

Approximate Proximal-Gradient Methods Anis Hamadouche, Yun Wu, Andrew M. Wallace, and Joaõ F. C. Mota The Institute of Sensors, Signals & Systems (ISSS)

Heriot-Watt University, Edinburgh, UK

Composite Optimization Problems

Many problems in science, engineering, and *defense* can be written as

```
\begin{array}{c|c} \underset{x \in \mathbb{R}^{n}}{\text{minimize}} & g(x) + h(x) \\ & & | \\ & & | \\ & \text{non-differentiable, can encode constraints:} & h : \mathbb{R}^{n} \to \mathbb{R} \cup \{+\infty\} \\ & & \text{differentiable, real-valued:} & g : \mathbb{R}^{n} \to \mathbb{R} \end{array}
```

Example: <u>State-space</u> model of a drone

x[k] =(position time k, velocity time k, % mission completed, ...)

$$x[k+1] \simeq Ax[k] + Bu[k]$$
$$|_{input}$$

<u>Goal</u>: given x[0], drive state to x_f in T time steps, while minimizing energy

at time k

 $\begin{array}{ll} \underset{x[1],\ldots,x[T]\\u[0],\ldots,u[T-1] \end{array}}{\text{minimize}} & \left(x[T] - x_f\right)^2 + \sum_{k=0}^{T-1} u^2[k] &= g(x) \\ \text{subject to} & x[k+1] = Ax[k] + Bu[k] \,, \quad k = 0, \ldots, T-1 - can \, be \, encoded \, in \, h(x) \end{array}$

Approximate Proximal Methods $\underline{\text{minimize } f(x) := g(x) + h(x)}$

$$x^{k+1} = \operatorname{prox}_{\alpha_k h} \left(x^k - \alpha_k \nabla g(x^k) \right)$$

$$gradient \ descent \ along \ g \ (differentiable)$$

$$\operatorname{prox}_f(x) := \operatorname{arg min}_y \ f(x) + \frac{1}{2} \left\| y - x \right\|_2^2 \quad \text{generalization of a projection}$$

Errors may be introduced to *save power*

hardware, software, linear algebra, or algorithmic approximations

how to model ?

$$x^{k+1} = \operatorname{prox}_{\alpha_k h} \left(x^k - \alpha_k \nabla g(x^k) + \boldsymbol{\epsilon_1^k} \right) + \boldsymbol{\epsilon_2^k}$$

Existing convergence proofs hold for this type of errors ?

Tradeoffs between power savings / accuracy / execution time ?

Related Work

Approximate PGD with **decreasing errors**

Schmidt et al. 2010

Criterion	Bound	Constants
$f\left(\frac{1}{k}\sum_{i=1}^{k}x_i\right) - f(x^*)$	$\frac{L}{2k} \left(\ x_0 - x^*\ + 2A_k + \sqrt{2B_k} \right)^2$	$A_k = \sum_{i=1}^k \left(\frac{\ e_i\ }{L} + \sqrt{\frac{2\varepsilon_i}{L}} \right) , B_k = \sum_{i=1}^k \frac{\varepsilon_i}{L}$

Approximate Accelerated PGD with square summable (weighted) errors

Schmidt et al. 2010, Aujol et al. 2015

Criterion	Bound	Constants
$f(x_k) - f(x^*)$	$\frac{2L}{(k+1)^2} \left(\ x_0 - x^*\ + 2\widetilde{A}_k + \sqrt{2\widetilde{B}_k} \right)^2$	$\widetilde{A}_k = \sum_{i=1}^k i \left(\frac{\ e_i\ }{L} + \sqrt{\frac{2\varepsilon_i}{L}} \right) , \widetilde{B}_k = \sum_{i=1}^k \frac{i^2 \varepsilon_i}{L}$
$t_N^2 w_N + \sum_{n=2}^N \rho_n w_{n-1} + \frac{1}{2\gamma} \ u_N - x^*\ ^2$	$\frac{1}{2\gamma} \left(\ u_0 - x^*\ + 2A_{i,N} + \sqrt{2B_N} \right)^2$	$A_{1,n} = \sum_{k=1}^{n} t_k \left(\gamma \ e_k\ + \sqrt{2\gamma \varepsilon_k} \right)$
$u_n = x_{n-1} + t_n(x_n - x_{n-1})$		$A_{2,n} = \gamma \sum_{k=1}^{n} t_k \ e_k\ \qquad B_n = \gamma \sum_{k=1}^{n} t_k^2 \varepsilon_k$
$w_n := F(x_n) - F(x^*)$		

