Self-Interference-Cancellation for
Full-Duplex Underwater Acoustic Systems

Lu Shen
Department of Electronic Engineering
University of York



S0 UNIVERSITY

Outline

* Introduction

« General structure of the proposed digital canceller

* New evaluation metric for the self-interference cancellation (SIC)
performance

« Adaptive filtering algorithms for SIC in fast-varying S| channels

* Related work

 Conclusions

2 of 23



g,; > UNIVERSITY
) o York
Introduction v 7

Surface reflection

AN
Transceiver " \\ Far-end Transceiver
I \
I \
1 1
Transmitter —" ) ) | ) §—> Receiver
\ : 1
v
Self-Interference V| "
T |
‘ I /

Receiver <—§ = | \ \ { h*— Transmitter

Long distance

A

v
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General structure of digital canceller
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Digital Sl canceller with different reference signals ..
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- Two reference signals are considered for digital SI cancellation (Mode 1: digital data; Mode 2: PA output).

More details in: L. Shen, B. Henson, Y. Zakharov and P. Mitchell, “Digital self-interference cancellation for full-duplex UWA systems," IEEE Trans on Circuits

and Systems II: Express Briefs, vol. 67, no. 1, pp. 192-196, 2019. 5 of 23
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Tank experimental results
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Extended structure of the digital SI canceller
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- The PA output is down-sampled to twice the symbol rate and interleaved into two branches.
- A small weight coefficient is applied to the branch with high variance (residual signal power), and a large
weight coefficient is applied to the branch with high level of SIC.

More details in: L. Shen, B. Henson, Y. Zakharov and P. Mitchell, “Robust digital self-interference cancellation for UWA systems: Lake experiments,“ in
Underwater Acoustics Conference and Exhibition, Greece, 2019, pp. 243-250. 7 of 23



Lake experiment
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Adaptive equalization of the nonlinearity in the hydrophone pre-amplifier
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More details in: L. Shen, B. Henson, Y. Zakharov, and P. D. Mitchell, “Adaptive nonlinear equalizer for full-duplex underwater acoustic systems," IEEE Access,

vol. 8, pp. 108169 —

108178, 2020.
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Adaptive filtering algorithms
for SIC In fast-varying Sl channels
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Time-varying self-interference channel
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Fig: Time-varying Sl channel impulse response in a lake experiment

» Lake depth: 8 m
» The transducer (Tx) and hydrophone (Rx) are placed in the middle of the lake (around 4 m depth).

 The distance between Tx and Rx is 1.3 m.
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Evaluation metric
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Evaluation of SIC performance

* For Simulation:
o The mean squared deviation (MSD) is used for evaluating the SIC cancellation performance.
« For lake experiments:
o For classical adaptive filters, the SIC performance can be evaluated by computing the mean
squared error (MSE).
o For interpolating (non-causal) adaptive filters with improved tracking performance, the MSE
cannot accurately represent the SIC performance due to the over-fitting.
« The SIC factor (SICF) is proposed, which measures the SIC performance as a factor of
Improvement in the far-end-signal-to-interference ratio due to the SIC.
« The SICF can be used in practice for both causal and non-causal adaptive filters. It can be used to
adjust the parameters of the adaptive algorithms for SIC without implementing a whole FD system.

More details in: L. Shen, Y. Zakharov, B. Henson, N. Morozs and P. Mitchell, “Adaptive filtering for full-duplex UWA systems with time-varying self-interference

channel," IEEE Access, vol. 8, pp.187590-187604, 2020. 13 of 23



SICF and BER
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« We compare the SICF and the BER performance provided by the Sl canceller in fast-varying channel

using the SRLS-P adaptive filter with different sliding window length M.
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More details in: L. Shen, Y. Zakharov, B. Henson, N. Morozs and P. Mitchell, “
channel," IEEE Access, vol. 8, pp.187590-187604, 2020.
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Adaptive filtering for full-duplex UWA systems with time-varying self-interference

3
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SRLSd and SRLS-P adaptive filters

« SRLS adaptive filter with a delay (SRLSd)
o Adelay is introduced between h(i) and s(i) to improve the tracking performance.

o In fast-varying channels, the tracking performance is still limited.

