabilities
Pr(A) = 3/4 and Pr (B) = /3. Show that 1/12 < Pr (A B) < /3.

SOLUTION. Using the sum rule, that:

Pr(AB)=Pr(A)+Pr(B)-Pr(AUB) > Pr(A)+Pr(B)-1 = —

which is the case when the whole sample space is covered by

the two events. The second bound occurs since A N B C B and
similarly AN B C A, where C denotes subset. Therefore, it can

be deduced Pr (A B) < min{Pr (A), Pr(B)} = 1/a.

- p. 29/120



Aims and Objectives

The Real Line

Probability Theory

@ Introduction

@ Classical Definition of
Probability

@ Bertrand’s Paradox

@ Difficulties with the

Classical Definition
® Axiomatic Definition

@ Set Theory

® Properties of Axiomatic
Probability

® The Real Line

® Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < x9, and their countable unions and intersections.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < x9, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x < z;}.
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If the certain event, S, consists of a non-countable infinity of

elements, then its probabilities cannot be determined in terms of

the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
r1 < x < x9, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x < z;}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.
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If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.
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If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are

observed. Suppose that only those outcomes for which B occurs

are considered, and all other experiments are disregarded.

In this smaller collection of trials, the proportion of times that A
occurs, given that B has occurred, is:

Pr(A‘B)z

NAB

np

nas/n _ Pr(AB)

nB/n

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov

Axioms.

Pr(B)
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Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or

female, and it is assumed that each is equally likely.
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A random variable (RV) X (() is a mapping that assigns a real
number X € (—oo, 00) to every outcome ¢ from an abstract
probability space.

1. the interval { X ({) < x} is an event in the abstract probability
space for every x € R;

2. Pr(X (¢) = 00) = 0 and Pr (X (¢) = —0) = 0.
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Example (Rolling die). Consider rolling a die, with six outcomes
{¢i, i € {1,...,6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X (() is given by:

X(G)=X((3)=X(¢)=0 and X (¢2) =X (C4) =X () =1
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‘ >

The cumulative distribution function.

® The probability set function Pr (X ({) < z) is a function of
the set { X ({) < x}, and therefore of the point x € R.
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‘ >

The cumulative distribution function.

® The probability set function Pr (X ({) < z) is a function of
the set { X ({) < x}, and therefore of the point x € R.

® This probability is the cumulative distribution
function (cdf), F'x (x) of a RV X ((), and is defined by:

Fx (z) = Pr(X () < z)
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‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x,| is given by:

Pr(zy < X (¢) < ar) =Pr (X (¢) <ar) — Pr(X (¢) < av)
= Fx (x;) — Fx ()
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‘ >

The cumulative distribution function.

® It hence follows that the probability of being within an
interval (x,, x,| is given by:

Pr(zy < X (¢) < ar) =Pr (X (¢) <ar) — Pr(X (¢) < av)
= Fx (x;) — Fx ()

® For small intervals, it is clearly apparent that gradients are
important.
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The events { X < 1} and {z; < X < 25} are mutually exclussive

events. Therefore, their union equals {z < x5}, and therefore:

Pr(X <z1)+Pr(z; < X <x3) =Pr(X < x5)

/ p(v) dU+PT(5E1<X§ZC2)=/ p(v) dv
= Pr(x1<X§:c2):/ p(v) dv

Moreover, it follows that Pr (—oco < X < co) = 1 and the
probability of the impossible event, Pr (X < —oco) = 0. Hence,
the cdf satisfies the axiomatic definition of probability.
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® The probability density function (pdf), fx (x) of a RV X ((),
is defined as a formal derivative:

N dFX (CE‘)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Az = Fx (x + Azx)—Fx () = Pr(z < X ({) <z + Ax)

- p. 36/120



Aims and Objectives

Density functions

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® The probability density function (pdf), fx () of a RV X ((),

is defined as a formal derivative:

N dFX (CE‘)

fx () o

Note fx (x) is not a probability on its own; it must be
multiplied by a certain interval Az to obtain a probability:

fx (x) Az = Fx (x + Azx)—Fx () = Pr(z < X ({) <z + Ax)

® It directly follows that:

Fx(o)= [ ; Fx(v) do
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Density functions

® The probability density function (pdf), fx () of a RV X ((),
Aims and Objectives is defined as a formal derivative:

Probability Theory

N dFX (CE)

Scalar Random Variables f ( :C )
® Definition X

dx

@ Distribution functions
® Kolmogorov’s Axioms

A Note fx () is not a probability on its own; it must be
G BT multiplied by a certain interval Az to obtain a probability:

@ Probability transformation

rule
@ Expectations

® Properties of expectation
s fx () Az~ Fx (r+ Ax)—Fx (z) = Pr(z < X () <z + Ax)
@ Higher-order statistics

Multiple Random Variables

® It directly follows that:

Estimation Theory

MonteCarlo

xT
Passive Target Localisation FX (x) — / f X (’U) dv
— OO

® For discrete-valued RV, use the pmf, p;, the probability that
X (¢) takes on a value equal to ,: p, = Pr (X (¢) = x4,)

\ D/ p s \ D/ LAV
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Aims and Objectives

Density functions

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

@ Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

4 10) 4 Fy(x)

>

: %

A probability density function and its corresponding

=

cumulative distribution function for a RV which is a mixture

of continuous and discrete components.
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Aims and Objectives

Properties: Distributions and Densities

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
® Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® Properties of cdf:

lim FX (CE)

T——00

0,

lim FX (:C)

Y de o)

Fx(x) is a monotonically increasing function of z:

Fx (CL) < Fx (b)

if a<b

1
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Properties: Distributions and Densities

® Properties of cdf:

Aims and Objectives

Probability Theory

0< Fx(x)<1l, lim Fx(x)=0, lim Fx(z)=1

Scalar Random Variables r—r—00 Tr—r o0

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms . o . . o

® Deusiy ficions Fx (z) is a monotonically increasing function of z:
® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation F b'e (a) < F X (b) if a S b

rule —
@ Expectations

@ Properties of expectation

o Moments ® Properties of pdfs:

@ Higher-order statistics

Multiple Random Variables

fX(iU)ZO, [wfx(m)d$:1

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Properties: Distributions and Densities

Probability Theory

Scalar Random Variables

@ Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

® Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® Properties of cdf:

0< Fx(x)<1l, lim Fx(x)=0, lim Fx(z)=1

T——00 Y de o)
Fx(x) is a monotonically increasing function of z:

Fx(a)<Fx(b) if a<b

® Properties of pdfs:
Ix (37) > 0, / fx (Cl?) dr =1

® Probability of arbitrary events:

Pr(z; < X (() <) =Fx (x2) — Fx (x1) = [r@ fx () dx
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Common Continuous RVs

Uniform distribution

Aims and Objectives L if a < i S b,

_ b—
Probability Theory f X (:C) T O “ O the]j'Wise

Scalar Random Variables

® Definition 5 . .
@ Distribution functions N orm al d ISt Fl b Utl on

® Kolmogorov’s Axioms
® Density functions

® Properties: Distributions 1 ]_ €T — ILL X 2 ]R
o éréi]r)lﬁ)nnmgsztinuous RVs fX (x) = /o2 eXp - 5 Cox ’ v E

@ Probability transformation 2 vixea X

rule
@ Expectations

® Properties of expectation CaUChy d IStrl butlon

operator
® Moments

@ Higher-order statistics 6 1

fx (z) ==

Multiple Random Variables T ( r — ILL X ) 2 _|_ /8 2

Estimation Theory

MonteCalo The Cauchy random variable is symmetric around the value

x = 1x, but its mean and variance do not exist.

Passive Target Localisation
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Aims and Objectives

Common Continuous RVs

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Gamma distribution

fx (2) 0 if z <0,
XA = Lol P le 2 jifx >0,

Gamma pdf Gamma cdf
0.4 ‘ ‘ ;
. B =2
0.35¢ — B=25
, — =3
0.3 =35
0.25f — B=4
= =X
X 02 =
0.157
0.1t
0.05
0 L L L
0 2 4 6 8
X

The Gamma density and distribution functions, for the

case when o« = 1 and for various values of 5.
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Aims and Objectives

Common Continuous RVs

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Weibull distribution

Weilbull pdf
1.4 ; :
— a=05
1.2¢ — a=0.75
—a=1
1r — a=13 |
— a=15
_ 0.8r ]
X
S
0.6f ]
0.4r ]
0.2+ ]
0 1
0 1 2 3 4
X

F, )

e x>0
Weilbull cdf
1
0.8}
0.6
Af
0 a=0.5
a=0.75
0.2 a=1
a=1.3
a=1.5
0 1
0 2
X

The Weibull density and distribution functions, for the
case when o = 1, and for various values of the parameter

8.
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Suppose a random variable Y (¢) is a function, g, of a random
variable X (¢), which has pdf given by fx (z). What is fy (y)?

A
Y
y=g(x)
v
y
A
ox, ox,
> < > <
- >
x2 3 x

The mapping y = g(x), and the effect of the mapping on
intervals.
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Suppose a random variable Y (¢) is a function, g, of a random

variable X (¢), which has pdf given by fx (z). What is fy (y)?

X(©)

Y(Q)

— » YO=eX(©) —*

v

Ji(x)

>

'

1)

The mapping y = g(z).

A

Y
y=g(x)
v
Y
A
ox, ox, ox,
<« > > <
>
X2 x3 x

The mapping y = g(x), and the effect of the mapping on

intervals.
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

A

y
y=g(x)
v
’ E
ox, ox, ox,
< >« >
>
/ X, X, X, ¥
The mapping y = g(x), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule).  Denote the real roots of
y = g(x) by {z,,, n € N'}, such that

y=g(x1) = °~=g(a?N)

O

\%
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

A
Y
y=g(x)
v
y
A
ox, ox, ox,
< > <« > <«
/ = x e >
1 2 3 x

The mapping y = g(x), and the effect of the mapping on

intervals.

Theorem (Probability transformation rule).  Denote the real roots of
y = g(x) by {z,,, n € N'}, such that

y=g(z1)="---=g(zN)

Then, if the Y (¢) = ¢g|X (()], the pdf of Y ({) in terms of the pdf

of X (¢) is given by:

fr ) = S X @)

|
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
® Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY'.
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Probability transformation rule

Example (Log-normal distribution). Let Y = e* , Where

Aims and Objectives X ~U N (O’ ]_). Find the pdf for the RV Y-

Probability Theory

Scalar Random Variables

© Deimiton SOLUTION. Since X ~ N (0, 1), then:

@ Distribution functions
® Kolmogorov’s Axioms
® Density functions 1 2

@ Properties: Distributions f (x) — e
and Densities X
@ Common Continuous RVs 27'('

@ Probability transformation

rule |:|

@ Expectations
@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Probability transformation rule

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Example (Log-normal distribution). Let Y = e* , Where
X ~ N (0, 1). Find the pdf for the RVY'.

SOLUTION. Since X ~ N (0, 1), then:

]. 13‘2
— &Z__
\/ 2;{

fx (z) =

Considering the transformation y = g(z) = €7, there is one root,
given by x = Iny. Therefore, the derivative of this expression is

gilzli=e =y

Hence, it follows:

fry) = =75 = e T
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Expectations

To completely characterise a RV, the pdf must be known.

Alms and Objerives However, it is desirable to summarise key aspects of the pdf by
Probabiliy Theory using a few parameters rather than having to specify the entire
Scalar Random Variables denSity funCtion'

® Definition

@ Distribution functions . .

B Kleesos S ® The expected or mean value of a function of a RV X (() is
@ Properties: Distributions given by:

and Densities
® Common Continuous RVs

@ Probability transformation

rule

@ Expectations E [ X ( C ) ] — f ( )

® Properties of expectation L X L daj
operator R

® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Expectations

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® If X (() is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fx(x) =) prd(z—x)
k

where the Dirac-delta, § (x — 1), is unity if z = z, and zero

otherwise.
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Aims and Objectives

Expectations

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

® If X (() is discrete, then its corresponding pdf may be written

in terms of its pmf as:

fx(x) =) prd(z—x)
k

where the Dirac-delta, § (x — 1), is unity if z = z, and zero

otherwise.

® Hence, for a discrete RV, the expected value is given by:

MxZ/Rffx(x)W:/Rx ;kas(f—%)dx:;mkPk

where the order of integration and summation have been
interchanged, and the sifting-property applied.
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Aims and Objectives

Properties of expectation operator

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

The expectation operator computes a statistical average by using

the density fx(z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.
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Aims and Objectives

Properties of expectation operator

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

The expectation operator computes a statistical average by using

the density fx(z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.

® If fx(x) is an even function, then px = 0. Note that since
fx(z) > 0, then fx(x) cannot be an odd function.

® If fx(x) is symmetrical about x = a, such that
fx(a—x) = fx(x +a), then ux = a.
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Aims and Objectives

Properties of expectation operator

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

@ Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

The expectation operator computes a statistical average by using

the density fx(z) as a weighting function. Hence, the mean p,
can be regarded as the center of gravity of the density.

® If fx(x) is an even function, then px = 0. Note that since
fx(z) > 0, then fx(x) cannot be an odd function.

® If fx(x) is symmetrical about x = a, such that
fx(a—x) = fx(x +a), then ux = a.

® The expectation operator is linear:

ElaX(()+p]l=aux +5
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Properties of expectation operator

The expectation operator computes a statistical average by using

Ams and Objectivs the density fx(x) as a weighting function. Hence, the mean p,
Probabilty Theory can be regarded as the center of gravity of the density.

