Fast Distributed Resampli
Putting More Emphasis on Modelli

Multi-Target Trackir

ng ar

g

(Simon Maskell and) Alessandro Varsi (and Paul Spirakis)

University of Liverpool

A Varsi, S Maskell and P Spirakis.

An O(log,N) Fully-Balanced Resampling Algorithm for Particle Filters on Distributed Memory Architectures.

Algorithms. 2021. 14(12) 342

Ng In

¥ UNIVERSITY OF

% LIVERPOOL

Motivation

Existing multi-target tracking development:

* Developing novel algorithms

* Incremental changes to the models used for the targets

Strategy being adopted in other Bayesian inference contexts:

e Using common algorithms across many (non-linear and non-Gaussian) models
* Via the widespread adoption of probabilistic programming languages (eg Stan)
* Model developments are more frequent and significant

* Improvements in performance are more frequent and significant

A note on Data Fusion architectures

 Decentralised (eg Track Fusion) is good for scalability

e Distributed (ie Autonomy) removes vulnerability to attack
¥ UNIVERSITY OF

% LIVERPOOL

Motivation

University of Liverpool is developing Streaming-Stan
e Extension of Stan

* Streaming-Stan can cater for sequential Bayesian inference problems, eg for:
* Multi-target tracking with joint models of all targets (integrating over data association[1])
* Models for intent (eg future destination that is also consistent with past route)[2]
* Integrated Expected Likelihood Particle Filter (to emulate Track-Before-Detect)[3]
» SDEs for single objects (eg for space situational awareness/astrodynamics)
e SDEs for pandemics

As models get more complex, real-time performance becomes more challenging

* Need to employ modern compute hardware to facilitate real-time performance

Streaming-Stan needs an efficient general-purpose algorithm

 Resampling for shared memory system (eg GPU) [4]

* First exact O (log N) resampling algorithm for distributed memory systems (e.g. multiple GPUs) [5]

1] P Horridge and S Maskell. Real-Time Tracking Of Hundreds Of Targets With Efficient Exact JADAF Implementation. Proceedings of Fusion 2006.
% L Vladimirov and S Maskell. A SMC Samplerf%r!oint Track{(nql and Destination Estimation from Noisy Data. Proc Fusion 2020
ell.

A Varsi,) Taylor, L Kekempanos, E Pyzer-Knapp and S Mas A Fast Parallel Particle Filter for Shared Memory Systems.
IEEE Signal Procyessin Lettersp. 2020 Y PP f el ??1? U N I V E R S I T Y O F

[4] M Ransom, L Vladimirov, P Horridge, J F Ralph and S Maskell. Integrated Expected Likelihood Particle Filters. Proc Fusion 2020 m
5] A Varsi, S Maskell and P Spirakis. An Oflog N{ Fully-Balanced Resampling Algorithm for Particle Filters on Distributed ? | I \ } ERPO O I

Memory Architectures. Algorithms. 2021. 14(12 342

Context

Focus is on resampling

* Algorithmic component at the heart of particle filters (and SMC samplers)

Focus in on a distributed memory setting
* Have to think in terms of message-passing

* Of(log,N) demands a divide-and-conquer approach
» Best pre-existing approach is O((log,N)?)

« Some components (eg element-wise operations, sum and cumulative-sum) “easy”

Let’s consider an example with 16 particles ...

¥ UNIVERSITY OF

% LIVERPOOL

Overarching Strategy

Consider some data:

Data AA BB | CC |DD | EE | FF | GG [HH | I JJ | KK | LL [MM| NN | OO | PP
Ncopies| 5 0 1 0 0 5 0 O| 0| 0| 4]0 1 0 0 0
Step 1: Push all the data with non-zero Ncopies to the left:
Data AA | CC | FF | KK [MM| PP | X X X X X X X X X X
Ncopies| 5 1 5 4 1 0 0 O| 0] 0] O 0 0 0 0 0
Step 2: Push the data to the right to make gaps:
Data AA | X | X | X | X |CC|FF| X | X | X | X [KK| X | X | X |[MM
Ncopies| 5 0 0 0 0 1 5 o 0| 0|]O0)| 4]|O0 0 0 1

Step 3: Populate the gaps:
Data AA | AA AA | AA| AA CC | FF | FF | FF | FF | FF | KK | KK | KK | KK |MM
Ncopies| 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1