Analysis of Error Propagation

Error Models

$\underset{x \in \mathbb{R}^n}{\text{minimize}}$	f(x)	:= g(x)	+h(x)
--	------	---------	-------

Error Type		Probabilistic Model
Gradient computation (linear) $\nabla^{\epsilon_1^k}g(x^k) \coloneqq \nabla g(x^k) + \epsilon_1^k$	 Centered & CMI Bounded CMI of the iterates 	$ \mathbb{E}\left[\epsilon_{1_{\Omega}}^{k} \middle \epsilon_{1_{\Omega}}^{1}, \dots, \epsilon_{1_{\Omega}}^{k-1}\right] = \mathbb{E}\left[\epsilon_{1_{\Omega}}^{k}\right] = 0, \\ \mathbb{P}\left(\left \epsilon_{1_{\Omega}j}^{k}\right \leq \delta\right) = 1, \text{for all } j = 1, \dots, n, \\ \mathbb{E}\left[\epsilon_{1_{\Omega}}^{k} {}^{\top} x_{\Omega}^{k} \middle \epsilon_{1_{\Omega}}^{1}, \dots, \epsilon_{1_{\Omega}}^{k-1}, x_{1_{\Omega}}^{1}, \dots, x_{1_{\Omega}}^{k-1}\right] = \mathbb{E}\left[\epsilon_{1_{\Omega}}^{k} {}^{\top} x_{\Omega}^{k}\right] = 0, $
$\begin{aligned} & \left\ \begin{array}{l} \text{Proximal computation (nonlinear)} \\ r^{i} &= x^{i} - \bar{x}^{i} \\ h(x^{k+1}) + \frac{1}{2s} \left\ x^{k+1} - x^{k} + s \nabla^{\epsilon_{1}^{k}} g(x^{k}) \right\ _{2}^{2} \leq \\ \epsilon_{2}^{k} + h(\bar{x}^{k+1}) + \frac{1}{2s} \left\ \bar{x}^{k+1} - x^{k} + s \nabla^{\epsilon_{1}^{k}} g(x^{k}) \right\ _{2}^{2} \end{aligned}$	 Centered and CMI CMI of the iterates Bounded 	$\begin{split} & \mathbb{E}\left[r_{\Omega}^{k} \left r_{\Omega}^{1}, \dots, r_{\Omega}^{k-1} \right] = \mathbb{E}\left[r_{\Omega}^{k}\right] = 0, \\ & \mathbb{E}\left[r_{\Omega}^{k^{\top}} x_{\Omega}^{k} \left r_{\Omega}^{1}, \dots, r_{\Omega}^{k-1}, x_{1_{\Omega}}^{1}, \dots, x_{1_{\Omega}}^{k-1} \right] = \mathbb{E}\left[r_{\Omega}^{k^{\top}} x_{\Omega}^{k}\right] = 0, \\ & \mathbb{P}\left(\left \epsilon_{2_{\Omega}}^{k}\right \le \varepsilon_{0}\right) = 1 \end{split}$

Independence — Conditional Mean Independence (CMI) — Uncorrelatedness

Probabilistic analysis is a hybrid of worst-case and average-case analyses that inherits advantages of both. It measures the expected performance of algorithms under slight random perturbations of worst-case inputs

Scheme	Analysis	Bound
ient Method	Deterministic	$f\Big(\frac{1}{k+1}\sum_{i=0}^{k}x^{i+1}\Big) - f(x^{\star}) \leq \frac{1}{k+1}\Big[\sum_{i=0}^{k}\epsilon_{2}^{i} + \sum_{i=1}^{k}\left(\left\ \epsilon_{1}^{i}\right\ _{2} + \sqrt{\frac{2\epsilon_{2}^{i}}{s}}\right)\left\ x^{\star} - x^{0}\right\ _{2} + \frac{1}{2s}\left\ x^{\star} - x^{0}\right\ _{2}^{2}\Big]$ Error term Error-free
Proximal-Grad	Probabilistiç $2-4\exp(-rac{\gamma^2}{2})$	$f\left(\frac{1}{k}\sum_{i=1}^{k}x_{\Omega}^{i}\right) - f(x^{\star}) \leq \frac{1}{k}\sum_{i=1}^{k}\epsilon_{2\Omega}^{i} + \frac{\gamma}{\sqrt{k}}\left(\sqrt{n} \delta + \sqrt{\frac{2\varepsilon_{0}}{s}}\right)\left\ x^{\star} - x^{0}\right\ _{2} + \frac{1}{2sk}\left\ x^{\star} - x^{0}\right\ _{2}^{2}$ $Error term \qquad Erro-free$

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \mathrel{\mathop:}= g(x) + h(x)$