Scalar Random Variables

ST ® If fx(x) is an even function, then px = 0. Note that since
It i fx(z) > 0, then fx(x) cannot be an odd function.

® Density functions
@ Properties: Distributions
and Densities

S ® If fx(x) is symmetrical about = = a, such that
OE)I(l;ectations fX (a/ - SC) = fX (CL‘ —|_ CL), theIl ,LLX = Q.

) l;r;gr);a:;lres of expectation

ettt ® The expectation operator is linear:

Multiple Random Variables

ElaX(()+p]l=aux +5

Estimation Theory

MonteCarlo

® IfY(() =g{X (¢)}is a RV obtained by transforming X ()

Passive Target Localisation

through a suitable function, the expectation of Y (() is:

EY(O] 2E (X (O} = [ () fx(x)ds

N

- p. 41/120



Aims and Objectives

Moments

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Recall that mean and variance can be defined as:

E[X (¢)] = pix = / v fx(z) da

R

var [X (¢)] = 0% = /Ra:? fx(z)dr — p5x = E [X*(Q)] —E* [X (¢)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X (()], m € {1, 2} are known.
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Moments

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Recall that mean and variance can be defined as:

E[X (¢)] = pix = / v fx(z) da

R

var [X (¢)] = 0% = /Ra:? fx(z)dr — p5x = E [X*(Q)] —E* [X (¢)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [ X (()], m € {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X ({): the m-th moment of X ({) is given by:

o 2 E[X7(0)] = / 7™ fx(a) do

Note, of course, that in general: E [ X" ({)] # E™ [X (()].
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Two important and commonly used higher-order statistics that

are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a

distribution. It is a normalised third-order central moment:

X —
ch?) AR { (C;X HX

and is a dimensionless quantity.

’ _ 1 »
o3 X

Negative Skew

Positive Skew
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

(3 X (¢) — px : I
mg()éE{ - :gvy

and is a dimensionless quantity.

The skewness is:

(<0 if the density leans or stretches out towards the left
/Z:g?) =<0 if the density is symmetric about u x
| > 0 if the density leans or stretches out towards the right
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Kurtosis measures relative flatness or peakedness of a distribution

about its mean value.
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Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition
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® Kolmogorov’s Axioms

® Density functions
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and Densities
® Common Continuous RVs

@ Probability transformation

rule
@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

/%(4) A

x =

i

X(C) — KX

D¢

}4 P

1
ot

(4) _
X

3
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Aims and Objectives

Higher-order statistics

Probability Theory

Scalar Random Variables

® Definition

@ Distribution functions

® Kolmogorov’s Axioms

® Density functions

@ Properties: Distributions

and Densities
® Common Continuous RVs

@ Probability transformation
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@ Expectations

® Properties of expectation

operator
® Moments

@ Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

Kurtosis measures relative flatness or peakedness of a distribution

about its mean value.

It is defined based on a normalised fourth-central moment:

~(4) a

D¢

X () — 4 1
RS AR { (C) MX} —3:—47§?)_3

0x

This measure is relative with respect to a normal distribution,

which has the property ~
kurtosis.

(4)
X

= 30%, therefore having zero
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Multiple Random Variables
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Aims and Objectives

Abstract

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

® Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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Aims and Objectives

Abstract

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

® Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Note that each element of a random vector is not necessarily

generated independently from a separate experiment.
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Aims and Objectives

Abstract

Probability Theory

Scalar Random Variables

Multiple Random Variables

@ Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

® Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Note that each element of a random vector is not necessarily

generated independently from a separate experiment.

® Random vectors also lead to the notion of the relationship
between the random elements.
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@ Abstract
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Functions
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@ Statistical Description

@ Probability Transformation
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® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random

vector, or vector RV.

® This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

® Note that each element of a random vector is not necessarily

generated independently from a separate experiment.

® Random vectors also lead to the notion of the relationship
between the random elements.

® This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.
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A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N = {1,..., N}, is denoted by

the column-vector:

X (¢) = [X1(¢)

X5(¢)

Xn(¢)

T
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® Abstract
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® Distribution and Density
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@ Statistical Description

@ Probability Transformation
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@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N = {1,..., N}, is denoted by
the column-vector:

T

X (€)= |X1(¢) Xa2(¢) -+ Xn(Q)

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R .
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® Abstract
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@ Statistical Description

@ Probability Transformation
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@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

A real-valued random vector X ({) containing N real-valued RVs,

each denoted by X,,(¢) forn e N = {1,..., N}, is denoted by

the column-vector:

X (¢) = [X1(¢)

X5(¢)

Xn(¢)

T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R .

Denote a specific value for a random vector as:

Then the notation X () < x is equivalent to the event

X = |:.I‘1 i)

{(X,¢) <z, neNL

LN

T
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The joint cdf completely characterises a random vector, and is

defined by:

Fx (x) 2 Pr({X,(¢) < 2, n € N}) = Pr (X ()

<X

)
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Density Function

Estimation Theory
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Passive Target Localisation

The joint cdf completely characterises a random vector, and is

defined by:

Fx (%) 2 Pr({Xn(¢) < ny n € N}) = Pr(X () < %)

A random vector can also be characterised by its joint pdf,

which is defined by

fx (%)

Pr ({zn, < Xn(¢) < zp + Az, n € N})

lim
Ax—0

o 0

B 8371 8332

0

837]\7

Axy - Az

FX (X)
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® Abstract
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@ Statistical Description

@ Probability Transformation
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® Polar Transformation

® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The joint cdf completely characterises a random vector, and is

defined by:

Fx (%) 2 Pr({Xn(¢) < ny n € N}) = Pr(X () < %)

A random vector can also be characterised by its joint pdf,

which is defined by

fx (%)

Pr ({zn, < Xn(¢) < zp + Az, n € N})

= lim
Ax—0

o 0

B 8371 8332

Hence, it follows:

Fex) = [ o [ () doweedos= [ fx(v)dv
[ /.

0

837]\7

Axy - Az

FX (X)
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Distribution and Density Functions

® Properties of joint-cdf:

Aims and Objectives

Probability Theory

0<Fx(x)<1l, lim Fx(x)=0, lim Fx(x)=1

Scalar Random Variables X—>— 00 X— 00

Multiple Random Variables

® Abstract
® Definition of Random

Fx (x) is a monotonically increasing function of x:

Vectors
® Distribution and Density

Functions .
@ Marginal Density Function FX (a) < FX (b) ]_f a < b
® Independence - -
@ Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation
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® Multivariate Gaussian
Density Function
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Passive Target Localisation

® Properties of joint-cdf:

lim FX (X)

X—— 00

0,

lim FX (X)

X— 00

Fx (x) is a monotonically increasing function of x:

Fx (a) < Fx (b)

® Properties of joint-pdfs:

if a<b

fx (x) >0, [wfx(x)dx:l

1
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Distribution and Density Functions

Probability Theory
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Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

® Independence
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@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

® Properties of joint-cdf:

lim FX (X) — O,

X—— 00

lim FX (X) =1

X— 00
Fx (x) is a monotonically increasing function of x:

Fx(a)SFx(b) if aéb

® Properties of joint-pdfs:

fx (x) >0, [wfx(x)dx:l

® Probability of arbitrary events; note that

Pr(x; < X (() < x2) # Fx (x2) — Fx (x1) = /X2 fx (v)dv
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Distribution and Density Functions

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

® Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(() which has two elements and therefore two
random variables given by X (() and Y (({) is given by:

lz+3y) 0<z,y<1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fz (z).
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® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory
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Passive Target Localisation

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a

random vector Z(() which has two elements and therefore two

random variables given by X (() and Y (({) is given by:

fz (z) =

lz+3y) 0<z,y<1
0 otherwise

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. First note that the pdf integrates to unity since:

/::fz(z) dz:/olfolé(:c—l—i%y)dxdy:/ol

1

2

|

1
—0F

2

2+ Sxy]

1

0

dy

[]
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
Alms and Objecives random vector Z(() which has two elements and therefore two

probability Theory random variables given by X (() and Y (({) is given by:

Scalar Random Variables

Dfli]t;g:aiandomVariables fZ (Z) _ %(CB + Sy) O0<z,y<l

® Definition of Random O Othe I'WiS e

Vectors
® Distribution and Density

Functions

® Marginal Densiy Funcrion Calculate the joint-cumulative distribution function, Fy (z).

® Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule | SOLUTION. First note that the pdf integrates to unity since:

@ Polar Transformation

® Auxiliary Variables

@ Multivariate Gaussian
Density Function

1
. 1171
Estimation Theory / fz dZ - / / .’L‘ _|_ Sy d:I; dy _ _ [_sz _|_ Sxy] dy
MonteCarlo O 2 2 0
1
Passive Target Localisation y 3 y 2 ]. 3
— [ = dy = R S+t =1
/04+2yy [4+4]0 171
L]
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® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. The pdf is shown here:

PDF

xz+3y) 0<z,y<l1
0 otherwise

Non-zero
region

Region of support for pdf.

|
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Density Function

Estimation Theory
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Passive Target Localisation

Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. For x < 0Oory <0, fz (z) =0, and thus Fz (z) =0.
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Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. For x < 0Oory <0, fz (z) =0, and thus Fz (z) =0.

If0 <x<1land 0 < y < 1, the cdf is given by:

Fae) = [ fa@da= [ [ ]+ dodg
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Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z) =

s(x+3y) 0<z,y<1
0

otherwise

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. Forx < 0ory <0, fz(z) =0, and thus Fz (z)

If0 <x<1land 0 < y < 1, the cdf is given by:

=0.
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Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. For x < 0Oory <0, fz (z) =0, and thus Fz (z) =0.

If0 <x<1land 0 < y < 1, the cdf is given by:

- [_swa- [ [}

T T2 3zy? TY
= — d _= — o = —
/02(2+3:L‘y> Y 2<2y+ 2) , @+ 3

Finally, if x > 1 or y > 1, the upper limit of integration for the

T+ 3y) dx dy

corresponding variable becomes equal to L. - p. 47/120
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Example ( [Therrien:1992, Example 2.1, Page 20]).

fz (z)

Calculate the joint-cumulative distribution function, Fy (z).

s(x+3y) 0<z,y<1

0

otherwise

SOLUTION. Hence, in summary, it follows:

g O

Yy

4

N NS

(
(

(x + 3y)
z + 3)
1+ 3y)

r<0 or y<o0
O<z,y<l1
O<z<l1l, 1<y
O<y<1l, 1<z
1<z, y<oo
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Example ( [Therrien:1992, Example 2.1, Page 20]).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

Calculate the joint-cumulative distribution function, Fy (z).

SOLUTION. The cdf is plotted here:

A plot of the cumulative distribufion function.

|
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The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.
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The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the /N-dimensional random vector X (¢),
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The joint pdf characterises the random vector; the so-called

marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the /N-dimensional random vector X (¢),

Now define a M-dimensional random vector, Xy ((), that

contains the M random variables which are components of X ()

and indexed by the elements of k. In other-words, if

then Xy(¢) =

- p. 48/120



Marginal Density Function

The marginal pdf is then given by:

Aims and Objectives

Scalar Random Variables

.

o > ~
Probability Theory ka (Xk ) — o o / fX (X) dx —k

Multiple Random Variables N — M il’ltegrals
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@ Statistical Description
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Marginal Density Function

The marginal pdf is then given by:

Aims and Objectives

Scalar Random Variables

o > ~
Probability Theory ka (Xk ) — / o o / fX (X) dx —k
e decy

Multiple Random Variables N — M il’ltegrals
® Abstract

® Definition of Random

Vectors A special case is the marginal pdf describing the individual RV

® Distribution and Density

Functions
® Marginal Density Function X . :
@ Independence J
@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation '® '®
Rule
@ Polar Transformation f (x ) — 5 0 0 f (X) daj 50 G daj g daj 5 e . e d:I;
® Auxiliary Variables X J J X 1 J— 1 J + 1 N
® Multivariate Gaussian — 0 — Og

] 5 |
Density Function ~~

N — 1 integrals

Estimation Theory

MonteCarlo

Passive Target Localisation
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The marginal pdf is then given by:

Pl = [ [ e dx

N — M integrals

A special case is the marginal pdf describing the individual RV

le

Marginal pdfs will become particular useful when dealing with
Bayesian parameter estimation later in the course.

fXj (:Cj)

\

/ fX (X) dl‘l °°°d£17j_1d37j_|_1 dLEN

~N"

N — 1 integrals
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Example (Marginalisation). The joint-pdf of a random vector Z(()

which has two elements and therefore two random variables
given by X (¢) and Y (() is given by:

s(z+3y) 0<z,y<1
0 otherwise

fz (z) =

Calculate the marginal-pdfs, fx (x) and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).
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Example (Marginalisation). The joint-pdf of a random vector Z(()
which has two elements and therefore two random variables

given by X (¢) and Y (() is given by:

fz (z) = 0

Calculate the marginal-pdfs, fx (x) and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).

SOLUTION. By definition:

fx (z) =

fy (y) =

R

R

Hz+3y) 0<mzy<l

otherwise

fz (z) dy

fz (Z) dx

-

—J
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Example (Marginalisation).

fz (z) =

Calculate the marginal-pdfs, fx (z) and fy (y), and their

s(x+3y) 0<z,y<1

0

otherwise

corresponding marginal-cdfs, F'x (z) and Fy (y).