¥ UNIVERSITY OF

% LIVERPOOL

Step 1: Push the non-zeros to the left (1/2)

Consider some data:

Data AA | BB C | DD | EE F |GG | HH | Il 1 K| LL [MM| NN | OO | PP
Ncopies| 5 0 1 O | O |F5 O 0| 0|0 4| O 1 O 0] O
Step 1.1: Work out how magiy zeros to the Igft of each datum and reprgsent in binary and shift by bit 1

Binary |000 |000gn000 (00010014001 |0011|0100{0101|011#/011 |0111/100 |1000({1001/1010
Data AA | C DD | X | FF| GG | X I S ¢ LL| X [MM| OO | X | PP
Ncopies| 5 1 0 0 5 0 0 0 0 4 0 0 1 0 0 0

¥ UNIVERSITY OF

% LIVERPOOL

Step 1: Push the non-zeros to the left (1/2)

Consider some data:

Data AA | BB | CC DD | EE | FF | GG | HH | I JJ | KK | LL [MM| NN | OO | PP
Ncopiesi 5 | O 1| 0| 0| 5 o, 0|00 4,0 1| 0] 0] O
Step 1.1: Work out how many zeros to the left of each datum and represent in binary and shift by bit 1
Binary |000 |0000/000 |0001(0010|001 |0011/0100/0101/0110/011 |0111(100 |1000/1001/1010
Data AA | CC | DD | X CICHID Il X K|{LL| X [MM|OO| X | PP
Ncopies| 5 1 0) 0) 4 0) 0) 1 0) 0) 0)

Step 1.2: Work out how many zerogfto the left of each datumgind represent in binary and shift by bit 2:
Binary |00 0/00 0|00 00 0/0010/0011/01Q#/0101|01 0/0110|0111{10 0/1000(1001/1010

Data AA | CC | F LL | X X X IMM| PP | X X
Ncopies| 5 1 5 0 0 0 0 4 0 0 0 0 1 0 0 0

¥ UNIVERSITY OF

% LIVERPOOL

Step 1: Push the non-zeros to the left (2/2)

Output from Step 1.2:

Data AA | CC| FF [GG| X | X | X
Ncopies| 5 1 5 0) 0) 0)
Step 1.3: Work out how many zeros to the le

Binary |0 000 000 000000 001000110 00/0100/0101/0110/0111|1 00j1000j1001/1010
Data AA | CC | FF | K X X X | X | X | X | X [MM| PP | X X
Ncopies| 5 1 5 4 0 0 0 0 0 0 0 0 1 0 0 0

K| LL | X X X IMM| PP | X X

each datum and represent in binary and shift by bit 3

¥ UNIVERSITY OF

% LIVERPOOL

Step 1: Push the non-zeros to the left (2/2)

Output from Step 1.2:

Data AA | CC | FF | GG | X X X | KK | LL X X X IMM| PP | X X
Ncopies| 5 1 5 0 0 0 0| 4 0 0 0 0 1 0 0 0
Step 1.3: Work out how many zeros to the left of each datum and represent in binary and shift by bit 3
Binary |0 00|0 00|0 00/0000{0001/0010|0011/0 00(0100/0101|0110/0111|1 00j1000|1001/1010
Data AA | CC| FF [KK | LL | X | X | X | X | X | X M| PP | X | X
Ncopies| 5 1 5 4 0 0 0 0 0 0 1 0 0 0

Step 1.4: Work out how many zeros to the left of each dat represent in binary and shift by bit 4:
Binary | 000 000/ 000, 000/0000 0100(0101|0110/0111| 000|1000{1001|1010

Data AA | CC | FF | KK X X X X X X X X
Ncopies| 5 1 5 4 1 0 0 0 0 0 0 0 0 0 0 0

¥ UNIVERSITY OF

% LIVERPOOL

Step 2: Make the gaps (1/2)

Output from step 1:

Data AA | CC | FF | K
Ncopies| 5 1 5 4

0 0 0 0 0 0 0

Binary | 000, 100y 100y 000/ 0110000 o, -~ 10000]0000]0000/0000
Data AA | CC | FF | X | X | PP ' |
Ncopies| 5 1 5 0 0 0 0 0 0 0 0 4 1 0 0 0

