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Problem & Model

◮ A number of broadband stationary
sources sℓ[n], ℓ = 1, . . . , L, illuminate an
M -element sensor array;

◮ each transfer path is modelled by a vector
of impulse responses aℓ[n] ∈ C

M ;

◮ stationary additive, spatially and
temporally uncorrelated noise v[n] ∈ C

M ;
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Problem & Model

◮ A number of broadband stationary
sources sℓ[n], ℓ = 1, . . . , L, illuminate an
M -element sensor array;

◮ each transfer path is modelled by a vector
of impulse responses aℓ[n] ∈ C

M ;

◮ stationary additive, spatially and
temporally uncorrelated noise v[n] ∈ C

M ;

◮ a broadband transient signal sL+1[n]
enters the scene at some point in time;

◮ aim: we want to detect the onset of this
transient signal, which may be weak in
power [12];

◮ assumption: M > L.
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Model

◮ Each source, sℓ[n], contributes to the data
vector x[n] = [x1[n], . . . , xM [n]]T via a
steering vector
aℓ[n] = [Aℓ,1[n], . . . Aℓ,M [n]]T;

◮ compact with A[n] = [a1[n] . . .aL[n]] and
s[n] = [s1[n], . . . , sL[n]]

T:

x[n] = A[n] ∗ s[n] + v[n] ;

sℓ[n]

x1[n]Aℓ,1[n]

Aℓ,2[n]

Aℓ,M [n]

...
xM [n]

x2[n]
...

◮ space-time covariance: R[τ ] = E
{

x[n]xH[n− τ ]
}

:

R[τ ] = A[τ ] ∗ E
{

s[n]sH[n− τ ]
}

∗AH[−τ ] + E
{

v[n]vH[n− τ ]
}

(1)

= A[τ ] ∗ Γ[τ ] ∗AH[−τ ] + σ2
vIMδ[τ ] . (2)
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Cross-Spectral Density Matrix

◮ Transfer function matrix A(z) =
∑

nA[n]z−n (short A(z) •—◦ A[n]) is a
polynomial in z ∈ C;

◮ cross-spectral density R(z) •—◦ R[τ ]:

R(z) = A(z)Γ(z)AP(z) + σ2
vIM ;

◮ parahermitian property:

RP(z) = RH(1/z∗) = R(z) ;
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◮ when evaluated for a specific normalised angular frequency Ω0: R0 = R(z)|z=ejΩ0 ;

◮ R0 is a constant matrix that describes a narrowband problem;

◮ R0 is Hermitian −→ eigenvalue decomposition (EVD) R0 = Q0Λ0Q
H
0 .
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Narrowband EVD and Subspace Decomposition

◮ We assume an ordered EVD R0 = Q0Λ0Q
H
0 , where Λ0 = diag{λ1, . . . , λM}

with λℓ ≥ λℓ+1, ℓ = 1, . . . , (M − 1);

◮ partitioning enables a subspace decomposition:

R0 = Qs Qn

Λs + σ
2
v
IL QH

s

QH
nσ

2
v
IM−L

◮ source enumeration: eigenvalues above noise floor = number of uncorrelated sources;

◮ y[n] = QH
n x[n] ∈ C

M−L only contains noise;

◮ power in y[n]: E
{

‖y[n]‖22
}

= (M − L)σ2
v because of orthonormality of Q.
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Broadband EVD

◮ Space-time covariance R[τ ] or equivalently the CSD matrix R(z) are only
diagonalised by the EVD for a specific value τ or z;

◮ for an analytic R(z) that is not derived from multiplexed data, there exists a
parahermitian matrix EVD [14, 13]

R(z) = Q(z)Λ(z)QP(z) ; (3)

◮ Λ(z) is diagonal, parahermitian, analytic, and unique;

◮ eigenvectors in Q(z) are paraunitary, analytic, and unique up to an arbitrary allpass
function;

◮ paraunitarity Q(z)QP(z) = QP(z)Q(z) = I implies losslessness;

◮ a number of algorithms can approximate (3) [8, 9, 10, 17, 15, 16].
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Broadband Subspace Decomposition

◮ The parahermitian matrix EVD R(z) = Q(z)Λ(z)QP(z) enables a
broadband subspace decomposition:

R(z) = Q
s
(z) Q

n
(z)

Λs(z)
QP

s
(z)

