An Approximate Likelihood Ratio Detector for QTMS Radar and Noise Radar

David Luong, Bhashyam Balaji, and Sreeraman Rajan

September 14, 2021

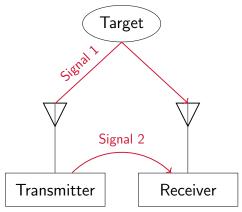
Canada's Capital University

Introductory remarks

Radar stands for radio detection and ranging

- Modern radars support many more functions than just detection and ranging, but these are still basic capabilities of radars
 - Other functions include target tracking, clutter suppression, synthetic aperture radar, and many more
- ▶ In this presentation, we focus on the **detection** aspect

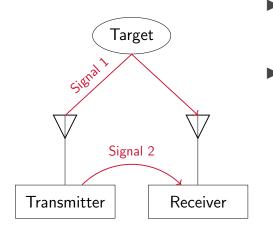
(Generalized) matched filtering



We consider radars that work as follows:

- 1. Produce two microwave signals.
- 2. Transmit one. Keep the other.
- 3. Receive and measure a signal.
- 4. Use the received and retained signals to decide whether there is a target.

(Generalized) matched filtering



- This is essentially matched filtering
- ► However, it is more general than the strict definition of the matched filter, h[n] = x*[-n]
 - Reference signal need not be exactly the same as the transmit signal
 - ► Filter need not be linear

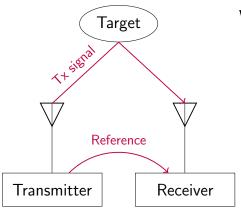
The radar detection problem

- As far as detection is concerned, radars are machines for hypothesis testing
- ► We wish to distinguish between:

*H*₀ : Target absent*H*₁ : Target present

- ▶ We need a test statistic—that is, a detector function—to distinguish between H₀ and H₁
- Choice of detector function depends on the exact nature of the radar signals

Noise radar



My research focuses on **noise radars** which work like this:

- 1. Produce a microwave **noise** signal.
- 2. Transmit the signal, retaining a copy as a reference.
- 3. Receive a signal from free space.
- 4. Correlate the received signal with the reference.

Mathematical background

- RF signals are described by a pair of real-valued time series:
 in-phase voltages *I*(*t*) and quadrature voltages *Q*(*t*)
- ► For a noise radar, we consider two signals (four time series):
 - received signal: $I_1(t)$ and $Q_1(t)$
 - reference signal: $I_2(t)$ and $Q_2(t)$
 - ▶ Note: no need to consider the *transmitted* signal
- For noise radar, each signal is a random process
- We assume that all the signals are Gaussian white noise (so we can drop the time variable t)

The noise radar covariance matrix

$$\begin{bmatrix} \sigma_1^2 & 0 & \rho\sigma_1\sigma_2\cos\phi & \rho\sigma_1\sigma_2\sin\phi \\ 0 & \sigma_1^2 & -\rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi \\ \rho\sigma_1\sigma_2\cos\phi & -\rho\sigma_1\sigma_2\sin\phi & \sigma_2^2 & 0 \\ \rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi & 0 & \sigma_2^2 \end{bmatrix}$$

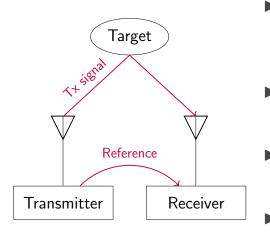
- ► It can be shown that *I*₁, *Q*₁, *I*₂, *Q*₂ are characterized by the above covariance matrix
- σ₁², σ₂² are signal powers for the received and reference signals;
 φ is the phase between them

The noise radar covariance matrix

$$\begin{bmatrix} \sigma_1^2 & 0 & \rho\sigma_1\sigma_2\cos\phi & \rho\sigma_1\sigma_2\sin\phi \\ 0 & \sigma_1^2 & -\rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi \\ \rho\sigma_1\sigma_2\cos\phi & -\rho\sigma_1\sigma_2\sin\phi & \sigma_2^2 & 0 \\ \rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi & 0 & \sigma_2^2 \end{bmatrix}$$

- ► It can be shown that *I*₁, *Q*₁, *I*₂, *Q*₂ are characterized by the above covariance matrix
- σ₁², σ₂² are signal powers for the received and reference signals;
 φ is the phase between them
- \blacktriangleright ρ characterizes the **correlation** between the two signals

The importance of ρ

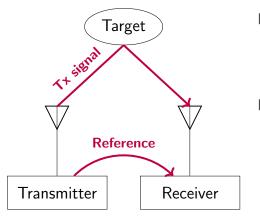


- *ρ* tells us whether there is any
 correlation between the received and reference signals
- ▶ ρ > 0 at receiver ⇒ target present
- $\rho = 0$ at receiver \implies target **absent**
- Target detection problem = hypothesis testing on ρ

Why introduce ρ ?

