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Robot Navigation is...
Use of Information

Sensor Data Selection Processing Output

raw data informative
data

information
extraction

apply 
information

“perception-action-cycle”
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The Problem:
Where am I?

World

Position
Velocity
Attitude

robust, at high rate, with high precision

extrinsics
intrinsics

frames

Is more 
information 

always better?

“More data is 
confusing – at 
least until there is 
enough of it”
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More Information in 
Vision Based Localization

● A VGA image has >300k pixels!
– Data selection: Only take informative 

areas (high contrast) for localization
– And if there is no contrast?

● Information selection in images has a
long, and continuing, history

desert man made structures no clear identification
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Motivation for 
Dense Image Information

Image reconstruction from event camera stream

[Pock et al.]

raw datainterpolated information
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Estimator using 
Dense Image Information

● Setup
– Tightly coupled filter based approach (towards real-time)
– Sensors: one camera, one IMU (3D acceleration, 3D gyro)

EKF Framework
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Sensors Processing Output

camera

IMU
(acc, gyro)

localization intr. extr.

[A. Hardt-Stremayr and S. Weiss, “Towards Fully Dense Direct Filter-Based Monocular Visual-Inertial Odometry”, 
International Conference on Robotics and Automation (ICRA), May 2019]

pixel depths (a.k.a. local map!)
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Fully Dense VIO
Information Propagation

● As with other approaches: 
corners and edges have most information, homogeneous areas have none?

● Paradigm shift for fully dense approach:
Inherent information propagation from informative regions

camera

camera

scene

scene

image

image

?

!

[A. Hardt-Stremayr and S. Weiss, “Towards Fully Dense Direct Filter-Based Monocular Visual-Inertial Odometry”, 
International Conference on Robotics and Automation (ICRA), May 2019]
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Fully Dense VIO
Information Propagation

[Hardt-Stremayr and Weiss, “Monocular Visual-Inertial Odometry in Low-Textured Environments with Smooth Gradients: 
A Fully Dense Direct Filtering Approach”, ICRA 2020]

● Uncertainty information per pixel leads to:
– Probabilistically consistent information propagation
– Inherent map with uncertainty
– Probabilistically consistent link to motion states

m
ot

io
n

time

uncertainty
map

3D map
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Fully Dense VIO

[Hardt-Stremayr and Weiss, “Monocular Visual-Inertial Odometry in Low-Textured Environments with Smooth Gradients: 
A Fully Dense Direct Filtering Approach”, ICRA 2020]
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Fully Dense VIO
(back-up)

[Hardt-Stremayr and Weiss, “Monocular Visual-Inertial Odometry in Low-Textured Environments with Smooth Gradients: 
A Fully Dense Direct Filtering Approach”, ICRA 2020]

● Fully Dense Direct Filter for Low-Textured Environments with Smooth 
Gradients
– Tightly coupled filter frame takes all pixels into account
– Predicts core state as well as depth for each pixel 

(building dense 3D map of environment)
– Works in low-textured environments with smooth gradients
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Multi-Sensor State Estimation

● We use a set of sensors to estimate the state of UAVs
– IMU data for state dynamics
– Sensors for update: Camera, GPS, Pressure, Magnetometer, etc.

● Sensor output given at different rates with unknown delays
Delays?
Self-Calibration?
Observability?
Convergence?

[Allak et al. “Covariance Pre-Integration for Delayed Measurements in Multi Sensor Fusion”, IROS19.]
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Out of Sequence Updates

● Delays require re-computations of previous measurements
● Re-computation of uncertainties leads to computation spike

[Allak et al. “Covariance Pre-Integration for Delayed Measurements in Multi Sensor Fusion”, IROS19.]
[Allak et al. “Consistent Covariance Pre-Integration for Invariant Filters with Delayed Measurements”, IROS20]
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Covariance Pre-Integration
...a scattering theory approach

● Merge scattering theory with invariant Kalman filters
– Use covariance pre-integration for fast propagation
– Formulation as invariant filter for independence on linearization points
– Result: fast and consistent estimator

[Allak et al. “Consistent Covariance Pre-Integration for Invariant Filters with Delayed Measurements”, IROS20]
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MaRS: A Modular and Robust 
Sensor-Fusion Framework

● Combine fast covariance (re-)propagation with the ability to modularly add 
and remove sensors during mission time