« SRLS-P adaptive filter
o Exploit parabolic approximation of the time-varying channel response.

o Itimproves the tracking performance at the expense of high complexity.

More details in: L. Shen, Y. Zakharov, B. Henson, N. Morozs and P. Mitchell, “Adaptive filtering for full-duplex UWA systems with time-varying self-interference

channel," IEEE Access, vol. 8, pp.187590-187604, 2020. 15 of 23
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Adaptive filtering based on basis expansion model

« Low-complexity interpolating adaptive filters are proposed based on BEM and weighted least square
(LS) approach.
« As an example, we use the Legendre polynomials as basis functions and propose the SRLS-L
adaptive filter,
« Advantages:
o No limitation on the choice of basis functions
o Suitable for complex-valued data
o Low-complexity (iterative computation + FFTs + DCD algorithm)
« Limitation:
o For fast-varying channels with a large delay spread, the minimum sliding window length required
iIs significantly increased when high orders of the basis functions are used (M > (P + 1)L).

More details in: L. Shen, Y. Zakharov, L. Shi, and B. Henson, “Adaptive Filtering Based on Legendre Polynomials”, TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.13084460.v1 16 of 23
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HSRLS-L-DCD adaptive filter

 To exploit the sparsity in the expansion 10°
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Fig: Estimates of expansion coefficients

More details in: L. Shen, Y. Zakharov, L. Shi, and B. Henson, " BEM Adaptive Filtering for SI Cancellation in Full-Duplex Underwater Acoustic Systems.”,
submitted to Signal Processing, Under review. 17 of 23
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Simulation scenario

The Sl channel is simulated based on the Sl channel estimate from a lake experiment.
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multipath components in the FD experiment
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Simulation results

MSD is used to evaluate the channel identification performance.
The Sl to noise ratio is 71 dB.
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Lake experiment

 The Tx and Rx are positioned at a depth of 4 m.

* The lake depth is around 8 m.
« During the experiment, the amplitude of the lake surface waves varies from 5 cm to 10 cm.
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Experimental results

Carrier frequency: 32 kHz

Adaptive filter

SRLS

SRLS-L, P=0
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HSRLS-L-DCD, P=0
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Sliding window
length M

105
185
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105
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225

Filter length: 80 taps

SIC, dB

51.2
55.5
S57.7
58.9
59.7
57.3
60.9
62.3
63.4

Improvement
compared to SRLS, dB

4.3
6.5
7.7
8.5
6.1
9.7
11.1
12.2
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Related work

» Acoustic-domain SIC scheme with two projectors
The SIC is performed using an extra (secondary) projector that emits an acoustic signal for cancelling
the Sl at the receive antenna.

» Two-stage digital SIC scheme with two hydrophones
First stage: To cancel the strong and stable Sl signal from the direct path; Second stage: Adaptive
beamforming is used to cancel the time-varying reflections from the sea surface.

 Investigate the bit error rate performance of the whole FD system with both near-end and far-end

transmission (on-going work)

o Apply the proposed interpolating adaptive filters with good tracking ability.

o Further improve the SIC performance by jointly estimate the near-end and far-end channels in turbo
iterations.

More detailsin: Y. Wang, Y. Li, L. Shen, and Y. Zakharov, “Acoustic-domain self-interference cancellation for full-duplex underwater acoustic communication

systems," in IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2019, pp. 1112-1116.

L. Shen, B. Henson, Y. Zakharov and P. Mitchell, “Two stage self-interference cancellation for full-duplex UWA systems,” in MTS/IEEE Oceans, Marseille,
France, June 2019. 22 of 23
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Conclusions

« We propose various SIC techniques for FD UWA systems, most of the which are digital cancellation
based on adaptive filtering.

« Regarding the fast channel variation due to the moving lake/sea surfaces, two approaches have been
proposed; one is to use interpolating adaptive filtering algorithms which are capable of tracking the
fast-varying channels, the other approach is to use multiple hydrophones for adaptive beamforming.

« An acoustic-domain SIC scheme using multiple projectors has been proposed to achieve extra amount
of SIC in the acoustic domain.

« Based on the experimental results, it can be concluded that a high level of SIC has been achieved with

the proposed Sl canceller structure and novel adaptive filtering algorithms.



