

SIGNetS Project, Work Package 3

Efficient resource management for target tracking in UAV-assisted mobile edge computing

Shidrokh Goudarzi, Pei Xiao, Wenwu Wang

Centre for Vision Speech and Signal Processing Centre 5GIC & 6GIC, Institute for Communication Systems (ICS) Department of Electronic Engineering University of Surrey

Outline

- Introduction
- Research objectives
- Network model
- UAV-aided target tracking
- Efficient target tracking process
- Preliminary results in MATLAB
- Implementation of target tracking scenario in OMNeT++
- Next steps of project implementation

Connected IoT devices such as automated cars in target tracking tasks generate massive data, resulting in two main challenges.

- Large amount of raw data and computing tasks need to be processed, while the **computing capacity** of each automated car is limited.
- A huge volume of data needs to be transmitted through the network with a **low latency** to fulfill the requirements of **the real-time tasks**, while both the wireless and the wired transmission resources are inadequate in the networks.

So, we need to propose a cooperative target tracking approach for a multi-agent system.

We plan to design a multi-agent learning model in a cooperative target tracking system to decrease sensing latency and the sensing cost (i.e., the energy consumption).

The main objectives are summarized as follows:

Designing a reinforcement learning (RL) resource allocation algorithm

Designing trajectory prediction algorithm

Designing **unmanned aerial vehicle (UAV) mobility model** for target tracking in OMNeT++

Network Model

- The Figure shows the target tracking structure.
- *M* heterogeneous sensor nodes (SNs) are deployed randomly to detect targets on the bottom level.
- *N* mobile nodes (MNs) can process and compute the sensing tasks on the middle level, so that blind sensing zones can be reduced based on their flexible mobility.
- **Intelligent scheduling decisions** are made by edge servers from a global view.

Target tracking by UAV				
Case 1	The entire tracking process can be completed by the UAV alone . High energy consumption of the UAV during flight.			
Case 2	Computing tasks are offloaded from the UAV to ground nodes/servers ^[1] . High energy consumption and wireless bandwidth consumption caused by the transmission of a large amount of data. High computational time.			
Case 3	Computing tasks are offloaded from the UAV to edge node , and then the computing results are sent back to the UAV ^[2] .			

^{[1].} Y. Du, K. Wang, K. Yang, and G. Zhang, "Energy-efficient resource allocation in UAV based MEC system for IoT devices," in 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

^{[2].} Y. Zeng and R. Zhang, "Energy-efficient UAV communication with trajectory optimization," IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747– 6 3760, 2017.

We consider a scenario with *K* targets.

- The set of **targets** is $\mathcal{K} = \{1, 2, \dots, K\}$.
- We assume that S sensor nodes, the set of SNs S = {1, 2, ..., S} are deployed to detect targets with diverse on-board sensors in a monitoring area and n UAVs that may offload the tasks to Edge Nodes (ENs) through the cellular network and set of UAVs is defined as N = {1, 2, ..., N} are used to detect the targets.
- We assume that there are Z (ENs) denoted by $\mathcal{Z} = \{1, 2, ..., Z\}$.
- A UAV offloads the tasks to an edge node $x_{z,m}$ for a duration of *T*.

Target tracking by UAV			
UAV altitude	Н		
Task offloading duration	Т		
Time slot length τ is discretized into <i>M</i> time slots.	$T = M\tau$		
UAV's location at time slot m ; $\{1 \le m \le M\}$	u_m		
UAV generates data of size S_m bits at time slot m	S _m		
$x_{z,m}$ is the EN selection variable.	x _{z,m}		
Edge node $\{x_{z,m}, 1 \le z \le Z, 1 \le m \le M\}$			

UAV-aided Target Tracking

• If edge node $x_{z,m}$ is selected as the service node, then the **distance** between edge node and UAV is defined as^[3]:

$$d_{u,z}^{m} = \sqrt{H^{2} + \left\| l_{u,m} - l_{z,m} \right\|^{2}}$$

where $l_{z,m} \in \mathbb{R}^{2 \times 1}$ is the location of $x_{z,m}$ and $l_{u,m} \in \mathbb{R}^{2 \times 1}$ is the UAV's trajectory projected on the ground at time slot *m*.

