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Introduction

Connected IoT devices such as automated cars in target tracking tasks generate massive data, resulting in two main 
challenges. 

• Large amount of raw data and computing tasks need to be processed, while the computing capacity of each 
automated car is limited. 

• A huge volume of data needs to be transmitted through the network with a low latency to fulfill the requirements 
of the real-time tasks, while both the wireless and the wired transmission resources are inadequate in the 
networks. 

So, we need to propose a cooperative target tracking approach for a multi-agent system.

We plan to design a multi-agent learning model in a cooperative target tracking system to decrease sensing latency
and the sensing cost (i.e., the energy consumption).



Friday, 14 January 2022 4

Objectives

The main objectives are summarized as follows:

Designing a reinforcement learning (RL) resource allocation algorithm

Designing trajectory prediction algorithm

Designing unmanned aerial vehicle (UAV) mobility model for target tracking 
in OMNeT++
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Network Model

• The Figure shows the target tracking structure.
• 𝑀 heterogeneous sensor nodes (SNs) are deployed randomly to detect targets on the bottom level.
• 𝑁 mobile nodes (MNs) can process and compute the sensing tasks on the middle level, so that blind sensing

zones can be reduced based on their flexible mobility.
• Intelligent scheduling decisions are made by edge servers from a global view.



UAV-aided Target Tracking

Target tracking by UAV

Case 1
The entire tracking process can be completed by 
the UAV alone.
High energy consumption of the UAV during 
flight.

Case 2

Computing tasks are offloaded from the UAV to 
ground nodes/servers[1]. 
High energy consumption and wireless bandwidth 
consumption caused by the transmission of a large 
amount of data. 
High computational time.

Case 3
Computing tasks are offloaded from the UAV to 
edge node, and then the computing results are sent 
back to the UAV [2].

[1]. Y. Du, K. Wang, K. Yang, and G. Zhang, “Energy-efficient resource allocation in UAV based MEC system for IoT devices,” in 2018 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2018, pp. 1–6.
[2]. Y. Zeng and R. Zhang, “Energy-efficient UAV communication with trajectory optimization,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747–
3760, 2017.
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Target tracking by UAV
UAV altitude 𝐻
Task offloading duration 𝑇
Time slot length 𝜏 is discretized into 𝑀 time slots. 𝑇 = 𝑀𝜏
UAV’s location at time slot 𝑚; {1 ≤ 𝑚 ≤ 𝑀} 𝑢!
UAV generates data of size 𝑆! bits at time slot 𝑚 𝑆!
𝑥",! is the EN selection variable.
Edge node {𝑥",! , 1 ≤ 𝑧 ≤ 𝑍, 1 ≤ 𝑚 ≤ 𝑀}

𝑥",!

We consider a scenario with 𝐾 targets.
• The set of targets is 𝒦 = {1, 2, … , 𝐾}.
• We assume that 𝑆 sensor nodes, the set of SNs 𝒮 =
{1, 2, … , 𝑆} are deployed to detect targets with
diverse on-board sensors in a monitoring area and
𝑛 UAVs that may offload the tasks to Edge Nodes
(ENs) through the cellular network and set of UAVs
is defined as 𝒩 = {1, 2, … , 𝑁} are used to detect the
targets.

• We assume that there are Z (ENs) denoted by 𝒵 =
{1, 2, … , Z}.

• A UAV offloads the tasks to an edge node 𝑥",! for a
duration of 𝑇.

UAV-aided Target Tracking
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• If edge node 𝑥",! is selected as the service node, then the distance between edge node and UAV is defined as[3]:

where 𝑙$,! ∈ 𝑅%×' is the location of 𝑥",( and 𝑙),! ∈ 𝑅%×' is the UAV’s trajectory projected on the ground at time slot 𝑚.

• We assume quasi-static block fading channels for the communication link from the UAV to a ground EN, where the 
channel remains unchanged within each time slot and may change over time slots.

• The quasi-static block fading channel follows the free-space path loss model[1], which can be expressed as:

ℎ),"! = 𝛽*𝑑!,"+% = ,!
-". /#,%+/&,%

"

where 𝛽* refers to channel power gain at the distance 𝑑* = 1𝑚.

UAV-aided Target Tracking

[3] Yang, B., Cao, X., Yuen, C., & Qian, L. (2020). Offloading Optimization in Edge Computing for Deep-Learning-Enabled Target Tracking by Internet of UAVs. IEEE
Internet of Things Journal, 8(12), 9878-9893.

𝑑),"! = 𝐻% + 𝑙),! − 𝑙",!
%
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• Then the channel capacity in bps can be expressed as[4]:

𝑅!," =
𝐵
𝑛 log% 1 +

𝑝!," ℎ!,"
%

𝜎%

where 𝐵 shows the the channel bandwidth between UAV and EN that can be divided into 𝑛 subbands for the offloading 

communication, 𝜎% is the white Gaussian noise power at the EN, and 0%,& 1%,&
"

2"
is the signal-to-noise ratio (SNR) at 𝑑* =

1𝑚. The execution time 𝑡!,"3435/ of each task is considered as the sum of transmission time and computational time of the EN 
that serves for the UAV.