SOLUTION. Taking fx (x), then:

fx ()

Lz +3y)dy 0<z<1

0

otherwise
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Marginal Density Function

Example (Marginalisation).

Aims and Objectives 1
S5 +3 0<z, y<l
Probability Theory fZ (Z) — 2 ( y) — ) y —

0 otherwise

Scalar Random Variables

Multiple Random Variables

o Abstrac Calculate the marginal-pdfs, fx (z) and fy (y), and their

S corresponding marginal-cdfs, F'x (z) and Fy (y).

® Distribution and Density

Functions
® Marginal Density Function

@ Independence .

® Conditionals and Bayes’s S O LUTI O N . Taklng fX (aj) 5 then :
@ Statistical Description

@ Probability Transformation

Rule
Lot Lfy@+3y)dy 0<z<1
® Multivariate Gaussian f X ('CC ) — .
Density Function O Othe rW].S e

Estimation Theory

which after a simple integration gives:

MonteCarlo

Passive Target Localisation

Le+3) 0<a<
0 otherwise

fx (z) =

—
L]
- p. 48/120
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Example (Marginalisation).

fz (z) = 0

s(x+3y) 0<z,y<1

otherwise

Calculate the marginal-pdfs, fx (z) and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).

SOLUTION. The cdf, Fx (), is thus given by:

Fx(x):/_xoofx(u) du = <

x <0
(u+%)du 0<zx<1
(u—|—%)du x> 1
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Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Example (Marginalisation).

fz (z) =

s(x+3y) 0<z,y<1

0

otherwise

Calculate the marginal-pdfs, fx (z) and fy (y), and their
corresponding marginal-cdfs, F'x (z) and Fy (y).

SOLUTION. The cdf, Fx (), is thus given by:

. 0
FX(:I:):/ fx (u) du= ¢ %
S "

2

FX (SC)

\

-

N

—IErlS/lZO



Marginal Density Function

Example (Marginalisation).

Aims and Objectives

“ fn(z) = lz+3y) 0<z,y<1

0 otherwise

Scalar Random Variables

Multiple Random Variables

o Abstrac Calculate the marginal-pdfs, fx (z) and fy (y), and their

S corresponding marginal-cdfs, F'x (z) and Fy (y).
® Distribution and Density

Functions
® Marginal Density Function

@ Independence . . .
Ot st SOLUTION. Similarly, it can be shown that:
@ Statistical Description
@ Probability Transiormation
Rule

Polar Transformation 1 1
: Auxiliary Variablets fY (y) L § ( § —|_ Sy) O S y S ].
® Multivariate Gaussian — .
Density Function O Othe I'WIS e

Estimation Theory

and

MonteCarlo

Passive Target Localisation 4

(1+3y) 0<y<1

B>
).<
S
Ny
N——"
|
/"
— e O
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Aims and Objectives

Marginal Density Function

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Example (Marginalisation).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

SOLUTION. The marginal-pdfs and cdfs are shown below.

Marginal PDF, £, (x) Marginal CDF, F, (x)

1.4 1
12}
0.8}
1 L
_ | 06}
. 08 >
_/>< %
! L
0.6 0.4
0.4}
0.2
0.2
0 : 0 : :
05 0 05 1 15 05 0 05 1

15

The marginal-pd"f, fx (x), and cdf, Fx (x), for the RV, X (¢).
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Aims and Objectives

Marginal Density Function

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
® Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Example (Marginalisation).

xz+3y) 0<z,y<l1
0 otherwise

fz (z) =

SOLUTION. The marginal-pdfs and cdfs are shown below.

Marginal PDF, t (y) Marginal CDF, F, (y)

2 1
0.8f
15}
_ 06}
> )
> 4 ke
0.4
0.5¢
0.2
0 - 0 - -
-0.5 0 0.5 1 15  -05 0 0.5 1

15

The marginal-pc‘l'f, fy (y), and cdf, Fy (y), for the RV, Y (¢).
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Aims and Objectives

Independence

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Two random variables, X;(¢) and X5(() are independent if the
events {X1(¢) <z} and {X2(() < x5} are jointly independent;
that is, the events do not influence one another, and

Pr(X1(¢) < z1, X2(¢) < x2) = Pr(X1(¢) < z1) Pr(Xa(¢) < z2)
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Aims and Objectives

Independence

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Two random variables, X;(¢) and X5(() are independent if the
events {X1(¢) <z} and {X2(() < x5} are jointly independent;

that is, the events do not influence one another, and

Pr(X1(¢) < z1, X2(¢) < x2) = Pr(X1(¢) < z1) Pr(Xa(¢) < z2)

This then implies that

FXl,XQ (:C17 $2) — FXl (:Cl) FX2 ($2)

fx,x, (T1, 22) = fx, (z1) fx, (22)
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Aims and Objectives

Conditionals and Bayes’s

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random

vector Y ((), given the random vector X (().
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Aims and Objectives

Conditionals and Bayes’s

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y ((), given the random vector X (().

The conditional pdf of Y ({) given X (() is defined as:

L fxy (x,y)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion

Aims and Objectives of conditional probabilities; what is the probability of a random

Probabiliy Theory vector Y ((), given the random vector X (().

Scalar Random Variables

T R—— The conditional pdf of Y ({) given X (() is defined as:

® Abstract

® Definition of Random
Vectors

@ Distribution and Density . f XY (X7 y)
Functions f Y | X y X _

@ Marginal Density Function fX (X)

Independence

: Conc?itionals and Bayes’s

o ion If the random vectors X (¢) and Y ({) are independent, then the
Rule

o Poar Transformation conditional pdf must be identical to the unconditional pdf:

A fyix (y| x) = fy (y)- Hence, it follows that:

Density Function

Eximaton Theory fxy (x,y) = fx (%) fx (¥)

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Conditionals and Bayes’s

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Since

fxy (x,y) = Jy|x (¥ ] x) fx (x) = JX[Y (x| y) fy (y) = fyx (¥, x)

it follows

fX|Y (x]y)=

Frix (v x) fx (%)

fr (y)
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Aims and Objectives

Conditionals and Bayes’s

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

® Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Since

fxy (x,y) = Jy|x (¥ ] x) fx (x) = JX[Y (x| y) fy (y) = fyx (¥, x)

it follows

fX|Y (x]y)=

frix (¥ ] x) fx (x)
fr (y)

Since fy (y) can be expressed as:

fy (v) = / fxy (x, y) dx = / Fyx (¥ ] %) fx (%) dx

then it follows

fX|Y(X| y)

'

o yx (v x) fx (%)

B Je fyix (v ] x) fx (x) dx
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Pl Statistical averages are more manageable, but less of a complete

Aims and Objectives description of random vectors.

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Statistical averages are more manageable, but less of a complete

description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Statistical averages are more manageable, but less of a complete

description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

However, it is important to understand that multiple RVs leads to

the notion of measuring their interaction or dependence. This
concept is useful in abstract, but also when dealing with
stochastic processes or time-series.
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Mean vector The mean vector is the first-moment of the random
vector, and is given by:
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Mean vector The mean vector is the first-moment of the random

vector, and is given by:

px =E[X(()] =

Correlation Matrix The second-order moments of the random

E [ X1(¢)]

E [ Xn(0)]

X4

HX N

vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

Rx £E [X () X" (¢)] =

XX,

"X N Xy

X, Xn

FXnXn
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Correlation Matrix The diagonal terms
TXiXiéE |XZ(C)|2 ) iE{l,...,N}

are the second-order moments of each of the RVs, X;(().
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Statistical Description

Correlation Matrix The diagonal terms

Aims and Objectives

Probability Theory TX, X, ey K |:|X’L(C)|2:| , 1 E {17 oo N}

Scalar Random Variables

Muliple Random Varables are the second-order moments of each of the RVs, X;(().

® Abstract
® Definition of Random
Vectors

@ Distribution and Density The Off_diagonal te rms

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s yAN * * 0 .

@ Statistical Description T X . X . — E |:X'L (C)_X S (C)] — T X R X 9 ,I/ % ]
. . 1<*7 J i 7

@ Probability Transformation

Rule
® Polar Transformation

o Auiary Variables measure the correlation, or statistical similarity between the

@ Multivariate Gaussian

Density Function RVS XZ (C) aIld Xj (C) .

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Correlation Matrix The diagonal terms

are the second-order moments of each of the RVs, X;(().

rx.x, 2 E [|XZ-(<)|2} L de{l,... N}

The off-diagonal terms

rx.x;, =B [X;(Q)X}

J

Q)] =rk,x,» 1#7J

measure the correlation, or statistical similarity between the
RVs X;(¢) and X,(().

If the X;(¢) and X;(() are orthogonal then their correlation

IS zero:
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Covariance Matrix The autocovariance matrix is defined by:

VX1X1 oYX XN

_’VXNX1 T /YXNXN_

Example (Valid correlation matrix). Determine whether the
following is a valid correlation matrix:

0 1
R+v =
R R

SOLUTION. This is not a valid correlation matrix as it is not
symmetric, which is a requirement of a valid correlation

matrix. In otherwords, R% # R x.
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Covariance Matrix The autocovariance matrix is defined by:

The diagonal terms

Tx 20k, =E [1X(0) - px.l?|, i€{1,..., N}

VX1X1

_’VXNX1

are the variances of each of the RVs, X;(().

Example (Valid correlation matrix). Determine whether the

following is a valid correlation matrix:

a0 1]

TX1 XN

/YXNXN_

2 3

bt
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Statistical Description

Covariance Matrix The off-diagonal terms

Aims and Objectives

Probability Theory

Scalar Random Variables

T 2 [(XG(0) - ax) (X500 — px,)]

* * . .
1\211;1:;116 Rtandom Variables = TXZ )(‘7 - ILI/X% ILI/XJ — /YXJ X’i’ 1 # j
® Definition of Random
o Doty measure the covariance X;(¢) and X, (().
Functions

@ Marginal Density Function
@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

 Probabiliy Transformation Example (Valid correlation matrix). Determine whether the
POV following is a valid correlation matrix:

@ Multivariate Gaussian
Density Function

Estimation Theory O 1
X p—
MonteCarlo 2 3

Passive Target Localisation

SOLUTION. This is not a valid correlation matrix as it is not
symmetric, which is a requirement of a valid correlation

| mat]_:jx IR gtheﬂ/\rnrﬁlc R /R
) L"UL“U, —.-‘JA. / —.-‘JA.
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Statistical Description

Covariance Matrix The off-diagonal terms

Aims and Objectives

Probability Theory

Scalar Random Variables

T 2 [(XG(0) - ax) (X500 — px,)]

* * . .
1\211;1:;116 Rtandom Variables = TXZ )(‘7 - ILI/X% ILI/XJ — /YXJ X’i’ 1 # j
® Definition of Random
o Doty measure the covariance X;(¢) and X, (().
Functions

@ Marginal Density Function
@ Independence
@ Conditionals and Bayes’s

o sutistal Deeripion It should also be noticed that the covariance and correlation
@ Probability Transtormation . . . . . . . .

Jue matrices are positive semidefinite; that is, they satisfy the

@ Auxiliary Variables I- e 1 ati OIl S :

@ Multivariate Gaussian
Density Function

Estimation Theory

al’ Rxa >0

MonteCarlo

all I'xa >0

Passive Target Localisation

for any complex vector a.

Example (Valid correlation matrix). Determine whether the P 5120



Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Covariance Matrix Theorem (Positive semi-definiteness of ¢ orrelation matrix). PRC
There are various methods to demonstrate this, but one is as
follows. Consider the sum of RVs:

Y (Q) =) an X, (¢)=a"X ()

The variance of Y (¢) must, by definition, be positive, as must
its second moment. Considering the second moment, then:

E[Y2(Q)] =E[a” X ()X ()" a

— a"E {X(C)X(C)T}a:aTRXazO

Example (Valid correlation matrix). Determine whether the
following is a valid correlation matrix:

-
U

) D)
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The autocorrelation and autocovariance matrices are related,

and it can easily be seen that:

Tx 2 |[X(¢) - px] [X (Q) — px]™| = Bx — pxf

In fact, if ux = 0, then I'x = Rx.

If the random variables X;(¢) and X,(¢) are independent, then
they are also uncorrelated since:

rX:;X; = K [XZ(C)

X;(¢
=

)"l =
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The autocorrelation and autocovariance matrices are related,

and it can easily be seen that:

Tx 2 |[X(¢) - px] [X (Q) — px]™| = Bx — pxf

In fact, if ux = 0, then I'x = Rx.

