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qExplore the potential of kernel idea within full model - based Bayesian filters
qIntroduce the adaptive kernel Kalman filter (AKKF).
• Model - based Bayesian filter 
• DSM information are used to calculate the update kernel rules in an adaptive manner
• Prediction and posterior distributions are embedded into a kernel feature space 
• Avoid the problematic resampling in most PFs
• Reduce the sample complexity

Novelties
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Background – Non-linear/non-Gaussian estimation
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q Two families of sequential Bayesian filters
• Model-driven filters: DSM is given explicitly, 

e.g., Kalman Filter (KF), Unscented Kalman Filter (UKF), Particle Filter (PF)

• Data-driven filters: DSM is unknown or partially known while the training data set is provided

q Dynamic state-space model (DSM) 

• Transition model:               𝐱! = 𝑓(𝐱!"#, 𝐮!)
• Measurement model:       𝐲! = ℎ(𝐱!, 𝐯!)

q Sequential Bayesian rule
• Prediction: 𝑝 𝐱! 𝐲#:! = ∫𝑝(𝒙!|𝐱!"#) 𝑝 𝐱!"# 𝐲#:!"# 𝑑𝐱!"#

• Update:  𝑝 𝐱! 𝐲":! = $(𝐲!|𝐱!)$(𝐱!|𝐲𝟏:!$%)
$(𝒚!|𝐲𝟏:!$%)

4



qKalman filter (KF): 

Optimal Bayesian solution for linear DSMs

qNonlinear systems
Extended KF (EKF) & unscented KF (UKF).   

Background – Model-driven filters: 
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qKalman filter (KF): 

Optimal Bayesian solution for linear DSMs

qNonlinear systems
Extended KF (EKF) & unscented KF (UKF).   

qBootstrap particle filter (PF) 
Resampling is a necessary step
• Increase complexity

• Hard to parallelize

Background – Model-driven filters: 
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qDSMs are unknown or partially known,
need to be inferred from prior training data

Background – Data-driven filters: 
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qThe performance limits
• Difficult to incorporate theoretical DSM models
• Problems occur if target moves outside space defined by

training data

qExisting methods
• Training data 
• Off-line training to learn the unknown 

transition/measurement models
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Preliminaries – Kernel mean embedding (KME)
qReproducing kernel Hilbert space (RKHS):
• High dimensional kernel feature space, finite/infinite

space
qState point 𝑥 is mapped into RKHS through a non-linear

feature mapping 𝜙 𝑥
qThe kernel embedding approach represents a probability

distribution by an element in the RKHS

qEmpirical kernel estimator, given a sample set

• If 𝑥! are drawn from  𝑃(𝑥), 𝑤! = 1/𝑀.

• In general, kernel weights are non-uniform, 
positive/negative, c.f. UKF 
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Preliminaries – Kernel mean embedding (KME)
qThe KME approach represents a conditional

distribution P(X|y) by an element in the RKHS

qBy defining the conditional operator 𝒞+|, as the linear
operator

qEmpirical kernel estimator: The estimate of the 𝒞+|, is
obtained as a linear regression in the RKHS

• Non-uniform weights, positive/negative, different
from PFs
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Preliminaries – Kernel Kalman filter (KKF)
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q Non-linear estimation in data space

–> Linear way in kernel feature space

q Execute conventional KF in kernel
feature space

q Predict and update the kernel weight
mean and covariance

q Relying on the training data set
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Adaptive Kernel Kalman Filter (AKKF)
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qExecuted in both the data state space and 
kernel feature space
• The particles are propagated and updated in the 

data space based on the DSM (similar to UKF & 
PF)
• Kernel weight mean and covariance are predicted 

and updated in the kernel feature space (similar 
to KKF way)

qThree main steps: prediction, update, 
proposal
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Adaptive Kernel Kalman Filter (AKKF)
q Embedding the Posterior Distribution at time n-1 

• Generated proposal particles to capture the
diversity of the non-linearity (c.f. sigma points
generation)

• For convenience, draw from Gaussian
distribution

• Note, due to weighting, this is not a Gaussian
approximation

• Instead, adaptive change of kernel spaces
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qPrediction from Time n−1 to Time n 
(predict step of KF)
• Predictive particles: propagate proposal particles through 

the transition function
• New Kernel space Φ!

• Empirical  Predictive KME by calculating conditional 
operator 

• Predictive kernel weight mean and covariance
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Adaptive Kernel Kalman Filter (AKKF)
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qUpdate at Time n (correct step of KF)
• Observation particles

• Kernel Kalman gain calculation

• Update kernel weight mean and covariance
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Adaptive Kernel Kalman Filter (AKKF)
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Simulation
q Bearing–only tracking (BOT) 
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qSummary
• Kernel mean embedding: Solve Non-linear estimation in high dimensional

kernel space using linear ways
• AKKF: apply KF into kernel spaces with adaptively updated particles & kernel

spaces
qAdvantages
• Nonlinear, non-Gaussian filter for Bayesian tracking

- Incorporation of theoretical models

• Lower computation complexity
- Remove resample
- Smaller particle number requirement
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Conclusion
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