- $\blacktriangleright\ \rho$ has previously been little-studied in the context of radars
- Not as familiar as SNR
- One advantage: the target detection problem is easily formulated as a hypothesis test in terms of ρ
- ρ takes into account imperfections in the reference signal, which is ignored when we deal only with SNR
 - We will return to this point when we discuss *quantum two-mode* squeezing radar

Hypothesis testing on ρ



- Recall:
 ρ tells us the correlation
 between the received and reference
 signals
- In terms of ρ, the target detection problem requires us to distinguish between these hypotheses:
 - $H_0: \rho = 0$ Target absent $H_1: \rho > 0$ Target present

A note about choosing hypotheses

 $H_0: \rho = 0$ Target absent $H_1: \rho > 0$ Target present

- ▶ Note that *H*¹ is a **composite** hypothesis
- We **do not know** what ρ would be if a target is present
 - $\blacktriangleright~\rho$ is a function of range, radar cross section, background noise, \ldots
- We are **not** testing between $\rho = 0$ and $\rho = \kappa$ for some known value of κ
- The Neyman-Pearson lemma does not apply here

Detector functions

- There are many detector functions which could be used for this target detection problem
- ► A detector function is used for radar detection as follows:
 - 1. Set a **threshold**
 - 2. Calculate the detector function using the given I_1 , Q_1 , I_2 , and Q_2 samples
 - 3. Declare a detection if the value exceeds the threshold
- One natural detector function: the (generalized) likelihood ratio

Nuisance parameters

$$\begin{bmatrix} \sigma_1^2 & 0 & \rho\sigma_1\sigma_2\cos\phi & \rho\sigma_1\sigma_2\sin\phi \\ 0 & \sigma_1^2 & -\rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi \\ \rho\sigma_1\sigma_2\cos\phi & -\rho\sigma_1\sigma_2\sin\phi & \sigma_2^2 & 0 \\ \rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi & 0 & \sigma_2^2 \end{bmatrix}$$

- Unfortunately, the covariance matrix has three nuisance parameters: σ₁, σ₂, and φ
- ▶ In order to simplify our problem, we assume $\sigma_1 = 1$, $\sigma_2 = 1$, and $\phi = 0$
- Future work: estimate these parameters or deal with them in a more principled manner

The (simplified) noise radar target detection problem

Given N samples of the radar signals I_1 , Q_1 , I_2 , and Q_2 such that

$$\begin{bmatrix} I_1 \\ Q_1 \\ I_2 \\ Q_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & \rho & 0 \\ 0 & 1 & 0 & -\rho \\ \rho & 0 & 1 & 0 \\ 0 & -\rho & 0 & 1 \end{bmatrix} \right),$$

decide which of the following is true:

$$H_0: \rho = 0$$
 Target absent
 $H_1: \rho > 0$ Target present

The GLR detector

$$D_{
m GLR} = N igg[rac{2 ar{D}_1 \hat{
ho} - ar{P}_{
m tot} \hat{
ho}^2}{1 - \hat{
ho}^2} - 2 \ln(1 - \hat{
ho}^2) igg]$$

$$\blacktriangleright P_{\rm tot} \equiv I_1^2 + Q_1^2 + I_2^2 + Q_2^2$$

$$\blacktriangleright D_1 \equiv I_1 I_2 - Q_1 Q_2$$

- ► Line over expression = sample mean over *N* samples
- $\hat{\rho} = \text{maximum likelihood estimate of } \rho$ (complicated)

Approximate GLR detector

$$D_{ ext{GLR}} = \textit{N}iggl[rac{2ar{D}_1\hat
ho - ar{P}_{ ext{tot}}\hat
ho^2}{1-\hat
ho^2} - 2\ln(1-\hat
ho^2)iggr]$$

- This is very complicated
- But to second order in ρ , this reduces to

$$D_{
m GLR} pprox rac{N ar{D}_1^2}{ar{P}_{
m tot} - 2}$$

- Much simpler to calculate (e.g. on a digital signal processor)
- Can obtain closed-form formula for the ROC curve

Connection to a previous detector

- $D_1 = I_1 I_2 Q_1 Q_2$ has itself been used as a detector function
- It was called "Detector 1" in the world's first journal paper on experimental microwave quantum radar
 - D. Luong, C. W. S. Chang, A. M. Vadiraj, A. Damini, C. M. Wilson and B. Balaji, "Receiver Operating Characteristics for a Prototype Quantum Two-Mode Squeezing Radar," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 56, no. 3, pp. 2041-2060, June 2020 (accepted Sept. 2019)
- It is equivalent to the "digital receiver" in the world's second journal paper on experimental microwave quantum radar
 - S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, "Microwave quantum illumination using a digital receiver," *Science Advances*, vol. 6, no. 19, p. eabb0451, May 2020 (accepted Feb. 2020)