If the random variables X;(¢) and X,(¢) are independent, then
they are also uncorrelated since:

rX:;X; = K [XZ(C)

X;(¢
=

)"l =

0.¢

E[X;(¢)E |
x. =0

X

J

Q)]

Note, however, that uncorrelatedness does not imply
independence, unless the RVs are jointly-Gaussian.
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Aims and Objectives

Statistical Description

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Cross-correlation is defined as

Rxv

A

E [X () YH(Q)] =

- p. 51/120




Statistical Description

Cross-correlation is defined as

Aims and Objectives

Probability Theory —

Scalar Random Variables

E[X1(OY Q)] -+ E[X1(¢)Y5(<)]
Rxy = E [X(¢) YH(C)} = : ' :

Multiple Random Variables

E[Xn(QOYF(C)] -+ E[XnQ)Y(0)]

Vectors L
® Distribution and Density

Functions
@ Marginal Density Function

o independence Cross-covariance is defined as
@ Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation
Rule H
@ Polar Transformation JAN
® Auxiliary Variables FXY — E {X (C) o MX} {Y (C) o MY} :|
® Multivariate Gaussian
Density Function

= Rxy — pxpy

Estimation Theory

MonteCarlo

Passive Target Localisation

|
|
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Statistical Description

Cross-correlation is defined as

Aims and Objectives

Probability Theory —

Scalar Random Variables

E[X1(OY Q)] -+ E[X1(¢)Y5(<)]
Rxy = E [X(¢) YH(C)} = : ' :

Multiple Random Variables

E[Xn(QOYF(C)] -+ E[XnQ)Y(0)]

Vectors L
® Distribution and Density

Functions
@ Marginal Density Function

o independence Cross-covariance is defined as
@ Conditionals and Bayes’s
@ Statistical Description
@ Probability Transformation
Rule H
@ Polar Transformation JAN
® Auxiliary Variables FXY — E {X (C) o MX} {Y (C) o MY} :|
® Multivariate Gaussian
Density Function

= Rxy — pxpy

Estimation Theory

MonteCarlo

® Uncorrelated if T'xy =0 = Rxy = puxpil.

Passive Target Localisation

® Orthogonal if Rxy = 0.

|
|
- p. 51/120




Aims and Objectives

Probability Transformation Rule

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Theorem (Probability Transformation Rule).
variables X (¢) = {X,({), n € N} are transformed to a new set

of RVs, Y (¢) = {Y,.({), n € N}, using the transformations:

Y (C)

gn (X (€)),

The set of random

nenN
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Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Theorem (Probability Transformation Rule).  The set of random
variables X (¢) = {X,({), n € N} are transformed to a new set
of RVs, Y (¢) = {Y.({), n € N'}, using the transformations:

Yn(€) = gn(X(C)), neN

Assuming M -real vector-roots of the equation y = g(x) by
{x, m € M},

y =g(x1) = =gxum)

then the joint-pdf of Y ({) in terms of (i. t. 0.) the joint-pdf of
X (¢)is:

The Jacobian is defined in the notes, but is the usual definition!
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Aims and Objectives

Polar Transformation

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Consider the transformation from the random vector

X (), Y (Q)]T to P(C) = [1(C), 8(C)]T, where

C(¢)

r(¢) = VX2(¢) + Y2(¢)
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@ Statistical Description
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Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Consider the transformation from the random vector

C(¢) = [X (), Y (O to P(¢) = [r(¢), 0(¢)]", where

r(¢) = VX2(¢) + Y2(¢)

The Jacobian is given by:

cos@ —rsinb

i

J _
() sinf rcos6

Thus, it follows that:

fre(r,0) =rfxy (r cosf, r sinf)
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- The density of a RV that is one function Z({) = g(X ({), Y (¢))

Alms and Objectives of two RVs can be determined by choosing a auxiliary variable.

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation
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Aims and Objectives

Auxiliary Variables
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Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The density of a RV that is one function Z(¢{) = g(X (¢), Y (¢))

of two RVs can be determined by choosing a auxiliary variable.

f2 () = /R o, 2

M

)dwzz

m=1

Fxt @ms Ym)

R | (ZTm, Ym)|
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Aims and Objectives

Auxiliary Variables

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

@ Auxiliary Variables
® Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The density of a RV that is one function Z(¢{) = g(X (¢), Y (¢))

of two RVs can be determined by choosing a auxiliary variable.

M

m=1

Example (Sum of two Rvs). If X (¢) and Y ({) have joint-pdf
fxv (z, y), find the pdf of the RV Z({) = aX ({) + bY () .
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Auxiliary Variables

The density of a RV that is one function Z(¢{) = g(X (¢), Y (¢))

Alms and Objectives of two RVs can be determined by choosing a auxiliary variable.

Probability Theory

Scalar Random Variables M ( )

2 : f XY \Lmy Ym
Multiple Random Variables fZ (Z) — / fW Z (w Z) dw — dw
: g:fsitrrjt:(t)n of Random R 7 m=1 R | J (:Cm ! ym ) |

Vectors
® Distribution and Density

Functions

§ eergina Densiy Funcrion Example (Sum of two Rvs). If X (¢) and Y ({) have joint-pdf

@ Independence
csasicaveion . Jxv (2, ), find the pdf of the RV Z(¢) = aX () +bY (¢) -
@ Probability Transformation

Rule
® Polar Transformation

T e SOLUTION. Use as the auxiliary variable the function
Py enenon W(() =Y (¢). The system z = ax + by, w = y has a single
Estimation Theory Solution at T = z—abw’ y — w.

MonteCarlo

Thus:

Passive Target Localisation

fz (2) = ﬁ/RfXY (Z —abw’ w) dw
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Aims and Objectives

Multivariate Gaussian Density Function

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design

Aims and Objectves and analysis of signal processing systems. A Gaussian random

Probabiliy Theory vector is characterised by a multivariate Normal or Gaussian
density function.

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

For a real random vector, this density function has the form:

Vectors
® Distribution and Density

Functions
@ Marginal Density Function 1 1

@ Independence -1

T
@ Conditionals and Bayes’s fX (X) p— T €XP —5 (X — I‘LX) FX (X — Mx)

@ Statistical Description (27_‘_) % | I1X | D)

@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables

o Mvariate Gaussian where N is the dimension of X ({), and X (¢) has mean pux and
Density Function o .
y covariance I'x. It is often denoted as:

Estimation Theory

MonteCarlo fX (X) = N (X ‘ 125 FX)

Passive Target Localisation
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Aims and Objectives

Multivariate Gaussian Density Function

Probability Theory

Scalar Random Variables

Multiple Random Variables

® Abstract
® Definition of Random

Vectors
® Distribution and Density

Functions
@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s
@ Statistical Description

@ Probability Transformation

Rule
® Polar Transformation

® Auxiliary Variables
@ Multivariate Gaussian
Density Function

Estimation Theory

MonteCarlo

Passive Target Localisation

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fx (x) =N (x| px, I'x) is completely specified by its mean
px and covariance I'x.

2. If the components of X (() are mutually uncorrelated, then
they are also independent.
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector

Aims and Objectives because of its many important properties.

Probability Theory

Scalar Random Variables

1. fx (x) =N (x| px, I'x) is completely specified by its mean

px and covariance I'x.

Multiple Random Variables

® Abstract
® Definition of Random

Vectors 2. If the components of X (¢) are mutually uncorrelated, then

® Distribution and Density

Funcrions they are also independent.

@ Marginal Density Function

@ Independence

@ Conditionals and Bayes’s

@ Statistical Description 3
@ Probability Transformation

. A linear transformation of a normal random vector is also
() ;{(L)lllaer Transformation IlO rmal .

® Auxiliary Variables
@ Multivariate Gaussian

Density Funcrion This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.

Estimation Theory

MonteCarlo

Passive Target Localisation
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector

Aims and Objectives because of its many important properties.

Probability Theory

Scalar Random Variables

1. fx (x) =N (x| px, I'x) is completely specified by its mean

px and covariance I'x.

Multiple Random Variables

® Abstract
® Definition of Random

i 2. If the components of X (() are mutually uncorrelated, then
R they are also independent.

@ Independence
@ Conditionals and Bayes’s
@ Statistical Description

T ion 3. A linear transformation of a normal random vector is also

) ;{(L)lllaer Transformation IlO rmal o
® Auxiliary Variables
eyt This is a particularly useful, since the output of a linear system

subject to a Gaussian input is also Gaussian.

Estimation Theory

MonteCarlo

4. If X (¢) and Y (() are jointly-Gaussian, then so are their

Passive Target Localisation

marginal-distributions, and their conditional-distributions.
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Aims and Objectives

Introduction

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction

® Properties of Estimators

@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood

Estimation
@ Properties of the

maximum-likelihood

estimate (MLE)
® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

® Linear Least Squares

MonteCarlo

™ -

® Thus far, have assumed that either the pdf or statistical values,

such as mean, covariance, or higher order statistics,
associated with a problem are fully known.
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Aims and Objectives

Introduction

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction

® Properties of Estimators

@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood

Estimation
® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

® Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

® In most practical applications, this is the exception rather than
the rule.

- p. 57/120



Aims and Objectives

Introduction

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction

® Properties of Estimators

@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood

Estimation
® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

® Thus far, have assumed that either the pdf or statistical values,

such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

® In most practical applications, this is the exception rather than

the rule.

® The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.
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Aims and Objectives

Introduction

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction

® Properties of Estimators

@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood

Estimation
® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

® Thus far, have assumed that either the pdf or statistical values,

such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

® In most practical applications, this is the exception rather than

the rule.

® The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.

® This handout will consider the problem of Parameter

Estimation. This refers to the estimation of a parameter that

is fixed, but is unknown.
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Properties of Estimators

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction

@ Properties of Estimators

@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood

Estimation
® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

Consider the set of N observations, X = {z[n]}) ~', from a
random experiment; suppose they are used to estimate a
parameter 6 of the process using some function:

0=0[x]=0[{z[n]

N-1
0

}
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@ Introduction

® Properties of Estimators
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@ Variance of estimator
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® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood
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noise
® MLE for Transformed
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@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

Consider the set of N observations, X = {z[n]}) ~', from a
random experiment; suppose they are used to estimate a
parameter 6 of the process using some function:

0 =0[x] =0 [{z[n]}g ']

The function 0 [X] is known as an estimator whereas the value

taken by the estimator, using a particular set of observations, is
called a point-estimate.
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@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood

Estimation
® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
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® DC Level
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Passive Target Localisation

Consider the set of N observations, X = {z[n]}) ~', from a
random experiment; suppose they are used to estimate a
parameter 6 of the process using some function:

0 =0[x] =0 [{z[n]}g ']

The function 0 [X] is known as an estimator whereas the value

taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, 0, that should be as close to the

true value of the parameter, 0, as possible.
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Properties of Estimators
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@ Introduction

® Properties of Estimators
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@ Variance of estimator
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® DC Level
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Passive Target Localisation

Consider the set of N observations, X = {z[n]}) ~', from a
random experiment; suppose they are used to estimate a
parameter 6 of the process using some function:

0 =0[x] =0 [{z[n]}g ']

The function 0 [X] is known as an estimator whereas the value

taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, 0, that should be as close to the

true value of the parameter, 0, as possible.

Since 6 is a function of a number of particular realisations of a

random outcome (or experiment), then it is itself a RV, and thus

has a mean and variance.
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Aims and Objectives
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® Properties of Estimators

@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood
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® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

The bias of an estimator 6 of a parameter 6 is defined as:

A

0

— 0
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Bias of estimator

The bias of an estimator 6 of a parameter 6 is defined as:

Aims and Objectives

Probabily Theory B(A) L E [é} — 9

Scalar Random Variables

Multiple Random Variables If 0 is large, then a small deviation would give what would

Estimation Theory appear to be a large bias. Thus, the normalised bias is often

@ Introduction .

® Properties of Estimators U. S e d ].nS te ad :
@ Bias of estimator

@ Variance of estimator

® Mean square error

A
® Cramer-Rao Lower Bound A E 9
® Consistency of an Estimator ~ N B ( )
@ Maximum Likelihood € b ( 9 ) —

Estimation 9 H

® Properties of the MLE
® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

- p. 59/120



Bias of estimator

The bias of an estimator 6 of a parameter 6 is defined as:

Aims and Objectives

Probabily Theory B(A) L E [é} — 9

Scalar Random Variables

it eston Vsl If 0 is large, then a small deviation would give what would
Estimation Theory appear to be a large bias. Thus, the normalised bias is often
@ Introduction .

® Properties of Estimators U_SEd lnStead:

® Bias of estimator
@ Variance of estimator
@ Mean square error

® Cramer-Rao Lower Bound A E 9
® Consistency of an Estimator ~ N B ( )
@ Maximum Likelihood Eb (9) _- Y = — — ]. 3 9 % O

Estimation 9
® Properties of the MLE

® DC Level in white Gaussian
noise

O BILE for Wit Example (Biasness of sample mean estimator). Is the Sample mean,

Parameter
@ Least Squares

~ N—-1 .
® The Least Squares /,l/x = % ZTLIO QZ‘[’I’L] blased?
Approach
(] DPC)IpLevel
@ Linear Least Squares

MonteGatlo SOLUTION. No, since

A N—1 N—1 N
s B[] = E [ £ SN aln]| = £ SN E [nln]] = 28 = iy
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® MLE for Transformed
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Approach
® DC Level
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MonteCarlo

Passive Target Localisation

Variance of estimator

The variance of the estimator 6 is defined by:

D N

x|

A

0—E

|

A

6

|

|

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may

result in an increase in bias.
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The variance of the estimator 6 is defined by:

<

&

'—1
—

<S>
L

I

Q
D N

éE[é—EP}

|

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may

result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.
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Variance of estimator

The variance of the estimator 6 is defined by:

<

&

'—1
—

<S>
L

I

Q
D N

éE[é—EP}

|

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may

result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.

The normalised standard deviation is defined by:

A Tp
r= —, 9
€ 7 + 0
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@ Introduction
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® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood
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noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

Minimising estimator variance can increase bias. A compromise
criterion is the mean-squared error (MSE) of the estimator,
which is given by:

A

2 ~
f —9‘ ] — o2 + |B()/?

MSE(0) = E [
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Passive Target Localisation

Minimising estimator variance can increase bias. A compromise

criterion is the mean-squared error (MSE) of the estimator,
which is given by:

" " 2 "
MSE(d) = E [ h— 9‘ ] = 02 + |B(6)|?