¥ UNIVERSITY OF

% LIVERPOOL

Step 2: Make the gaps (1/2)

Output from step 1:

Data AA | CC | FF | KK 1MM| PP | X X X X X X X X X X
Ncopies| 5 1/5/4|10}0|]0]0|]O0]O0|]0O0|O0|,0|0/0
Step 2.1: Work out how much each datum needs to shift and represent in binary and shift by bit 4

Binary | 000/ 100| 100| 000 011/0000;0000/0000{0000|0000{0000/0000/0000|0000|0000|0000

Data AA X |PP| X | X | X | X | X |KKIMM| X | X | X

Ncopies| 5 0) 0) 0) 0) 0) 0) 0) 4 1 0) 0) 0)
Step 2.2: Work out how much ea needs to shift and represent in binary and shift by bit 3

Binary |0 000 00/0 00|0000 0000/0000|0000/0000/0000|0 '00(0''11|0000/0000]0000

Data AA | X X X X X X X | KK {MM| X X X
Ncopies| 5 0 0 0 0 1) 0 0 0 0 4 1 0 0 0

¥ UNIVERSITY OF

% LIVERPOOL

Step 2: Make the gaps (2/2)

Output from Step 2.2:

Data JAVAN D X X X | CC| FF | X X X X | KK
Ncopiesf 5 | O | O | O | O 1|5 0] 0] 0] 0] 4
Step 2.3: Work out how much each datum needs to shift and represent in binary and shif®by bit 2

Binary |00 0/0000[0000/0000{0000/00' 0|00 0]0000{0000|0000|0000/00 0|00 1|0000Q0Q00|0000
Data AA | X | X | X | X |CC|FF | X | X | X | X |KK|] X | X
Ncopies| 5 0 0 0 0 1) 0 0 0 0| 4 0 0 1 0

¥ UNIVERSITY OF

% LIVERPOOL

Step 2: Make the gaps (2/2)

Output from Step 2.2:
Data AA | X X X X | CC| FF | X X X X | KK I MM| X X X

Ncopiesf 5 | O | O | O | O 1|/5]0|0|0|]0]]4]|]212|0,0/0
Step 2.3: Work out how much each datum needs to shift and represent in binary and shift by bit 2

Binary |00 0/0000[0000/0000{0000/00' 0|00 0]0000{0000|0000{0000/00 0|00 1|0000|0000|0000
Data AA | X | X | X | X |JCC|FF| X | X | X | X | KK| X | X |M X
Ncopies| 5 0 0 0 0 1) 0 0 0 0| 4 0 0 1 0

Step 2.3: Work out how much each datum needs to shift and represent in binary and shift by bit
Binary |000 |0000/0000|0000{0000|000 000 |0000|0000/0000/0000|000 (0000|0000/000 0

Data AA | X X X X | CC| FF | X X X X | KK | X X X
Ncopies| 5 0 0 0 0 1) 0 0 0 0 4 0 0 0 1

¥ UNIVERSITY OF

% LIVERPOOL

Step 3: Fill the gaps (1/2)

Output from step 2:

Data AA | X | X | X | X |CC|FF| X | X | X | X |[KK| X | X | X |[MM
Ncopies| 5 O] 0|0 |O 1 5 o, 0| 0| 0|4, 0]0]0O0 1
Step 3.1: Express Ncopies-1 in binary and split according to bit 4

Binary | 100/0000/0000|0000({0000| 000| 100/0000|0000/0000]/0000| 011/0000|0000(0000| 000
Data X | X | X | X |CC X | X | X | X | KK| X | X | X |[MM
Ncopies O 0| O 1 5 o 0|0|4|0]0]|O0 1

inary and split according to

Step 3.2: Express Ncopies-1

Binary |0 000000|0000 0000|0 000 00/0000/0000 0000|0 '11/0000/0000|0000|0 00
Data AA | X X A CC| FF | X X X KK | X X X MM
Ncopies| 4 0 0 0 1 1 4 0 0 0 1 4 0 0 0 1

N

¥ UNIVERSITY OF

¥ LIVERPOOL i~

Step 3: Fill the gaps (2/2)

Output from Step 3.2:

