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Introductory remarks

I Radar stands for radio detection and ranging

I Modern radars support many more functions than just
detection and ranging, but these are still basic capabilities of
radars

I Other functions include target tracking, clutter suppression, synthetic
aperture radar, and many more

I In this presentation, we focus on the detection aspect
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(Generalized) matched filtering
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We consider radars that work as follows:

1. Produce two microwave signals.

2. Transmit one. Keep the other.

3. Receive and measure a signal.

4. Use the received and retained
signals to decide whether there is a
target.
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(Generalized) matched filtering
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I This is essentially matched
filtering

I However, it is more general than
the strict definition of the matched
filter, h[n] = x∗[−n]

I Reference signal need not be exactly
the same as the transmit signal

I Filter need not be linear
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The radar detection problem

I As far as detection is concerned, radars are machines for
hypothesis testing

I We wish to distinguish between:

H0 : Target absent

H1 : Target present

I We need a test statistic—that is, a detector function—to
distinguish between H0 and H1

I Choice of detector function depends on the exact nature of the
radar signals
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Noise radar
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My research focuses on noise radars
which work like this:

1. Produce a microwave noise signal.

2. Transmit the signal, retaining a
copy as a reference.

3. Receive a signal from free space.

4. Correlate the received signal with
the reference.
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Mathematical background

I RF signals are described by a pair of real-valued time series:
in-phase voltages I (t) and quadrature voltages Q(t)

I For a noise radar, we consider two signals (four time series):
I received signal: I1(t) and Q1(t)
I reference signal: I2(t) and Q2(t)
I Note: no need to consider the transmitted signal

I For noise radar, each signal is a random process

I We assume that all the signals are Gaussian white noise (so we
can drop the time variable t)
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The noise radar covariance matrix


σ2
1 0 ρσ1σ2 cosφ ρσ1σ2 sinφ
0 σ2

1 −ρσ1σ2 sinφ ρσ1σ2 cosφ
ρσ1σ2 cosφ −ρσ1σ2 sinφ σ2

2 0
ρσ1σ2 sinφ ρσ1σ2 cosφ 0 σ2

2


I It can be shown that I1, Q1, I2, Q2 are characterized by the

above covariance matrix

I σ2
1, σ

2
2 are signal powers for the received and reference signals;

φ is the phase between them

I ρ characterizes the correlation between the two signals

7 / 28



The noise radar covariance matrix


σ2
1 0 ρσ1σ2 cosφ ρσ1σ2 sinφ
0 σ2

1 −ρσ1σ2 sinφ ρσ1σ2 cosφ
ρσ1σ2 cosφ −ρσ1σ2 sinφ σ2

2 0
ρσ1σ2 sinφ ρσ1σ2 cosφ 0 σ2

2


I It can be shown that I1, Q1, I2, Q2 are characterized by the

above covariance matrix

I σ2
1, σ

2
2 are signal powers for the received and reference signals;

φ is the phase between them

I ρ characterizes the correlation between the two signals

7 / 28



The importance of ρ

Transmitter Receiver

Target

Reference

Tx
sig
na
l

I ρ tells us whether there is any
correlation between the received
and reference signals

I ρ > 0 at receiver =⇒
target present

I ρ = 0 at receiver =⇒
target absent

I Target detection problem =
hypothesis testing on ρ
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Why introduce ρ?

I ρ has previously been little-studied in the context of radars

I Not as familiar as SNR

I One advantage: the target detection problem is easily
formulated as a hypothesis test in terms of ρ

I ρ takes into account imperfections in the reference signal,
which is ignored when we deal only with SNR

I We will return to this point when we discuss quantum two-mode
squeezing radar
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Hypothesis testing on ρ
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I Recall: ρ tells us the correlation
between the received and reference
signals

I In terms of ρ, the target detection
problem requires us to distinguish
between these hypotheses:

H0 : ρ = 0 Target absent

H1 : ρ > 0 Target present
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A note about choosing hypotheses

H0 : ρ = 0 Target absent

H1 : ρ > 0 Target present

I Note that H1 is a composite hypothesis

I We do not know what ρ would be if a target is present

I ρ is a function of range, radar cross section, background noise, . . .

I We are not testing between ρ = 0 and ρ = κ for some known
value of κ

I The Neyman-Pearson lemma does not apply here
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Detector functions

I There are many detector functions which could be used for this
target detection problem

I A detector function is used for radar detection as follows:

1. Set a threshold
2. Calculate the detector function using the given I1, Q1, I2, and Q2

samples
3. Declare a detection if the value exceeds the threshold

I One natural detector function: the (generalized) likelihood
ratio
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Nuisance parameters


σ2
1 0 ρσ1σ2 cosφ ρσ1σ2 sinφ
0 σ2

1 −ρσ1σ2 sinφ ρσ1σ2 cosφ
ρσ1σ2 cosφ −ρσ1σ2 sinφ σ2

2 0
ρσ1σ2 sinφ ρσ1σ2 cosφ 0 σ2

2


I Unfortunately, the covariance matrix has three nuisance

parameters: σ1, σ2, and φ

I In order to simplify our problem, we assume σ1 = 1, σ2 = 1,
and φ = 0

I Future work: estimate these parameters or deal with them in a
more principled manner
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The (simplified) noise radar target detection problem