The estimator Oysg = Oyisy |X| which minimises MSE(HA) is known

as the minimum mean-square error:

OrisE = arg,; min MSE(0)
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Minimising estimator variance can increase bias. A compromise

criterion is the mean-squared error (MSE) of the estimator,
which is given by:

MSE(0) = E [

. 2 A
§ —9‘ ] — o2 + |B()/?

The estimator Oysg = Oyisy |X| which minimises MSE(HA) is known

as the minimum mean-square error:
OrvsE = argy; min MSE(0)

This measures the average mean squared deviation of the
estimator from its true value.

Unfortunately, adoption of this natural criterion leads to

unrealisable estimators; ones which cannot be written solely as a

function of the data.
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Passive Target Localisation

If the MSE can be minimised when the bias is zero, then clearly

the variance is also minimised. Such estimators are called
minimum variance unbiased estimators (MVUEs).
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Passive Target Localisation

If the MSE can be minimised when the bias is zero, then clearly

the variance is also minimised. Such estimators are called
MVUEs.

MVUE possess the important property that they attain a
minimum bound on the variance of the estimator, called the
Cramér-Rao lower-bound (CRLB).
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Theorem (CRLB - scalar parameter).

X(C) — [%[O,C], T x[N_ 17CHT and fX (Xl (9) is tthOiIlt

If

density of X(() which depends on fixed but unknown parameter

0, then the variance of the estimator 6 is bounded by:

T

1

Oln fx(x|6)

00

)]
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Theorem (CRLB - scalar parameter).

X(C) — [%[O,C], T x[N_ 17CHT and fX (Xl (9) is tthOiIlt

If

density of X(() which depends on fixed but unknown parameter

0, then the variance of the estimator 6 is bounded by:

1

E

[(alnfx<x|0>

)

Alternatively, it may also be expressed as:

|

A

0

-

1

|

0% 1n fx (x|0)
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Theorem (CRLB - scalar parameter). If

X(C) — [%[O,C], T x[N_ 17CHT and fX (Xl (9) is tthOiIlt

density of X(() which depends on fixed but unknown parameter

0, then the variance of the estimator 6 is bounded by:

A 1
var [‘9} > o [(alnfgéXW))Q]

Alternatively, it may also be expressed as:

}2_ 92 In fx (x| 6)
E | sl

The function In fx (x| 0) is called the log-likelihood of 6.
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Theorem (CRLB - scalar parameter).

X(C) — [%[O,C], T x[N_ 17CHT and fX (Xl (9) is tthOiIlt

If

density of X(() which depends on fixed but unknown parameter

0, then the variance of the estimator 6 is bounded by:

1

T

alnfx<x|0>)2]
00

Alternatively, it may also be expressed as:

Furthermore, an unbiased estimator may be found that attains

{82 lnfx(x|9)}
002

the bound for all @ if, and only if, (iff)

Oln fx (x| 0)

— 1(6) (é—e)

ov
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Consistency of an Estimator

Probability Theory

Scalar Random Variables
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MonteCarlo

Passive Target Localisation

If the MSSE of the estimator,
MSE(f) = [|9 ] } — o2 + |B()|?

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.
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If the MSSE of the estimator,
MSE(f) = [|9 ] } — o2 + |B()|?

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around 6,
and as N — oo, it will become an impulse at 6.
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If the MSSE of the estimator,
MSE(f) = [|9 ] } — o2 + |B()|?

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around 6,
and as N — oo, it will become an impulse at 6.

This is a very important and desirable property, and such an
estimator is called a consistent estimator.
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Aims and Objectives

Maximum Likelihood Estimation

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

@ Introduction

® Properties of Estimators

@ Bias of estimator

@ Variance of estimator

® Mean square error

® Cramer-Rao Lower Bound
® Consistency of an Estimator
@ Maximum Likelihood
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® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

The joint density of the RVs X(¢) = {z[n, (]}s ', which depends

on fixed but unknown parameter 0, is fx (x| 0).
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Approach
® DC Level

@ Linear Least Squares

MonteCarlo

Passive Target Localisation

The joint density of the RVs X(¢) = {z[n, (]}s ', which depends
on fixed but unknown parameter 0, is fx (x| 0).

This same quantity, viewed as a function of the parameter 0
when a particular set of observations, x is given, is known as the
likelihood function.
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Passive Target Localisation

The joint density of the RVs X(¢) = {z[n, (]}s ', which depends

on fixed but unknown parameter 0, is fx (x| 0).

This same quantity, viewed as a function of the parameter 0

when a particular set of observations, x is given, is known as the

likelihood function.

The maximum-likelihood estimate (MLE) of the parameter 6,

denoted by éml, is defined as that value of 8 that maximises

fx (x]0).
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Passive Target Localisation

The joint density of the RVs X(¢) = {z[n, (]}s ', which depends

on fixed but unknown parameter 0, is fx (x| 0).

This same quantity, viewed as a function of the parameter 0

when a particular set of observations, x is given, is known as the

likelihood function.

The maximum-likelihood estimate (MLE) of the parameter 6,

denoted by éml, is defined as that value of 8 that maximises

fx (%] 8).
The MLE for 6 is defined by:
0.m1(x) = arge max fx (x| 6)

Note that since 0,,,;(x) depends on the random observation
vector x, and so is itself a RV.
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1. The MLE satisfies

Vofx (x| 0)lg_g  =0px1
Voln fx (x| 8)|,_s = Opx

ml

These results assume that the MLE does not occur at a
boundary, and that in the set of stationary points of the

function, one of them corresponds to a global maximum. Note
that minimising the likelihood is equivalent to minimising the
log-likelihood, since the likelihood function is always positive,
and the logarithm is a monotonic function. It is also necessary

to verify which of the stationary points corresponds to the
global maximum.
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Passive Target Localisation

1. The MLE satisfies

Vofx (x| 0)lg_g  =0px1
Voln fx (x| 8)|,_s = Opx

ml

These results assume that the MLE does not occur at a
boundary, and that in the set of stationary points of the

function, one of them corresponds to a global maximum. Note
that minimising the likelihood is equivalent to minimising the
log-likelihood, since the likelihood function is always positive,
and the logarithm is a monotonic function. It is also necessary

to verify which of the stationary points corresponds to the
global maximum.

2. If an MVUE exists and the MLE does not occur at a boundary,

then the MLE is the MVUE.
TfX(xIQ)
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1. The MLE satisfies

Vofx (x| 0)lg_g  =0px1
Voln fx (x| 8)|,_s = Opx

ml

These results assume that the MLE does not occur at a
boundary, and that in the set of stationary points of the

function, one of them corresponds to a global maximum. Note
that minimising the likelihood is equivalent to minimising the
log-likelihood, since the likelihood function is always positive,
and the logarithm is a monotonic function. It is also necessary

to verify which of the stationary points corresponds to the
global maximum.

2. If an MVUE exists and the MLE does not occur at a boundary,

then the MLE is the MVUE.
TfX(xIQ)
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Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but

unknown signal is observed in additive white Gaussian
noise (WGN). That is,

z[n] = A+ wn]

where w[n] ~ N (0, o7)

forn e N ={0,..., N — 1}. Calculate the MLE of the unknown

signal A.
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Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

zln] = A+ w[n] where win]~ N (0, o)

forn e N ={0,..., N — 1}. Calculate the MLE of the unknown

signal A.

SOLUTION. Since this is a memoryless system, and w(n) are
independent and identically distributed (i. i. d.), then so is x|n],

and

the log-likelihood is given by:

In fx (x| A) = —g In(27m02) —

Differentiating this expression w. r. t. A

> new (z[n] = 4)°

2
207,

and Setting to Zero |
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Theorem (Invariance Property of the MLE).  The MLE of the parameter
o = g(0), where g is an r-dimensional function of the P x 1
parameter 0, and the pdf, fx (x| ) is parameterised by 8, is
given by

CAle — g(éml)

where 0, ; is the MLE of 6.
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Theorem (Invariance Property of the MLE).

o = g(0), where g is an r-dimensional function of the P x 1
parameter 0, and the pdf, fx (x| ) is parameterised by 8, is

given by

The MLE of the parameter

OAﬂTnl — g(éml)

where 0, ; is the MLE of 6.

The MLE of 0, ,,,;, is obtained by maximising fx (x| 6). If the
function g is not an invertible function, then & maximises the
modified likelihood function pr (x| a) defined as:

pT

(x| @)

max
0:aa=g(0)

fx (x| 0)
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The estimators discussed so far have attempted to find an

optimal or nearly optimal (for large data records) estimator for

example, the MVUE.
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The estimators discussed so far have attempted to find an

optimal or nearly optimal (for large data records) estimator for

example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make

good sense for many problems of interest: the principle of least

squares.
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The estimators discussed so far have attempted to find an

optimal or nearly optimal (for large data records) estimator for

example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make

good sense for many problems of interest: the principle of least

squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.
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The estimators discussed so far have attempted to find an

optimal or nearly optimal (for large data records) estimator for

example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make

good sense for many problems of interest: the principle of least

squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.

As will be seen, it turns out that the LSE can be calculated when

just the first and second moments are known, and through the
solution of linear equations.
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In the least-squares (LS) approach, it is sought to minimise the

squared difference between the given, or observed, data x[n| and

the assumed, or hidden, signal or noiseless data.
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In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x|n| and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter 6.
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In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x|n| and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some

unknown parameter 6.

The LSE of 6 chooses the value that makes s|n] closest to the

observed data x|n|, and this closeness is measured by the LS error

criterion:

N

n

1

™ (ol = sln))’

J@)=>"

0
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Approach
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Passive Target Localisation

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x|n| and the

assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some

unknown parameter 6.

The LSE of 6 chooses the value that makes s|n] closest to the

observed data x|n|, and this closeness is measured by the LS error

criterion:

The LSE is given by:

N-—-1

70)= Y (aln] — s[n])?

n=0

0,55 = arg, min J(0)
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Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x|n], is a perturbed version of an unknown
signal, s[n|, which is modelled as s|n] = A, for

n e N ={0,..., N — 1}. Calculate the LSE of the unknown
signal A.
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
Alms and Objectves observed signal, x|n], is a perturbed version of an unknown
Probabily Theory signal, s[n|, which is modelled as s|n] = A, for

e neN ={0,..., N — 1}. Calculate the LSE of the unknown
signal A.

Multiple Random Variables

Estimation Theory

@ Introduction .

o Propertis of Estmators SOLUTION. According to the LS approach, then:

@ Bias of estimator

@ Variance (t)f es:imator

® Mean square error

® Cramer-Rao Lower Bound N . 1

® Consistency of an Estimator ~ 2
aximum Likelihoo I - S

® Meximum Likelood Arpsp = arg, min J(A) where J(A) = g (x[n] — A)

® Properties of the MLE n—0

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter

o Least Sauares Differentiating w. r. t. A and setting the result to zero produces

® The Least Squares

Approach
@ DC Level

® Linear Least Squares R 1 N—-1
MonteCarlo AL SE — N E I [n]
n=0

Passive Target Localisation
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown

Aims and Objectives parameter vector @ = [0, --- , Op],

Probability Theory

Scalar Random Variables S — H 0

Multiple Random Variables

The LSE is found by minimising:

Estimation Theory

@ Introduction

® Properties of Estimators N =1l

@ Bias of estimator 2 T

@ Variance of estimator J(B) p— E |aj|:’n/] — S[n] | p— (X — He) (X —_ He)
® Mean square error

® Cramer-Rao Lower Bound n— 0

® Consistency of an Estimator

@ Maximum Likelihood

Estimation
® Properties of the MLE

® DC Level in white Gaussian

noise
® MLE for Transformed

Parameter
@ Least Squares

® The Least Squares

Approach
® DC Level

® Linear Least Squares

MonteCarlo

Passive Target Localisation
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Approach
® DC Level

® Linear Least Squares
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Passive Target Localisation

Thus, the unknown random-vector s is linear in the unknown
parameter vector 8 = [0+, -- - , Op],

s=H®O

The LSE is found by minimising:

7(0) =Y laln] - s[nlf* = (x - HO)" (x - HO)

Setting the gradient of J(@) to zero yields the LSE:

R —1
0, cp = (HTH) Hx
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@ Variance of estimator
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® Cramer-Rao Lower Bound
® Consistency of an Estimator
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® The Least Squares

Approach
® DC Level

® Linear Least Squares
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Passive Target Localisation

Thus, the unknown random-vector s is linear in the unknown

parameter vector 6 = [0y, - - - , Op],

s=H®O

The LSE is found by minimising:

N—-1

J(0) = |z[n] — s[n]|* = (x — HO)" (x — HO)

n=0

Setting the gradient of J (@) to zero yields the LSE:

R —1
0, cp = (HTH) Hx

The equations H' HO = H” x, to be solved for 6, are termed the

normal equation.
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Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory
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@ Introduction
@ Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
® Monte Carlo Numerical

Methods
® Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

P el
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® Gibbs Sampling
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® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation:

involves finding the solution to

A

0 = arg max h(6)
0coO

where h(-) is a scalar function of a multi-dimensional vector
of parameters, 6.

