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Presentation Overview

1. Background, motivation, and signal model.

2. Existing information-theoretic optimisation framework.

3. Learning a secondary source distribution from compressive
measurements.

4. Adaptive information-theoretic algorithm combining 2 and 3.

5. Experimental results using real radar data and conclusions.
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Background and Motivation

◮ Dimensionality reduction methods based on linear random
projections — i.e., compressive sensing (CS) — have gained
significant attention recently.

Y = ΦX +W

m≪ n

X ∈ C
n

Φ ∈ C
m×n

W ∈ C
m

Y ∈ C
m

◮ However, random projections may not be the best choice if we
know the statistical properties of the signal X.
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Background and Motivation

Y = ΦX +W

◮ Lower dimensionality brings memory and computational benefits.

◮ Signal model has various applications in defence:

◮ Example: X represents transformed high dimensional image data.

◮ How to find the Φ that best facilitates the reconstruction or
classification of X?

?
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Background and Motivation

◮ Our recent work has focussed on finding the optimal Φ in
scenarios with noise N present on the input signal X:

Y = Φ(X +N ) +W

◮ Example: X represents a source generating radar return data; N
can be random noise, a secondary source, or clutter.

?

TimeRx

Tx

F
re

qu
en

cy

Rotating fans generate characteristic 

micro-Doppler signatures
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Background and Motivation

Y = Φ(X +N ) +W

◮ By employing an information-theoretic approach, one can design a
linear projection Φ that maximises the mutual information (MI):

◮ between Y and the source signal X — i.e., I(X ;Y );

◮ between Y and the discrete classes C of X — i.e., I(C;Y );

◮ between Y and the source signal N or its discrete classes.

◮ Intuitively, as the respective MI terms increase, the recovery of
the source signal or class information improves.
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Existing Optimisation Strategy

◮ Recent work utilises MI optimisation to design a linear projection
that can trade-off signal recovery and classification accuracy for
two sources (Coutts et al., 2020).

◮ Goal: with Y = Φ(X +N) +W , design Φ that maximises

F (Φ,β) = β1I(X ;Y ) + β2I(C;Y ) + β3I(N ;Y ) + β4I(G;Y )

◮ C and G represent classes of X and N , respectively.

◮ Large β1 and/or β3: prioritise reconstruction.

◮ Large β2 and/or β4: prioritise classification.
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Existing Optimisation Strategy

◮ Goal: with Y = Φ(X +N) +W , design Φ that maximises

F (Φ,β) = β1I(X ;Y ) + β2I(C;Y ) + β3I(N ;Y ) + β4I(G;Y )

◮ C and G represent classes of X and N , respectively.

◮ Method: iterative gradient ascent.

◮ Compute gradient of each information term w.r.t. Φ.

◮ Φ← Φ+ δ∇ΦF (Φ,β) for some step size δ > 0; repeat.

◮ Model: X & N are Gaussian Mixture distributed; W Gaussian.
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Existing Optimisation Strategy

◮ In general, a single Gaussian does not provide a sufficiently
accurate description of source signals.

◮ Instead, the distribution of a
non-Gaussian signal can be
approximated by a mixture of
several Gaussians, e.g.,

X ∼
∑Jx

c
πcN (x;χc,Ωc)

χ1 χ2 χ3

x

px(x)

◮ In CS, such models have been proven to be effective and in some
cases superior to sparse signal models (Yu and Sapiro, 2011).
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Existing Optimisation Strategy

◮ Example scenario: we have a well-characterised primary source X

measured in the presence of a fleeting secondary source N .

◮ With a priori knowledge of the distributions, we can design Φ

such that we are able to accurately reconstruct/classify X and/or
N given Y .

◮ Designing Φ to recognise both sources would be useful if the
operational circumstances of the system were to change, with N

becoming a signal of interest.

◮ Problem: what if the distribution of N is not constant?



University Defence Research Collaboration (UDRC)
Signal Processing in the Information Age

Overview Background Optimisation Strategy Learning Secondary Source Adaptive Algorithm Results Conclusions

Learning a Secondary Source From Compressive Measurements

◮ Learning the distribution of a Gaussian mixture (GM) distributed
X from compressive measurements has been covered by Yang et

al. in 2015 for a signal model without input N :

Y ′ = ΦX +W

◮ Measurement noise W is Gaussian distributed.

◮ We extend this approach to our chosen signal model:

Y = Φ(X +N ) +W
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Learning a Secondary Source From Compressive Measurements

◮ We assign GM distributions to X and N to match the
optimisation framework.