ROC curve comparison



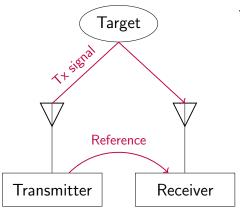
ρ = 0.1, 0.2, 0.3, 0.4
N = 50

- Performance of D_{GLR} is similar to D₁
- D₁ slightly better when ρ is small; D_{GLR} better when ρ is slightly larger
- ▶ Neither one is "optimal"
- As expected, overall radar performance improves as ρ increases

What happened to **quantum** radar?

- So far, I have spoken only about **noise radar**
- What happened to quantum two-mode squeezing (QTMS) radar?

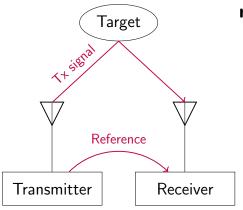
Noise radar recap



My research focuses on **noise radars** which work like this:

- 1. Produce a microwave noise signal.
- 2. Transmit the signal, retaining a copy as a reference.
- 3. Receive a signal from free space.
- 4. Correlate the received signal with the reference.

QTMS radar



Quantum two-mode squeezing radars work (roughly) like this:

- 1. Produce a microwave noise signal.
- 2. Transmit the signal, retaining a **better** copy as a reference.
- 3. Receive a signal from free space.
- 4. Correlate the received signal with the reference.

A better reference signal

$$\begin{bmatrix} \sigma_1^2 & 0 & \rho\sigma_1\sigma_2\cos\phi & \rho\sigma_1\sigma_2\sin\phi \\ 0 & \sigma_1^2 & -\rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi \\ \rho\sigma_1\sigma_2\cos\phi & -\rho\sigma_1\sigma_2\sin\phi & \sigma_2^2 & 0 \\ \rho\sigma_1\sigma_2\sin\phi & \rho\sigma_1\sigma_2\cos\phi & 0 & \sigma_2^2 \end{bmatrix}$$

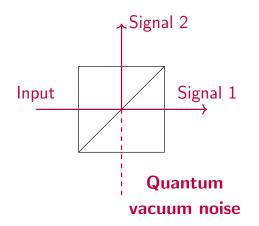
- Mathematically (but not experimentally!), QTMS radars are exactly the same as noise radars except that they achieve higher values of ρ
- The reference signal is a higher-fidelity copy of the transmit signal

Noise in the reference signal

- Conventional matched filtering assumes a perfect copy of the Tx signal is available
- Quantum mechanics says a perfect copy is impossible
- There will always be noise in *I* and *Q* voltage measurements, even in an theoretically ideal system

If you think you can achieve 100% correlation, you've forgotten about quantum mechanics!

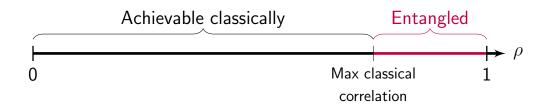
Can't you just split the signal?



Vacuum noise will creep into the beamsplitter, even at absolute zero and in a perfect vacuum

Quantum noise and entanglement

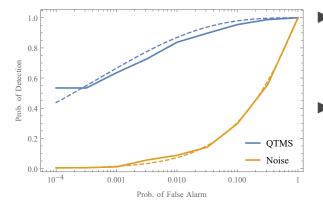
- 100% correlation is impossible according to quantum mechanics
- With conventional methods of preparing a reference signal, $\rho < \text{classical limit}$
- Using **entanglement**, can achieve classical limit $< \rho < 1$



Radars are not made out of paper

- ▶ No amount of theory can replace an experiment
- If a radar cannot improve p for the same signal power, no point pursuing it
- A QTMS radar experiment was performed by Wilson et al. at the Institute for Quantum Computing (University of Waterloo)
 - D. Luong, C. W. S. Chang, A. M. Vadiraj, A. Damini, C. M. Wilson and B. Balaji, "Receiver Operating Characteristics for a Prototype Quantum Two-Mode Squeezing Radar," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 56, no. 3, pp. 2041-2060, June 2020

Experimental ROC curves



- Experimental ROC curves fit our theoretically derived ROC curves very well
 - Improvement in QTMS radar over standard noise radar corresponds to increasing ρ
 by a factor of 3

Conclusion

- ► Can use the generalized likelihood ratio to distinguish between ρ = 0 and ρ > 0
- ► An approximate GLR works well in most cases
- QTMS radars improve performance by increasing ρ
- ► This improvement has been **experimentally** demonstrated