- We assume quasi-static block fading channels for the **communication link from the UAV to a ground EN**, where the channel remains unchanged within each time slot and may change over time slots.
- The quasi-static block fading channel follows the free-space path loss model^[1], which can be expressed as:

$$h_{u,z}^{m} = \beta_0 d_{m,z}^{-2} = \frac{\beta_0}{H^2 + \|l_{u,m} - l_{z,m}\|^2}$$

where β_0 refers to channel power gain at the distance $d_0 = 1m$.

[3] Yang, B., Cao, X., Yuen, C., & Qian, L. (2020). Offloading Optimization in Edge Computing for Deep-Learning-Enabled Target Tracking by Internet of UAVs. IEEE Internet of Things Journal, 8(12), 9878-9893.

UAV-aided Target Tracking

• Then the **channel capacity in bps** can be expressed as^[4]:

$$R_{m,z} = \frac{B}{n}\log_2\left(1 + \frac{p_{m,z} \left|h_{m,z}\right|^2}{\sigma^2}\right)$$

where *B* shows the the channel bandwidth between UAV and EN that can be divided into *n* subbands for the offloading communication, σ^2 is the white Gaussian noise power at the EN, and $\frac{p_{m,z} |h_{m,z}|^2}{\sigma^2}$ is the signal-to-noise ratio (SNR) at $d_0 = 1m$. The **execution time** $t_{m,z}^{total}$ of each task is considered as the sum of transmission time and computational time of the EN that serves for the UAV.

$$t_{m,z}^{total} = t_{m,z}^{transmission} + t_{m,z}^{computation} = \frac{S_m}{Blog_2(1 + \frac{\beta_0 p_{m,z}}{\sigma^2 d_{m,z}^2})} + \frac{S_m}{r_{m,z}}$$

where $r_{m,z}$ be the data processing capability (in bps) of the z-th available EN of each task S_m at time slot m.

• The $E_{m,z}$ is the transmission energy consumption in Joule which can be expressed as

$$E_{m,z} = t_{m,z}^{transmission} p_{m,z} = \frac{S_m}{B \log_2(1 + \frac{\beta_0 p_{m,z}}{\sigma^2 d_{m,z}^2})} p_{m,z}$$

where $p_{m,z}$ is the transmit power allocated by the UAV to EN.

[4] Gu, X., Zhang, G., Wang, M., Duan, W., Wen, M., & Ho, P. H. (2021). UAV-aided Energy Efficient Edge Computing Networks: Security Offloading Optimization. *IEEE Internet of Things Journal*.

Efficient Target Tracking Process

• The goal is to minimize the energy cost and time cost of executing a task, which is defined as **total cost metric**:

$$Cost_{m,z} = \alpha E_{m,z} + \beta t_{m,z}^{total}$$

where α and β represent the relative weight on transmission energy consumption and task execution time, which can be set and tuned to meet different situations.

- Main objective is to jointly optimize the UAV's transmission power *P* and edge node selection schedule *X* so as to **minimize** the tradeoff between the UAV's transmission **energy consumption and the execution time**, while ensuring normal tracking.
- The problem formulated as:

$$\min_{P,X} \sum_{m=1}^{M} \sum_{z=1}^{Z} x_{m,z} Cost_{m,z}$$

s.t. $C_1 \quad t_{m,z}^{total} \leq \tau, \ \forall z, m$
 $C_2 \quad \sum_{z=1}^{Z} x_{m,z} = 1, \ \forall z, m$

- A computing task has a delay tolerance τ , and $t_{m,z}^{total} \leq \tau$ ensures that the UAV can receive the results and makes adjustment in time to track target normally.
- If $x_{m,z}$ is selected as the service EN at time slot $m, x_{m,z} = 1$. We assume that only one EN can be selected to serve for the UAV at each time slot.