𝑡!,"3435/ = 𝑡!,"36578!988947 + 𝑡!,"
:4!0)353947 =

𝑆!

𝐵log%(1 +
𝛽*𝑝!,"
𝜎%𝑑!,"% )

+
𝑆!
𝑟!,"

where 𝑟!," be the data processing capability (in bps) of the z-th available EN of each task 𝑆! at time slot m.

• The 𝐸!,"is the transmission energy consumption in Joule which can be expressed as

𝐸!," = 𝑡!,"36578!988947𝑝!," =
𝑆!

𝐵 log%(1 +
𝛽*𝑝!,"
𝜎%𝑑!,"% )

𝑝!,"

where 𝑝!," is the transmit power allocated by the UAV to EN.

UAV-aided Target Tracking

[4] Gu, X., Zhang, G., Wang, M., Duan, W., Wen, M., & Ho, P. H. (2021). UAV-aided Energy Efficient Edge Computing Networks: Security Offloading
Optimization. IEEE Internet of Things Journal. 9



• The goal is to minimize the energy cost and time cost of executing a task, which is defined as total cost metric:

𝐶𝑜𝑠𝑡!," = 𝛼𝐸!," + 𝛽𝑡!,"3435/

where 𝛼 and 𝛽 represent the relative weight on transmission energy consumption and task execution time, which can
be set and tuned to meet different situations.
• Main objective is to jointly optimize the UAV’s transmission power 𝑃 and edge node selection schedule 𝑋 so as to

minimize the tradeoff between the UAV’s transmission energy consumption and the execution time, while
ensuring normal tracking.

• The problem formulated as:

min
;,<

]
!='

>

]
"='

?

𝑥!,"𝐶𝑜𝑠𝑡!,"

s.t.    𝐶' 𝑡!,"3435/ ≤ 𝜏, ∀𝑧,𝑚

𝐶% ∑"='? 𝑥!," = 1, ∀𝑧,𝑚

• A computing task has a delay tolerance 𝜏, and 𝑡!,"3435/ ≤ 𝜏 ensures that the UAV can receive the results and makes
adjustment in time to track target normally.

• If 𝑥!," is selected as the service EN at time slot 𝑚, 𝑥!," = 1. We assume that only one EN can be selected to serve
for the UAV at each time slot.

Efficient Target Tracking Process
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• Local computation delay:

𝜏/9 =
𝑐9
𝑓/9
+ 𝜌9((1 − 𝜂)𝜖@+𝜂)

where 𝑐9 is the total number of CPU cycles required to accomplish the computation of data for task 𝑖; 𝑓/9 is the allocated
CPU computation resource to 𝑈9 per second. 𝜌9 is defined as all the DL tasks failing and dropping penalty of delay and it is
no smaller than the tasks processing delay. 𝜖@ is inference error rate given by UAVs. 𝜂 is the percentage of data with low
quality [5].
• Local energy consumption:

𝜀/9 = 𝑘(𝑓/9)% 𝑐9 + 𝜉9( 1 − 𝜂 𝜖@ + 𝜂)

where 𝑘 is the energy efficiency parameter that is mainly depends on the chip architecture [6], 𝑓/9 is the CPU clock speed
and 𝜉9 is defined as all the DL tasks failing and dropping penalty of energy consumption.
• The weighted cost for local computing is defined as

𝒪/9 = 𝜃𝜏/9 + 1 − 𝜃 𝜀/9

where 𝜃 and 1 − 𝜃 , 0 ≤ 𝜃 ≤1, specify the UAV’s preference on processing delay and energy consumption, respectively.
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Local Computing

[5] Zhang, Tiankui, et al. "Joint computation and communication design for UAV-assisted mobile edge computing in IoT." IEEE Transactions on Industrial Informatics 16.8
(2019): 5505-5516.
[6] Gu, X., Zhang, G., Wang, M., Duan, W., Wen, M., & Ho, P. H. (2021). UAV-aided Energy Efficient Edge Computing Networks: Security Offloading Optimization. IEEE
Internet of Things Journal.



𝑈9 offloads tasks to edge node, the delay and energy consumption comprise two items:
• Delay and energy consumption to EN via the wireless link
• Delay and energy consumption at EN

• The delay for offloading the task to the EN is given by:

𝜏49 =
𝑐9
𝑓/9
+ 𝛾9(

𝑠9
𝑅9
+
𝑐9
𝑓9
)𝜌9(𝜂𝜖-)

• where 𝑠9 bits shows the size of computation input data, 𝛾9 shows the scale coefficient of data size output from 𝑈9 and 𝛾9
= 8'#(

)

8)
; 𝑠4)39 is the data size output from 𝑈9. 𝑅9 is the available transmission rate between 𝑈9 and EN. 𝜖- is inference

error rate given by UAVs.