◮ If we assume that the distribution of our primary source X is
known a priori, can we learn the distribution of N from
compressive measurements Y ?

Y = Φ(X +N ) +W

◮ Here, we assume a known Gaussian distribution for the
measurement noise W .
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Learning a Secondary Source From Compressive Measurements

◮ Each class c of X is described by a weighted sum of O Gaussian
distributions and W is Gaussian:

X ∼
∑Jx

c=1
zc px|c(x|c)

px|c(x|c) =
∑O

o=1
πc,o CN (x;χc,o,Ωc,o)
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Learning a Secondary Source From Compressive Measurements

◮ Each class c of X is described by a weighted sum of O Gaussian
distributions and W is Gaussian:

X ∼
∑Jx

c=1
zc px|c(x|c)

px|c(x|c) =
∑O

o=1
πc,o CN (x;χc,o,Ωc,o)

◮ With W ∼ CN (w;ν,Λ), we rearrange to obtain

Y = Φ(X +N ) +W = ΦN + Ŵ

Ŵ ∼
∑D

d=1
τd CN (ŵ;νd,Λd)
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Learning a Secondary Source From Compressive Measurements

◮ We capture Ns compressive measurements using randomly
generated projection matrices Φi:

yi = Φini + ŵi , i = 1, . . . , Ns

and seek to obtain the parameters θ = {sk,µk,Γk} of N that
best fit our data, with

N ∼
∑K

k=1
sk CN (n;µk,Γk)
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Learning a Secondary Source From Compressive Measurements

◮ We capture Ns compressive measurements using randomly
generated projection matrices Φi:

yi = Φini + ŵi , i = 1, . . . , Ns

and seek to obtain the parameters θ = {sk,µk,Γk} of N that
best fit our data, with

N ∼
∑K

k=1
sk CN (n;µk,Γk)

◮ We seek the θ that maximises the marginal log-likelihood

ℓ(θ|y1, . . . ,yNs

) =

Ns
∑

i=1

log py|θ(yi|θ)
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Learning a Secondary Source From Compressive Measurements

◮ We seek the θ that maximises the marginal log-likelihood

ℓ(θ|y1, . . . ,yNs

) =
∑Ns

i=1
log py|θ(yi|θ)

where

py|θ(yi|θ) =
∑

k,d

∫

py,n,k,d|θ(yi,n, k, d|θ) dn

and n, k, and d are unobserved, ‘latent’ variables:

◮ n: instances of secondary source.

◮ k: GM component n is drawn from.

◮ d: GM component ŵ is drawn from (remembering y = Φn+ ŵ).
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Learning a Secondary Source From Compressive Measurements

◮ Since the marginal log-likelihood is difficult to maximise directly,
we take an iterative expectation-maximisation approach.

◮ At iteration (t+ 1):

1. Find the likelihood of the unobserved variables (n, k, d) given
access to compressive measurements yi and the previous system
parameters θ(t).
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Learning a Secondary Source From Compressive Measurements

◮ Since the marginal log-likelihood is difficult to maximise directly,
we take an iterative expectation-maximisation approach.

◮ At iteration (t+ 1):

1. Find the likelihood of the unobserved variables (n, k, d) given
access to compressive measurements yi and the previous system
parameters θ(t).

2. Update the system parameters such that

θ(t+1) = argmax
θ

∑Ns

i=1
E

[

log py,n,k,d|θ(yi,n, k, d|θ)
]

where the expectation is taken over the likelihood from step 1.
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Learning a Secondary Source From Compressive Measurements

◮ For the maximisation in step 2, we are able to find closed-form
solutions for the update of the GM parameters for N .

◮ The new parameters are guaranteed to satisfy

ℓ(θ(t+1)|y1, . . . ,yNs

) ≥ ℓ(θ(t)|y1, . . . ,yNs

)

◮ i.e., the likelihood is always increasing (until a local maximum is
reached).
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Learning a Secondary Source From Compressive Measurements

yi = Φini + ŵi , i = 1, . . . , Ns

◮ Important considerations when estimating the distribution of N :

◮ Unique {Φi}
Ns

i=1 will improve estimation but add cost.
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Learning a Secondary Source From Compressive Measurements

yi = Φini + ŵi , i = 1, . . . , Ns

◮ Important considerations when estimating the distribution of N :

◮ Unique {Φi}
Ns

i=1 will improve estimation but add cost.

◮ Increasing m (the number of rows in Φi ∈ Cm×n) will improve
estimation.
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Learning a Secondary Source From Compressive Measurements

yi = Φini + ŵi , i = 1, . . . , Ns

◮ Important considerations when estimating the distribution of N :

◮ Unique {Φi}
Ns

i=1 will improve estimation but add cost.