Given N samples of the radar signals I1, Q1, I2, and Q2 such that
I1
Q1

I2
Q2

∼ N



0
0
0
0

 ,


1 0 ρ 0
0 1 0 −ρ
ρ 0 1 0
0 −ρ 0 1


,

decide which of the following is true:

H0 : ρ = 0 Target absent

H1 : ρ > 0 Target present
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The GLR detector

DGLR = N

[
2D̄1ρ̂− P̄totρ̂

2

1− ρ̂2
− 2 ln(1− ρ̂2)

]

I Ptot ≡ I 21 + Q2
1 + I 22 + Q2

2

I D1 ≡ I1I2 − Q1Q2

I Line over expression = sample mean over N samples

I ρ̂ = maximum likelihood estimate of ρ (complicated)
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Approximate GLR detector

DGLR = N

[
2D̄1ρ̂− P̄totρ̂

2

1− ρ̂2
− 2 ln(1− ρ̂2)

]
I This is very complicated

I But to second order in ρ, this reduces to

DGLR ≈ ND̄2
1

P̄tot − 2

I Much simpler to calculate (e.g. on a digital signal processor)

I Can obtain closed-form formula for the ROC curve
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Connection to a previous detector
I D1 = I1I2 − Q1Q2 has itself been used as a detector function

I It was called “Detector 1” in the world’s first journal paper on
experimental microwave quantum radar

I D. Luong, C. W. S. Chang, A. M. Vadiraj, A. Damini, C. M. Wilson and B.
Balaji, “Receiver Operating Characteristics for a Prototype Quantum Two-Mode
Squeezing Radar,” IEEE Transactions on Aerospace and Electronic Systems, vol.
56, no. 3, pp. 2041-2060, June 2020 (accepted Sept. 2019)

I It is equivalent to the “digital receiver” in the world’s second
journal paper on experimental microwave quantum radar

I S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum
illumination using a digital receiver,” Science Advances, vol. 6, no. 19, p.
eabb0451, May 2020 (accepted Feb. 2020)
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ROC curve comparison
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I ρ = 0.1, 0.2, 0.3, 0.4

I N = 50

I Performance of DGLR is
similar to D1

I D1 slightly better when ρ is
small; DGLR better when ρ is
slightly larger

I Neither one is “optimal”

I As expected, overall radar
performance improves as ρ
increases
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What happened to quantum radar?

I So far, I have spoken only about noise radar

I What happened to quantum two-mode squeezing (QTMS)
radar?
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Noise radar recap
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My research focuses on noise radars
which work like this:

1. Produce a microwave noise signal.

2. Transmit the signal, retaining a
copy as a reference.

3. Receive a signal from free space.

4. Correlate the received signal with
the reference.
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QTMS radar
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Quantum two-mode squeezing
radars work (roughly) like this:

1. Produce a microwave noise signal.

2. Transmit the signal, retaining a
better copy as a reference.

3. Receive a signal from free space.

4. Correlate the received signal with
the reference.
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A better reference signal


σ2
1 0 ρσ1σ2 cosφ ρσ1σ2 sinφ
0 σ2

1 −ρσ1σ2 sinφ ρσ1σ2 cosφ
ρσ1σ2 cosφ −ρσ1σ2 sinφ σ2

2 0
ρσ1σ2 sinφ ρσ1σ2 cosφ 0 σ2

2


I Mathematically (but not experimentally!), QTMS radars are

exactly the same as noise radars except that they achieve
higher values of ρ

I The reference signal is a higher-fidelity copy of the transmit
signal
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Noise in the reference signal

I Conventional matched filtering assumes a perfect copy of
the Tx signal is available

I Quantum mechanics says a perfect copy is impossible

I There will always be noise in I and Q voltage measurements,
even in an theoretically ideal system

If you think you can achieve 100% correlation,

you’ve forgotten about quantum mechanics!
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Can’t you just split the signal?

Signal 1

Signal 2

Input

Quantum

vacuum noise

I Vacuum noise will creep into the beamsplitter, even at
absolute zero and in a perfect vacuum
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Quantum noise and entanglement

I 100% correlation is impossible according to quantum
mechanics

I With conventional methods of preparing a reference signal,
ρ < classical limit

I Using entanglement, can achieve classical limit < ρ < 1

ρ

0 Max classical

correlation

1

Achievable classically Entangled
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Radars are not made out of paper

I No amount of theory can replace an experiment

I If a radar cannot improve ρ for the same signal power, no
point pursuing it

I A QTMS radar experiment was performed by Wilson et al. at
the Institute for Quantum Computing (University of Waterloo)

I D. Luong, C. W. S. Chang, A. M. Vadiraj, A. Damini, C. M. Wilson and B.
Balaji, “Receiver Operating Characteristics for a Prototype Quantum Two-Mode
Squeezing Radar,” IEEE Transactions on Aerospace and Electronic Systems, vol.
56, no. 3, pp. 2041-2060, June 2020
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Experimental ROC curves
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I Experimental ROC curves fit
our theoretically derived
ROC curves very well

I Improvement in QTMS radar
over standard noise radar
corresponds to increasing ρ
by a factor of 3
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Conclusion

I Noise radar performance is characterized by the correlation
coefficient ρ between the transmit and reference signals

I Can use the generalized likelihood ratio to distinguish
between ρ = 0 and ρ > 0

I An approximate GLR works well in most cases

I QTMS radars improve performance by increasing ρ

I This improvement has been experimentally demonstrated
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