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Novelties

JExplore the potential of kernel idea within full model - based Bayesian filters
dintroduce the adaptive kernel Kalman filter (AKKF).

 Model - based Bayesian filter

DSM information are used to calculate the update kernel rules in an adaptive manner

Prediction and posterior distributions are embedded into a kernel feature space

Avoid the problematic resampling in most PFs

Reduce the sample complexity
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Background — Non-linear/non-Gaussian estimation

[ Dynamic state-space model (DSM)
e Transition model: X, = f(Xp-1,Uy)
* Measurement model: 'y, = h(X,, V)

[ Sequential Bayesian rule

* Prediction: p(X,|y1.n) = fp(xn|xn—1)P(Xn—1|Y1:n—1)an—1

PVnlXn)PXnly1:n-1)
p(yn |Y1:n—1)

* Update: p(xn|Y1:n) =

[ Two families of sequential Bayesian filters
* Model-driven filters: DSM is given explicitly,
e.g., Kalman Filter (KF), Unscented Kalman Filter (UKF), Particle Filter (PF)

» Data-driven filters: DSM is unknown or partially known while the training data set is provided
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Background — Model-driven filters:

dKalman filter (KF): Actual (samp'fng) Linearized (EKF)

UKF

Optimal Bayesian solution for linear DSMs samaponis ~___

dNonlinear systems
Extended KF (EKF) & unscented KF (UKF).

TR mean

y= f(X)
y:f(x) Py—ATP A

i -~ covariance \
» :‘"—4‘
: o, :
- g
o 4
B iy
.t

f(X)

weighted sample mean
and covariance

\j
f(x)
true mean
AN true covariance
: . E\\i" UKF mean
O ATP, A

transformed
sigma points

=



University Defence Research Collaboration (UDRC)

Signal Processing in the Information Age

Background — Model-driven filters:

dKalman filter (KF): Posln) @ , e o000 ooeo o 1N =
Optimal Bayesian solution for linear DSMs ;(xdl'y 5 N T
dNonlinear systems U,,d, ________ = i 4 | ageeel |
Extended KF (EKF) & unscented KF (UKF). | g
(dBootstrap particle filter (PF) p}fxmlpfg)“‘ 6“{x'}
6 ‘38 35*0 J 6 (0,1 NYY,

Resampling is a necessary step T X Y |
* Increase complexity PO | Vi) d % ¢ Sﬂ?é _______ %?

romny

* Hard to parallelize

Resampling
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Background — Data-driven filters:

_______________________________________

- N

UDSMs are unknown or partially known, /~ Online estimation *
need to be inferred from prior training data

Transition model Prediction

JExisting methods
* Training data
e Off-line training to learn the unknown
transition/measurement models

Measurement

model
dThe performance limits N L
 Difficult to incorporate theoretical DSM models
* Problems occur if target moves outside space defined by

training data
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Preliminaries — Kernel mean embedding (KME)

U Reproducing kernel Hilbert space (RKHS): Pl Ty
* High dimensional kernel feature space, finite/infinite + Pk )/ TN. .
space ! BRENR e ‘
State point x is mapped into RKHS through a non-linear ! : _ .;3;
feature mapping ¢(x) it
dThe kernel embedding approach represents a probability el /,/’ *
distribution by an element in the RKHS o S PPt
ux = Ex[¢p(X)] = ] ¢(x)dP(x) State space o Kernel Feature space ¢ (x)

W Empirical kernel estimator, given a sample set
M
px =) wiblx) = ow
1=
* If x; are drawn from P(x), w; = 1/M.

% In general, kernel weights are non-uniform,
positive/negative, c.f. UKF
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dThe

Preliminaries — Kernel mean embedding (KME)
KME approach represents a conditional Data space
distribution P(X|y) by an element in the RKHS 2T DO BA)
pry = By [6.00] = [ 8.(0aPGy).
LBy defining the conditional operator Cx\y as the linear
operator
pxy = Cxydy () = Cxy (Cyy + A" ¢, ().