• The energy consumption of 𝑈9 using offloading computing is calculated as[7]

𝜀49 = 𝑘(𝑓/9)% 𝑐9 + 𝛾9(𝑃39
8)
A)
+ 𝑃39

:)
B)
) + 𝜉9 𝜂𝜖-

where 𝑃39 is the power consumption of 𝑈9 , when 𝑈9 sending task to EN and staying idle while waiting for the execution
results from EN.

• The weighted cost for offloading computing is defined as
𝒪49 = 𝜃𝜏49 + 1 − 𝜃 𝜀49

where 𝜃 and 1 − 𝜃 , 0 ≤ 𝜃 ≤1, specify the UAV’s preference on processing delay and energy consumption, respectively.
12

Offloading Computing

[7] Alsenwi, Madyan, et al. "UAV-assisted multi-access edge computing system: An energy-efficient resource management framework." 2020 International Conference on
Information Networking (ICOIN). IEEE, 2020.



• The total system cost is considered, taking tracking delay and energy consumption [4].

𝒪!"!#$ =#
%&'

(

𝜃
𝑐%
𝑓$%
+𝑚𝑎𝑥 𝛿)% , 𝛿")% + (1 − 𝜃)(𝜀$% + 𝜀"% )

=

#
%&'

(

𝜃
𝑐%
𝑓$%
+ 𝛿)% + (1 − 𝜃)(𝜀$% + 𝜀"% ) , 𝑖𝑓𝛿)% ≥ 𝛿")%

#
%&'

(

𝜃
𝑐%
𝑓$%
+ 𝛿")% + (1 − 𝜃)(𝜀$% + 𝜀"% ) , 𝑖𝑓𝛿)% ≤ 𝛿")%

where 𝛿)% = (1 − 𝛽%)𝜌% 7𝜖* is the delay penalty for processing (1 − 𝛽%) of tasks at UAV,

and 𝛿")% = 𝛽%(𝛾%
+!
,!

+ -!
.!

+ 𝜌% 7𝜖*) including the transmission delay of intermediate data, processing delay at

EN, and the delay penalty for processing 𝛽% of task 𝑖 at EN. (𝛽% is the offloaded ratio of 𝑼𝒊).
• In this case, we formulate the cost minimization as an optimization problem:

min
0!

𝒪!"!#$

s.t. 𝐶', 𝐶1
s.t.    𝐶' 𝑡2,4!"!#$ ≤ 𝜏, ∀𝑧,𝑚

𝐶1 ∑4&'5 𝑥2,4 = 1, ∀𝑧,𝑚
13

Tradeoff Between Delay and Energy Consumption



• The system parameters that used in the MATLAB simulation are as follows:
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Simulation Setup in MATLAB

MATLAB Simulation Parameters
Communication bandwidth 20 MHz Maximum CPU-cycle frequency 0.5 GHz
Channel power gain (𝛽* ) 20 dBm Input size of the computation task 1000 bits
Upper bound of the energy at the UAV 48×10+C J Effective switched capacitance 10+%D

Length of time slot 0.002 s Maximum transmit power of UAV 20 dBm
Maximum distance between UAV and EN 50 m Number of time slot 50000
Task offloading duration 30 s Delay tolerance 𝜏 0.002 s
UAV altitude 100 m Noise power at the EN (𝜎%) −110 dBm
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MATLAB Results



Implementation of Target Tracking Scenario in OMNeT++
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Target Tracking Scenario in OMNeT++
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Target tracking scenario in OMNeT++

Veins is an open-source framework for running vehicular
network simulations. It is based on two well-established
simulators:

• OMNeT++, an event-based network simulator, and
• SUMO, a road traffic simulator.

It extends these to offer a comprehensive suite of models for
vehicular network simulation.



• Implementation of target tracking scenario in OMNeT++.
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Target Tracking Scenario in OMNeT++

Important Parameters and value
Parameters Value Parameters Value

Network Simulator OMNeT++ 4.6 Pedestrians 4
Traffic Simulator SUMO 0.19.0 MAC Protocol IEEE 802.11p
V2X Simulator VEINS 4.4 Header size 256 bits
Simulation area 2750×2250×5 Data size 1024 bits
Simulation time 500s UAVs Mobility types RectangleMobility
Intelligent edge nodes 2 Pedestrians Mobility types RectangleMobility
Number of Access points 2 Vehicle Mobility types TraCIMobility
Number of Vehicles 100 Velocity of mobile target Range (0m/s; 1m/s)
Radio Propagation Model FreeSpacePathLoss Initial location of mobile target Range (0m; 1500m)
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Generating Dataset Using OMNeT++
• The following Figure shows the workflow for generating an informative dataset.
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Target tracking scenario in OMNeT++
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Conclusions and Future work

We have evaluated the UAV-aided target tracking in local computing, offloading computing and partial
offloading in MATLAB.

In current step, we have used random selection scheme to schedule the sensors in OMNeT++.

We plan to implement multi target tracking algorithm for trajectory prediction in OMNeT++.

We plan to extend the implementation of multi-agent reinforcement learning (RL) network for sensor
scheduling during target tracking in OMNeT++.

Distributed/federated learning for decentralized target tracking.

Proper sensor distribution model, target mobility model and blind sensing zone/block effect.