QP

n
(z)σ

2

vIM−L

+σ
2

vIL

◮ Q[n] ◦—• Q(z) describes a lossless filter bank;

◮ data vector component in the noise-only subspace: y[n] = QH
n [−n] ∗ x[n];

◮ again, it can be shown that ideally E
{

‖y[n]‖22
}

= (M − L)σ2
v .
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‘Syndrome’ Idea

◮ We estimate R(z) •—◦ R[τ ] over a window of data, with L < M stationary
sources present;

◮ compute parahermitian matrix EVD, perform source enumeration, and determine the
eigenvectors spanning the noise-only subspace, Qn(z);

◮ if an additional source sL+1[n] enters the scene, it will likely protrude into the
noise-only subspace;

◮ we therefore monitor the syndrome vector

y[n] = QH
n [−n] ∗ x[n] (4)

for a change in power, or for any structured / correlated components.

QH
n [−n]x[n] y[n]

M M−L
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Intuitive Example I
◮ M = 6 sensors, L = 3 stationary sources; weak transient source at n = 5000;
◮ monitoring a sensor output x1[n]:
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Intuitive Example II
◮ M = 6 sensors, L = 3 stationary sources; weak transient source at n = 5000;
◮ monitoring a syndrome element y1[n]:
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Proposed Approach

◮ We use the statistics and evaluated parahermitian matrix EVD of a previous
time window, and utilise the broadband noise-only subspace spanned by the
columns of Qn(z);

◮ being analytic, Qn(z) can typically be approximated well by low-order polyomials, and
is relatively inexpensive to implement;

QH
n [−n] ↓Dx[n]

y[n] y[ν]
ξ
(K)
n,D

M M−L M−L

‖·‖22
∑

K

◮ because of the processing, elements of the syndrome vector y[n] are spatially and
temporally correlated;

◮ decimation by D can break temporal correlation and further reduces complexity;

◮ we can average over consecutive syndrome vectors to increase discrimination;

◮ ξ
(K)
n,D is generalised χ2 distributed if temporal correlation is suppressed [11, 2].
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Decimated Processor

◮ The proposed subspace projection is followed by a decimation by D:

QH
n [−n] ↓Dx[n]

y[n] y[ν]
ξ
(K)
n,D

M M−L M−L

‖·‖22
∑

K

◮ cost advantage: a polyphase implementation integrates the decimation with the
processor, reducing operations by a factor of D;

◮ temporal decorrelation: if the temporal correlation does not exceed D lags, the
decimation will temporally decorrelate susequent snapshots of the syndrome vector
y[ν].
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Results I — Statistics

◮ M = 6 sensors, L = 2 stationary sources, transfer functions determined by
radio propagation model for dense urban environment (polynomial order ≈ 40);

◮ statistics of output for I0: no transient versus I1: transient present; K = 1;
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Results I — Statistics
◮ M = 6 sensors, L = 2 stationary sources, transfer functions determined by

radio propagation model for dense urban environment (polynomial order ≈ 40);
◮ statistics of output for I0: no transient versus I1: transient present; K = 10;
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Results II — Sources and Propagation Environment

◮ Power of contributions for realistic channel scenario:

signal power

source 1 0.0000 dB
source 2 -4.3494 dB
source 3 -13.2865 dB
noise -16.2865 dB
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Results III — Discrimination vs Decision Time
◮ Averaging increasingly separates the distributions for I0 and I1 — measured

as discrimination D: derived from the ROC [6];

◮ averaging also
increases the
time to compute

ξ
(T )
n,D −→
decision time T
(for a 20MHz
channel);

◮ N here is the
window over
which the
space-time
covariance is
estimated [3, 4,
5]. 0 2 4 6 8 10 12 14
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Summary

◮ We have proposed a broadband subspace approach to detect the presence of
weak transient signals;

◮ this is based on second order statistics of sensor array data — the space-time
covariance matrix — and a polynomial matrix EVD;

◮ this covariance matrix and its decomposition can be computed off-line; for low-cost
implementations, see e.g. [1, 7]

◮ a subspace decomposition for the noise-only subspace determines a syndrome vector;

◮ in the absence of a transient signal, this syndrome only contains noise;

◮ a transient signal is likely to protrude into the noise-only subspace, and a change in
energy can be detected even if the signal is weak;

◮ discrimination can be traded off against decision time;

◮ further work: (i) impact of time-varying channels, and (ii) forensic investigation of the
transient source once detected.
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