Local Computing

• Local computation delay:

$$\tau_l^i = \left(\frac{c_i}{f_l^i} + \rho_i((1-\eta)\epsilon_L + \eta)\right)$$

where c_i is the total number of CPU cycles required to accomplish the computation of data for task *i*; f_l^i is the allocated CPU computation resource to U_i per second. ρ_i is defined as all the DL tasks failing and dropping penalty of delay and it is no smaller than the tasks processing delay. ϵ_L is inference error rate given by UAVs. η is the percentage of data with low quality ^[5].

• Local energy consumption:

$$\varepsilon_l^i = k(f_l^i)^2 c_i + \xi_i((1-\eta)\epsilon_L + \eta)$$

where k is the energy efficiency parameter that is mainly depends on the chip architecture ^[6], f_l^i is the CPU clock speed and ξ_i is defined as all the DL tasks failing and dropping penalty of energy consumption.

• The weighted cost for local computing is defined as

$$\mathcal{O}_l^i = \theta \tau_l^i + (1 - \theta) \varepsilon_l^i$$

where θ and $(1 - \theta)$, $0 \le \theta \le 1$, specify the UAV's preference on processing delay and energy consumption, respectively.

^[5] Zhang, Tiankui, et al. "Joint computation and communication design for UAV-assisted mobile edge computing in IoT." IEEE Transactions on Industrial Informatics 16.8 (2019): 5505-5516.

^[6] Gu, X., Zhang, G., Wang, M., Duan, W., Wen, M., & Ho, P. H. (2021). UAV-aided Energy Efficient Edge Computing Networks: Security Offloading Optimization. *IEEE Internet of Things Journal*.

Offloading Computing

 U_i offloads tasks to edge node, the delay and energy consumption comprise two items:

- Delay and energy consumption to EN via the wireless link
- Delay and energy consumption at EN
- The **delay for offloading** the task to the EN is given by:

$$\tau_o^i = \left(\frac{c_i}{f_l^i} + \gamma_i (\frac{s_i}{R_i} + \frac{c_i}{f_i})\rho_i(\eta\epsilon_H)\right)$$

- where s_i [bits] shows the size of computation input data, γ_i shows the scale coefficient of data size output from U_i and $\gamma_i = \frac{s_{out}^i}{s_i}$; s_{out}^i is the data size output from U_i . R_i is the available transmission rate between U_i and EN. ϵ_H is inference error rate given by UAVs.
- The energy consumption of U_i using offloading computing is calculated as^[7]

$$\varepsilon_o^i = k(f_l^i)^2 c_i + \gamma_i (P_t^i \frac{s_i}{R_i} + P_t^i \frac{c_i}{f_i}) + \xi_i \eta \epsilon_H$$

where P_t^i is the power consumption of U_i , when U_i sending task to EN and staying idle while waiting for the execution results from EN.

• The weighted cost for offloading computing is defined as

$$\mathcal{O}_o^i = \, \theta \tau_o^i + (1-\theta) \varepsilon_o^i$$

where θ and $(1 - \theta)$, $0 \le \theta \le 1$, specify the UAV's preference on processing delay and energy consumption, respectively. [7] Alsenwi, Madyan, et al. "UAV-assisted multi-access edge computing system: An energy-efficient resource management framework." 2020 International Conference on 12

Information Networking (ICOIN). IEEE, 2020.

Tradeoff Between Delay and Energy Consumption

• The total system cost is considered, taking tracking delay and energy consumption [4].