LEmpirical kernel estimator: The estimate of the Cx\y is
obtained as a linear regression in the RKHS
fixiy = Cxiydy(¥) = © (Gyy + AN YT (y) = dw,

w = (Gyy + /l[)_l G;,y.

I
’ !
Kernel feature space
i ! \

b (O

# Non-uniform weights, positive/negative, different
from PFs

by ) 4;, 02 Py ()

-
by (Y)



University Defence Research Collaboration (UDRC)

Signal Processing in the Information Age

Preliminaries — Kernel Kalman filter (KKF)

1. Prediction KKR for kernel weights

. . . . Pro_]ected into w
A Non-linear estimation in data space | | || | ‘ /®,
x{i=1:M} e
S+

—> Linear way in kernel feature space

Predlctlon

1 Execute conventional KF in kernel ‘
i=1:M > : Sn
feature space e 1 @/

Update

U Predict and update the kernel weight 2. Update

mean and covariance . || || | E‘ @/ |

[ Relying on the training data set T

Information of the
observation
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Adaptive Kernel Kalman Filter (AKKF)

1 Executed in both the data state space and
kernel feature space

* The particles are propagated and updated in the
data space based on the DSM (similar to UKF &
PF)

* Kernel weight mean and covariance are predicted

and updated in the kernel feature space (similar
to KKF way)

1 Three main steps: prediction, update,
proposal

1. Prediction

gl —l+—lu— X

3. Proposal

{i=1:M}

% X

f,gizl:M} l lll l T > X

Information of the

observation

U
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Adaptive Kernel Kalman Filter (AKKF)

U Embedding the Posterior Distribution at time n-1

ﬁ;n_l = (I)n_lwl-’l'-—l’
é; 1 Xn1 = q)n—IS;—l(DZ—l' é (x(i=1:M}
1l
) LAi=1M) =T l |
* Generated proposal particles to capture the el S - e
diversity of the non-linearity (c.f. sigma points /]
generation) E(x), E(x?)
i;{;_zllM} ~ N(]E’ (xn—l) ,Val‘ (xn—l)) ’ bx (ir(:flltM)
. . gli=1:M) IXLI
* For convenience, draw from Gaussian n-1 ———————essete-0-00——> I’ ’ :i_l
distribution — *
@ Note, due to weighting, this is not a Gaussian State space Kernel space

approximation
@ Instead, adaptive change of kernel spaces
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Adaptive Kernel Kalman Filter (AKKF)

Prediction from Time n-1 to Time n

(predict step of KF) ¢ (3 1")
* Predictive particles: propagate proposal particles through = &3 e l l ll
the transition function 1]
* New Kernel space &, fx) o)
Geltn "
* Empirical Predictive KME by calculating conditional “ l 1 (
operator w }—o—oo—“oo-o—c—>—> l ll

) ¢ T

A — —_ A+
p(xn|xn—1) = ,uxn — (ann — anlxn_“uxn_l,
* Predictive kernel weight mean and covariance
- -
W, = (ij + /112]) K,;xw;:_l = Fn_lw;“_l,
S, =8, +V,.

n

State space Kernel space
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Adaptive Kernel Kalman Filter (AKKF)

dUpdate at Time n (correct step of KF)

=1 1 EE
e Observation particles ————o——¢o—sseoco oo l 17 . 71
* Kernel Kalman gain calculation hx) U
it =, + Qu |6y Om) = i, |
- o Vo et . o a0l
Cx,,xn = cov(Pr(x,) — /Jx,,)° 2 =M Ry ® & )
. . —_—an ases aanfes -, Sso
* Update kernel weight mean and covariance Informationfrom 7" eoedr .,
observations &y, Om) ®

+ _ — —
w, =w,_+ (0, (G;,yn - nywn) ;

S; =S, - QnnyS;;-

State space Kernel space
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Conclusion

dSummary

 Kernel mean embedding: Solve Non-linear estimation in high dimensional
kernel space using linear ways

 AKKF: apply KF into kernel spaces with adaptively updated particles & kernel
spaces

JAdvantages
* Nonlinear, non-Gaussian filter for Bayesian tracking
- Incorporation of theoretical models

* Lower computation complexity
- Remove resample
- Smaller particle number requirement
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