◮ Increasing m (the number of rows in Φi ∈ Cm×n) will improve
estimation.

◮ Increasing the number of samples Ns will improve estimation.
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Learning a Secondary Source From Compressive Measurements

yi = Φini + ŵi , i = 1, . . . , Ns

◮ Important considerations when estimating the distribution of N :

◮ Unique {Φi}
Ns

i=1 will improve estimation but add cost.

◮ Increasing m (the number of rows in Φi ∈ Cm×n) will improve
estimation.

◮ Increasing the number of samples Ns will improve estimation.

◮ Increasing the power of N relative to X will improve estimation.
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Adaptive Algorithm

Y = Φopt(X +N ) +W

◮ We now have access to:

◮ An algorithm that can identify the optimal projection matrix Φopt

given accurate estimations of the source distributions.

◮ Techniques to update the distribution of N if the current
distribution is found to be innaccurate (via a likelihood test).

◮ We can now create an adaptive algorithm that updates Φopt to
account for a changing secondary source distribution.
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Adaptive Algorithm

Find ��pt

y
�
=��pt�x�+n�)+w�

Average likelihood
below threshold?

No

Yes

Reconstruct/classify
x� and/or n�

Update distribution
of �

Find ��pt
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Results Using Synthetic Data

◮ Objective: estimate the distribution of N given Ns = 103

measurements {yi = Φini + ŵi}
Ns

i=1:

◮ Unique {Φi}
Ns

i=1 will improve estimation but add cost.

◮ Increasing m (Φi ∈ Cm×n) will improve estimation but add cost.

◮ Better estimation will result in lower reconstruction error for N .
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Results Using Synthetic Data

◮ Objective: estimate the distribution of N given Ns = 103

measurements {yi = Φini + ŵi}
Ns

i=1:

◮ Unique {Φi}
Ns

i=1 will improve estimation but add cost.

◮ Increasing m (Φi ∈ Cm×n) will improve estimation but add cost.

◮ Better estimation will result in lower reconstruction error for N .
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Results Using Synthetic Data

◮ Objective: estimate the distribution of N given Ns = 103

measurements {yi = Φi(xi + ni) +wi}
Ns

i=1:

◮ Increasing the power of X relative to N will worsen estimation.

◮ Increasing m (Φi ∈ Cm×n) will improve estimation but add cost.

◮ Better estimation will result in lower reconstruction error for N .
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Results Using Synthetic Data

◮ Objective: estimate the distribution of N given Ns = 103

measurements {yi = Φi(xi + ni) +wi}
Ns

i=1:

◮ Increasing the power of X relative to N will worsen estimation.

◮ Increasing m (Φi ∈ Cm×n) will improve estimation but add cost.

◮ Better estimation will result in lower reconstruction error for N .
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Results Using Real Radar Data

Y = Φ(X +N ) +W

◮ Example: X & N represent 2 sources of radar return data.

◮ 3 fan speeds represent 3 classes.

?
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Rotating fans generate characteristic 

micro-Doppler signatures
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Results Using Real Radar Data

?

TimeRx

Tx

F
re

qu
en

cy

Rotating fans generate characteristic 

micro-Doppler signatures

◮ Initial scenario: X well characterised, N absent (unknown).

◮ Simulation: N is fleeting & has variable class.

◮ Objective: Learn class distributions of N when source present
then update optimal Φopt — e.g., to prioritise classification of X.
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Results Using Real Radar Data

◮ Objective: Learn class distributions of N when source present
then update optimal Φopt — e.g., to prioritise classification of X.

◮ Increasing m improves our estimation of the distribution of N .

◮ With a good estimate, we can obtain a better Φopt ∈ Cmopt×n.
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Conclusions

◮ Derived a methodology for the training of the GM distribution of
a secondary input via compressive measurements.

◮ Increasing the number of compressive measurements can:
◮ aid the characterisation of weak secondary sources;
◮ reduce the number of unique projection matrices required.

◮ Well-estimated distributions yield designed projection matrices
that are more able to control the input-output MI of a system.

◮ Framework could be extended to applications in which the
operational parameters are liable to change such that a secondary
source of information becomes more important.
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Future Work

◮ Additional techniques to identify changes in source distributions.

◮ Fully online training of source parameters and compressions
strategies for reconfigurable signal processing.

◮ Defence applications: e.g., tail rotor blades classification via
micro-Doppler recognition.
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