Assumption on error for convergence	Scheme	Analysis	Error Bounds	Rate
$\epsilon_1 \propto Oig(1/k^{1+\lambda}ig) \ \epsilon_2 \propto Oig(1/k^{2+\lambda}ig)$	lient Method	Deterministic	$\frac{1}{k+1} \Big[\sum_{i=0}^k \epsilon_2^i + \sum_{i=1}^k \left(\left\ \epsilon_1^i \right\ _2 + \sqrt{\frac{2\epsilon_2^i}{s}} \right) \left\ x^\star - x^0 \right\ _2$	O(1/k)
$egin{aligned} \epsilon_1 \propto Oig(1/k^{0.5+\lambda}ig)\ \epsilon_2 \propto Oig(1/k^{1+\lambda}ig) \end{aligned}$	Proximal-Grac	Probabilistic $2 - 4 \exp(-\frac{\gamma^2}{2})$	$\frac{1}{k}\sum_{i=1}^{k}\epsilon_{2\Omega}^{i} + \frac{\gamma}{\sqrt{k}}\left(\sqrt{n} \delta + \sqrt{\frac{2\varepsilon_{0}}{s}}\right)\left\ x^{\star} - x^{0}\right\ _{2}$	O(1/k)

Schmidt et al. 2010

Assumption on error	Scheme	Analysis	Error Bounds	Rate
$\epsilon_1 \propto Oig(1/k^{1+\lambda}ig) \ \epsilon_2 \propto Oig(1/k^{2+\lambda}ig)$	Proximal- Gradient Method	Deterministic Probabilistic	$egin{aligned} &rac{1}{2sk} \Big[\left\ x^{\star} - x^0 ight\ _2 + 2A_k + \sqrt{2B_k} \Big]^2 , \ &A_k = \sum\limits_{i=1}^k ig(rac{\ \epsilon_i^i\ _2}{L} + \sqrt{rac{2\epsilon_i^i}{L}} ig), \ &B_k = \sum\limits_{i=1}^k rac{\epsilon_i^i}{L}, \end{aligned}$	O(1/k)

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \mathrel{\mathop:}= g(x) + h(x)$

Assumption on error for convergence	Scheme	Analysis	Error Bounds	Rate
$\epsilon_1 \propto Oig(1/kig) \ \epsilon_2 \propto Oig(1/k^2ig)$	lient Method	Deterministic	$\frac{1}{k+1} \left[\sum_{i=0}^{k} \epsilon_2^i + \sum_{i=1}^{k} \left(\left\ \epsilon_1^i \right\ _2 + \sqrt{\frac{2\epsilon_2^i}{s}} \right) \left\ x^\star - x^0 \right\ _2 \right]$	$Oig(\log k/kig)$
$\epsilon_1 \propto Oig(1/k^{0.5}ig) \ \epsilon_2 \propto Oig(1/kig)$	Proximal-Grac	Probabilistic $2 - 4 \exp(-\frac{\gamma^2}{2})$	$\frac{1}{k}\sum_{i=1}^{k}\epsilon_{2\Omega}^{i} + \frac{\gamma}{\sqrt{k}}\left(\sqrt{n} \delta + \sqrt{\frac{2\varepsilon_{0}}{s}}\right)\left\ x^{\star} - x^{0}\right\ _{2}$	$Oig(\log k/kig)$

Schmidt et al. 2010

Assumption on error	Scheme	Analysis	Error Bounds	Rate
$\epsilon_1 \propto Oig(1/kig) \ \epsilon_2 \propto Oig(1/k^2ig)$	Proximal- Gradient Method	Deterministic Probabilistic	$\frac{1}{2sk} \left[\left\ x^{\star} - x^{0} \right\ _{2} + 2A_{k} + \sqrt{2B_{k}} \right]^{2} \\ A_{k} = \sum_{i=1}^{k} \left(\frac{\ \epsilon_{i}^{i}\ _{2}}{L} + \sqrt{\frac{2\epsilon_{2}^{i}}{L}} \right), B_{k} = \sum_{i=1}^{k} \frac{\epsilon_{2}^{i}}{L},$	$O(\log^2 k/k)$

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \mathrel{\mathop:}= g(x) + h(x)$