Typically, h(-) might represent some cost function, and it is

implicitly assumed that the optimisation cannot be calculated

explicitly.
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@ Deterministic Integration
® Monte Carlo Numerical

Methods
® Monte Carlo Integration

@ Stochastic Optimisation
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® Other Methods
® Markov chain Monte Carlo

Methods
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Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

- /@ 1(6) o,

that cannot explicitly be calculated in closed form.
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® Gibbs Sampling
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Methods
@ Deterministic Optimisation
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@ Inverse Transform Method
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Sampling
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Methods
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® Other Methods
® Markov chain Monte Carlo

Methods
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Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

7 [ s(6)de

e

that cannot explicitly be calculated in closed form.
For example, the Gaussian-error function:

tq ,
O(t) = / \/ﬂe_eT df

Again, the integral may be multi-dimensional, and in general
0 is a vector.
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Methods
@ Deterministic Optimisation

@ Deterministic Integration
® Monte Carlo Numerical

Methods
® Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation and Integration =~ Some problems involve both
integration and optimisation: a fundamental problem is the
maximisation of a marginal distribution:

A

0 = argmax/ f(0, w)dw
0co Q
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Deterministic Numerical Methods

Function h(x) = (cos 50x + sin 20x)2

—

Aims and Objectives

w
o

w

Probability Theory

N

o1
—
——

Scalar Random Variables
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=
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Estimation Theory
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Obijective function, h(x)
N
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@ Introduction
® Deterministic Numerical 0 U . . M U

Methods 0 0.2 0.4 0.6 0.8 1
@ Deterministic Optimisation |ndependent Variable, x

@ Deterministic Integration

® Monte Carlo Numerical Plot of the function A(x) = (cos 50x + sin 2Ox)2 L 0<x<1.

Methods
® Monte Carlo Integration

@ Stochastic Optimisation 0 o8 0 0 0 0 0
POV There are various deterministic solutions to the optimisation and
o Uniform Varates integration problems.
® Transformation Methods
® Inverse Transform Method
@ Acceptance-Rejection
Sampling
@ Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
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Methods
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® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Optimisation: 1. Golden-section search and Brent’s Method in one

2.

dimension;

Nelder and Mead Downhill Simplex method in
multi-dimensions;

. Gradient and Variable-Metric methods in

multi-dimensions, typically an extension of
Newton-Raphson methods.
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@ Inverse Transform Method
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Methods
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® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;
2. standard and extended Simpson’s and Trapezoidal rules;
3. refinements such as Romberg Integration.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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® Gibbs Sampling
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® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;
2. standard and extended Simpson’s and Trapezoidal rules;
3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced

abscissas at which the function is evaluated.

These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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The Nelder-Mead Downhill Simplex method simply crawls
downhill in a straightforward fashion that makes almost no
special assumptions about your function.

This can be extremely slow, but it can be robust.
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Gradient methods are typically based on the Newton-Raphson

algorithm which solves VA (6) = 0.

For a scalar function, 2 (@), of a vector of independent variables

f, a sequence 0,, is produced such that:
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Gradient methods are typically based on the Newton-Raphson
algorithm which solves VA (6) = 0.

For a scalar function, 2 (@), of a vector of independent variables
f, a sequence 0,, is produced such that:

Oni1 =0, — (VVTh(0,))  Vh(6,)

Numerous variants of Newton-Raphson-type techniques exist,
and include the steepest descent method, or the
Levenberg-Marquardt method.
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The integral

I:/:f(@)de,

where 0 is a scalar, and b > a, can be solved with the trapezoidal

rule using

where the ;s constitute an ordered partition of |a, b].

I =

1
2

N

2.

k=

1

0

 Oes — 00) (F00) + F(Brsn))
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The integral

I:/:f(@)de,

where 0 is a scalar, and b > a, can be solved with the trapezoidal

rule using

N-—-1

 Oes — 00) (F00) + F(Brsn))
k=0

.1
I==
2

where the ;s constitute an ordered partition of |a, b].

Another formula is Simpson’s rule:

i
3

fla)+4)  f(Bar—1)+2)  h(0ar) + f(b)
k=1 k=1
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in the case of equally spaced samples with 0 = 0,1 — 0.
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Monte Carlo methods are stochastic techniques, in which random

numbers are generated and use to examine some problem.
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Consider the integral,
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Consider the integral,

7= / £(6) do.
©
Defining a function 7 (@) which is non-zero and positive for all

0 € O, this integral can be expressed in the alternate form:

_ [ 1)
I= | 26 (0) de,

where the function 7(0) > 0, 8 € O is a pdf which satisfies

/@W(O) 6 = 1
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Consider the integral,

7= /@ £(6) do.

Defining a function 7 (@) which is non-zero and positive for all

0 € O, this integral can be expressed in the alternate form:

~_ [ f®)

27 () de,

o m(0)

where the function 7(0) > 0, 8 € O is a pdf which satisfies

/@W(O) 6 = 1

This may be written as an expectation:

T =E, [f

(0)
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This expectation can be estimated using the idea of the sample
expectation, and leads to the idea behind Monte Carlo
integration:

1. Sample N random variates from a density function (),
o™ ~x(0), keN={0, ..., N—1}

2. Calculate the sample average of the expectation using
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There are two distinct approaches to the Monte Carlo
optimisation of the objective function h(8):

A

0 = arg max h(0)
0co

The first method is broadly known as an exploratory approach,

while the second approach is based on a probabilistic
approximation of the objective function.
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Exploratory approach  This approach is concerned with fast

explorations of the sample space rather than working with the

objective function directly.
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Exploratory approach  This approach is concerned with fast

explorations of the sample space rather than working with the

objective function directly.

For example, maximisation can be solved by sampling a large
number, NV, of independent random variables, {0<k)}, from a

pdf 7(0), and taking the estimate:

0 ~ arg max h (9(1‘“))
{6(%)}

Typically, when no specific features regarding the function
h (0), are taken into account, 7(0) will take on a uniform
distribution over ©.
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® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Exploratory approach  This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, NV, of independent random variables, {0<k)}, from a
pdf 7(0), and taking the estimate:

Typically, when no specific features regarding the function
h (0), are taken into account, 7(0) will take on a uniform

distribution over ©.

Stochastic Approximation

0 ~ arg max h (9(1‘“))
{6(%)}

® The Monte Carlo EM algorithm
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This section discusses a variety of techniques for generating
random variables from a different distributions.
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The foundation underpinning all stochastic simulations is the

ability to generate a sequence of i. i. d. uniform random variates

over the range (0, 1].
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The foundation underpinning all stochastic simulations is the

ability to generate a sequence of i. i. d. uniform random variates

over the range (0, 1].

Random variates are pseudo or synthetic and not truly random

since they are usually generated using a recurrence of the form:

Tni1 = (ax, +0)

mod m
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Methods
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Variables
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® Transformation Methods

® Inverse Transform Method

® Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
® Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

The foundation underpinning all stochastic simulations is the

ability to generate a sequence of i. i. d. uniform random variates

over the range (0, 1].

Random variates are pseudo or synthetic and not truly random

since they are usually generated using a recurrence of the form:

Tni1 = (@x, +b) mod m

This is known as the linear congruential generator.

However, suitable values of a, b and m can be chosen such that
the random variates pass all statistical tests of randomness.
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® Markov chain Monte Carlo

Methods
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It is possible to sample from a number of extremely important
probability distributions by applying various probability
transformation methods.

Theorem (Probability transformation rule).  Denote the real roots of

y = g(x) by {z,,, n € N}, such that

y=g(r1)="-=g(zN)

PROOF. The proof is given in the handout on scalar random
variables.
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Sampling
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Methods
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® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

>

X X +ox X
A simple derivation of the inverse transform method

X (¢) and Y (¢) are RVs related by the function Y (¢) = II(X(()).

[I(¢) is monotonically increasing so that there is only one
solution to the equation y = II(z), x = II"(y).
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X

A simple derivation of the inverse transform method

fx (z) =

Now, suppose Y (¢) ~ U]y, 17 is a uniform random variable. If
[I(x) is the cdf corresponding to a desired pdf = (x), then

fX (:E) — 7T(£E),

X +0x

dH( )fY()

where = =1I1"*(y)

X

>
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Methods
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In otherwords, if

U(C) ~ Upo, 1] X(¢) = H_lU(C) ~ ()
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@ Stochastic Optimisation
® Generating Random

Variables
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Sampling
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Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

In otherwords, if
U(C) ~ U, 1, X(¢) =TT U(C) ~ 7 ()

Example (Exponential variable generation).  If X ({) ~ Exp(1), such
that 7(z) = e™" and II(x) = 1 — e~ 7, then solving for z in terms
of u=1-—e"" gives x = —log(1 — u).
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Methods
® Monte Carlo Integration
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Variables
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® Inverse Transform Method
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Sampling

® Envelope and Squeeze

Methods
@ Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

In otherwords, if
U(C) ~ U, 1, X(¢) =TT U(C) ~ 7 ()

Example (Exponential variable generation).  If X ({) ~ Exp(1), such
that 7(z) = e™" and II(x) = 1 — e~ 7, then solving for z in terms
of u=1-—e"" gives x = —log(1 — u).

Therefore, if U(C) ~ Uy, 1), then the RV from the transformation

X (¢) = —logU(() has the exponential distribution (since U(()
and 1 — U(() are both uniform).
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Methods
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For most distributions, it is often difficult or even impossible to

directly simulate using either the inverse transform or probability

transformations.
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>

Sample
variate X

Probability density

Mp(x)

T(X)

),(

On average, you would expect to have too many variates that
take on the value X by a factor of

u(X) =

Sample space

By

[E-

_ p(X)
1 (X)
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Thus, to reduce the number of variates that take on a value of X,

simply throw away a number of samples in proportion to the
amount of over sampling.
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X,

s vl Qigeacs simply throw away a number of samples in proportion to the
Probabilty Theory amount of over sampling.

Scalar Random Variables

Multiple Random Variables ]-

Estimation Theory

2

MonteCarlo
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Methods
@ Deterministic Optimisation 3

@ Deterministic Integration
® Monte Carlo Numerical

Methods
® Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
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Methods
® The Metropolis-Hastings

. Generate the random variates X ~ p(xz) and U ~ U]y 1;

. Accept X if U < P, = %;

. Otherwise, reject and return to first step.
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A problem with many sampling methods, which can make the
density 7 (x) difficult to simulate, is that the function may
require substantial computing time at each evaluation.

It is possible to reduce the algorithmic complexity by looking for

another computationally simple function, ¢ (x) which bounds
7 (z) from below.
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If X satisfies ¢ (X) < 7 (X), then it should be accepted when

m(X)

U < %, since this also satisfies U < Ok

A

Sample
variate X

Probability density
N
:él
&

X Sample space

px)

T(X)

q(»)

P ol
dlgULILILIL

® Gibbs Sampling

- p. 85/120



Aims and Objectives

Envelope and Squeeze Methods

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

@ Introduction
® Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
® Monte Carlo Numerical

Methods
® Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
Sampling

@ Envelope and Squeeze

Methods
@ Importance Sampling
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This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ~ p(x) and U ~ Ujp 1;

2. Accept X if U < ‘I()(()),

m(X) .

3. Otherwise, accept X if U < Mp(z) >

4. Otherwise, reject and return to first step.
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This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ~ p(x) and U ~ Ujp 1;

2. Accept X if U < ‘I()(()),

m(X) .

3. Otherwise, accept X if U < Mp(z) >

4. Otherwise, reject and return to first step.

By construction of a lower envelope on 7 (z), the number of
function evaluations is potentially decreased by a factor of

1

which is the probability that 7 (x) is not evaluated.
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The problem with accept-reject sampling methods is finding the

envelope functions and the constant M.
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The problem with accept-reject sampling methods is finding the
envelope functions and the constant M.

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

7= /@ £(6) do.
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The problem with accept-reject sampling methods is finding the
envelope functions and the constant M.

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

7= / £(6) do.
e
Approximate by empirical average:
1= E Nz_l]l (0("“)) where 0% ~ £(0)
N 2 e :

where [ 4 (a) is the indicator function, and is equal to one if
a € A and zero otherwise.
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Importance Sampling

Defining an easy-to-sample-from density w(8) > 0, V0 € ©:
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Defining an easy-to-sample-from density w(8) > 0, V0 € ©:

_ [ f()
S A=y

leads to an estimator based on the sample expectation;

7(0)d0 =E,

P ol
dlgULILILIL

® Gibbs Sampling

- p. 86/120



Aims and Objectives

Other Methods

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

@ Introduction
® Deterministic Numerical

Methods
@ Deterministic Optimisation

@ Deterministic Integration
® Monte Carlo Numerical

Methods
® Monte Carlo Integration

@ Stochastic Optimisation
® Generating Random

Variables
® Uniform Variates

® Transformation Methods

@ Inverse Transform Method

® Acceptance-Rejection
Sampling

® Envelope and Squeeze

Methods
® Importance Sampling

® Other Methods
® Markov chain Monte Carlo

Methods
® The Metropolis-Hastings

Include:

® representing pdfs as mixture of distributions;

® algorithms for log-concave densities, such as the adaptive
rejection sampling scheme;

® generalisations of accept-reject;
® method of composition (similar to Gibbs sampling);

® ad-hoc methods, typically based on probability

transformations and order statistics (for example, generating

Beta distributions with integer parameters).
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A Markov chain is the first generalisation of an independent
process, where each state of a Markov chain depends on the
previous state only.
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@ Other Methods
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The Metropolis-Hastings algorithm is an extremely flexible
method for producing a random sequence of samples from a
given density.