● Fully self-calibrating framework of sensor extrinsics

[Brommer, Jung, Weiss “MaRS: A Modular and Robust Sensor-Fusion Framework”, RA-L, November 2020.]

github.com/aau-cns/mars_ros



30.11.21 Stephan.Weiss@aau.at 25

Modular Multi-Sensor 
Consistency

● Estimators based on geometric observers
– Invariant, equivariant Kalman Filter
– Guaranteed convergence

● Manifold constrained estimators
– Mapping from the manifold to the 

low-dimensional space via chart
– Perform consistent estimation on that space

[Starbuck, Fornasier, Weiss, Pradalier. “Consistent State Estimationon Manifolds for Autonomous Metal Structure Inspection”, ICRA21]
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Modular Multi-Sensor 
Consistency

● Statistically relevant consistency and robustness analysis:
– VINSEval: fully automated (Unity3D & ROS)

[Fornasier et al. “VINSEval:Evaluation Framework for Unified Testing of Consistency and Robustness of Visual-Inertial Navigation System 
Algorithms”, ICRA21

github.com/aau-cns/vins_eval
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Decisions for 
Information Extraction

● Taking all information: What can it be used for?
→  a motivation for system self-calibration

● More sensors introduce more variables (intrinsics, extrinsics)
– Despite good measurements, system input might be insufficient

IMU

Cam

unobservable observable

[JA Preiss, K Hausman, GS Sukhatme, S Weiss, "Trajectory Optimization for Self-Calibration and Navigation" Robotics: Science and Systems 
(RSS), 2017]
[K Hausman, J Preiss, GS Sukhatme, S Weiss, "Observability-aware trajectory optimization for self-calibration with application to uavs", IEEE 
Robotics and Automation Letters (RA-L), 2 (3), 1770-1777, 2017]
[JA Preiss, K Hausman, GS Sukhatme, S Weiss, "Simultaneous self-calibration and navigation using trajectory optimization" The International 
Journal of Robotics Research (IJRR), 2018]
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Observability Aware Motion: 
Fast Convergence

User 1

User 2

[Hausman et al., “Observability-Aware Trajectory Optimization for Self-Calibration with Application to UAVs”, RA-L/ICRA 2017]
[Preiss et al., “Trajectory Optimization for Self-Calibration and Navigation”, RSS 2017]
[Preiss et al., “Simultaneous self-calibration and navigation using trajectory optimization", IJRR 2018]
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From Motion Generation to
Path Generation

Observability aware motion has (so far) no specific boundaries in space and time
● Problem: obstacles, time to arrival
● Does include dynamic feasibility

Idea: “wiggle” around existing path solutions for best observability
● Collision-free path within feasible volumes (polytopes)
● Maximizes observability/convergence, eliminates unobservable modes

obstacles and (local) map

[Hausman et al., “Observability-Aware Trajectory Optimization for Self-Calibration with Application to UAVs”, RA-L/ICRA 2017]
[Preiss et al., “Trajectory Optimization for Self-Calibration and Navigation”, RSS 2017]
[Preiss et al., “Simultaneous self-calibration and navigation using trajectory optimization", IJRR 2018]
[Böhm et al., “Filter-Based Online System-Parameter Estimation for Multicopter UAVs”, RSS2021]
[Böhm et al., “Combined System Identification and State Estimation for a Quadrotor UAV”, ICRA 2021]
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Ad-hoc Observability Aware 
Re-Calibration

● Problem: minimum energy paths yield poor observability
● Idea: Probabilistic state estimators trigger re-calibration

Select most informative sub-trajectory from bundle

Ad-hoc path adaptation for fast in-flight state re-calibration

[Preiss et al., “Simultaneous self-calibration and navigation using trajectory optimization", IJRR 2018]
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Take-Home Messages

● “More data is confusing – at least until there is enough of it”
– Using all data in images for vision based navigation in low-textured areas
– “Enough data” allows for system self-calibration improving localization and 

recovery in challenging situations (self-healing)

● Multiple sensors lead to resilient navigation in challenging situations
– Sensor delay as major issue in real-time applications (re-computations!)
– Correct uncertainty estimation as a challenge versus complexity
– Leveraging geometric properties helps for consistency

● System self-awareness for improved localization
– Require (observability aware) motion for system self-calibration
– Correct uncertainty estimation to trigger self-healing motion
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Thank you

Visit us at our 
research Website
(incl. people, papers
 and many videos):

http://sst.aau.at/cns

http://uav.aau.at


