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Composite Optimization Problems
Many problems in science, engineering, and  defense can be written as

non-differentiable,  can encode constraints:

differentiable,  real-valued:

Example: State-space model of a drone

input at time k

can be encoded in

given         ,  drive state to        in      time steps,  while minimizing energyGoal:
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Approximate Proximal Methods

Errors may be introduced to save power

hardware, software, linear algebra, or algorithmic approximations

gradient descent along g  (differentiable)

generalization of a projection

how to model ?

Existing convergence proofs hold for this type of errors ?

Tradeoffs between power savings / accuracy /  execution time ?

projection



Related Work

Criterion Bound Constants

Criterion Bound Constants

Approximate Accelerated PGD with square 
summable (weighted) errors

Approximate PGD with decreasing errors

Schmidt et al. 2010, Aujol et al. 2015

Schmidt et al. 2010



Analysis of Error Propagation

Software: e.g., early termination criterionSoftware: e.g., early termination criterion

Task: effect on QoS, e.g, f(x) – f*

Hardware: e.g., fixed-point representation 
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Control
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Error Models

Error Type Probabilistic Model

Gradient computation (linear) 1. Centered & CMI
2. Bounded
3. CMI of the iterates 

Proximal computation (nonlinear) 1. Centered and CMI
2. CMI of the iterates
3. Bounded

Independence          Conditional Mean Independence (CMI)          Uncorrelatedness

Probabilistic analysis is a hybrid of worst-case and average-case 
analyses that inherits advantages of both. It measures the 
expected performance of algorithms under slight random 
perturbations of worst-case inputs
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Convergence Results

Error term Error-free

Error term Erro-free

Scheme Analysis Bound
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Convergence Results
Assumption on error for 
convergence

Scheme Analysis Error Bounds Rate
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Convergence Results

-optimality if stationary

Assumption on error for 
convergence

Scheme Analysis Error Bounds Rate
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Experimental Setup:

• LASSO with 600 random examples and 100 features using fixed-point 
representation (round-off error) and finite solver precision (CVX). 

• Quantization according to Q-format:
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Experimental Results:
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Conclusion:

• We obtained new tighter deterministic bounds and we demonstrated  their  
validity  on  a  practical optimization example  (LASSO)  solved  on  a  reduced-
precision  machine combined with reduced-precision solver.
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Conclusion:

• We obtained new tighter deterministic bounds and we demonstrated  their  
validity  on  a  practical optimization example  (LASSO)  solved  on  a  reduced-
precision  machine combined with reduced-precision solver.

• We  also  derived  probabilistic upper  bounds.
• Worst-case running time can be much worse than the observed running time 

in practice.
• Probabilistic bounds are more practical.
• More relaxations on the assumptions are needed in order to  incorporate  

more  general  perturbations  into  the  analysis.
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