1. Generate a random sample from a proposal distribution:
Y ~g (y| X(k)).

2. Set the new random variate to be:

(1) _ Y with probability p(X %), Y)
| X% with probability 1 — p(X*), V)

where the acceptance ratio function p(x, y) is given by:

ol ) = s ) — (gﬂfv)))l,l Emm{w)gmy)

g(ylz) \g(z|y

2 A
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The Metropolis-Hastings algorithm

A

g(y|x?) m(x)
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|
° \C;:rr;:;zli;isng Random Xk) YNg ()/ | X(k)) 5

® Uniform Variates

® Transformation Methods
® Inverse Transform Method S ample Sp ac e
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Methods
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Methods
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Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, = (6g, 61, ..., 057) by
drawing successive samples from marginal densities of smaller
dimensions.
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Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, = (6g, 61, ..., 057) by
drawing successive samples from marginal densities of smaller
dimensions.

Using the probability chain rule,

n ({Qm}%:1) =T (96 | {Hm}'nj\le,m;éﬁ) n ({Hm}n]\le,m;éﬁ)

The Gibbs sampler works by drawing random variates from the

marginal densities 7 (Qg | {0m}om—1 s g) in a cyclic iterative
pattern.
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First iteration:
o ~ (01165, 65, 00, 67)

057 ~ (021 08, 65, 000, 67)

057 ~ (051 01, 6V, 000, 67)

057~ (Oar | 68, 067, 080, 057 )
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Second iteration:
9§2) R (91 951)7 Hél)’ 9511)’
952) ~ T (92 9%2)7 9:())1)’ 9511)’

9:(32) ~ T (93 952)7 952)7 91(11)7

057~ (0u] 68, 68, 00, .

037
037
037)

9@ )
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k -+ 1-th iteration:

At the end of the j-th iteration, the samples Héj ), 9%‘7 )L 9%2)
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Aims and Objectives

Introduction

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
® Spherical Interpolation

Estimator
® Other Approaches

Receiver
(Mic Array)

Source localisation and BSS.

® Hyperbolic Least Squares

Error Function
® Linear Intersection Method
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Aims and Objectives

Introduction

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

® ASL Methodology

® Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

® Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
® Spherical Interpolation
Estimator
| ® Other Approaches

Walls
<4— and other
obstacles

Sound
Source 3

Observer

Source 2 Source 1

Humans turn their head in the direction of interest in order
to reduce interference from other directions; joint detection,

localisation, and enhancement.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Introduction

® This research tutorial is intended to cover a wide range of
aspects which link acoustic source localisation (ASL) and
blind source separation (BSS).

Aims and Objectives

Probability Theory

Scalar Random Variables

Muliple Random Variabes ® This tutorial is being continually updated, and feedback is
T welcomed. The documents published on the USB stick may
differ to the slides presented on the day.

MonteCarlo

Passive Target Localisation

— ® The latest version of this document can be found online and
tructure of the Tutorial
:f{ecommended Tths dOWHloadEd at:

® Why Source Localisation?
©® ASL Methodology
® Source Localization
Strategies http://nod-udrc. org/events/2016- sunmer - school
@ Geometric Layout
@ Ideal Free-field Model
® TDOA and Hyperboloids

® indirect OO based ® Thanks to Xionghu Zhong and Ashley Hughes for borrowing
some of their diagrams from their dissertations.

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

® Spherical Interpolation

Estimator
| ® Other Approaches

I @ Hyperbolic Least Squares
P eatd - p. 92/120
Error Function

® Linear Intersection Method


http://mod-udrc.org/events/2016-summer-school

Aims and Objectives

Structure of the Tutorial

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
©® ASL Methodology

@ Source Localization

Strategies
@ Geometric Layout

® Ideal Free-field Model
® TDOA and Hyperboloids
® Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
@ Spherical Interpolation
Estimator
| ® Other Approaches

® Recommended Texts
® Conceptual link between ASL and BSS.

® Geometry of source localisation.

® Spherical and hyperboloidal localisation.

® Estimating TDOA:s.
® Steered beamformer response function.
® Multiple target localisation using BSS.

® Conclusions.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Recommended Texts

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

@ ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

® Spherical Interpolation

Estimator
| ® Other Approaches

Speec
Processing

Benesty
Sondhi
Huang
Editors

Recommended book chapters and the references therein.

® Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and

Source Localization,” in Springer Handbook of Speech
Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp.
1043-1063, , Springer, 2008.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Recommended Texts

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

@ ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

® Spherical Interpolation

Estimator
| ® Other Approaches

Speec

Processin

Recommended book chapters and the references therein.

g

Benesty
Sondhi
Huang
Editors

DIGITAL SIGNAL PROCESSING

Microphone

Arrays

® Chapter 8: DiBiase J. H., H. F. Silverman, and

M. S. Brandstein, “Robust Localization in Reverberant

Rooms,” in Microphone Arrays by M. Brandstein and D. Ward,

pp. 157-180, , Springer Berlin Heidelberg, 2001.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Recommended Texts

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

@ ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

® Spherical Interpolation

Estimator
| ® Other Approaches

DIGITAL SIGNAL PROCESSING MaTTHIAS WOLFEL AND JoHN McDonoUuGH

DISTANT
SPEECH

Microphone A

Speec
Processing

Benesty
Sondhi
Huang
Editors

S$WILEY

Recommended book chapters and the references therein.

® Chapter 10 of Wolfel M. and J. McDonough, Distant Speech
Recognition, Wiley, 20009.
IDENTIFIERS — Hardback, ISBN13: 978-0-470-51704-8

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Recommended Texts

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

@ ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
® Spherical Interpolation
Estimator
| ® Other Approaches

Some recent PhD thesis on the topic include:

® Zhong X., “Bayesian framework for multiple acoustic source
tracking,” Ph.D. thesis, University of Edinburgh, 2010.

® Pertila P., “Acoustic Source Localization in a Room Environment
and at Moderate Distances,” Ph.D. thesis, Tampere University
of Technology, 2009.

® Fallon M., “Acoustic Source Tracking using Sequential Monte
Carlo,” Ph.D. thesis, University of Cambridge, 2008.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Why Source Localisation?

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

@ Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

A number of blind source separation (BSS) techniques rely on
knowledge of the desired source position:

1. Look-direction in beamforming techniques.

2. Camera steering for audio-visual BSS (including Robot
Audition).

3. Parametric modelling of the mixing matrix.

Equally, a number of multi-target acoustic source
localisation (ASL) techniques rely on BSS.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

ASL Methodology

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
@ Spherical Interpolation

Estimator
® Other Approaches

Sensors
(microphones)

izl xz%n] x[n] - x,[n]

Source
s[n]

Ideal free-field model.

® Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

® Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

ASL Methodology

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

Sensors
(microphones)

izl xz%n] x[n] - x,[n]

Source
s[n]

Ideal free-field model.

® Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

® Most ASL algorithms are designed assuming there is no
reverberation present, the free-field assumption.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

ASL Methodology

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

- -

i

i

An uniform linear array (ULA) of microphones.

® Typically, this acoustic sensor is a microphone; will primarily

consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method

- p. 96/120



Aims and Objectives

ASL Methodology

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

2, g

An ULA of

® interaural level difference;

i

microphones.

® Other measurement types include:

® range difference measurements;

® joint TDOA and vision techniques.

® Typically, this acoustic sensor is a microphone; will primarily
consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

ASL Methodology

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
® Other Approaches

® Another sensor modality might include acoustic vector
sensors (AVSs) which measure both air pressure and air
velocity. Useful for applications such as sniper localisation.

An acoustic vector sensor.

® Hyperbolic Least Squares

Error Function
® Linear Intersection Method
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Aims and Objectives

Source Localization Strategies

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

Existing source localisation methods can loosely be divided into

three generic strategies:

1. those based on maximising the SRP of a beamformer;

® location estimate derived directly from a filtered, weighted,

and sum version of the signal data.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Source Localization Strategies

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

Existing source localisation methods can loosely be divided into

three generic strategies:

1. those based on maximising the SRP of a beamformer;

® location estimate derived directly from a filtered, weighted,

and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

® any localisation scheme relying upon an application of the

signal correlation matrix.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
Alms and Objectives three generic strategies:

Probability Theory

1. those based on maximising the SRP of a beamformer;

Scalar Random Variables

Multiple Random Variables

® location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

Estimation Theory

MonteCarlo

Passive Target Localisation 2
@ Introduction

. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
©® ASL Methodology

® Source Localization

Stratees ® any localisation scheme relying upon an application of the

@ Geometric Layout . . .
® el Free-field Model signal correlation matrix.
® TDOA and Hyperboloids
® Indirect TDOA-based
Methods

® Spherical Least Squares 3. approaches emplOYing TDOA information.

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator ® source locations calculated from a set of TDOA estimates

@ Spherical Interpolation
Estimator

| @ Other Approaches measured across various combinations of microphones.

I @ Hyperbolic Least Squares - p. 97/120

Error Function
® Linear Intersection Method



Aims and Objectives

Source Localization Strategies

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

Spectral-estimation approaches ~ See Stephan Weiss’s talk :-)

TDOA-based estimators Computationally cheap, but suffers in the

presence of noise and reverberation.

SBF approaches Computationally intensive, superior performance

to TDOA-based methods. However, possible to dramatically
reduce computational load.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Geometric Layout

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

e

Geometry assuming a free-field model.

; Targets
(sound sources)

Suppose there is a:

Ol (mi

Sensors
crophones)

sn] @x,

® sensor array consisting of N microphones located at positions

m; € R3, fori e {0,...,N — 1},

® M talkers (or targets) at positions x;, € R?, for
ke{o,...,M —1}.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Geometric Layout

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

e

Geometry assuming a free-field model.

; Targets
(sound sources)

Ol (mi

Sensors
crophones)

sn] @x,

The TDOA between the microphones at position m; and m; due
to a source at x; can be expressed as:

%k —my| = |x — my|

C

where c is the speed of sound, which is approximately 344 m/s.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Geometric Layout

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
® Other Approaches

'S

; Targets
(sound sources)

Ol (mi

Sensors
crophones)

Geometry assuming a free-field model.

The distance from the target at x;. to the sensor located at m,;

will be defined by D, and is called the range.

1
Tij (Xx) = - (Dir — Dj)

® Hyperbolic Least Squares

Error Function
® Linear Intersection Method
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Aims and Objectives

Ideal Free-field Model

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

® Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
® Spherical Interpolation
Estimator
| ® Other Approaches

® In an anechoic free-field acoustic environment, the signal

from source k, denoted by s (t), propagates to the i-th sensor

at time ¢ according to the expression:

ik (t) = g sk (t — Tix) + bik(t)

where b;;(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

XL (w) — ok Sk (w) e W Tik | B (cu)

® The additive noise source is assumed to be uncorrelated with

the source signal, as well as the noise signals at the other
microphones.

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

Ideal Free-field Model

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

@ Geometric Layout

® Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
® Spherical Interpolation
Estimator
| ® Other Approaches

® In an anechoic free-field acoustic environment, the signal

from source k, denoted by s (t), propagates to the i-th sensor

at time ¢ according to the expression:

ik (t) = g sk (t — Tix) + bik(t)

where b;;(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

XL (w) — ok Sk (w) e W Tik | B (cu)

® The additive noise source is assumed to be uncorrelated with

the source signal, as well as the noise signals at the other
microphones.

® The TDOA between the i-th and j-th microphone is given by:

Tijk = Tik — Tjk = 1 (m;, m;, Xi)

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method

- p. 99/120



TDOA and Hyperboloids

It is important to be aware of the geometrical properties that

Aims and Objectives arise from the TDOA relationship

Probability Theory

X —my| = |xg — my|

Scalar Random Variables T (m’l, ; m] ; X P ) —

Multiple Random Variables

C

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods
® Spherical Least Squares

Error Function
® Two-step Spherical LSE

Approaches
® Spherical Intersection

Estimator
@ Spherical Interpolation

Estimator
® Other Approaches

® Hyperbolic Least Squares - p. 100/120

Error Function
® Linear Intersection Method



Aims and Objectives

TDOA and Hyperboloids

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial

® Recommended Texts

® Why Source Localisation?

©® ASL Methodology

® Source Localization
Strategies

® Geometric Layout

@ Ideal Free-field Model

® TDOA and Hyperboloids

@ Indirect TDOA-based

Methods

® Spherical Least Squares
Error Function

® Two-step Spherical LSE
Approaches

® Spherical Intersection
Estimator

@ Spherical Interpolation

Estimator
| ® Other Approaches

It is important to be aware of the geometrical properties that

arise from the TDOA relationship

X —my| = |xg — my|

T(mi, mj, Xk) = .

® This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, v;; =

(xk — vij)" Vij (x — vij) = 1

m;+m;

2

le Hyperbolic Least Squares
Error Function

® Linear Intersection Method
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Aims and Objectives

TDOA and Hyperboloids

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Passive Target Localisation

@ Introduction

@ Structure of the Tutorial
® Recommended Texts

® Why Source Localisation?
©® ASL Methodology

® Source Localization

Strategies
@ Geometric Layout

® Ideal Free-field Model
® TDOA and Hyperboloids
® Indirect TDOA-based

Methods
® Spherical Least Squares
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It is important to be aware of the geometrical properties that
arise from the TDOA relationship

X — 1My | — | X — 1INy
T(mi, mj; Xk) — ‘ Z‘ | J‘

C

® This defines one half of a hyperboloid of two sheets, centered
o o o m; —|—mj
on the midpoint of the microphones, v;; = —5—
(xk = i)' Vg (x5 — vig) = 1

® For source with a large source-range to
microphone-separation ratio, the hyperboloid may be
well-approximated by a cone with a constant direction angle
relative to the axis of symmetry.

gﬁ- . COS_l <cT(mi, m;, Xk;)>
1)

jm; — my|
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T(mi, mj, Xk) =
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Possible source locations as function of TDOA

— Hyperboloid

Cone approximation
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

® The error between the measured and hypothesised TDOAs is
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.
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This is typically a two-step procedure in which:

® Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

® A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

® The error between the measured and hypothesised TDOAs is
then minimised.

® Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.

® An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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® Suppose the first microphone is located at the origin of the

T
coordinate system, such that mg = {O 0 O} :

® The range from target k to sensor i can be expressed as :

D = Do, + D;x — Doy
= RS -+ CT@'O (Xk)

where R, = |xx| is the range to the first microphone which is
at the origin.
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® In practice, the observations are the TDOAs and, given Ry,
these ranges can be considered the measurement ranges.

Of course, knowing R, is half the solution, but it is just one
unknown at this stage.

N «&i)z = Cly
\\ \

Range and TDOA relationship.
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® The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,
2 2
D3}, =[x — my]
= X; X}, — 2m;] X, +m; m;

:Rg—Qm;-ka—kR?

R; = |my;]| is the distance of the i-th microphone to the origin.
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® The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

2 2
Djy, = X — my
= X; X}, — 2m;] X, +m; m;

:Rg—Qm;-ka—kR?

® Define the spherical error function as:

1/~
ik = 9 (ng - D?k)
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® The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

2
Dzzk — |

|Xk: — m;

= X; X}, — 2m;] X, +m; m;

:Rg—Qm;-ka—kR?

® Define the spherical error function as:

€k

A

(b2, — 3

~ 2
{(RS —|—CTZ'0> — (R? — 2mZTXk —I—R?)}

N — DN —
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the expression:

A xi — (b, — Rsrdy)

\ .

7

~\~
Vg

DO | —

c? T020 —

C2T(2N—1)0 -

® Concatenating the error functions for each microphone gives

Rg

2
Ry
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® The LSE can then be obtained by using J = €/ ¢; :

J(xx) = (Axy, — (by — Rep dy))’ (Axy, — (by, — Rey dy,))
J(Xk, Ok) = (Skek — bk)T (Skek — bk)

® Note that as R,, = |xi|, these parameters aren’t independent.
Therefore, the problem can either be formulated as:

® a nonlinear least-squares problem in xy;

® a linear minimisation subject to quadratic constraints:

A

Hk; — arg min (Skﬁk — bk)T (Skﬁk — bk)

k

subject to the constraint

0. A0, =0 where A = diag[1, 1, 1, —1]
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To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in x; assuming the range to the target,
R, is known;

2. and then solving for R,; given an estimate of xj, i. t. 0. Rg.
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To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in x; assuming the range to the target,
R, is known;

2. and then solving for R,; given an estimate of xj, i. t. 0. Rg.

$ Assuming an estimate of R this can be solved as

N —1
%, = Atv, = AT (bk _ Rskdk) where A = [ATA} AT

Note that AT is the pseudo-inverse of A.
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This method uses the physical constraint that the range R is
the Euclidean distance to the target.

® Writing R?, = %} %X, it follows that:
N A T 7 A
R2, = (bk - Rskdk) ATTA' (bk _ Rskdk)
which can be written as the quadratic:

aR§k+bR3k+C:O
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This method uses the physical constraint that the range R is
the Euclidean distance to the target.

® Writing R?, = %} %X, it follows that:
N A T 7 A
R2, = (bk - Rskdk) ATTA' (bk _ Rskdk)
which can be written as the quadratic:

CLR?k—l—bRSk‘I_C:()

® The unique, real, positive root is taken as the spherical
intersection (SX) estimator of the source range. Hence, the
estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.
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The spherical interpolation (SI) estimator again uses the
spherical least squares error (LSE) function, but this time the
range R, is estimated in the least-squares sense.

Consider again the spherical error function:

€ = Axy, — (b — Rsr dy)
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The SI estimator again uses the spherical LSE function, but this
time the range R is estimated in the least-squares sense.

Consider again the spherical error function:

€ix = Axy — (by — Rgp dy)
Substituting the LSE gives:

€ = A {ATA} TAT (bk _ Rskdk> — (b — Ry dy)
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The SI estimator again uses the spherical LSE function, but this
time the range R is estimated in the least-squares sense.

Consider again the spherical error function:

€ix = Axy — (by — Rgp dy)
Substituting the LSE gives:

. — T _1 T —— » — —
€L — A A A A bk; Rskdk (bk Rsk dk)

—1
Defining the projection matrix as Po = Iy — A {ATA} AT,

€ix = Rsp Pady — Paby
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The SI estimator again uses the spherical LSE function, but this
time the range R is estimated in the least-squares sense.

Consider again the spherical error function:

€irx = Axy, — (b — Rsi dyi)

—1l
Defining the projection matrix as Pp = Iy — A {ATA} AT,

€ir = Rs Pady — Pabyg
Minimising the LSE using the normal equations gives:

_ dIPaby

Roy, =
© T AT Pady
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The SI estimator again uses the spherical LSE function, but this
time the range R is estimated in the least-squares sense.

Consider again the spherical error function:

€irx = Axy, — (b — Rsi dyi)

Substituting back into the LSE for the target position gives the
final estimator:

dIP 4
. = AT [Iv —d k b
X (N kd%PAdk> k

This approach is said to perform better, but is computationally
slightly more complex than the SX estimator.
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There are several other approaches to minimising the spherical
LSE function .

® In particular, the linear-correction LSE solves the constrained
minimization problem using Lagrange multipliers in a two
stage process.

® For further information, see: Huang Y., J. Benesty, and
J. Chen, “Time Delay Estimation and Source Localization,” in
Springer Handbook of Speech Processing by J. Benesty,
M. M. Sondhi, and Y. Huang, pp. 1043-1063, , Springer, 2008.
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® [f a TDOA is estimated between two microphones i and j,
then the error between this and modelled TDOA is:

€i(Xk) = Tijr — T (m;, m;, Xg)

® The total error as a function of target position

N N
=" > (rijr — T (my, my, xz))
1=1 j#£i=1

® Unfortunately, since 7' (m;, m;, x;) is a nonlinear function of
X1, the minimum LSE does not possess a closed-form solution.
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® Given the bearing lines, it is possible to calculate the points s;;
and s,; on two bearing lines which give the closest
intersection. This is basic gemoentry.

® The trick is to note that given these points s;; and s;;, the
theoretical TDOA, T'(m;;, my;, s;;), can be compared with
the observed TDOA.
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Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

® computationally efficient, and hence short decision delays;

® perform fairly well in moderately noisy and reverberant
environments.
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Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

® computationally efficient, and hence short decision delays;

® perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

® fail when room reverberation is high;

® focus of current research is on combating the effect of
room reverberation.
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Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

AED Algorithm Approaches the TDOA estimation approach from a

different point of view from the traditional GCC method.

® adopts a reverberant rather than free-field model,;

® computationally more expensive than GCC;

® can fail when there are common-zeros in the room impulse

response (RIR).
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The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

® The TDOA estimate between two microphones 7 and j
Tij = argmaxry, o /]

¢

® The cross-correlation function is given by

FH(@ () Poay (€7°))

=
&

8
<.
S

|

— /T_ o (ej“TS) Py, (ej“TS) e T du

where the CPSD is given by

lexg <€ij3) —E [Xl (eijs> X2 <€ij3>]
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For the free-field model , it follows that for 7 # j:

Pz, (W) = E [X; (w) X (w)]
= E [(cir Sk (w) €777 + By (w)) (o Sk (w) €779 ™ 4 By (w))]

= ozikajke_jw T(m;, m;, xx) [ Sk (w)|2

where E [B;j; (w) Bk (w)] = 0 and E |B;x (w) Sk (w)] = 0.
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For the free-field model , it follows that for 7 # j:

Pafz'a?j (w) =K [Xj (w) Xj (w)]
—F [(Oéz'k Sk (w) e~ IWTik | B} (w)) (Oéjk; Sy (w) e IwW TRE | Bj (w))]
= agpape 99 TR0 eI | |5 (w)?]
where E [B;j; (w) Bk (w)] = 0 and E |B;x (w) Sk (w)] = 0.
® In particular, note that it follows:
LPpz, (W) = —jwT (m;, mj;, Xi)
In otherwords, all the TDOA information is conveyed in the
phrase rather than the amplitude of the CPSD. This therefore

suggests that the weighting function can be chosen to remove
the amplitude information.
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Processor Name

Frequency Function

Cross Correlation

PHAT

Roth Impulse Response

SCOT

Eckart

Hannon-Thomson or ML

- 2
~ Moz (772) %)

where v,, ., (e/“%+) is the normalised CPSD or coherence

function
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The PHAT-GCC approach can be written as:

TLS

75 1 jwT §LPry 2, (€797%) jlwT
- P (eij)||P=”’01902(6 ) |75 e e dw

—TLS 12

]
i
ah
®
S.
~~
N
€
~
_|_
N
EU
8
N
~—~
%
€
.
~—
~—r
¥
&

® In the absence of reverberation, the GCC-PHAT algorithm
gives an impulse at a lag given by the TDOA divided by the
sampling period.
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The AED algorithm actually amounts to a blind channel

identification problem, which then seeks to identify the channel

coefficients corresponding to the direct path elements.

® Suppose that the acoustic impulse response (AIR) between
source k and i is given by h;;[n] such that

zie[n] = Y hi[n —m] sp[m] + b [n]

m—=—oo

then the TDOA between microphones ¢ and j is:

¢

Tty — {arg m?x |hzk[€]|} — {arg max |hjk[€]|}

This assumes a minimum-phase system, but can easily be
made robust to a non-minimum-phase system.
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Acoustic Impulse Response (AIR)
1 T T T T
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Time (sec)

A typical room acoustic impulse response.

® Reverberation plays a major role in ASL and BSS.

® Consider reverberation as the sum total of all sound

reflections arriving at a certain point in a room after room has

been excited by impulse.
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Magnitude of
impulse response

¥ ,  Direct path

‘HW Ml ,

~— — S e
e~ T~

Early reflections Late reflections time

Early and late reflections in an AIR.

Trivia: Perceive early reflections to reinforce direct sound, and
can help with speech intelligibility. It can be easier to hold a
conversation in a closed room than outdoors
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® Room transfer functions are often nonminimum-phase since
there is more energy in the reverberant component of the RIR

than in the component corresponding to direct path.

Reflected Paths

Sqund
Source

Demonstrating nonminimum-phase properties

® Therefore AED will need to consider multiple peaks in the
estimated AIR.
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® Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

® However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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S(:?c):/

Q

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

e 2
Z W, (e7“7%) X, (e77%) /¥ 7rk| duw

p=1

The frequency domain delay-and-sum beamformer steered to a
spatial position xj such that 7, = |Xx — m,|:
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The frequency domain delay-and-sum beamformer steered to a
spatial position xj such that 7, = |Xx — m,|:
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SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at [2.0,2.5|m. The grid density is set to 40 mm.
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The degenerate unmixing estimation technique (DUET)
algorithm is an approach to BSS that ties in neatly to ASL. Under
certain assumptions and circumstances, it is possible to separate
more than two sources using only two microphones.
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The DUET algorithm is an approach to BSS that ties in neatly to
ASL. Under certain assumptions and circumstances, it is possible
to separate more than two sources using only two microphones.

® DUET is based on the assumption that for a set of signals
x|t], their time-frequency representations (TFRs) are
predominately non-overlapping. This condition is referred to
as W-disjoint orthogonality (WDO):

Sp (w, t) Sy (w, t) =0Vp # q, Vi, w
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Consider taking a particular time-frequency (TF)-bin, (w, t),

where source p is known to be active. The two received signals in
that TF-bin can be written as:

X
X;

p

p

(
(

w, t
w, t

)
)

Qipe ?YTP S (w, t) + B; (w, t)
ajpe 97 S (w, t) + B, (w, t)
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Consider taking a particular TF-bin, (w, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xz'p (wa t) — Qip eI Tir Sp (wa t) + Bi (wa t)
Xip (w, t) = azp e 777 S (w, t) + Bj (w, t)

Taking the ratio and ignoring the noise terms gives:

Xip (
ij (

)_O‘ip

w, t
W, t) Qjp

e_jWTijp

Hz'kp (w, t) é
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This leads to the essentials of the DUET method which are:

Construct the TF representation of both mixtures.

Take the ratio of the two mixtures and extract local mixing
parameter estimates.
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This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.
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This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that

particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the
mixtures.

6. Return each demixed TFR to the time domain.
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The TFR is very clear in the anechoic environment but
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Flow diagram of the DUET-GCC approach. Basically, the
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spectrogram of each source to estimate the TDOA:s.
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® Reduction in complexity of calculating SRP. This includes

stochastic region contraction (SRC) and hierarchical searches.

® Multiple-target tracking (see Daniel Clark’s Notes)

® Simultaneous (self-)localisation and tracking; estimating
sensor and target positions from a moving source.
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Acoustic source tracking and localisation.
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® Joint ASL and BSS.

® Explicit signal and channel modelling! (None of the material

so forth cares whether the signal is speech or music!)

® Application areas such as gunshot localisation; other sensor

modalities; diarisation.
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