$$\begin{aligned} \mathcal{O}_{total} &= \sum_{i=1}^{n} \left(\theta \left(\frac{c_i}{f_l^i} + \max\{\delta_p^i, \delta_{op}^i\} \right) + (1 - \theta)(\varepsilon_l^i + \varepsilon_o^i) \right) \\ &= \begin{cases} \sum_{i=1}^{n} \left(\theta \left(\frac{c_i}{f_l^i} + \delta_p^i \right) + (1 - \theta)(\varepsilon_l^i + \varepsilon_o^i) \right), & if \, \delta_p^i \geq \delta_{op}^i \\ \sum_{i=1}^{n} \left(\theta \left(\frac{c_i}{f_l^i} + \delta_{op}^i \right) + (1 - \theta)(\varepsilon_l^i + \varepsilon_o^i) \right), & if \, \delta_p^i \leq \delta_{op}^i \end{cases} \end{aligned}$$

where $\delta_p^i = (1 - \beta_i)\rho_i \tilde{\epsilon_L}$ is the delay penalty for processing $(1 - \beta_i)$ of tasks at UAV, and $\delta_{op}^i = \beta_i (\gamma_i \left(\left(\frac{s_i}{R_i} \right) + \left(\frac{c_i}{f_i} \right) \right) + \rho_i \tilde{\epsilon_L})$ including the transmission delay of intermediate data, processing delay at EN, and the delay penalty for processing β_i of task *i* at EN. (β_i is the **offloaded ratio of** U_i).

• In this case, we formulate the **cost minimization** as an **optimization problem**:

$$\begin{split} \min_{\beta_i} \mathcal{O}_{total} \\ \text{s.t. } C_1, C_2 \\ \text{s.t. } C_1 \quad t_{m,z}^{total} \leq \tau, \ \forall z, m \\ C_2 \quad \sum_{z=1}^Z x_{m,z} = 1, \ \forall z, m \end{split}$$

• The system parameters that used in the MATLAB simulation are as follows:

MATLAB Simulation Parameters							
Communication bandwidth	20 MHz	Maximum CPU-cycle frequency	0.5 GHz				
Channel power gain (β_0)	20 dBm	Input size of the computation task	1000 bits				
Upper bound of the energy at the UAV	48×10 ⁻⁶ J	Effective switched capacitance	10 ⁻²⁸				
Length of time slot	0.002 s	Maximum transmit power of UAV	20 dBm				
Maximum distance between UAV and EN	50 m	Number of time slot	50000				
Task offloading duration	30 s	Delay tolerance τ	0.002 s				
UAV altitude	100 m	Noise power at the EN (σ^2)	-110 dBm				

MATLAB Results

Implementation of Target Tracking Scenario in OMNeT++

16

Veins is an open-source framework for running vehicular network simulations. It is based on two well-established simulators:

- **OMNeT++**, an event-based network simulator, and
- SUMO, a road traffic simulator.

It extends these to offer a comprehensive suite of models for vehicular network simulation.

Target Tracking Scenario in OMNeT++

• Implementation of target tracking scenario in OMNeT++.

Important Parameters and value							
Parameters	Value	Parameters	Value				
Network Simulator	OMNeT++ 4.6	Pedestrians	4				
Traffic Simulator	SUMO 0.19.0	MAC Protocol	IEEE 802.11p				
V2X Simulator	VEINS 4.4	Header size	256 bits				
Simulation area	2750×2250×5	Data size	1024 bits				
Simulation time	500s	UAVs Mobility types	RectangleMobility				
Intelligent edge nodes	2	Pedestrians Mobility types	RectangleMobility				
Number of Access points	2	Vehicle Mobility types	TraCIMobility				
Number of Vehicles	100	Velocity of mobile target	Range (0m/s; 1m/s)				
Radio Propagation Model	FreeSpacePathLoss	Initial location of mobile target	Range (0m; 1500m)				

Generating Dataset Using OMNeT++

• The following Figure shows the workflow for generating an informative dataset.

Target tracking scenario in OMNeT++

We have evaluated the UAV-aided target tracking in local computing, offloading computing and partial offloading in MATLAB.

In current step, we have used random selection scheme to schedule the sensors in OMNeT++.

We plan to implement **multi target tracking** algorithm for trajectory prediction in OMNeT++.

We plan to extend the implementation of **multi-agent reinforcement learning (RL)** network for sensor scheduling during target tracking in OMNeT++.

Distributed/federated learning for decentralized target tracking.

Proper sensor distribution model, target mobility model and blind sensing zone/block effect.