Assumption on error for convergence	Scheme	Analysis	Error Bounds	Rate
$\begin{aligned} \epsilon_1 &\leq \delta\\ \epsilon_2 &\leq \varepsilon_0 \end{aligned}$	lient Method	Deterministic	$\frac{1}{k+1} \left[\sum_{i=0}^{k} \epsilon_2^i + \sum_{i=1}^{k} \left(\left\ \epsilon_1^i \right\ _2 + \sqrt{\frac{2\epsilon_2^i}{s}} \right) \left\ x^\star - x^0 \right\ _2 \right]$	O(1)
Stationary $\epsilon_1 \leq \delta$ $\epsilon_2 \leq \varepsilon_0$	Proximal-Grac	Probabilistic $2 - 4 \exp(-\frac{\gamma^2}{2})$	$\underbrace{E\left(\epsilon_{2\Omega}\right)}_{E(\epsilon_{2\Omega})} + \underbrace{\frac{\gamma}{\sqrt{k}} \left(\frac{\varepsilon_{0}}{2} + \sqrt{n} \delta \left\ x^{\star} - x^{0}\right\ _{2}\right)}_{E(\epsilon_{2\Omega})}$ -optimality if stationary	$Oig(1/\sqrt{k}ig)$

Schmidt et al. 2010

Assumption on error	Scheme	Analysis	Error Bounds	Rate
$\begin{aligned} \epsilon_1 \leq \delta \\ \epsilon_2 \leq \varepsilon_0 \end{aligned}$	Proximal- Gradient Method	Deterministic	$egin{aligned} &rac{1}{2sk} \Big[\left\ x^{\star} - x^0 ight\ _2 + 2A_k + \sqrt{2B_k} \Big]^2 , \ &A_k = \sum\limits_{i=1}^k ig(rac{\ \epsilon_i^i\ _2}{L} + \sqrt{rac{2\epsilon_2^i}{L}}ig), \ &B_k = \sum\limits_{i=1}^k rac{\epsilon_i^i}{L}, \end{aligned}$	O(k)

Experimental Setup:

$$\min_{x \in \mathbb{R}^n} f(x) := g(x) + h(x)$$
$$c^{k+1} = \operatorname{prox}_{\alpha_k h} \left(x^k - \alpha_k \nabla g(x^k) \right)$$

- LASSO with 600 random examples and 100 features using fixed-point representation (round-off error) and finite solver precision (CVX). $\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|x\|_1,$
- Quantization according to Q-format:

$$sI.F(x) = \sum_{i=0}^{W-2} b_i 2^{i-F} - b_{W-1} 2^{I-1}.$$

())	
precision	bit	frac.	ABSTOL
2.22e-16	8	4	2.22e-16
			0.001
	16	6	2.22e-16
			0.01
		8	2.22e-16
0.001	8	4	0.001
			0.01
	16	8	2.22e-16
			0.001
0.01	8	4	0.01
	16	6	0.01
		8	0.01

Experimental Results:

$$\min_{x \in \mathbb{R}^n} f(x) := g(x) + h(x)$$
$$x^{k+1} = \operatorname{prox}_{\alpha_k h} \left(x^k - \alpha_k \nabla g(x^k) \right)$$

Experimental Results:

h.

$$\min_{x \in \mathbb{R}^n} f(x) := g(x) + h(x)$$
$$x^{k+1} = \operatorname{prox}_{\alpha_k h} \left(x^k - \alpha_k \nabla g(x^k) \right)$$

Experimental Results:

$$\min_{x \in \mathbb{R}^n} f(x) := g(x) + h(x)$$
$$x^{k+1} = \operatorname{prox}_{\alpha_k h} \left(x^k - \alpha_k \nabla g(x^k) \right)$$

• We obtained new tighter deterministic bounds and we demonstrated their validity on a practical optimization example (LASSO) solved on a reduced-precision machine combined with reduced-precision solver.

- We obtained new tighter deterministic bounds and we demonstrated their validity on a practical optimization example (LASSO) solved on a reduced-precision machine combined with reduced-precision solver.
- We also derived probabilistic upper bounds.

- We obtained new tighter deterministic bounds and we demonstrated their validity on a practical optimization example (LASSO) solved on a reduced-precision machine combined with reduced-precision solver.
- We also derived probabilistic upper bounds.
- Worst-case running time can be much worse than the observed running time in practice.

- We obtained new tighter deterministic bounds and we demonstrated their validity on a practical optimization example (LASSO) solved on a reduced-precision machine combined with reduced-precision solver.
- We also derived probabilistic upper bounds.
- Worst-case running time can be much worse than the observed running time in practice.
- Probabilistic bounds are more practical.

- We obtained new tighter deterministic bounds and we demonstrated their validity on a practical optimization example (LASSO) solved on a reducedprecision machine combined with reduced-precision solver.
- We also derived probabilistic upper bounds.
- Worst-case running time can be much worse than the observed running time in practice.
- Probabilistic bounds are more practical.
- More relaxations on the assumptions are needed in order to incorporate more general perturbations into the analysis.