Data AA | CC FF MM

Ncopies 1 1 1 1
Step 3.3: Express Ncopi®s-1 in binary and split accordin

Binary 00 0|00 O 00 O 00 O

Data AA | CC FF MM

Ncopies| 2 0 p 0 1 1 2 0 2 0 1 2 0 p 0 1

¥ UNIVERSITY OF

% LIVERPOOL

Step 3: Fill the gaps (2/2)

Output from Step 3.2:

Data AA | X X X |AA | CC | FF | X X X FF | KK | X X X MM
Ncopies| 4 | O 0 0 1 114|000 1 4 | 0O 0 0 1
Step 3.3: Express Ncopies-1 in binary and split according to bit 2

Binary (00 1/0000[0000/0000(00 0/00 0|00 1/0000/0000|0000|00 0j00 1/0000|0000|0000/00 O
Data A X | AA| CC | F X | R X | FF X X MM
Ncopies| 2 0 1 1 2 0 0 1 2 0 2 0 1

Step 3.3: Express NcoRies-1 in bigpary and split accordirgg to bit 1

Binary |000 0/000 000 (000 |0§Q0 000 00|000 |000 0/000 0/000
Data JAVAN Al AA | CC | FF | F FF F | FF | KK K | KK MM
Ncopies| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

¥ UNIVERSITY OF

% LIVERPOOL

Results

Comparison of run-time (and speed-up) as a function of hardware
8 machines, each mounting a 2 Xeon Gold 6138 CPU (32 (of 40) cores at 2 GHz) with InfiniBand 100 Gbps

* Proposed approach: Rotational Nearly Sort and Split (RoSS)
 Uses some further optimisations (eg combines stages 2 and 3)
* Two pre-existing O((log,N)?) baselines:
* Bitonic-Sort-Based Redistribution (B-R)[6]
* Nearly-Sort-Based Redistribution (N-R)[7]
Notation:
* P: number of processors (actually using multiple particles per node)
* N: number of samples (aka particles)
* Tyt number of time-steps
* M: state’s dimensionality (stochastic volatility (with bootstrap filter), to maximise challenge for resampling)

[6] Varsi, A.; Kekempanos, L.; Thiyagalingam, J.; Maskell, S. Parallelising Particle Filters with
Deterministic Runtime on Distributed Memory Systems. |ET 3rd International Conference on
Intelligent Signal Processing (ISP 2017), London, UK, 4-5 December 2017; pp. 1-10

[7] A Varsi, L Kekempanos, J Thiyagalingam and S Maskell. A Single SMC Sampler on MPI that

Outperforms a Single MCMC Sampler "?7? U N I V E R S I T Y O F

% LIVERPOOL

Results: Resampling

Redistribution: run-times and speed-ups
for increasing P, N=2'% and M=1

All algorlthm$
here are = S-R
for P:: 1 ‘

¥ UNIVERSITY OF

% LIVERPOOL

Results: Resampling

Redistribution: run-times and speed-ups
for increasing P, N=2* and M=1

“ AN algorrt—hms ——————————— T— — S D —
here are = S-R | i 5 | ‘
- forP -1 1

wW¥ UNIVERSITY OF
LIVERPOOL

Results: A (Stressing) Exemplar Particle Filter

Stochastic volatility: run-times and speed-ups
for increasing P, N=2% and Tpr=100

wW¥ UNIVERSITY OF
LIVERPOOL

Results: A (Stressing) Exemplar Particle Filter

Stochastic volatility: run-times and speed-ups
for increasing P, N=2'% and Tpr=100

¥ UNIVERSITY OF

% LIVERPOOL

Conclusions

There exists and O(log,N) resampling algorithm for distributed memory systems
Results include a worst-case (!) 125x best speed-up with 256 cores

* Speed-ups will increase with more sophisticated proposal and model

¥ UNIVERSITY OF

% LIVERPOOL

Future Work

Develop implementation

* Intersperse communications and computation

* Hybrid OpenMP/MPI version

* Quantify Performance across a range of hardware infrastructures and models
Fully capitalise on the technical capability that this advance facilitates

e Shift focus towards models and away from algorithms

Publish specific particle filter in Streaming-Stan

* A combination of FL-SMC and NUTS

Open source release of Streaming-Stan

 Adopt Stan’s licencing terms

Integrate Streaming-Stan with Stan and SMC-Stan (on parameters using PMCMC/SMC?)

e Eg for data-driven calibration of multi-target trackers

wW¥ UNIVERSITY OF
LIVERPOOL

